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Numerical simulation of corneal refractive surgery based on improved 

reconstruction of corneal surface 

Junjie Wang 

ABSTRACT 

The human eye is a fine optical system whose performance heavily relies on its dominant 

refractive component, the cornea. Slight imperfection in the cornea may result in 

significant refractive errors and decline in sharpness of vision. In addition to 

conventionally used prescription glasses and contact lenses, corneal refractive surgery 

has now become reliable method to permanently correct the refractive state of the cornea. 

Nowadays, millions of corneal refractive procedures are performed worldwide each year, 

however the outcome is not ideal, largely due to the lack of understanding of corneal 

biomechanical response to surgical procedures. This study aims to establish a predictive 

finite element (FE) model to assist the planning of future refractive surgery while taking 

account of corneal biomechanical properties. 

The study involves corneal topography analysis to obtain convenient representation of 

the corneal shape for creation of eye-specific models and a series of numerical simulation 

addressing corneal response to surgical procedures such as Laser-Assisted in situ 

Keratomileusis (LASIK) and Small-Incision Lenticule Extraction (SMILE), and to 

external pressures such as tonometry pressures caused by Goldmann applanation 

tonometer (GAT) and Corvis ST (CVS). 

The topography analysis includes studies on fitting and matching. In the topography 

fitting, a collection of orthogonal polynomials are employed to fit the corneal topography 

and they are assessed in terms of reconstruction of measured points and prediction of 

unmeasured locations, latter of which concerns the overfitting risks and has not been well 



II 

 

addressed in previous literature. Better fitting techniques, compared to the commonly 

used Zernike polynomials, are found. In the topography matching part, methods are 

assessed and further developed to match multiple corneal topographies collected from 

different viewpoints to obtain a combined map that covers the entire cornea. This study 

is to overcome the limitations of commonly used topographers that provide corneal 

topography with insufficient coverage of the cornea. In comparison to existing methods, 

the further developed matching method in this study is able to combine the topographies 

very fast (in a few seconds) with high levels of accuracy. 

The outcome of topography analysis has helped build representative eye-specific FE 

models that fit the shapes of the eyes (undergoing LASIK surgery) measured clinically. 

These models closely simulate the LASIK procedure by considering the creation of 

corneal flap and its separation from the rest of the cornea, thickness reduction caused by 

laser ablation and wound healing after the surgery. The simulation is believed to be more 

patient-specific as it adopts not only the patient-specific corneal topography but also the 

patient-specific flap and ablation information which is not well captured in the published 

studies. The models are shown to be able to predict the clinical postoperative surgical 

outcome accurately. Comparison between LASIK and SMILE procedures indicates their 

similar visual outcomes but the LASIK procedure is revealed to be more invasive to the 

cornea. Subsequent simulation on tonometry has observed clear influence of LASIK and 

SMILE procedures on the tonometric estimates of intraocular pressure (IOP). With the 

cornea thickness thinned after surgery, the IOP estimates are significantly smaller than 

their true values, which is consistent with clinical findings. 
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CHAPTER 1  

INTRODUCTION 

1.1 PREFACE 

 

The eyes are the window to your soul. 

-William Shakespeare 

 

Visual perception or vision is possibly our most important sense; it delivers the colours 

and orders of the outside world to our inner soul by seeing. Eyes are the indispensable 

organs for the formation of visual perception and act as the windows to our souls. 

The human eye is a fine optical system whose performance heavily depends on its ability 

to form sharp images for the outside world onto the retina. This involves refracting light 

by the cornea and lens; the cornea as the first refractive component offers approximately 

70% of the whole refractive power of the eye [1]. While light can be expressed as a bundle 

of rays or waves, the refracting process in the eye can be considered as focusing of light 

rays or equivalently converging of light wavefront, which is the shape of the light waves 

that are all in-phase. The wavefront as a matter of course is always perpendicular to the 

light rays. 

In an ideal eye (Figure 1-1), the incoming light rays (essentially parallel when the eye is 

relaxed and focusing on far objects) are convergently refracted by the cornea and allowed, 

through the opening of the pupil (whose size is controlled by the iris), to reach the lens, 

by which the light rays are refracted again and become focused when they eventually 

strike the retina. Meanwhile, the shape of the wavefront is changed from plane to sphere 
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whose centre is located on the retina. Moreover the lens, although offers much less 

refractive power in the relaxed eye, can change its shape to add more refractive power 

when that is needed to focus light from near objects, this process is called accommodation 

(Figure 1-1, B). The focused light is then detected by light-sensitive cells panelled on the 

retina and converted to neural signals, which are transmitted to the brain through the optic 

nerve to form vision. 

 

Figure 1-1. Focusing of light in ideal eye. A. The eye is relaxed (no accommodation) and focusing on 

distant object such the incoming light rays from that object are essentially parallel; B. The lens can 

change to more curved shapes and thus offer appropriate accommodative power when the eye needs 

additional refractive power to focus light rays from near objects. 

In real eyes however, perfect focusing never occurs. On one hand, the perfect spherical 

wavefront as in the ideal eye does not converge to an infinitesimal point but a finite-sized 

spot because of light diffraction, which is a fundamental property of waves when they 

pass an aperture (e.g. the pupil). The finite-sized spot is called the Airy disk, however it 

is too small to introduce noticeable blurring. On the other hand, the perfect spherical 

wavefront never exists in real eyes, the difference between the actual wavefront and the 

spherical wavefront that is found in the ideal eye is called wavefront aberration, which is 

usually decomposed into low order aberrations (LOAs) and high order aberrations 

(HOAs). While trivial LOAs and HOAs create negligible visual effects in normal eyes 

(normal vision), correction is needed in eyes with significant amount of LOAs and HOAs. 
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The LOAs are the commonly known refractive errors including negative defocus – 

myopia (short-sightedness or near-sightedness), positive defocus – hyperopia (long-

sightedness or far-sightedness) and astigmatism. In defocus or myopia and hyperopia, the 

converging wavefront is still spherical but its centre locates either in front of or beyond 

the retina, while in astigmatism, the wavefront has an asymmetric shape so that single 

focus is never achievable. Among all the refractive errors, myopia is now the commonest 

refractive error and it is effecting millions of individuals worldwide. It is even estimated 

that 2.5 billion individuals will be affected by myopia throughout the world by 2020 [2]. 

Further, the global prevalence of myopia is high and increasing, this situation is especially 

serious in eastern Asia, which is believed to be related to the increasing educational 

pressures and life-style changes [3]. Compared to LOAs, HOAs on average only 

contribute 10% to the overall ocular aberration, nevertheless their deleterious effect on 

visual performance is now known to be not negligible thanks to the rapid development in 

wavefront-related technologies, and this negative effect can be significant when the pupil 

is dilated for instance at night [4].  

The first description of refractive errors (LOAs) dates back to as early as the time of 

Leonardo da Vinci [5] and these vision abnormalities have been efficiently corrected with 

optical treatments such as prescription glasses and contact lenses for centuries. Recently, 

corneal refractive surgery that aims to correct refractive errors by altering the shape of 

the dominant ocular refractive component, the cornea, has become a reliable substitution 

for the optical methods (Figure 1-2). There are now many forms of corneal refractive 

surgery including incisional procedures such as Keratotomy and Radial Keratotomy (RK), 

laser-based surface procedures such as Photorefractive Keratectomy (PRK), Laser-

Assisted Sub-Epithelial Keratectomy (LASEK) and Epithelial Laser-Assisted in situ 
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Keratomileusis (Epi-LASIK) and lamellar procedures such as Laser-Assisted in situ 

Keratomileusis (LASIK) and Small-Incision Lenticule Extraction (SMILE). 

 

Figure 1-2. A brief history of corneal refractive surgery (more details will be included in Chapter 2) 

While the incisional procedures are more or less abandoned now, the laser-based 

procedures are reported to result in similar visual outcomes after corneal healing [6]. PRK 

is the first laser-based corneal refractive surgery form, which involves removal of the 

corneal epithelium. The associated pain and slow visual recovery have made the 

procedure less popular now. On the other hand, owing to its relative comfort and rapid 

postoperative recovery, the LASIK has enjoyed growing popularity and has been 

successful in helping millions get rid of spectacles and contact lenses during the last two 

decades, achieving over 95% patient satisfaction [7]. In the LASIK procedure, a 100-200 

micron thick flap of corneal tissue is cut and lifted up before an amount of tissue beneath 

the flap is removed with the excimer laser. The flap is then replaced for natural healing. 
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The newer SMILE procedure, on the other hand, has omitted the creation of the flap. It 

uses femtosecond laser to cut a corneal lenticule inside the intact bulk of the cornea and 

only makes a small incision (also by the same laser) on the anterior cornea to extract the 

lenticule. In this way, SMILE achieves the same outcome as LASIK but better preserves 

the corneal integrity which is advantageous to maintain the mechanical resistance of the 

cornea. Details of the steps of PRK, LASIK and SMILE procedures can be found from 

Zeiss website (http://www.zeiss.com). 

By designing customised ablation profiles, the corneal refractive surgery in theory is able 

to correct both LOAs and HOAs and achieve supernormal vision (compared to normal 

vision) that reaches the limitation of diffraction [8]. Nevertheless, this target of 

supervision has never been achieved so far. In addition, while patient satisfaction of 

refractive surgery is quite high, there are always various degrees of discrepancy between 

attempted and achieved visual corrections in all surgical forms. The discrepancies and 

failure to achieve supervision are not explained by the attempted laser ablation, but are 

believed to be possibly related to the biomechanical reaction of the cornea to the surgery 

[9, 10]. As the remaining cornea after the surgery will have a reduced thickness, its 

deformation under internal eye pressure (intraocular pressure or IOP) will change leading 

to a new modified topography. Lack of understanding of corneal biomechanics has meant 

that the analysis of the procedure and the determination of the thickness of tissue to be 

removed are based on average corneal properties. Significant variations in corneal 

thickness or material behaviour would therefore lead to failure to fully correct refractive 

errors and may make re-treatment necessary. 

With the gradual improvement in understanding of corneal biomechanics and the 

development of finite element method (FEM), we are now able to numerically simulate 

http://www.zeiss.com/
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the reaction of the eye following various forms of corneal surgery. The numerical 

modelling of refractive surgery can also help predict the surgical outcome and provide a 

way to assist the design of more accurate and realistic surgical plans that take full account 

of corneal biomechanical properties. This will involve building eye-specific models based 

on clinical data. 

The necessary clinical data are typically collected preoperatively when the patient is being 

diagnosed and these data provides important measurements that determine the 

geometrical shape of the eye such as the anterior corneal topography, corneal thickness 

map and axial length. In addition, the eye-specific ablation depth profile can be obtained 

from the surgical instrument and this is essential to simulate the tissue removal in the 

numerical modelling. Unfortunately, all these data are generally exported as discrete 

points set and are not directly usable in the eye-specific numerical modelling, meaning 

that topography fitting techniques are generally needed to analytically represent the data 

for convenient use.  

Further, the cornea shape cannot be wholly measured in a single observation because of 

limitations in current topography instrumentation and measurement techniques, which are 

also known to have reduced accuracy particularly towards the corneal periphery, making 

the topography measurement in the peripheral region considerably less reliable. This has 

meant that a single topography map can hardly provide adequate information of the 

cornea, increasing the difficulty of building representative eye-specific numerical model. 

To address this problem, topography matching or registration techniques are again needed 

to combine multiple topography maps for the same eye but collected from different 

viewpoints, providing a complete corneal topography and enabling the construction of 

accurate patient-specific numerical models. 
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1.2 SCOPE OF STUDY 

New knowledge and achievements in medical imaging technology, biomechanical and 

biochemical engineering, computer engineering and laser technology have enabled 

researchers in ocular community to better understand the nature of the human eye and 

provide enhanced care of ocular vision. This thesis mainly deals with corneal 

image/topography analysis and biomechanical modelling of refractive surgery. 

Corneal topography is of great importance in characterisation of corneal shape, diagnosis 

of corneal disease and planning of refractive surgery. There are now quite a few 

instruments that can reliably measure corneal topography but unfortunately the output is 

often in a discrete form and the coverage of the measurements is limited. As a result, in 

most applications additional manipulations are needed, which are covered in this thesis 

as the first topic – topography analysis (topography fitting and matching). The purpose 

of topography analysis is to obtain an adequate and convenient representation of the 

cornea, which is essential for construction of patient-specific numerical models and 

enables the numerical analysis of refractive surgery, which is the second main concern of 

this thesis. 

1.3 AIMS AND OBJECTIVES 

This research aims to establish a predictive finite element model acting as an assisting 

tool for planning of future refractive surgery. This finite element model should adopt 

patient-specific ocular shape with the help of topography analysis and be able to closely 

simulate the reaction of the cornea following the surgery and thus accurately predict the 

surgical outcome obtained clinically. The objectives of this research can then be divided 

into the following three aspects. 
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 Topography fitting: A set of orthogonal polynomials are used to fit corneal topography, 

the accuracy and reliability of these polynomials are compared and the capability of 

these fitting techniques in predicting surface information at locations that lay between 

the measured points are assessed. 

 Topography matching: A set of approaches that match multiple corneal topographies 

collected from different viewpoints are assessed and further developed, aiming to 

provide a combined topography map which covers the entire cornea surface. 

 Numerical simulation of corneal refractive surgery: Numerical models that simulate 

the LASIK refractive surgery form are developed using patient-specific data. The 

reaction of the cornea to the surgical procedures is predicted and compared to the 

clinical outcomes. The newer SMILE procedure is also developed numerically and 

compared to the LASIK procedure. In addition, the effect of LASIK and SMILE 

procedures on tonometry (method to measure intraocular pressure) is numerically 

studied. 

1.4 THESIS STRUCTURE 

This thesis aims to provide a clear overview of the research programme including its aim 

and objectives, methods, major results and main conclusions. The thesis is organised as 

follows: 

 Chapter 1 introduces the background of this research, the scope of the study and brief 

outline of the aim and objectives of this study. 

 Chapter 2 reviews summarily earlier research on the human eye and its optics, 

analytical fitting models of corneal topography, methods of topography matching and 

image registration, common refractive surgery forms, and numerical simulation 

techniques of eye surgeries. 
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 Chapter 3 outlines the research methodologies adopted in this study including 

topography fitting, topography matching and numerical simulation of refractive 

surgery. 

 Chapter 4 and Chapter 5 present the results of topography analysis, which includes 

both topography fitting and topography matching. The results are presented in the 

same logical order as in the methodology. The fitting polynomials are compared in 

terms of reconstruction and prediction errors. The achievements of topography 

matching are then presented. 

 Chapter 6 shows the outcome of numerical simulation of refractive surgery, which is 

compared to the clinical outcome. The influence of surgical procedures on measuring 

intraocular pressure is also presented. 

 Chapter 7 provides an overall discussion of the study and its main conclusions, in 

addition to a number of recommendations for future work. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 INTRODUCTION 

A great deal of literatures can now be found in research of corneal structure and 

biomechanics, representation analysis of corneal topography and numerical modelling of 

ocular (especially corneal) behaviour under internal/external forces and following 

surgical procedures. These previous studies aimed to better understand the nature of the 

human eye including its structure and biomechanical properties, efficiently represent and 

reconstruct the corneal surfaces, precisely predict ocular response to external applications 

and reliably change the state of the eye for medical and health purposes. 

This chapter firstly gives a brief review of previous publications on the geometric and 

optical structures of the human eye. Studies related to topography fitting and matching 

from both image processing and ocular communities are then reviewed and discussed. 

This is followed by a brief review of the history of corneal refractive surgery and its 

current achievements and limitations. In the last part of this chapter, previous studies on 

the numerical simulation of refractive surgery are reviewed, where limitations and gaps 

in some existing numerical modelling studies are discussed. 

2.2 STRUCTURE AND OPTICS OF THE HUMAN EYE 

In addition to the brief introduction of ocular structure and optics in Chapter 1, this section 

summarises the main anatomical components of the human eye and its optics. 

Considering the dominant role of the cornea and the focus of the thesis, the layered cornea 

and its geometrical and biomechanical properties are reviewed in a greater depth. 
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2.2.1 The eyeball 

The human eye is a complex structure, ‘a pressurised and thick-walled shell that has an 

internal and external musculature, a remarkably complex internal vascular system, 

dedicated fluid production and drainage tissues, and a variety of specialised fluid and 

solute transport systems’ [11]. In general, it is composed of three coats enclosing three 

transparent media and structures [1]. These ocular components are either vital to maintain 

the shape of the eyeball, or responsible to supply and nourish the eye, or essential for the 

formation of sharp image. 

The outermost coat is called fibrous tunic or corneoscleral envelop, of which the anterior 

sixth is the transparent cornea; the white and opaque sclera constitutes the posterior five-

sixths. The transitional region that connects the cornea and sclera is called the limbus. 

The middle coat, known as vascular tunic or uvea, is comprised from behind forwards of 

the choroid, ciliary body and the iris, which presents near its centre a rounded aperture, 

the pupil. The innermost coat is the neural tunic or better known as retina. The fibrous 

corneoscleral coat confines the intraocular pressure (IOP) and determines precisely the 

optical geometry of the visual apparatus. The uveal circulation in the middle coat not only 

provides the source of the intraocular fluid but also nourishes the non-vascularised retina, 

which consists of numerous receptors and neurons for initial processing of visual 

information. This information is delivered to the brain for vision formation through the 

optic nerve [1]. 

Within the eyeball, there lie three transparent media, namely the aqueous humour, the 

crystalline lens and the vitreous body. The aqueous humour is continuously replenished; 

it is a clear and colourless fluid secreted by the ciliary processes in the ciliary body. This 

fluid moves inwards, scouring the lens, then anteriorly through the pupil to polish the 
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cornea, and finally drains out of the eye through the angle formed by the iris and cornea 

[11]. This circulation of the aqueous humour is responsible for creating the IOP. The 

crystalline lens (also frequently called the lens), which separates the aqueous humour and 

vitreous body, is located just behind the iris and suspended by ligament known as ciliary 

zonule, which attaches to the ciliary muscle of the ciliary body. The shape of lens can 

change through alterations in tone of the ciliary muscle to enrich the refractive power of 

the lens [11], which is known as accommodation and helpful for seeing nearside objects 

as illustrated earlier in Figure 1-1B. The vitreous body is stagnant and this gel-like 

transparent humour accounts for about four-fifth of the eyeball [12]. Although the 

vitreous boy is relatively inert compared to the aqueous humour, it is quite porous thus 

able to transmits the IOP throughout the interior of the eye [11]. The mean IOP value in 

normal population is about 15 or 16 mmHg with standard derivation of about 3 mmHg 

[11, 13]. The range of normal IOP was reported to be related to age, sex, diabetes and 

geographical locations but the correlations were not explicitly agreed among the 

literatures [13-20]. It should be noted that IOP is a dynamic physiologic measurement, 

exhibiting remarkable diurnal and nocturnal variations which could be plus or minus 3.5 

mmHg [21, 22]. Meanwhile, the difference between systolic and diastolic blood pressure 

creates circadian fluctuation in the IOP with the heart rate, which is quantified by the 

ocular pulse amplitude and normally has mean value of 3 mmHg [23, 24]. 

2.2.2 The cornea 

As the transparent layer covering the front of the eye, the cornea is the outmost ocular 

component. In addition to its roles of maintaining the ocular shape and acting as a natural 

barrier [25], the cornea is also responsible to provide about 70% of refractive power of 

the eye [1]. Therefore, understanding of the cornea is of great scientific and clinical 

significance. 
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Corneal geometry 

Geometrically as looking from the front, the cornea appears elliptical, averagely 

measuring 11.7 mm wide horizontally and 10.6 mm vertically, while from the back, the 

shape is circular, measuring 11.7 mm in diameter. This difference in shapes is due to the 

greater superior and inferior overlap of the sclera and conjunctiva than laterally [1]. The 

normal cornea has a shape as prolate ellipsoid, meaning it flattens towards the periphery 

[26]. The anterior and posterior surfaces of the cornea are not concentric as the cornea 

has non-uniform thickness distribution, being about 0.52 mm (0.46 to 0.67 mm) at its 

centre and about 0.67 mm (0.65 to 1.1 mm) close to the corneoscleral junction, making 

the central radius of curvature of the anterior surface 7.8 mm (6.8 to 8.5 mm) and 6.5 mm 

(6 to 7 mm) for the posterior surface [27]. 

The performance of the cornea heavily relies on its ability to maintain a perfect shape for 

light refraction. The knowledge of the shape, which can be characterised by the corneal 

axial and tangential curvatures, refractive power and elevation map [28], is essential for 

characterising ocular aberrations [29, 30], detecting corneal irregularities [31], modelling 

of the cornea [32] and the ablation planning of refractive surgeries [33]. Nowadays, a 

great number of devices are able to accurately measure the 3D corneal topography in vivo, 

including those Placido disc-based devices such as Keratron and Medmont [34], those 

slit-imaging technologies based such as Orbscan (horizontal/translational slit-scanning) 

and Pentacam (rotational Scheimpflug imaging) [35], and most recently those based on 

combined technologies such as Galilei and Sirius [36]. 

Anatomy and physiology of the cornea 

Histologically as shown in Figure 2-1, it has been well established that the cornea 

comprises five distinctive layers, namely from anterior to posterior, the continuous 
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regrowing epithelium, the Bowman’s layer, the fibrous and strong stroma, Descemet's 

membrane and the endothelium. Additionally, a novel, well-defined and strong layer may 

exist in the pre-Descemet’s cornea according to a recent study [37]. This newly 

discovered layer is named after the leader of this study as Dua’s layer, however debate 

and criticism still exist both on the existence and eponyms of such layer [38, 39]. 

 

Figure 2-1. Five distinctive layers of the cornea 

The collagenous stroma makes up almost 90% of the entire cornea thickness and 

dominates the overall biomechanical properties of the cornea [1]. Its form and function 

are predominantly defined by the extracellular matrix (ECM) which is rich in collagens 

and interspersed with keratocytes [40]. The collagens in the stroma are mainly type I, 

although types V, VI and XII are also present [41].  

The human stroma consists of over 300 stromal lamellae, each forming a plate of collagen 

fibrils which are produced by keratocytes lying between the lamellae. The collagen fibrils 

inside the lamella are regularly spaced and connected by proteoglycans (PGs), forming a 

hexagonal arrangement of the fibrils [42]. The regular arrangement is hypothesised to 

induce minimal light scattering and thus is crucial for corneal transparency [40]. 

Moreover, there are evidences that other ECM components such as keratocytes are 

involved in creating corneal transparency by producing water-soluble proteins – ‘corneal 
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crystallins’ [43]. The corneal transparency is also affected by hydration in the cornea 

which is maintained in a relatively deturgesced state (78% water content) by the 

endothelial layer through a pump-leak process where leakage from the aqueous humour 

to the corneal layers is counteracted by the water pumping out through endothelial cells 

[44, 45].  

The fibres of each lamella in the stroma are parallel with each other, but at right angles to 

those lying in nearby lamellae. The stromal lamellae are superimposed one on another 

and there exists remarkable anteroposterior lamellar interweave in the anterior stroma, 

making it more compact thus stronger in the anterior than the posterior [46]. The tighter 

rigidity in the anterior cornea is demonstrated to be particularly important to maintain the 

corneal curvature [47]. The preferential orientation of lamellae is along inferior-superior 

or nasal-temporal direction in the central cornea, which then appears to run 

circumferentially around the limbus where the cornea and sclera meet [48]. This change 

in lamellae orientation from central to peripheral cornea is believed to be helpful to 

maintain the corneal curvature as well [41]. 

The corneal integrity can be interrupted by any trauma, which trigger a series of cellular 

and molecular injury responses in the corneal layers with an evolutionary purpose of 

restoring the natural function of the cornea [49]. The injury responses are triggered in 

sequences and many processes can take place simultaneously and co-regulate in many 

ways. These complex wound healing processes are mediated by cytokines and various 

growth factors, and can involve many elements, among which the keratocyte apoptosis, 

keratocyte necrosis, keratocyte proliferation, migration of inflammatory cells, and 

myofibroblast generation are frequently present and best characterised [50].  
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Upon most injuries, the first disruption occurs in the epithelium which initiates epithelial–

stromal healing interactions. The epithelial cells undergo immediate disappearance of 

hemidesmosomes, creation of cell membrane extensions and increase in mitochondrial 

energy production, which are followed by cell migration and spreading to cover the 

wounded side [51], before cell proliferation and stratification that re-establishes the 

multicellular layers of the epithelium [52]. In the stroma, keratocytes apoptosis occurs 

beneath the damaged epithelium areas and it is mediated by proapoptotic molecules and 

cytokines released mainly by the epithelial cells; these can include interleukin-1 (IL-1), 

Fas ligand, and tumour necrosis factor α (TNF-α) [53]. Subsequently, the surviving 

keratocytes are activated and begin to migrate and proliferate, probably mediated by 

platelet-derived growth factor (PDGF) [54]. These activated keratocytes produce 

relatively small amount of ECM [40] but they seem to play a decisive role in producing 

or helping produce growth factors such as epidermal growth factor (EGF), hepatocyte 

growth factor (HGF) and keratinocyte growth factor (KGF), which are helpful for the 

epithelial re-establishment [53]. Depending on the integrity of the epithelial basal 

membrane, cells known as myofibroblasts may derive from keratocytes in response to 

transforming growth factor β (TGF-β) which is produced by the epithelial cells and 

allowed to diffuse into the stroma following disruption of epithelial basal membrane [55]. 

Myofibroblasts trigger collagen and ECM remodelling and cause contraction of the 

repairing tissue, however these cells have reduced transparency and the resulting collagen 

and ECM are disorganised and opaque, causing high level of light scattering and 

reflection, and thus reduction in corneal transparency [56]. Eventually, when the levels 

of TGF-β are reduced due to the recovery of epithelial basal membrane, IL-1 triggers 

apoptosis of myofibroblasts [57], which allows a regularisation process to take place, 

attempting to restore regular diameter and arrangement of the stromal fibrils, and thus the 
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corneal transparency [58]. The thickness and material properties undergo continuous 

changes during the wound healing process which can last from months to years [59]. 

These long-term changes in particular can lead to overcorrection, undercorrection and 

regression in surgical refractive procedures such as those that will be discussed later in 

this chapter. It has been widely agreed that understanding of the cascade of corneal wound 

healing events and processes is indispensable to improve the predictability and safety of 

refractive surgery [50, 59-61]. 

Corneal biomechanics 

Determined by its microstructure, the cornea has material properties including 

hyperelasticity, viscoelasticity and anisotropy [62]. With hyperelasticity, the cornea 

exhibits nonlinear material behaviour, reflected by a nonlinear stress-strain curve [63]. 

The hyperelastic property of the cornea makes the single Young’s Modulus (or elastic 

modulus E) inadequate to represent the overall corneal elastic material. However, as 

shown in Figure 2-2, the cornea does behave linearly under low pressure because of the 

dominant bearing role of corneal matrix; as the pressure increases, the stiffer collagen 

fibril layers becomes taut and dominant in tension bearing, resulting in significant 

elevation in corneal stiffness [25]. In addition, the cornea was observed to be stiffening 

with age [64]. This stiffness increase with age may partially due to the increase in collagen 

fibril diameter with age [65] but the increased cross-linking of collagen in older cornea is 

thought to contribute significantly more in corneal stiffening [64, 66].  

Viscoelasticity and anisotropy are another two essential material properties of the cornea, 

the first indicates the elasticity of the cornea is time and loading rate dependent, while the 

latter means the cornea behaves differently in different directions [67, 68]. Like all soft 

tissues, the corneal viscoelasticity is mainly due to its highly hydrated nature. Moreover, 
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it is now clear that the mechanical anisotropy of the cornea is largely determined by the 

varying orientation of the fibrils. 

 

Figure 2-2. Typical behaviour of the cornea under tension with an initial matrix regulated phase followed 

by a higher stiffness collagen regulated phase [25] 

2.2.3 Optics of the eye 

Clear vision relies on the ocular capability of refracting and focusing the incoming light 

rays on the retina. The two ocular components that are responsible for this refraction are 

the cornea and the lens. 

The refraction of light is caused by the difference in refractive indices of the transmission 

media and enlarged if the boundary of the media is right curved. Quantitatively, the 

refractive power is measured in inverse metre (
1m
) or equivalently dioptre (D) and it 

can be computed by ( ' )/n n R  where n  and 'n  are the refractive indices on the incident 

and refracted sides, and R  is the radius of the transmission boundary [69]. In the case of 

human eye, as shown in Figure 2-3 with representative dimensions and refractive indices, 

the change of refractive indices is greatest when light passes through the anterior corneal 

surface, leading to a refractive power of 48.2 D. The total refractive power of the cornea 
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is about 42 D because of a slight reduction in refractive index from the cornea (1.376) to 

the aqueous humour (1.336), which results in a negative refractive power caused by the 

posterior corneal surface of -6.2 D. Being different from the cornea, the lens has 

remarkably varying refractive index from the nuclear region to the cortex region. It is thus 

not straightforward to estimate its refractive power by simple formula above as done for 

the cornea. Collectively, the equivalent refractive power of the lens is estimated slightly 

above 20 D [70]. Although this makes the lens contribute significantly less refractive 

power to the optical system, being about 30% of the entire ocular refractive power, the 

lens can add accommodative power when the eye needs additional power to focus light 

from near objects. This accommodative power (or amplitude of accommodation) is 

greatest at birth, being 15-16D, but declines to 8D at around age 25 years and to 2D or 

less at 50 years [1]. 

 

Figure 2-3. Representative dimensions (mm) and refractive indices of the eye. The starred values are for 

relaxed eye (no accommodation). The refractive index of the lens is not constant and is greatest in the 

nuclear (central) region, being 1.406, and least in the cortex (peripheral) region, being 1.386 at the edge 

of the lens [69]. 

The mismatch between the actual refractive power of an individual eye and the right 

power that it needs to focus the light precisely on the retina, results in blurred vision. 
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Conventionally, this mismatch is quantified by refractive errors including myopia, 

hyperopia and astigmatism as introduced in Chapter 1. But more recently, wavefront 

aberration has become widely used to quantify the optical imperfection of the eye. This 

benefits from advances in physical optics where light is regarded as waves rather than a 

bundle of rays as in geometrical optics [71]. The wavefront, as its name applies, is the 

front surface of the light waves that are all in-phase and this surface is always 

perpendicular to the light rays as shown in Figure 2-4 or earlier Figure 1-1 in Chapter 1. 

Ideally, the wavefront, before it strikes the retina, should be a sphere with its centre 

located on the retina. The difference between the actual wavefront and the ideal wavefront 

is called the wavefront aberration. 

 

Figure 2-4. A schematic eye model showing light rays being refracted by ocular system and the shape of 

wavefront during the transmission 

While the shape of the wavefront aberration can be arbitrary, it can be broken into ordered 

components including low order aberrations (LOAs) and high order aberrations (HOAs) 

[72]. In addition to but without repeating the details given in Chapter 1, Figure 2-5 and 

Figure 2-6 have shown the effects of various wavefront aberrations on the image formed 

on the retina (emmetropic plane (E)) as well as on the myopia (M) and hyperopia (H) 
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planes [73]. In a normal eye, the image of a point source object on plane E would be a 

small spot called Airy disk caused by light diffraction only [74]; while in an aberrated 

eye, such image can range from a blob to an arbitrary shape. It should be noted that 

wavefront aberrations are caused by imperfect shapes of both the cornea and the lens, and 

the discussion above has emphasised the overall wavefront of the whole eye. Moreover, 

it is evident that there exists compensation between cornea and lens to cancel out each 

other [75, 76]. 

 

Figure 2-5. Actual wavefront shapes for different low order aberrations compared to the ideal shape and 

their corresponding images of a point object on the myopic, emmetropic and hyperopic planes [73] 
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Figure 2-6. Actual wavefront shapes for different high order aberrations compared to the ideal shape and 

their corresponding images of a point object on the myopic, emmetropic and hyperopic planes [73] 

Nowadays, wavefront analysis has become a crucial part in modern refractive surgery for 

the planning of laser ablation because it allows more accurate vision correction [77]. In 

this analysis, an aberrometer or wavefront sensor is employed to measure the shape of the 

wavefront expressed as wavefront aberration [78]. Further, the shape of the wavefront is 

usually fitted by the set of orthogonal Zernike polynomials to display the characteristic 

components [71, 79]. Zernike polynomials are also employed frequently to represent the 

corneal topography [80], and the resulting Zernike representation of the corneal 

topography can be used to indirectly determine the wavefront aberration [29]. The fitting 

of corneal topography to polynomials like Zernike polynomials is the topic of the next 

section. 

2.3 CORNEAL TOPOGRAPHY FITTING 

Although the corneal surfaces, including anterior and posterior surfaces, can now be 

reliably observed, they are normally exported as sets of discrete points. A crucial step 

before their applications is fitting of these discrete points to analytical surface. 

Historically, the corneal topography has been fitted to ellipsoid surface [81], spline 
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functions [82-84], Taylor series expansion [85]. Besides, the orthogonal Zernike 

polynomials (ZPs) [79], now as the standard for reporting optical aberrations [86], are 

also widely used as fitting techniques for corneal height data [80], having advantages over 

non-orthogonal polynomials such as explicit physical meaning of the polynomial features 

and independence among the polynomial terms. However, the ZPs, although being used 

frequently by ophthalmologists in their every-day work, have been reported to explain 

the topography features incompletely and fail to give all the information that affects visual 

acuity, which may lead to imperfections or mistakes of clinical diagnosis and treatment 

[34, 87]. This is particularly true when fitting irregular corneal topography because the 

2D ZPs exhibit global features which are too smooth to detect local irregularities. 

Subsequent works on fitting corneal topography have introduced other orthogonal 

polynomials such as pseudo-Zernike polynomials (PZPs) [88], continuous and discrete 

Tchebichef polynomials (TPs) [89, 90]. Also, the idea of combining several techniques 

to fully capture all shapes (both globally and locally) has been introduced by Martinez-

Finkelshteinl, et al. [91], where the author proposed using both standard radial 

polynomials and radial basis functions (RBFs) to fit the corneal height data. This idea is 

well followed by Espinosa, et al. where the so called ‘zonal’ and ‘modal’ fitting strategies 

both based on ZPs are combined [92].  

Similarly, orthogonal polynomials have been more extensively investigated in image 

processing community. Except for the aforementioned polynomials, other polynomials 

such as Gegenbauer polynomials (GPs) [93], Legendre polynomials(LPs) [94], Gaussian-

Hermite polynomials (GHPs) [95], Orthogonal Fourier-Mellin polynomials (OFMPs) [96] 

have been used as kernels of image moments which relevantly turn out to be coefficients 

in the polynomial decomposition [97]. Superior performance of image reconstruction 
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based on some of these polynomials compared to the conventional ZPs has been 

demonstrated [96, 97]. 

The core step in representation of corneal topography by the expansion of polynomials is 

the determination of coefficients of the polynomial terms, which later allows 

reconstruction of the surface and thus the assessment of the representation quality. There 

are mainly two methods that are routinely implemented to obtain these coefficients. The 

first method takes advantage of the orthogonality of the polynomials such that the 

coefficients can be directly computed as the projection of the surface onto the polynomials. 

In other words, the coefficient is the inner production of the surface function and the 

polynomial function [98]. Unfortunately when continuous polynomials are used as in 

most cases, this inner production, which is a two-dimensional integration, cannot be 

computed straightforward but only approximated because the continuous or at lease 

piecewise continuous surface function is unknown [94, 99]. In fact, it is the goal of 

polynomial fitting to achieve such explicit expression/function of the surface that is 

initially expressed by means of discrete points. The problems of determining coefficients 

for continuous polynomials had immediately motivated researchers in image processing 

community to employ discrete orthogonal polynomials such as discrete Tchebichef 

polynomials [100, 101], Krawtchouk polynomials [102], Hahn polynomials [103] and 

some other candidates [104]. Using discrete polynomials to decompose arbitrary surfaces 

can avoid certain inevitable errors introduced during the evaluation of the continuous 

polynomial coefficients, which rapidly popularised the research based on discrete 

polynomials in pattern recognition, character identification and other related fields. 

Nevertheless, the representation by expansion of discrete polynomials has the 

fundamental difficulty to predict points that lay between the measured locations. In other 

words, evaluating new points based on the discrete polynomials is somehow impossible, 
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while this is sometimes the main goal of fitting corneal topography to analytical surface. 

Therefore, using discrete polynomials to fit corneal topography is not considered in this 

thesis. 

Instead of orthogonal projection as discussed above, the common used method in the 

ocular community is simply based on least-square estimation. Using the same sampling 

locations (i.e. x and y coordinates), the continuous polynomials are sampled and the 

process of determining polynomials coefficients become solving a linear equation system 

in least-square sense [98]. This method is relatively more straightforward and accurate in 

terms of reconstruction error. Nevertheless, the coefficients are obtained by mere 

optimisation and thus may not always reflect the exact ones because the orthogonal 

property of the polynomials are not taken into account. Further, a direct consequence is 

that the coefficient for a certain polynomial term may vary when other terms are added 

or subtracted, which would never take place using orthogonal projection techniques. 

A common process in topography fitting or image reconstruction is to map the 

topography/image to the domain of the orthogonal polynomials [105], which is usually 

done by scaling the x and y coordinates of the map. The domain of polynomials is usually 

unit circle or square; the corneal topography map, on the other hand, is often exported as 

measurements at points within a circular region in consistency with the nature of the 

cornea. Mapping circular corneal topography to square domain may have two major 

difficulties: 1) If the map is scaled to be fully covered by the polynomial domain (i.e. the 

map is inscribed with the square domain), blank region in the four corners will 

erroneously effect the fitting performance because of the sudden change in shape from 

curved to flattened (e.g. the corners); 2) If the map is scaled such that the circular map 

area circumscribes the square domain, the sudden change in shapes is avoided but 
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significant portion of the original maps will be discarded. Nevertheless, if least-square 

method is employed to evaluate the polynomials coefficients, the orthogonality does not 

have to be maintained such that a circular portion of the square polynomials can be 

extracted and used to represent the surface. 

2.4 CORNEAL TOPOGRAPHY MATCHING 

The corneal topography cannot be wholly measured in a single observation because of 

limitations in current topography instrumentation and measurement techniques [106], 

which are also known to have reduced accuracy particularly towards the corneal periphery, 

making the topography measurement in the peripheral region considerably less reliable 

[34, 107]. In some applications such as fitting of scleral contact lenses [108] and planning 

and numerical simulation of eye surgery, both interpolated and extrapolated data are 

commonly used, running the risk of overestimating corneal height in the periphery [109]. 

An accurate representation of topography that covers the entire corneal surface and 

beyond into the anterior sclera is desirable and particularly important in evaluation of 

post-cross linking surgical eyes of keratoconics that require monitoring of outcome and 

fitting of large diameter contact lenses that cover the sclera – corneal junction and anterior 

sclera. A complete corneal topography also allows the construction of accurate patient-

specific finite element models for biomechanical modelling of the human eye [110]. The 

topography matching study of this thesis is to address this need through an assessment 

and further development of methods that have the potential to provide a complete corneal 

topography.  

As introduced earlier, the corneal topography is commonly measured using 

videokeratography (VK) instruments such as the Pentacam, Orbscan and Medmont. 

Single measurement maps using VK instruments have limited reliable coverage, normally 
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8-9 mm, with the peripheral measurements being less reliable than the central due to the 

quality of signal obtained tangentially versus perpendicularly. To overcome this 

disadvantage, the whole corneal surface can be covered in portions by directing the 

patient to central focusing point and a number of eccentric targets, thus a set of 

topography maps can be captured for central and several peripheral portions of corneal 

surface. However, the maps are in disparate coordinate systems and cannot be combined 

easily without additional manipulation since their relative directions are not precisely 

known. Therefore, reliable topography combination techniques are needed to bring 

together all the maps (central and peripheral) into a common, global coordinate system 

based on accurate overlapping information.  

Relatively few publications are available in the ocular community on topography 

combination. Earlier studies either concentrate on conducting rigid-body transformation 

while minimising the height difference between individual maps within the overlapping 

region by a non-linear optimisation method [111], or determine the magnitude of this 

transformation by using the characteristics of the videokeratography [112]. Both methods 

are only validated by numerical simulation. One notable example is the method developed 

by Franklin et al. [109] where the point corresponding to the centre of the central map is 

located in the peripheral topography by testing all possible points within a candidate 

region. This is done by, for each point in the candidate region, shifting and rotating the 

peripheral map until the normal of the current candidate point shares the same direction 

as the centre point of the central map. The candidate point that minimises the difference 

between the central and transformed peripheral maps in the overlapping portion is sought. 

This procedure defines the required lateral shift and rotation of the peripheral map that 

enables the combination of the central and peripheral maps. 
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Franklin et al. [109] remarked that variability of axial radius of curvature was less than 

height-data variability, especially at the periphery. They chose to use the differences of 

axial radii of curvature as the alignment criterion. This approach seems not to be 

straightforward because axial curvature measurements depend on the videokeratography 

axis and represent curvatures only along the meridians, while ignoring shape properties 

in other directions [113]. To form the alignment criterion preferred by Franklin et al., the 

axial radius of curvature map must be computed based on the measured height map. The 

same authors reported that it took an hour to complete the matching task for one pair of 

central and peripheral maps on a standard desktop computer at that time and that their 

software required significant optimisation to be useful in clinical practice. 

Compared to the limited number of publications on combining ocular topography maps, 

more literature exists in the image processing field on algorithms aimed at aligning views 

of an object taken from different viewpoints [114-116]. Among these, the Iterative 

Closest Point or Iterative Corresponding Point (ICP) algorithm has become the dominant 

method for image registration of three-dimensional objects since its introduction by Chen 

and Medioni [117], Besl and McKay [118], in the 1990s. In ICP routines, the surface or 

map usually consists of a cloud of three-dimensional points sampled on the surface of an 

object. The corneal topography is such a cloud of points, making the ICP algorithm also 

applicable to corneal topography combination. Modifications and improvements have 

been introduced in subsequent studies to make the ICP faster, more robust and accurate 

by optimising the analysis steps or introducing additional properties of the surfaces, such 

as slopes or curvatures, into the standard ICP procedure [119]. 

The ICP algorithm is available in several variants. When applied to match central and 

peripheral corneal topographies, it essentially consists of minimising an objective 
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function that defines the distance between sets of points of measured maps on the same 

surface observed from different viewpoints (central and peripheral). When there are two 

peripheral maps or more, one question raised that how to deal with or take use of the 

connective information between the peripheral maps themselves. On one hand, aligning 

the peripheral maps to the central map individually without consideration of their relative 

information will have big chance to introduce inconsistencies among the peripheral maps. 

On the other hand, newly added maps may bring in information that could improve the 

registrations of the previously registered maps [120]. The matching of multiple maps is 

coined as multi-view registration. 

Compared to pair-wise registration, the multi-view registration is more complex and the 

proposed methods of doing so are diverse. The naturally extended approaches from ICP 

aim to consider all the peripheral maps simultaneously by integrating the connective 

information of the peripheral maps into the error metrics of the original ICP algorithms 

as firstly attempted by Stoddart and Hilton [121] using a gradient descent algorithm. In 

the same direction, Benjemaa and Schmitt [122] extended Besl’s algorithm to solve multi-

view registration problem using quaternions, while Neugebauer [123] gave a multi-view 

version of Chen and Medioni’s approach by using either Newton-Taylor algorithm after 

special assumption of the world coordinates system and linearisation of the error metric 

or Levenberg-Marquardt algorithm directly [124], resulting in smoother convergence. A 

more detailed review refers to Huber [125], where the author preferred the point-to-plane 

based approach of Neugebauer. Corresponding to the ICP algorithm, the multi-view 

registration method is called Multi-ICP (MICP) method in this thesis and it is developed 

in this thesis based on Neugebauer’s approach. 
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In contrast to the approach stated above to handle all transformation at the same time, 

another quite different approach was proposed recently by Sharp [126] to refine the multi-

view transformations ending up with a more uniform global error distribution. This 

approach form circles according to the connective information of views (maps) and force 

the product of all transformation matrices belonging to one circle to be identity, i.e. a 

view or map should return to its original position after a circular traveling. By doing so, 

this method minimises the error between coordinate frames but may not always distribute 

the alignment error correctly [127]. This method will not be considered in this thesis for 

simplicity consideration. 

2.5 REFRACTIVE SURGERY 

In ophthalmology, refractive surgery has an incomparable and fruitful history. From the 

substitution of normal prescriptive spectacles and contact lens to the demand of 

supervision or supernormal vision [128], refractive surgery has become not only a life-

improving procedure but also a cosmetic routine. In general, refractive surgery is any eye 

surgery employed to improve the refractive state of the eye and all the modalities now 

available can be categorised into incisional, thermal, excimer laser ablation and 

intraocular [129]. Further, refractive surgery can be operated on both the cornea and the 

crystalline lens, leading to cornea-based refractive surgery and lens-based refractive 

surgery, respectively [130]. In this thesis only corneal refractive surgery is considered. 

2.5.1 From da Vinci’s codex to laser corneal refractive surgery 

The first known description of refractive errors dates back to the early 16th century when 

Leonardo da Vinci contemplated the possible source of visual disturbances [5]. While the 

vision abnormalities had been successfully corrected with spectacles and contact lens for 

centuries [131], the history of corneal refractive surgery, so to speak, only began in 1869 
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when Dutch ophthalmologist Herman Snellen (after whom the visual acuity chart Snellen 

chart was named) suggested possible surgical correction of corneal astigmatism by 

making incisions across the steep meridian of the cornea [132, 133]. This procedure, 

termed keratotomy, was systematically studied by another Dutch ophthalmologist 

Leendert Jan Lans almost 30 years later in 1898 [134] and following this line radial 

keratotomy (RK, making radial incisions to the anterior cornea to correct myopia and 

astigmatism) was finally developed in the middle-1970s after trials and experiments of 

over 70 years [135-141]. Unfortunately, the outcomes of RK were undesirable [142-144]. 

Combined with the regressive visual acuity and infection, this form was soon replaced by 

newer laser-based procedures [145]. 

Being different from making incisions in RK, lamellar surgery – keratomileusis (meaning 

‘carving’ of the ‘cornea’) was theorised in 1949 by Colombian ophthalmologist José 

Ignacio Barraquer, who also invented the microkeratome and cryolathe in his successive 

works [146, 147]. This procedure, in its mature form, involved dissecting the central 

anterior cornea using the microkeratome, freezing the dissected corneal disk before 

attaching it to the cryolathe for fixation, lathing the stromal surface and suturing the 

reshaped disk back to the living cornea after thawing [148]. Although the results of 

Barraquer’s freeze keratomileusis were also disappointing largely due to the difficulty of 

operation and severe damage to the corneal tissue caused by the freezing process [149-

151], subsequent refinement and improvement such as non-freeze cut [152-154] and in 

situ keratomileusis (or automated lamellar keratoplasty (ALK)) [155] had gathered speed 

for an evolution. 

The next step was the arrival of excimer laser, which brought the refractive surgery to a 

new era, Table 2-1. In the early 1980s, pioneer studies on corneal tissue reaction to this 



- 32 - 

 

laser [156, 157] and attempts to improve the accuracy of RK incisions [158, 159] made 

scientists and ophthalmologists quickly realise that large area ablation could be performed 

in the central cornea using excimer laser rather than just incisional cut. This gave birth to 

the first laser corneal refractive surgery form photorefractive keratectomy (PRK) with 

excellent visual outcomes [160, 161] and later soon the most successful form laser in situ 

keratomileusis (LASIK) motivated by ALK, with additional advantages over PRK such 

as rapid visual recovery, less or no postoperative pain [162, 163]. 

The fence that distinguishes PRK and LASIK and their performance is the way they apply 

laser ablation. In PRK, the epithelium is scraped away to allow laser ablation of stroma, 

however the regrowing of the epithelial cells postoperatively is rather slow and the 

associated pain can even reach a point when narcotic agents are needed [145]. Another 

major disadvantage of PRK is corneal haze caused by the healing process [164, 165]. 

LASIK avoids all of these complications owing to its way of ablating the stroma beneath 

a corneal flap as descripted earlier in Chapter 1. Because the central epithelium is kept 

almost intact except for the cutting edge of the flap, the effect of wound healing is 

minimised such that the patient could feel less or no pain and the postoperative visual 

improvement is usually immediate. Nevertheless, although rare, LASIK has its unique 

flap-related complications such as incomplete cut, buttonhole and free cap during the 

procedure, and displacement of the flap, epithelial ingrowth, diffuse lamellar keratitis and 

induced ectasia postoperatively [166, 167]. 

To avoid the disadvantages of PRK and LASIK, modern corneal refractive surgery has 

been extended in two major lines – surface procedures and lamellar procedures. The first 

involves combining advantages of PRK and LASIK, leading to LASEK (Laser-Assisted 

Sub-Epithelial Keratectomy) [168] and Epithelial Laser-Assisted in situ Keratomileusis 
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(Epi-LASIK) [169], in which the epithelium is fashioned as the LASIK flap with the help 

of alcohol solution (LASEK) or mechanically with a modified microkeratome (Epi-

LASIK) for a more complete separation; the ablation on the other hand is still applied to 

the immediate anterior stromal surface as happened in PRK [168, 169]. By preserving at 

least partial epithelium, these new surface procedures are reported to have significantly 

reduced the postoperative pain and haze, but the visual outcomes remain similar [170]. 

The difference in flap creation in LASEK/Epi-LASIK and LASIK is shown in Figure 2-7. 

  

Figure 2-7. Schematic figures of the cut in LASEK/Epi-LASIK (left) and LASIK (right) 

With the surgical applications of femtosecond laser stimulating another surge in the 

history of refractive surgery [171], femtosecond laser based LASIK (femtosecond-

LASIK) [172] and most recently Small-Incision Lenticule Extraction (SMILE) [173] are 

made available in the lamellar procedure direction. Incredible accuracy and property that 

this laser can transmit through the clear cornea with no damage and only breaks down the 

tissue when the laser beam is focused [174, 175], have quickly gained femtosecond laser 

popularity. The flap created by femtosecond laser is smoother and with improved safety 

and thickness predictability which is essential for subsequent excimer laser ablation [176]. 

While the absolute superiority of femtosecond-LASIK over the conventional LASIK in 

terms of visual outcomes and safety are still not certain [177, 178], the most recent 

completely femtosecond laser based SMILE has indeed largely overcome major flap-

related complications of LASIK [179]. In SMILE, a corneal lenticule is created in the 
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bulk of the cornea and only a small incision is made in the anterior surface to extract such 

lenticule. In this way, the corneal integrity is maximally preserved and this is 

advantageous to maintain the mechanical resistance of the cornea [180]. 

In Table 2-1, commonly used corneal laser surgical procedures are summarised with their 

major advantages and disadvantages, indicating none is perfect. However, it should be 

noted that, although LASIK has unique flap complications, it remains the most successful 

and popular form worldwide thanks to its excellent visual outcomes, rapid visual recovery 

and ultimate postoperative comfort. 

Table 2-1. Commonly used corneal laser surgical procedures and their major advantages and 

disadvantages 

 Advantages Disadvantages 

PRK  Excellent visual outcome with over 80% of eyes 

achieving refractive outcome within 1.0 D [181] 

after stabilisation which may take over 6 months 

 Preferable for eyes with thin corneas and large 

pupils which make LASIK difficult 

 Intense postoperative pain especially within the first 

24 hours 

 Slow visual recovery which may take weeks, making 

simultaneous operations on both eyes impractical 

 High risks of corneal haze 

LASIK  Excellent and possibly slight better visual outcome 

than PRK with over 90% of eyes achieving long-

term post-LASIK refractive outcome within 1.0 D 

[182] 

 Rapid visual recovery (a few hours) 

 Extreme comfort with less or no pain 

 Have been performed for 20 years and widely 

accepted 

 Unique intraoperative and postoperative flap 

complications (rating from 0.3% to 5.7% [183, 184]) 

such as free cap, incomplete flap, buttonholed flap, 

opaque bubble layer created by femtosecond laser, 

epithelial ingrowth, diffuse lamellar keratitis 

 Highest risk to induce ectasia among all surgical 

forms (still very rare though) 

 Not suitable for eyes with thin corneas, flat corneas 

LASEK  Similar visual outcome compared to PRK and 

LASIK 

 Theoretically less recovery time, haze and pain than 

PRK  

 No significant improvements over PRK in terms of 

recovery time, haze and pain 

 Potential damage to epithelial cells and integrity due 

to alcohol usage 

Epi-LASIK  Similar visual outcome compared to PRK, LASIK 

and LASEK 

 Less recovery time and less significant haze than 

PRK and LASEK 

 Better preservation of epithelial integrity 

 High rate of failure in creating epithelial flap (33% 

as reported in [185]) 

SMILE  Excellent visual outcome and comfort comparable 

to LASIK 

 Able to treat thin corneas and safer to treat high 

myopia 

 Less compromise of corneal integrity compared to 

LASIK 

 Not suitable to treat hyperopia and very low myopia 

for now 

 Difficult for retreatment 

 Slower visual recovery than LASIK 

 More expensive and still experiencing a learning 

curve 
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2.5.2 Other prospects of refractive surgery 

Except for the advances in modern surgical forms as stated above, other technology such 

as laser platforms, eye tracking system and wavefront analysis technology have also 

played important roles in the development of corneal refractive surgery [186, 187]. 

Wavefront analysis in particular has enhanced the customised design of ablation profile. 

Conventionally, the profiles for the corrections of ordinary refractive errors (low order 

aberrations) including myopia, hyperopia and astigmatism were computed based on the 

Munnerlyn formula [188], but soon this was reported to increase high order aberrations 

[189, 190] and also potentially disrupt the compensational balance between the cornea 

and the lens [191]. With the development of recent wavefront sensing and analysis 

techniques, this negative effect can now be minimised or optimised [192]. In addition, 

wavefront-based ablation profile claims to correct the overall aberration in the eye and 

targets supernormal vision that reaches the limitation of light diffraction [8]. Nevertheless, 

this target of supervision has never been achieved, largely due to the still imperfect 

understanding of corneal biomechanical reaction following the surgery and the wound 

healing process which further alters the corneal biomechanics gradually, increasing the 

unpredictability of the surgical outcomes [10]. 

Even though the average satisfaction rate for LASIK has scored over 95% in both general 

and physician populations [7, 193], the large number of LASIK procedures performed 

worldwide, being over 35 million till 2010 [194], leads to a dissatisfied patient population 

of over 1.5 million till 2010, which would be well beyond 2 million till now. This may 

have costed over 3 billion pounds if the average cost of LASIK is taken as 1500 pounds. 

Common reasons for dissatisfaction include residual refractive error, night vision 

symptoms [7], both of which may be due to the inconsideration of corneal biomechanical 

response to surgical applications. Moreover, surgical induced ectasia, although happened 
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rarely, can even put a threat of blindness and induce the need of corneal transplantation 

[195]. To predict and improve the surgical outcomes, and reduce complications, 

significant amount of research is still needed to understand the corneal biomechanical 

responses to surgical applications such as LASIK and SMILE. An essential part of doing 

so is the finite element analysis (FEA), which is the practical application of finite element 

method (FEM) firstly coined by Clough in 1960 [196]. 

2.6 NUMERICAL SIMULATION OF REFRACTIVE SURGERY 

Originating from solving complex structural problems in civil and aerospace engineering, 

FEM has become an utmost important numerical technique for finding approximate 

solutions to partial differential equations in complex structures. The FEM adheres the 

concept of 1) dividing the continuum into a finite number of parts or elements and 2) 

assembling all elements to achieve the solution of the complete system [197]. 

In ocular community, the past three decades saw a rapid growth in the use of FEM to 

understand and predict the ocular response to various conditions including but not limited 

to refractive surgery [63, 198-211], impact and injuries [212-214], diseases (especially 

keratoconus [215-218]) and tonometry [219-223]. Combined with some optimisation 

algorithms, FEM is also used as an important approach to determine essential model 

parameters such as coefficients of various material models that are employed in the finite 

element models [224-230]. 

During the last three decades, the accuracy and representation of the natural conditions 

of the eye has been remarkably improved, thanks to the advances in videokeratography 

and better understanding of corneal biomechanical properties. Corneal finite element 

models that adopt in vivo topography [200, 203, 204, 207, 215, 216] and material models 

representing corneal hyperelasticity, anisotropy and viscoelasticity [223, 231-233] have 
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become common, overcoming the drawbacks of some models (especially earlier models) 

based on analytical corneal shape [63, 210, 211, 227, 234-238] and assuming linear elastic 

and isotropic corneal material properties [209-211, 239]. Further, the rapid increase in 

computing power has enabled large complex models such as 3D whole-eye models to be 

solved quickly. The whole-eye model, which eliminates the need to specify boundary 

conditions at the limbus as done in cornea-only models [110, 199, 201], was favoured and 

claimed necessary in some studies to provide closer representation of the actual corneal 

behaviour [202, 240, 241]. 

By far most of finite element models were developed with applications in refractive 

surgery, among which LASIK and SMILE procedures are of great interest in this thesis. 

Deenadayalu, et al developed a 3D whole-eye finite element model to study the refractive 

change caused by the creation of LASIK flap [200]. They considered the hinged flap as a 

crack on the anterior surface of the cornea; spring elements were used to model the 

interaction between the flap and the residual stromal bed. Corneal thickness reduction 

caused by laser ablation however was not addressed. Roy, et al also developed a whole-

eye LASIK model but it was in 2D [202]. The biomechanical behaviour of the cornea 

after reducing its thickness was studied. In their model, the LASIK flap was modelled 

hingeless and connected to the residual stromal bed but assigned softer material properties 

compared to the stroma. The ablation profile which determines the corneal thickness 

reduction was computed by the classic Munnerlyn formula [188]. Roy and Dupps created 

a patient-specific model using clinical measured corneal topography and used an inverse 

analysis approach to estimate the overall elastic reduction of the postoperative cornea by 

varying corneal elastic properties in their models and matching the simulated and clinical 

outcomes [203]. An enhanced ablation profile [192] was adopted while the cut of flap 

was neglected. The same group recently conducted numerical studies comparing the 
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LASIK and SMILE procedures, suggesting SMILE was generally safer for laser 

correction [206]. A thin wound healing layer was considered to connect the LASIK flap 

or SMILE cap to the residual stroma. Although the models adopted in vivo topography, 

clinical validation of these models were not provided. 

Tonometry is an important procedure to estimate the intraocular pressure (IOP) and the 

instrument used to do so is known as a tonometer [242, 243]. There are now a handful of 

commercially available tonometers such as Goldmann tonometer (GAT), dynamic 

contour tonometry (DCT), ocular response analyser (ORA) and most recently Corvis ST 

(CVS), among which GAT is currently the gold standard for IOP measurement [244-247]. 

A common principle of these tonometers is to apply static (GAT, DCT) or dynamic (ORA, 

CVS) pressure onto the cornea and use the deforming information of the cornea to 

estimate the IOP. Factors such as corneal thickness, corneal curvature and age were 

reported to influence the accuracy of the estimates by various tonometers [248, 249]. 

Finite element models were thus employed to study the influence of these factors and 

correct the formula of various tonometers that convert information of corneal deformation 

to IOP reading [199, 220, 250, 251]. One remarkable example is the numerical study 

conducted by Elsheikh, et al [252], who developed a correction equation for GAT which 

was demonstrated to be superior over some earlier correction equations [253]. Similar 

numerical study was recently done by Joda, et al to develop correction equation for the 

very new CVS [254].  

The IOP measurements of eyes after various refractive surgeries were reported, by many 

clinical studies, to be significantly smaller than the preoperative readings [255-259]. This 

is believed to be caused by the reduced corneal thickness and altered overall corneal 

stiffness which changes the deformation behaviour of the postoperative cornea. Till now, 



- 39 - 

 

finite element modelling of tonometry applied on eyes after refractive surgery such as 

LASIK and SMILE is lacking. 

2.7 CONCLUDING REMARKS 

The human eye is a complex organ and biologic system with fluid perpetually flowing 

inside to create intraocular pressure and maintain its geometry that is precisely shaped to 

focus light. It is also a fine and adaptive dynamic system, which automatically adjusts the 

size of the pupil according to the light intensity and tunes the shape of the crystalline lens 

to refine the angles of light rays that have been refracted by the cornea. As the front 

components of the eye, the transparent cornea contributes about 70% of the entire ocular 

refractive power. This fact has made the cornea the most focused research object. 

Unfortunately, as any real system does, the ocular optic system often has imperfections. 

One of them is wavefront aberration, which prevents the light rays from being focused 

sharply on the retina. The low order aberrations such as myopia, hyperopia and 

astigmatism were realised centuries ago, but it is only until recently that high order 

aberrations are investigated thanks to the advances in both optics and wavefront-sensing 

technology. To correct these optical aberrations, prescription glasses and contact lenses 

are commonly used. The existence and amount of the optical aberrations are determined 

by the shapes of optical components especially the cornea, which makes the imaging of 

corneal shape essential for diagnosis of refractive disorders and necessary for fitting of 

contact lenses. 

Various videokeratography techniques and instruments are now available to reliably 

measure the corneal topography and thickness but the measurements are usually given in 

form of 3D point sets. Topography fitting are often needed to express these discrete point 

sets as analytical surfaces, among which the orthogonal Zernike polynomials have been 
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favoured by most researchers. However, notable number of research has suggested other 

polynomials for representing corneal topography for better performance and there are 

more candidates that have not been introduced into the ocular community. 

Another problem in measuring corneal surface is that a single observation usually cannot 

cover the entire cornea accurately with the peripheral measurements being less reliable. 

A few studies have been published to overcome this problem by combining topographies 

that are collected from different viewpoints. The same cornea is measured several time 

but from different angles such that the obtained topographies, as a whole, can cover the 

whole cornea. An optimisation algorithm is typically needed to bring these topographies 

together but by far the existing methods proposed within the ocular community have had 

limited success. The approaches in image processing community however are promising. 

A convenient corneal representation that covers the corneal surface adequately is 

desirable for building finite element models for corneal refractive surgery, a reliable 

substitution of glasses and contact lenses. Even though the concept of corneal refractive 

surgery was suggested more than a century ago, the outcomes of earlier procedures were 

not promising, largely due to the lack of understanding of corneal biomechanics. As the 

surgery involves cutting into the cornea, the corneal stiffness is weakened and the wound 

healing process will also gradually change the corneal stiffness. These factors have meant 

discrepancies between the expected and achieved outcomes. It is now obvious that 

planning of refractive surgery with consideration of corneal biomechanics is essential to 

achieve predictive surgical outcomes. 

During the past three decades, finite element method has been used extensively to study 

the biomechanical behaviour of the cornea and its reaction to refractive surgery. Thanks 

to the advances in corneal topography and increased understanding of corneal 



- 41 - 

 

biomechanical properties, the finite element models nowadays can reflect corneal 

hyperelasticity, viscoelasticity and anisotropy, and reliably simulate surgical forms such 

as LASIK and SMILE. However, there are still research to be done to validate these 

models with clinical outcomes and extend them to study new problems that have been 

observed clinically such as reduction in IOP readings of eyes after refractive surgeries. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This thesis is mainly concerned with reconstruction of corneal surface from topographic 

measurements and using the reconstructed representation to build patient-specific finite 

element (FE) models of LASIK and SMILE corneal refractive surgical procedures. In the 

reconstruction of corneal surface, focus is on topography fitting and analytical models to 

explicitly express the corneal surface. This is followed by a topography matching study 

that adopts and further develops methods that register and combine corneal topography 

maps collected from different viewpoints and covering the entire corneal surface. In last 

part of the study, on numerical simulation of corneal refractive surgery, an accurate way 

to simulate and predict the outcomes of the LASIK and SMILE is sought, which is 

employed later to study the influence of surgical procedures on tonometry. The methods 

for each of these three topics are highlighted in this chapter. 

3.2 TOPOGRAPHY FITTING 

The topography data exported from commonly used videokeratography instruments is 

typically expressed as x, y and z coordinates of regularly-spaced discrete points on 

corneal surface as shown in Figure 3-1. 
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Figure 3-1. Typical corneal topography data plotted in 3D. Colours of individual points reflect their z 

coordinates. 

The goal of topography fitting is to derive an expression ( , )z Z x y  that represents the 

points set analytically such that the z value of any point on the surface can be determined 

by its x and y coordinates. This is typically done by fitting the points set to analytical 

models such as an ellipsoid or various sets of orthogonal polynomials. With the simple 

ellipsoid model being able to give a rough representation of corneal topography, it has 

limited ability to capture surface irregularity. Orthogonal polynomials on the other hand 

can be employed to fit complex shapes with high order modes. The set of orthogonal 

Zernike polynomials is one such family and it has been routinely used for reporting 

optical aberrations and representing corneal topography data. The set of orthogonal 

polynomials is said to be complete if it exactly represents arbitrary surface ( , )Z x y  such 

that 

 
1

( , ) ( , )p p

p

Z x y a W x y




  (3.1) 

mm 
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where ( , )pW x y  is the pth polynomial term with coefficients pa  indicating the 

contribution of each polynomial term to the whole surface. It should be noted that a 

complete set of orthogonal polynomials usually consists of infinite terms while in practice 

only a finite number of these terms are used and sufficient to fit ( , )Z x y to an acceptable 

level of accuracy. Also, this finite number needs to be limited to avoid overfitting. As a 

result, if P polynomial terms are used, Equation (3.1) becomes 

 
1

( , ) ( , ) ( , )
P

p p

p

Z x y a W x y x y


   (3.2) 

where ( , )x y  is the truncation error. In this thesis, some of the popular orthogonal 

polynomials in ocular topography and image processing fields are studied and their 

abilities to fit corneal height data are assessed. 

3.2.1 Orthogonal polynomials 

There are numerous two-dimensional (2D) orthogonal polynomials defined in either 

rectangular or circular domains, with the former being defined in Cartesian coordinates 

and often obtained by production of one-dimensional (1D) polynomials along x and y 

axes, while the latter is defined in a polar system made of radial and angular components. 

The basics of the most commonly used orthogonal polynomials are highlighted in this 

section. 

Orthogonal polynomials in Cartesian coordinates  

Being constructed by 1D polynomials in two directions, the orthogonal 2D polynomials 

in Cartesian system usually have the form: 

 ( , ) ( ) ( )p n mW x y R x R y  (3.3) 
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where n  and m  are the orders of 1D polynomials and p  is the single-number index of 

the set of 2D polynomials, corresponding to each combination of n  and m . In the current 

study, Legendre polynomials (LPs), Gegenbauer polynomials (GPs) and Gaussian-

Hermite polynomials (GHPs) are considered in this category and their expressions are 

listed in Table 3-1. The orthogonality property of these polynomials follows: 

 ' '( ) ( ) ( )n n n nnR x R x w x dx C 


  (3.4) 

where ∫ denotes integration, n  and 'n  are the different orders of the polynomials, 'nn  is 

the Kronecker symbol, nC  is the normalisation constant, ( )w x  is the weight function and 

  is the domain for different polynomials (Table 3-1). 

Table 3-1. Orthogonal polynomials in Cartesian system 
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Both GPs and GHPs have scaling factors, being   and  , respectively, which change 

the polynomials from local to global features and vice versa. The effect of these scaling 

factors on the shapes of GPs and GHPs are shown in Figure 3-2 and Figure 3-3. The 

change between local and global features are more obvious for GHPs but this is dimmed 

for GPs because the big change in magnitude. In Figure 3-4, the 1D GPs of order 4 with 
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different scaling factor values are normalised by their maximal magnitudes (shown in 

Figure 3-2) to make the scaling effect prominent. It should be noted that the set of LPs is 

a special case of GPs when 0.5  . The shapes of the low order 2D Legendre 

polynomials are shown in Figure 3-5. The single-number index p  in Equation (3.3) 

counts from the first raw in Figure 3-5 and from left to right at each row. 

 

Figure 3-2. Shapes of the 1D Gegenbauer polynomials up to order 4 
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Figure 3-3. Shapes of the 1D Gaussian-Hermite polynomials up to order 4 

 

Figure 3-4. Effect of scaling factor on the shape of 1D Gegenbauer polynomials. The curves are for order 

4 and they are normalised by their maximal values as shown in Figure 3-2 
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Figure 3-5. Shapes of Legendre polynomials up to order 4 

Orthogonal polynomials in polar coordinates 

The well-known Zernike polynomials and the closely related pseudo-Zernike 

polynomials are orthogonal on the unit circle. These two-dimensional polynomials, now 

expressed in polar form ( , )pW r  , are formed by radial polynomials and angular 

trigonometric functions: 

 

( )cos( ), 0

( , ) ( )sin( ), 0

( ), 0

m

n

m

p n

m

n

R r m m

W r R r m m

R r m



 

 


 
 

 (3.5) 

where ( )m

nR r  is the radial polynomial with order n  ( 0,1,2,...n   ) and angular frequency 

m. The angular components are either sine or cosine functions determined by the sign of 

m. For each n , m  may have multiple values as given in Table 3-2 and each combination 

of n  and m  determines a polynomial mode. Similarly, rather than indexing by n  and m, 
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these 2D modes can also be numbered by a single index p. ( , )pW r   is orthogonal on the 

unit circle due to the orthogonality of trigonometric functions on [0,2 ]  as well as that 

of the radial polynomials on [0,1]  expressed as: 
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where there is no weight function compared to Equation (3.4). 

Table 3-2. Orthogonal polynomials in Polar system with [0,1]r . For OFMPs, m is not related to n. 
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Also orthogonal on the unit circle are other polynomials such as Orthogonal Fourier-

Mellin polynomials (OFMPs) which use radial polynomials that are independent with the 

frequency m. The advantage of OFMPs is that the frequency may have more values 

leading to more modes for a given order compared to Zernike and pseudo-Zernike 

polynomials. The two-dimensional form of OFMPs may be written as: 
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 (3.7) 

and the orthogonality of radial polynomials changes to 
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1

' '
0

( ) ( )n n n nnR r R r rdr C   (3.8) 

In addition, Gegenbauer polynomials including their special case Legendre polynomials 

can be shifted by replacing x  with 2 1r   such that they obey the same orthogonality 

property as in Equation (3.8) and thereby used as the radial kernels in Equation (3.7). The 

first few features of the conventional ZPs and the newer OFMPs are shown in Figure 3-6 

and Figure 3-7. It is obvious that without the constrained relation between m  and n, the 

OFMPs have significantly more terms for the same order. The rule of counting the single-

number index p for ZPs and OFMPs are also illustrated in Figure 3-6 and Figure 3-7. 

 

Figure 3-6. Shapes of ZPs up to order 4 
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Figure 3-7. Shapes of OFMPs up to order 4 

3.2.2 Computation of polynomial coefficients 

The core step in fitting an arbitrary surface to a set of polynomials is the calculation of 

the coefficient value for each polynomial term. The methods for this calculation can be 

broken down into two categories using the orthogonality property, and the least squares 

estimation. It should be noted that a common process before the calculation of coefficients 

is to scale the topography into a unit circle or square to coincide with the domains of the 

orthogonal polynomials. This can be achieved by simply dividing the x and y coordinates 

of the data points with the maximal radius of the map. 

Orthogonal projection (OP) 

Using orthogonal polynomials to represent a target surface leads to minimal or no 

redundancy, also the independence among all the polynomial terms enables the 

coefficients to be evaluated separately and directly by projecting the surface awaiting for 
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decomposition onto each polynomial. Imagine that the target surface is represented as 

' '

' 1

( , ) ( , )p p

p

Z x y a W x y




 , the projection of ( , )Z x y  onto the pth Cartesian polynomial 

( , )pW x y  will be 

 ( , ) ( , ) ( ) ( )pZ x y W x y w x w y dxdy


  (3.9) 

where   is the 2D domain of ( , )pW x y , determined by   which is the domain of the 1D 

polynomial. 

By substituting ( , )Z x y  with ' '

' 1

( , )p p

p

a W x y




 , Equation (3.9) becomes 
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Considering the orthogonality of the polynomials, '( , ) ( , ) ( ) ( )p pW x y W x y w x w y dxdy


  is 

zero when 'p p  such that the summation in Equation (3.10) deduces 
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 (3.11) 

It is now obvious to derive the equation to compute the coefficient for the pth polynomial 

as follows: 



- 53 - 

 

 
1

( , ) ( , ) ( ) ( )p p

n m

a Z x y W x y w x w y dxdy
C C



   (3.12) 

Following similar derivation above, it is easy to obtain the following solution for polar 

cases 
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However, Equations (3.12) and (3.13) are hard to execute because the expression of 

( , )Z x y  or ( , )Z r   is unknown beforehand. This problem was discussed extensively in 

the image processing community when computing image moments [94, 99]. The easiest 

and most direct approach, sometimes called zeroth order approximation (ZOA) method, 

is to replace the double integral with double summation such that, for example, Equation 

(3.12) becomes 
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1
( , ) ( , )

D

p d d d p d d
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a Z x y W x y
C C


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   (3.14) 

where ( , )d dZ x y  refers to the dth pixel, d  is the finite area of the thd  pixel and D  is 

the number of valid pixels in this calculation. The weight functions have been omitted for 

simplicity. This solution is illustrated in Figure 3-8A, where the pixels of a square image 

are scaled and mapped to unit square ( [ 1,1] and [ 1,1]x y    ) and only those resulting 

pixels with middle points that lay inside the unit circle ( [ 1,1] and [0,2 ]r     ) are kept. 

There are however pixels (dashed and with green middle points) that sit partly inside the 

unit circle, and empty areas usually exist where no pixel occupies (shown as colour-filled 

areas in Figure 3-8A). In this study, this problem is overcome by discarding incomplete 
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pixels and triangulating the empty areas after introducing new points on the edge of the 

unit circle as shown in Figure 3-8A. These new boundary points are necessary for the 

triangulation of empty regions and determined using existing x and y coordinates inside 

the unit circle. The calculations of terms in Equation (3.14) on the newly introduced 

triangles need height (z values) information at the triangle centres and this information is 

obtained by interpolation methods such as the Biharmonic Spline interpolation [260]. 

Consequently, the subscript d in Equation (3.14) now means the dth triangles or squares 

as shown in Figure 3-8A. It is worth noting that the point in the middle of each pixel 

corresponds to the discrete measurement point when corneal topography is concerned. 

 

A 

 

B 

Figure 3-8. Discrete points/pixels and the squares and/or triangles representation of the unit circle 

The ZOA method equivalently breaks the continuous polynomials into piecewise constant 

functions in the same fashion of the image that the polynomials have constant values 

within the finite area of the image pixels. It is expected that this method may not be 

accurate enough especially when the image size is small. An improved approach uses the 

same partition of the unit circle as the ZOA but avoids discretisation of polynomials by 

explicitly computing the double integral on each finite sub-domain of triangles or squares. 
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 ( , ) ( , )

d

p d d pg x y W x y dxdy


   (3.16) 

where d  is the sub-domain occupied by the thd  triangle or square, again the weight 

functions have been omitted. The image moments computed by Equation (3.15) are often 

called “Exact Moments”, so this second approach is called the exact moments (EM) 

method. The EM approach is naturally extended to an interpolation version (INT) where 

the image or surface Z  is approximated as piecewise linear or higher order function 

based on its pixels/measurements [99]. Equation (3.12) is then broken into 
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 ( , ) ( , ) ( , )

d

p d d d pH x y Z x y W x y dxdy


    (3.18) 

where ( , )dZ x y  is a linear or higher order 2D polynomials approximation of ( , )Z x y  on 

d . Similarly but differently from the proposed version in Kotoulas, et al [99], the 

partition of the unit circle in Figure 3-8B is adopted in this study for INT method and 

( , )Z x y  is approximated linearly. Using the original pixels/points and same boundary 

points in Figure 3-8A, the unit circle is triangulated and on each triangle the linear 

approximation ( , )d d d dZ x y E x F y G    is achieved directly from the three vertices so 

that Equation (3.18) can be rewritten as: 

 ( , ) ( , ) ( , ) ( , )p d d d p d d d p d d d p d dH x y E e x y F f x y G g x y    (3.19) 
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 ( , ) ( , )

d

p d d pf x y yW x y dxdy


   (3.21) 

and ( , )p d dg x y  is defined by Equation (3.16). 

When the expressions in all the double integrals above are known, it is possible to derive 

the explicit solution of these integrals as proposed for example in Liao, et al for Zernike 

polynomials [261] and Hosny for Gaussian-Hermite polynomials [262]. In this paper 

however, for the sake of simplicity, the double integrals above are solved numerically by 

a MATLAB built-in function quad2d which involves vectorisation of the integrands 

[263], and indeed all methods mentioned in this study are implemented under MATAB 

environment (MATLAB, The MathWorks, Inc., Natick). 

Least squares estimation (LS) 

The topography reconstruction problem in Equation (3.2) may be also cast as an 

optimisation problem. Given that the measurements have D  points, the thd  

measurement point follows 
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d d p p d d d

p

Z x y a W x y 
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Considering all the D  points, a linear equation system can be constructed and its matrix 

form is: 

  Z Wa ε  (3.23) 
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where Z is a D-element column vector consisting of all the measurements, W is a D P  

matrix with each column having z values sampled from the continuous polynomials using 

the same x and y coordinates of the original measurements, a is a P-element column 

vector of the polynomial coefficients, while the last term ε  is the error vector. The 

reconstruction problem reduces to finding the optimal a such that the error vector ε  is 

minimised in a least-squares sense. Such least-squares solution can be achieved as: 

 
1ˆ ( )T Ta W W W Z  (3.24) 

3.2.3 Evaluation methods 

In the current research, two methods are available to compute the coefficients of the 

polynomials; one benefits the orthogonality of the polynomials but needs additional 

approximations while the other regards the fitting as an optimisation problem and ignores 

the orthogonal properties of the polynomials. It is necessary to assess the flexibility and 

accuracy of these two methods and this can be done by fitting an analytically known 

surface to the set of polynomials and compare the obtained coefficients to the actual ones 

that are known beforehand. 

Further for the actual corneal topographic maps, once the coefficients are obtained, the 

reconstructed surface can be computed using the same x and y coordinates of the original 

data points by 
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  (3.25) 

The difference between the reconstructed and original maps can be quantified by the 

following root mean square error (RMSE) 
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and this error is called reconstruction error. 

Considering the main purpose of topography fitting is to estimate locations on the cornea 

that are not measured, the reliability of various orthogonal polynomials in predicting the 

unmeasured locations must be assessed. In practice, the reconstruction of the map can be 

done using only part of the points in the original map, leading to an explicit expression as 

given by Equation (3.25). This expression can be subsequently used to predict the 

locations of the rest of the original points by substituting their x and y coordinates into 

Equation (3.25). The RMSE computed using these predicted points and their original 

correspondences is thus called prediction error which quantifies the prediction reliability 

of the polynomials. 

The combination of reconstruction and prediction errors is not only useful to assess the 

abilities of various orthogonal polynomials, but also necessary to monitor the potential 

risk of overfitting. The results for this topic are presented in Chapter 4 and discussed in 

Chapter 7. 

3.3 TOPOGRAPHY MATCHING 

The topography fitting seeks an analytical representation of the discrete topography data. 

The achieved representation enables convenient application such as interpolating 

locations that are not measured. Nevertheless this representation usually covers small 

areas of the cornea. Fortunately, although a single observation cannot reliably cover the 

entire cornea, the surface can be measured in parts, commonly resulting in central and 

peripheral maps. In this study, datasets are taken from three patients using the Medmont 
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E300, a Placido-based machine, with multiple central and peripheral maps measured in 

each case. The central map is observed from the front when the patient looks at a centred 

target, and the peripheral maps (superior, inferior, temporal, nasal) are captured by 

directing the patient to decentred targets, while ensuring sufficient overlap with the 

central map. 

The central and peripheral maps, although overlapping, are in different coordinate 

systems, making their combination impossible without additional manipulation, which is 

known as registration where a spatial transformation is found by matching the 

overlapping region of the central and peripheral maps. An example of this process is 

illustrated in Figure 3-9. The central map in red and the peripheral map in blue, while in 

their own coordinate system, both have limited coverage and exhibit similar shapes and 

orientations before any matching is applied. By considering the coordinate system of 

central map as a world coordinate system, a spatial transformation T  of the peripheral 

map is sought such that once the peripheral map is moved by this transformation the 

difference in shape with the central map within the overlapping area is minimised. The 

portion of the peripheral map that is not overlapping with the central map therefore 

enlarges the coverage of the measurements.  

 

Figure 3-9. Schematic diagram of topography registration 

Maps in their own coordinates Maps registered in world coordinates 

 
Whole eye 

Central map in world coordinates 

 

Peripheral map aligned to world 
coordinates by transformation 

T 
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In this thesis the ICP algorithm, familiar in the image processing community, is combined 

with the truncated Zernike polynomial series representation of corneal topography. The 

suitability of this approach for the problem of matching partial views of corneal 

topography is then assessed. The extension of this process to multi-view registration is 

also explored. The next section begins with a statement of the topography registration 

problem and includes theoretical principles of several variants of the ICP technique, 

including closest-point, point-to-point and point-to-plane routines. The extension from 

ICP algorithm to multi-view registration is explained in the last part of this section. 

3.3.1 Problem statement 

The registration problem is to find the coordinate transformation ( , )R t  that matches two 

surfaces, Q  and P  (also known as height or elevation maps), each defined by discrete 

sets of data points ( ; 1,2, , )i i n q Q  and ( ; 1,2, , )i j m p P  with n and m being 

the numbers of points of Q and P, respectively. If the surface Q  is static (red surface in 

Figure 3-9), then the dynamic surface P  (blue surface in Figure 3-9) must undergo an 

extrinsic rotation R  about the origin of the fixed coordinate system and translation t  in 

order to achieve the required registration. Thus, 

 j j p Rp t  (3.27) 

where the overbar denotes the transformed data points in terms of coordinates , ,x y z  and 

all data points 1,2, ,j m  are required to undergo the same transformation. The 

rotation matrix is given by, 

 z y xR R R R  (3.28) 

where, 
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 (3.29) 

, ,x y z    are Tait-Bryan angles and the translation vector is: 

  
T

x y zt t yt  (3.30) 

where “T ” denotes matrix transposition. 

It can be seen that the process of registration becomes that of determining 

 
T

x y z x y zt t t  r , which is generally straightforward if there is a unique 

correspondence between every iq  and jp , such that 

 i j q Rp t  (3.31) 

is satisfied exactly. 

The difficulty is that although the two surfaces are identical in their overlapping area, 

except for the required unknown transformation, the points iq  and jp  generally occupy 

different locations on the surfaces and, in the case of corneal topography the two surfaces 

in question are overlapping views of the same surface observed from different viewpoints. 

The problem of lack of correspondence may be addressed by representing the target (static) 

surface as a continuous function. One such approach, as studied in the topography fitting 
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section, is the sequence of 2D Zernike polynomials. Thus the third coordinate z  is given 

by a linear combination of Zernike polynomials such that the static surface is analytically 

expressed as 

 
1

( , ) ( , )
P

p p

p

x y a Z x y


Q  (3.32) 

where ( , )pZ x y  is the thp  Zernike polynomial and pa  is the coefficient that depends 

upon the surface to be represented. 

Having defined the continuous static surface ( , )x yQ  the points iq  are unknown. There 

are a number of possible strategies for determining such points. These include: (a) the 

Closest Point (CP) approach; and (b) various ‘shooting’ methods whereby a ray is 

projected in a predetermined direction (usually vertical or normal to dynamic surface 

points jp ) to intersect the static surface ( , )x yQ  thereby defining the points iq . The 

simplest approach is Vertical Shooting (VS), whereby every point iq  is determined 

immediately from the ,x y  coordinates of each corresponding point jp , i.e. 

 ,i j jx yq Q . The Normal Shooting (NS) approach requires an iterative solution for the 

determination of the iq . Park and Subbarao [264] proposed a technique based on multiple 

applications of vertical shooting and backward projection onto the normal, known as the 

Contractive Projection Point (CPP) method. Determining the closest point to jp  on 

( , )x yQ  is a nonlinear problem related to the number of terms in the Zernike 

representation (3.32). An alternative is to find the Closest Discrete Point (CDP), which 

relies entirely on the measured data without interpolation by the truncated series of 

Zernike polynomials. 
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The three methods of correspondence mapping are illustrated in Figure 3-10 where the 

surfaces are registered but vertical distances are magnified for the purposes of explaining 

the different techniques. During CDP mapping, every dynamic point is paired with a 

closest static point, however those pairs containing points on the boundary of static 

surface should be rejected [265], because, as shown in Figure 3-10, such pairs will force 

the dynamic surface to be erroneously dragged to the left and vertically upwards. Also, 

for the two shooting strategies, there will be dynamic points that cannot be paired with 

any points on the static surface because no intersections can be found for points that lie 

outside the overlapping region. 

 

Figure 3-10. Three forms of correspondence mapping showing in the cross-section views of the surfaces 

The task of determining  
T

x y z x y zt t t  r  may be cast as a nonlinear 

optimisation problem: 

 
2

1

min
m

j j
r

j

 
  

 
 Rp t q , (3.33) 

where the subscript j , now on both jq  and jp , denotes a corresponding pair. There are 

two main problems in this optimisation. On one hand, only if the correct transformation 

( , )R t  is provided can the ideal corresponding points jq  be located by any of the three 

mapping strategies. On the other hand, jq  is necessary for the minimisation (3.33) to seek 
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the desirable transformation. There are two main optimisation approaches, the Direct 

Search (DS) method and the Iterative Corresponding Point (ICP) algorithm. 

3.3.2 Direct search (DS) method 

The minimisation (3.33) may be achieved by a direct search, similar to that proposed by 

Lau, et al. [111]. It demands a search of the six-dimensional space of the rigid-body 

transformation of the dynamic surface until 
2

1

tol
m

j j

j

   Rp t q , where ‘tol’ denotes 

an acceptably small tolerance. There are quite a few optimisation algorithms that can be 

employed to do this minimisation. For instance, this can be achieved by the widely-used 

Nelder-Mead (NM) simplex algorithm [266, 267], which uses only the values of the 

function without numerical or analytic gradients. Other more enhanced options such as 

Quasi-Newton Method, and the Sequential Quadratic Programming (SQP) algorithm [268] 

will be discussed in the final chapter of this thesis (Chapter 7). 

3.3.3 Iterative closest point (ICP) algorithm 

There are two versions of the ICP algorithm, the point-to-point and the point-to-plane 

forms. The point-to-point algorithm does not require an initial estimate of the unknown 

rotation and translation  ,R t  whereas the point-to-plane approach allows greater 

flexibility by letting the two surfaces slide over each other. 

Point-to-point error metric 

Point-to-point ICP solutions have been proposed based on singular value decomposition 

(SVD) [269], unit quaternions [270], orthonormal matrices [271], and dual quaternions 

[272]. Eggert et al. [273] provided a comparison of these essentially similar techniques, 

including an evaluation of numerical accuracy and robustness, and concluded that the 
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difference between them was small. The SVD-based solution is described in this study, 

based on the singular value decomposition of the cross-covariance matrix of the two point 

sets. By referring the points of correspondence to the centroids of the two surfaces it is 

found that determination of the rotation matrix can be separated from the translation, 

which is determined in a second calculation after the rotation matrix has been found. 

Let the centroids of the static and the dynamic maps at the th  iteration be defined as 

,cq  and ,cp  respectively, 

 ,

1

,

1 m

j

j

c
m 

 q q  and ,

1

1 m

c j

jm 

 p p  (3.34) 

then the location of other points relative to the centroids are given by, 

 , , ,j j c q q q  and ,j j c p p p  (3.35) 

and the displacement of the centroid of the transformed dynamic map from the centroid 

of the static map is, 

 , ,c c  t R p t q   (3.36) 

Successive substitution of equations (3.35) and (3.36) into equation (3.33) then leads to 

the definition of an objective function, 
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 (3.37) 
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It can be seen that the second right-hand term of equation (3.37) is zero because both 

1
0

m

jj
 p  and 

,1
0

m

jj
 q . The third term is nonnegative, so in order to minimise 

equation (13), t  should vanish, which means the centroids of the transformed dynamic 

map and static map would be identical. The problem now reduces to the minimisation of 

the first term to obtain the rotation,  

 
2

,

1

( )
m

j j

j

f


 R R p q  (3.38) 

The optimal rotation matrix R  can be formed by the components of the SVD of the 

cross-covariance matrix of the two point sets [269, 274]: 

 ,

1

m
T T

j j

j

p q UΛV  (3.39) 

and the optimal rotation may be expressed in the form of an orthonormal matrix (Arun et 

al. [269]), 

 TR VU  (3.40) 

However, det( ) 1T  VU , denotes a reflection rather than rotation, a problem that was 

overcome by Umeyama [274] who added a correction term, 

 ; (1,1, 1,det( ))T Tdiag R VSU S VU  (3.41) 

so that  det 1R . Once the rotation matrix is obtained, the translation vector can be 

computed by setting 0t  in equation (3.36), which leads to 

 , ,-c ct q R p  (3.42) 
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Point-to-plane error metric. 

The point-to-plane error metric minimises the projection of j j Rp t q  onto the unit 

normal vector jn  (normal to the static surface at point jq ). Should   0T

j j j  n Rp t q , 

there will be no projection of j j Rp t q  onto the normal, which indicates that jp  lies 

at a tangent to the static surface at point jq . In this way the surfaces are permitted to slide 

over each other.  

Unlike the point-to-point metric, a starting estimate is necessary and an optimisation 

approach may be applied as: 

  
2

1

min

m
T

j j j

j

 
  

 


r

n Rp t q  (3.43) 

and implemented using the Levenberg-Marquardt (LM) algorithm, which provides an 

iterative solution, already shown to have high accuracy in solving ICP point-to-plane 

error metrics [275]. 

However, an alternative is available that has been shown to be robust to variability in 

starting values, does not depend upon optimisation, but approaches the solution iteratively 

using linearisation in the vicinity of an initial estimate  0 0

T

x y z x y zt t t  r  [117]. 

The rotation matrices xR , yR  and zR  defined previously by equation (3.29) become, 
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so 
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and at the th  iteration, 
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and, 

  1 1 , where
T

x y zt t t       t t t ΔR ΔtΔ t  (3.47) 

An objective function may be written as: 

     
2
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1

,
m

T
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j

f 



   ΔR Δt n I ΔR p Δt q  (3.48) 

and re-cast in the form, 
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where the subscripts j  and  (on the right hand side) have been omitted for simplicity. 

Then re-writing in compact form, equation (3.49) becomes: 

    
2

T Tf   Δr a Δr n p q  (3.50) 
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and Δr  may be determined by least-squares approximation, 

      
1

T T


  Δr aa a n p q  (3.51) 

3.3.4 DS vs. ICP 

The DS objective function is highly nonlinear and involves a local search in the region of 

the initial values  0 0

T

x y z x y zt t t  r  using the Nelder-Mead algorithm. The point-

to-point ICP algorithm does not require an initial estimate 0R , 0t  and there is no 

requirement for linearisation, as with the point-to-plane ICP approach. The point-to-plane 

ICP algorithm is the most flexible technique because the dynamic and static surfaces are 

permitted to slide over each other. This overcomes the ‘hard’ convergence properties of 

the DS algorithm. However, the point-to-plane method is linearised about the initial 

values and therefore a reasonably accurate initial approximation is required. There is no 

guarantee of convergence with the DS or ICP routines and a global minimum may not be 

found. Nevertheless, the ICP method remains very robust and quite insensitive to initial 

values as will be demonstrated in Chapter 5. 

3.3.5 Multi-view registration 

The DS method and the ICP algorithm descripted above are only concerned with a pair 

of surfaces. When multiple peripheral topographies are collected to ensure sufficient 

coverage of the cornea, they are registered to the central topography one by one. This 

piece-wise manner of registration, however, may introduce inconsistencies among the 

peripheral topographies when they are brought into registration. On the other hand, these 

inconsistencies may be useful to further refine the positions of peripheral topographies. 

The multi-view registration developed in this study aims to address this problem, using a 
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multi-view extension of the point-to-plane ICP variant proposed by Neugebauer [123]. 

This method is henceforth called the MICP algorithm. 

The error metric for the MICP algorithm is enlarged to include distances between 

dynamic map and static map, and among the dynamic maps. For description convenience, 

the error metric enclosed in Equation (3.43), which considers only a pair of maps, is now 

called the dynamic-to-static part and denoted uf . For each dynamic map, similarly with 

minimisation (3.43), uf  may be expressed as: 
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f


  R t n R p t q  (3.52) 

where 
,u jp  is the thj  point on the thu  dynamic map, which has um  points. In addition, 

for each pair of dynamic maps, a dynamic-to-dynamic part uvf  is added and given as 
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where 
,v jn  is the surface normal at dynamic point 

,v jp . The error metric of MICP now 

becomes: 
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in which U  is the number of dynamic maps. The optimisation problem is now enlarged 

to deal with more variables 
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where  1, , , ,
T

u Ur r r r  with  , , , , , ,

T

u u x u y u z u x u y u zt t t  r . 

Compared with Equation (3.43), Equation (3.55) is harder to solve theoretically because 

even after linearisation, Equation (3.53) has high order terms that are impossible to be 

segregated. However, when the transformation is small, dropping high order terms may 

be feasible. After replacing the rotation matrices with their linearised correspondences 

and omitting the high order terms afterwards, Equations (3.52) and (3.53) become: 
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,

,
ˆ u j j

u j

j

 
  
 

p n
M

n
, and 

, ,

,

,

ˆ u j v j

uv j

v j

 
  
 

p n
W

n
 (3.58) 

and 

 , ,( )T

u j j u j j N n p q , and , , , ,( )T

uv j v j u j v j V n p p  (3.59) 

By adopting the following assembly  



- 72 - 

 

 
, ,

0

0

6 5

ˆ

6

0

0

u j u j

u

u

 
 
 
 
 

 
   
  

 
 
 
 
 
 

M M , and 
, , ,

0 0

0 0

6 5 6 5

ˆ ˆ

6 6

0 0

0 0

uv j uv j uv j

u v

u v

   
   
   
   
   

     
         
     

   
   
   
   
   
   

W W W  (3.60) 

Equations (3.56) and (3.57) become: 
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with r , as given earlier, being a vector that contains all the transformation parameters of 

peripheral maps. It is now possible to deduce the solution of minimisation (3.55) as: 
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 (3.63) 

It should be noted that both linearisation and omission of high order terms are applied to 

derive the solution (3.63), and this may be impractical and even problematic in certain 

circumstance. Instead of the above derivation, Equation (3.55) can be directly solved by 

using Levenberg-Marquardt algorithm and this has been shown to be efficient [123]. 

The MICP approach can include the relative information among all maps, but as the 

objective function becomes much more complex, the convergence of the algorithm may 
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be much slower than the pair-wise version. The slower solution process may benefit from 

an acceleration method first proposed by Besl et al. [118] based on line search theory, 

which extrapolates the next iteration by monitoring the movement of the algorithm in the 

solution space. To apply this method, the progress of the ICP algorithm or now the MICP 

algorithm may be considered as a journey in the transformation space. Letting r  denotes 

the total transformation vector at the th  iteration; one may define the change in the 

current iteration from the previous one as: 

 1 rΔ r  (3.64) 

Δ  basically indicates in which direction the algorithm is moving. The angle between the 

last two directions is: 

 1

1

1cos  



 
   

 

Δ Δ

Δ Δ
 (3.65) 

The idea behind extrapolation is that if the algorithm has moved in almost the same 

direction during the last few iterations, as is the case when both   and 1   are 

sufficiently small (e.g. 10°), it may move in this direction further. Instead of solving a 

minimisation, an increment  may be obtained based on the behaviour of the previous 

several movements, which is used to update the current transformation [118]: 

 1  
Δ

Δ
r r  (3.66) 

The detailed method to obtain this increment is omitted here and referred to [118], and 

the potential of this accelerating method is presented in Chapter 5. 
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3.4 NUMERICAL SIMULATION OF REFRACTIVE SURGERY 

The topography reconstruction studies presented above aim to provide a convenient 

surface representation, which is important for the creation of patient-specific numerical 

models of refractive surgeries, where corneal topography for each eye is used to 

determine the geometry of the finite element model. 60 sets of data have been collected 

from 30 patients who have undergone LASIK surgery for myopic correction at Wenzhou 

Medical University, China. The patients include 15 male and 15 female aged from 21 to 

41 years (27.44± 4.88). The collected data include corneal anterior and posterior 

topographies, corneal thickness maps, axial length and IOP measurements taken before 

and after the surgical procedure. The corneal topographies and thickness maps are 

provided by Pentacam topographer, the axial lengths are measured by an A-scan 

ultrasound device (Compuscan UAB 1000; Storz Inc., St. Louis, MO, USA), and the IOP 

values are measured with a dynamic contour tonometer (DCT; SMT Swiss 

Microtechonology AG, Switzerland). Information on the size and depth of the flap and 

the depth of removed tissue by laser ablation is also obtained from the laser instrument 

manufacturer, allowing the development of finite element (FE) modelling of the surgical 

procedure. 

The simulation process is divided into several steps. First, an idealised model composed 

of the cornea, limbus and sclera is generated using average ocular dimensions. Second, 

clinical data representing the geometry of each eye is used to build an eye-specific model. 

This is done by changing the coordinates of nodes in the idealised model to meet the 

patient-specific data including corneal topographies and thickness and ocular axial length. 

Zernike polynomials are employed to fit the topography and thickness maps and to enable 

simple integration with the rest of the idealised model. A stress-free configuration step is 

then carried out to obtain a relaxed model corresponding to the state of the eye with zero 
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intraocular pressure (IOP). The removal of tissue as would be done in the refractive 

surgery by laser ablation is then simulated and finally the resulting model is inflated by 

full IOP to achieve the simulated postoperative eye. 

The software package used in the FE analysis was Abaqus (Abaqus, SIMULIA, Dassault 

Systèmes), which is well-known for its stable nonlinear analyses. However the models 

are not generated in the Abaqus environment. In this study, a Visual Basic (VB) 

programme, based on the modelling strategies in [110], was written to construct the 

idealised model and the manipulation of the models to fit clinical data was conducted in 

MATLAB. This latter step includes fitting of clinical data, building clinical models, 

navigating the Abaqus FE analysis, and conducting post-processing tasks. 

3.4.1 Model construction 

Geometry and mesh 

The idealised model generated by the VB programme is shown in Figure 3-11. The shape 

of the cornea is determined by its anterior surface, central corneal thickness (CCT) and 

peripheral corneal thickness (PCT). The anterior corneal topography is represented by an 

ellipsoid that is flatter in the periphery and the corneal thickness at any location is linearly 

interpolated based on CCT and PCT. The sclera on the other hand has a spherical external 

shape. Based on an earlier experimental evidence, the scleral thickness is made equal to 

PCT at the limbus, decreasing to 0.8PCT at the equator, then increasing to 1.2PCT at the 

posterior scleral pole [276]. 

The model is meshed using 15-noded solid elements (C3D15H) arranged in rings across 

the ocular surface and in layers across the thickness. The C3D15H element is a second-

order (quadratic) triangular prism with nodes both at the corners and in the middle of each 

edge. The boundary conditions of the model are set as follows; the polar nodes along the 
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z axis are restrained against displacement in the x and y directions, while the equatorial 

nodes are prevented from movement in the z direction. To prevent the model from rigid-

body rotation around the z axis, the equatorial nodes in the x-z plane are fixed in the y 

direction as well. 

  

Figure 3-11. An idealised model generated by the VB programme. The model is rotationally symmetric. 

The right figure shows a cross section of the model where the coordinate system is plotted in yellow. The 

equatorial and polar nodes are marked as red points. In this idealised model, 25 and 45 rings are used in 

the cornea and the sclera, respectively; the corneal and scleral thickness is broken into 3 layers, resulting 

in 44100 elements. 

Based on the mesh structure of the idealised model and using the same coordinates system 

and boundary conditions, the patient-specific model adopts the clinical measurements by 

only changing the coordinates of nodes. This involves modifying corneal shape to fit 

patient-specific measurements and stretching the sclera to suit the clinical axial length. 

The anterior corneal topography and the corneal thickness map for each eye are fitted to 

Zernike polynomials up to order 10, which allows easy calculation of node coordinates at 

any location and the corresponding thickness. The coverage of the topography and 

thickness map however is limited. The reliable measurements usually only adequately 

cover the central 8mm region in diameter and unfortunately in this study, multiple 

measurements of peripheral topography maps were not available, making topography 
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matching impractical. This situation has meant extrapolation in both anterior topography 

and thickness map were needed. Further, the Zernike expression, once obtained, is only 

useful to predict locations that are located inside its orthogonal radius and any 

extrapolation outside such radius will be problematic. 

To solve the extrapolation problem for the anterior corneal topography, the best ellipsoid 

is found for each topography in addition to its Zernike expression, this best-fit ellipsoid 

has relatively worse representation of the clinical measurements but is ideal for 

extrapolation purpose. In the final method as shown in Figure 3-12, the central 8mm 

region adopts the Zernike expression, and the region outside 10mm reaching to the limbus 

is predicted based on the best fit ellipsoid, a transition region from 8mm to 10mm is used 

to smoothly connect these two regions.  

 

Figure 3-12. Schematic method of adopting clinical corneal topography and thickness 

For the thickness map, the above technique of combining Zernike expression and best-fit 

ellipsoid equation is not suitable because an ellipsoid is too simple to represent the corneal 

thickness distribution. Instead, the extrapolation in corneal thickness is conducted as 

follows. First, the peripheral corneal thickness of the limbal ring is predicted by linear 

extrapolation of the available thickness measurements. Because of the asymmetric shape 

of the clinical thickness map, these extrapolated thickness values will be different. In the 

current study, their mean value has been adopted as a single value of PCT for the sake of 
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simplicity. The corneal thickness that is outside the Zernike expression radius is then 

interpolated linearly based on the available clinical data inside the Zernike radius and the 

predicted PCT at the limbal ring. 

Once the nodes of anterior corneal surface and their associated thickness values are 

determined, the posterior nodes can be obtained by applying the thickness along the 

directions of surface normals, which are determined either by the Zernike expression or 

finite difference method. The next step is to stretch the sclera to meet the actual axial 

length for each eye and this is done by simply changing the vertical coordinates of the 

scleral nodes. The change in geometry from the idealised model to a patient-specific 

model is illustrated in Figure 3-13. 

 

Figure 3-13. The change in geometry from the idealised model to a typical patient-specific model after 

adopting clinical data including corneal topography, corneal thickness map and axial length 

Regional material properties 

The model incorporates an isotropic Ogden material model [277] that represents the 

hyperelastic and incompressible nature of the cornea and sclera: 
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where U  is the strain energy potential, 
1

3
i iJ



  with J  being the total volume strain 

and i  being the principal stretch, i , i  and iD  are material constants and the iD  values 

determine the compressibility of the material, which are chosen as zeros in this study to 

account for the nearly incompressibility of the cornea and sclera. The material parameters 

i , i  have been obtained through an inverse modelling exercise based on experimental 

data for the cornea [64] and the sclera [276] of age 50. In these inverse modelling 

exercises, representative numerical models of the cornea and sclera are built. For each 

model, an optimisation process is carried out to find the optimal material parameters that 

lead to the best fit between the output from the numerical model and the experimental 

data, e.g. load-deformation curve [278]. The optimisation problem in the inverse 

modelling is solved by a combination of customised Python codes and the optimisation 

software HEEDS (Red Cedar Technology, Michigan, USA). 

The cornea has a single material definition while the sclera is divided into three regions 

as shown in Figure 3-14. In addition, the material properties of the limbus are kept the 

same as the anterior sclera. 
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Figure 3-14. A cross-sectional view of the eye model showing the regions with specific material 

properties 

The material parameters for all regions are given in Table 3-3. The cornea is softer than 

the sclera and the stiffness of the sclera decreases from the anterior to the posterior region. 

Reference can be made to Figure 3-15, which shows the stress-strain relations for the 

cornea and sclera under uniaxial loading based on the   and   values given in Table 

3-3.  

Table 3-3. First order Ogden parameters of different regions of the eye 

Regions 
Material parameters 

1  1  

Cornea 0.0541000 110.4 

Anterior sclera 0.2709105 150.0 

Equatorial sclera 0.1806070 150.0 

Posterior sclera 0.1332790 150.0 
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Figure 3-15. Stress-strain curves for the cornea and sclera 

The epithelial layer of the corneal is much softer than the stroma and thus contribute little 

to the overall corneal stiffness [279], this fact is taken into account in the model by 

creating a superficial thin layer which is 50 μm in thickness and has 10% of the cornea 

stiffness ( 110% ). The enhanced model with a separate layer representing the epithelium 

is shown in Figure 3-16. 

 

Figure 3-16. Model with an epithelial layer in blue 

3.4.2 Stress free configuration 

The patient-specific model at this point has adopted the clinical geometry, which has been 

measured in vivo in a stressed condition under IOP. This has meant there is a need to 

derive the stress-free configuration of the model which exhibits geometry with zero IOP. 

In this study, an efficient iterative approach proposed by Pandolfi and Holzapfel [238] is 
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used and this approach has been shown to be sufficiently accurate in [280]. If the initial 

model with measured (stressed) shape has nodal coordinates 0X , the target of the stress-

free configuration is to find a model with nodal coordinates X  which would match with 

0X  after undergoing nodal displacements u  caused by the application of IOP, that is 

 0   X x X u  (3.68) 

The unknown configuration X  is found iteratively (Figure 3-18), where the procedure 

begins by applying the IOP to the initial model with 0X  coordinates using non-linear 

finite element analysis and this leads to the nodal displacements 0u , which is used to 

compute the first estimate of X  as 

 1 0 0 X X u  (3.69) 

Now imagine a strip model that has a linear material behaviour, the subtraction in 

Equation (3.69) will derive its exact stress-free configuration as shown in Figure 3-17. 

Nevertheless, the same is not true for a model with hyperelastic material definition as in 

the current study. The consequence is that if the IOP is applied again to configuration 1X , 

there is bound to exist a difference between the resulting configuration denoted 

1 1 1 x X u with the target configuration 0X . This difference is used to compute the error 

estimate: 

 1 1 0 1 1 0e     x X X u X  (3.70) 

where  denotes the Euclidean norm and a new stress-free estimate is approximated 

using the new nodal displacements as: 
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 2 0 1 X X u  (3.71) 

 

Figure 3-17. Schematic method to obtain the stress-free configuration of a linear strip model 

Based on this new estimate, the procedure continues by carrying out another finite 

element analysis and using the resulting nodal displacements to compute a new error 

estimate. In the thk  iteration, the stress-free estimate is given by  

 0 1k k X X u  (3.72) 

and the error estimate is calculated by 

 0 0k k k ke     x X X u X  (3.73) 

The iterative process is illustrated in Figure 3-18 and it is generally terminated when the 

magnitude of ke  becomes smaller than a pre-set tolerance. In this study however, 3 

iterations have been used in all cases and the final errors had magnitudes of less than 510  

mm. 

 

 

  

With 1 IOP 

With 2 IOP 

  

With 1 IOP 

With 0 IOP 
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topography to update stress-

free configuration 

Figure 3-18. Schematic description of steps to obtain the stress-free configuration [280] 

3.4.3 Adjustment of the ablation depth 

The photoablation that is used to remove corneal tissue in the corneal refractive surgery 

is applied to the stressed cornea in vivo. Nevertheless, modelling tissue removal in a 

stressed model or when the finite element analysis is running is rather hard. Instead, the 

tissue removal in this study is done on the stress-free model by changing the corneal 

thickness according to the clinical ablation profile. Moreover, because the clinical 

ablation profile is designed using topography and/or wavefront data in vivo with the eye 

in a stressed state, an adjustment process of the ablation depth is included. Its purpose is 

to achieve a new ablation depth profile that is suitable for the stress-free configuration. 

This is done by marking the location and depth of the ablation and monitoring its changes 

during the stress free configuration process. The easiest way to do so is to introduce a 

new layer for the tissue that is going to be removed as shown in Figure 3-19. An 

alternative approach may be possible to only identify the location of this layer (more 

specifically, its posterior surface) but without adding it to the model (Figure 3-20), the 

nodal displacements corresponding to this layer then can be interpolated from the nearby 

nodes. Both approaches are able to estimate the location and shape of the ablation depth 

profile in the relaxed model (stress-free configuration). This profile is expected be to 

IOP IOP IOP 
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thicker than the clinical measurements because after removing the IOP, the thickness of 

the whole cornea is expected to increase. 

 

Figure 3-19. Model with an ablation depth profile being isolated in a specific layer (red) 

  

Figure 3-20. The alternative approach to enable adjustment of ablation depth (left), compared to the 

approach where an ablation layer is included as shown in Figure 3-19. Additional points are located in the 

left model to identify the posterior surface of the ablation depth. It should be noted that the thickness 

distribution across layers is different in these two models because of the different ways in handling 

ablation layer. 

Because the actual ablation formula could not be obtained from the laser instrument 

manufacturer, the study had to rely on limited ablation depth data given at about 90 points 

across the ablation surface. The ablation profile has an asymmetric shape and the ablation 

depth decreases from the centre to the periphery. The points do not cover a complete 

circular region as shown in Figure 3-21. To closely adopt this data, the ablation thickness 

values are fitted to low order Zernike polynomials ( 4n  ), to allow easy prediction of 

ablation depth at un-sampled locations and reasonable estimation of the ablation 

boundary, Figure 3-21. However this boundary is often not perfectly circular, which 
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introduces the need to reconfigure the corneal nodes to coincide with non-circular 

ablation boundary if a new layer is to be added (Figure 3-22). To do the nodal re-

arrangement, an additional ablation boundary (yellow in Figure 3-22), on which the 

ablation depth has pre-set value, is also obtained through the Zernike expression of the 

ablation depth. This pre-set value is necessary to control the thickness of peripheral 

elements in the ablation layer, whose cross-sectional shapes are triangles. This ablation 

boundary is called minimal ablation boundary. 

The nodal re-arrangement is only carried out in the central cornea till the flap boundary 

that defines the size of corneal flap (9 mm in diameter, Figure 3-22) as will be described 

in the next section. The gap between the ablation boundary and flap boundary is used to 

smoothly transit the corneal rings from uncircular shapes in the central area to circular 

shapes beyond the flap boundary. 
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Figure 3-21. Ablation sample points and their locations as shown on the anterior corneal surface of the 

model. The ablation depth values at some peripheral locations are zeros (blue diamond), meaning laser 

ablation is not applied at these locations. 
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Figure 3-22. Re-configured corneal nodes to fit the ablation boundary. The central corneal rings are 

uncircular until the flap boundary, beyond which the rings remain regular and circular. 

The reconfiguration of the corneal nodes may be avoided if the alternative approach 

described above is used, the process becomes as simple as identifying certain points inside 

the intact cornea that enclose the ablation thickness. Figure 3-23 has shown the identified 

points viewing from the front of the cornea in models with and without nodal re-

arrangement. It should be noted that these points, which represent the posterior surface of 

the ablation profile, seemingly appear on the anterior corneal surface but they are in fact 

located inside the cornea as illustrated in Figure 3-20. In Figure 3-23A, the corneal nodes 

are re-configured to fit the ablation boundary and the identified points form complete 

rings (uncircular). In Figure 3-23B, the corneal nodes are regularly spaced in circular 

rings and the ablation boundary is only used to identify circularly spaced points that are 

inside the uncircular ablation boundary. The identified points rough cover the ablation 

region specified by the ablation boundary but appear to incompletely occupy some 
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peripheral rings. During the process of stress-free configuration, the nodal displacements 

of the identified points are interpolated using nearby nodes and included when computing 

the error estimate ke . 

No matter which way are used to locate the ablation depth, an adjusted profile can be 

obtained through the stress-free configuration. After determining the stress-free 

configuration, the adjusted ablation depth is removed to simulate the laser ablation in the 

surgical procedure. The layers above the ablation layer are moved downwards to close 

the gap while the rest of the model is kept unchanged. 
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Figure 3-23. Locations (marked as red points) identified for adjustment of ablation depth as seen from the 

front of the cornea. A: The corneal nodes are re-configured according to the ablation boundary; B: Re-

configuration of corneal nodes are not applied but the ablation boundary is still used to guide the 

identification of necessary points. 

A 

B 
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3.4.4 Definition of flap (for LASIK)/cap (for SMILE) 

To closely mimic the actual situation in LASIK refractive surgery, the corneal flap is 

modelled and the flap thickness is obtained clinically. However, the measurements are 

also limited and they are only collected in two cross sections of the cornea based on 

Optical coherence tomography (OCT) images (Figure 3-24). Moreover, the data 

collection was done manually so the accuracy is low. As shown in Figure 3-25, the spatial 

plot of the flap thickness in z-x and z-y cross sections do not intersect with each other 

although they are expected to do so. Because of the limitations in both availability and 

accuracy, these flap data points are fitted to a set of second order Zernike polynomials 

which gives a rough estimate of the actual flap thickness (right figure of Figure 3-25). 

 

Figure 3-24. An OCT image of a corneal cross section showing the boundary of flap 



- 92 - 

 

 

Figure 3-25. Plot of flap thickness in z-x and z-y cross-section and the 2nd order Zernike expression of the 

flap thickness distribution. In the left figure, the red line represents the closest distance of the two 

thickness curves. 

Although the flap is only present after the cut, its thickness is embedded into the model 

before the stress-free configuration, enabling the location of ablation layer to be 

determined and making the design of flap afterwards easier. This does not change the 

structure of the model but just sets the thickness of the first layer (in cornea, the first two 

layers including the epithelium) according to the Zernike expression obtained above.  

Once the ablation depth is subtracted and all upper layers are brought down accordingly, 

the central 9 mm diameter region of the first two corneal layers representing the flap are 

separated from the model and connected using multi-point constraints (MPC) to the rest 

of the model. This connection forms a hinge measuring about 4 mm in arc length as 

illustrated in Figure 3-26. A friction interaction is defined between the posterior flap 

surface and the underlying surface of the stroma. These parameters of flap diameter and 

hinge size are not patient-specific but are close to the clinically reported values [281]. 

In this study, the newer surgical procedure SMILE is also numerically studied and its only 

difference with LASIK is the flap connection to the rest of the cornea. In SMILE, the flap 
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becomes a cap and in contrast to the LASIK flap, the cap is connected to the rest of the 

model more completely with only a small separation used to model the small incision 

made to remove the corneal lenticule. The diameter of the SMILE cap is usually smaller 

than the LASIK flap as shown in Figure 3-26 but they are kept the same to allow direct 

comparison of model results. In addition, the size of the SMILE incision cut has been 

kept at 4mm, which is close to typical clinical practice [282]. 

 

Figure 3-26. Dimensions of LASIK flap and SMILE cap and the corresponding cut sizes 

3.4.5 Wound healing 

The effect of the wound healing process taking place after the surgical procedure has not 

been fully quantified. The studies on wound healing suggested that the adhesive tensile 

strength across the wound is much weaker compared to the rest of stroma [283] but the 

scarring of the surrounding tissue may lead to stiffness increases. In this study, a wound 

healing layer is designed in both LASIK and SMILE models, which measures 100 μm in 

thickness and its stiffness is set proportional to the stroma thickness. The selection of a 

thickness of 100 μm is based on informal discussion with Professor Julie Daniels at 

University College London. Moreover, the wound healing layer is assumed to cover the 
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whole region of flap/cap cut with uniform material properties for simplicity. The LASIK 

or SMILE model with a wound healing layer beneath the flap or cap is shown in Figure 

3-27, it should be noted that the cornea has been thinned to model tissue removal. A 

parametric study is then carried out to find the optimal wound healing stiffness ratio 

which leads to the best fit of the simulated surgical outcomes with the actual clinical data. 

This parametric study is only doable for LASIK models, and therefore the wound healing 

stiffness in the SMILE models has adopted the optimal values found in the parametric 

study using LASIK models. 

 

Figure 3-27. Model with a wound healing layer in orange 

3.4.6 Summary of the simulation steps 

In this study, both LASIK and SMILE procedures are modelled, they share the same steps 

until the definition of flap for LASIK and cap for SMILE. The only difference between 

the flap and the cap is their connection to the rest of the model. The simulation begins 

with the generation of an idealised model using a Visual Basic programme (Figure 3-28) 

and this model is used as a structural base, upon which each set of patient-specific data is 

used to create a model that meets the exact geometry of each eye in terms of corneal shape 

and axial length of the eye. An epithelium layer is introduced and assigned softer material 

behaviour compared to the corneal stroma. Having designed the first two layers to account 

for the flap thickness, an ablation layer is then located under the corneal flap and isolated 



- 95 - 

 

from the thickness of the stroma, this allows the adjustment of the ablation profile that is 

suitable for the relaxed model after obtaining the stress-free configuration. The 

adjustment of ablation profile can alternatively be achieved by introducing points that 

identify the posterior surface of the ablation layer. After the ablation depth is removed 

from the stroma, the flap or cap is moved downwards to close the gap with the rest of the 

tissue. In LASIK models, the flap measuring 9mm in diameter is separated from the 

model and only connected to the rest of the model by a hinge with an arc length about 

4mm long. In SMILE models, the cap is connected to the model more completely, leaving 

an unconnected portion of the same size as the LASIK flap hinge. In both LASIK and 

SMILE models, a 100 micron thick wound healing layer is considered beneath the 

flap/cap and assigned different material behaviour. All these manipulations are done 

inside the MATLAB environment and the LASIK and SMILE models are submitted to 

the Abaqus solver for FEM analysis (application of IOP). To guide all this analysis, a 

Graphical User Interface (GUI) is built using MATLAB (Figure 3-29), it guides the user 

to select patient data and choose the simulation parameters. Based on user selections, the 

GUI builds the LASIK and/or SMILE models and calls Abaqus to do the FE analysis. 
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Figure 3-28. Visual Basic programme used to generate idealised models 

 

Figure 3-29. Graphical user interface under MATLAB environment that guides the patient-specific 

modelling of corneal refractive surgeries LASIK and SMILE 
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3.4.7 Mathematical simulation of LASIK 

In addition to the above steps of numerical simulation, for each set of patient-specific 

data, a mathematical simulation that considers no ocular biomechanical reaction to the 

surgical procedure is conducted. In this simulation, the ablation depth is simply subtracted 

from the corneal thickness measured preoperatively. The predicted postoperative 

topography from the mathematical simulation is then compared to the clinical topography 

and the results are used to validate the necessity of considering ocular biomechanics in 

refractive surgery modelling. 

3.4.8 Simulation of tonometry 

Built upon the numerical models established in previous sections, the simulation of 

tonometry is also included in this thesis. The purpose of this study is to: 1) validate the 

capability of numerical models to reliably simulate tonometry and thus estimate the IOP, 

2) reveal the effect of central corneal thickness on the IOP estimates by tonometry, and 

3) study the influence of LASIK and SMILE procedures on the IOP estimates. To do so, 

three models are used for each patient-specific data set, namely model with full corneal 

thickness (INTACT), LASIK and SMILE models. Goldmann applanation tonometer 

(GAT) and Corvis ST (CVS) are included in the tonometry study.  

GAT is a static and contact tonometry, and widely considered to be the gold standard IOP 

measuring technique. Based on the Imbert–Fick law, GAT measures the IOP as the 

external tonometry pressure subtracted by the effect of tear file tension along the 

tonometer edge [250]. To model GAT, as shown in Figure 3-30, a circular rigid body with 

a diameter 3.06 mm is introduced to simulate the tonometer and added to the existing 

models already established in previous sections (inflated by IOP). The rigid body is 

placed at the apex of the cornea and a friction contact is defined between the anterior 
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surface of the cornea and posterior surface of the tonometer to avoid penetration. A 

concentrated force is gradually applied to the centre of the tonometer to push it 

downwards against the cornea until complete applanation is achieved. This process is 

done by a static FE analysis using Abaqus which records the force at applanation. This 

force is then divided by the area of the tonometer ( 21.53  ) to determine the external 

tonometry pressure. The effect of tear film tension is adopted from [250] as 0.45 mmHg, 

which is subtracted from the external tonometry pressure to determine the estimate of true 

IOP. 

 

Figure 3-30. Schematic method to model GAT, showing in an INTACT model. The tonometry pressure is 

implemented by applying concentrated force in real simulation. 

The recent CVS on the other hand is dynamic and non-contact, it is a very promising 

method with growing popularity because of its ability to not only measure the IOP but 

also characterise in vivo corneal biomechanics. An air-puff with duration of nearly 30 

milliseconds is projected on the cornea and the magnitude of the pressure increases then 

decreases during the projection (Figure 3-31A). The pressure is precisely measured at the 

piston where the air-puff is jetted but this pressure will decline when the air-puff reaches 

the corneal surface. While it is difficult to measure the pressure on the cornea, a reduction 

ratio (95 /182 0.522 ) is suggested by the company as shown in Figure 3-31A. Further, 

the pressure in Figure 3-31A presents the pressure at the centre of the air-puff, the 

pressure across the cornea surface is not uniform, being the highest at the centre and 
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vanishing towards the periphery (Figure 3-31B). The air-puff pressure causes the corneal 

shape to deform from convex to concave and the time when this event take place is called 

applanation time 1 (AT1), which determines applanation pressure 1 (AP1) as shown in 

Figure 3-31A. AP1 is then converted to IOP estimate by a linear equation 1 1 2C AP C   

where 1C  and 2C  are constants. It should be noted that, the corneal shape will return to 

its original convex shape from concave when the air-puff pressure decrease to zero. To 

implement CVS in each patient-specific model, the rings within the central 3 mm radius 

of the anterior corneal surface are identified (Figure 3-32) and the air-puff pressure on 

each ring is computed based on the distance from its middle point to the corneal apex and 

the distribution profile in Figure 3-31B. Once the pressure distribution is defined, a 

dynamic FE analysis is performed using Abaqus and the AT1 is determined by monitoring 

the second derivative of the corneal apex in X direction (changing from negative to 

positive). 

  

Figure 3-31. Temporal air-puff pressure profile over 30 ms (A) and spatial distribution of the pressure 

across corneal surface (B) 

A B 
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Figure 3-32. Schematic method to model CVS, showing in an INTACT model. The magnitudes of the air-

puff pressure decrease from the centre (ring 1) to the periphery (till ring 12). 

3.5 CONCLUDING REMARKS 

In this chapter, the methodologies employed in the thesis have been highlighted, including 

(1) basic knowledge of orthogonal polynomials and the methods to calculate the 

polynomial coefficients for an arbitrary map represented by discrete points, (2) the 

mathematical statements of the topography matching problems for both pair-wise and 

multi-view registrations and the algorithms to achieve the solutions for these problems, 

and (3) the strategies and steps in the numerical simulation of corneal refractive surgery 

considering both LASIK and SMILE procedures and a simple mathematical simulation 

method, followed by numerical simulation of tonometry including GAT and CVS. These 

three main parts are set in a logical order. The topography fitting study aims to assess a 

series of orthogonal polynomials in terms of both reconstruction and prediction. The 

purpose of this practice is to derive explicit expressions of the discrete data points which 

are not only able to reproduce the points at known locations but also reliable enough to 

predict points that lay between the measured locations. The outcomes are beneficial to 

the following topography matching study when the algorithms need to find points on the 

central map that correspond to locations on the peripheral maps. The combination of 

topography fitting and ICP algorithm has never been done before and this has led to 

interesting results that will be presented in Chapter 5. Ideally, the combined map, which 

will have a much larger coverage than the standard single map, can be fitted to orthogonal 
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polynomials again and used to build patient-specific models for LASIK or SMILE. 

Unfortunately, the corneal topography data used in the numerical study only consist of a 

single central measurement for each eye. Nevertheless the outcomes of topography 

matching has prepared a necessary tool for future use once the required data becomes 

available. In this study, we had to continue the numerical simulation studies of LASIK 

and SMILE without taking the benefit of matching multiple topography maps of the 

cornea. 
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CHAPTER 4  

RESULTS OF TOPOGRAPHY FITTING 

4.1 INTRODUCTION 

Based on the theoretical background in Section 3.2, this chapter presents the results of 

topography fitting using topography data measured clinically. It begins with a comparison 

study on least squares estimation (LS) and orthogonal projection (OP) methods; the 

results of such study help determine the best suitable method for fitting of corneal 

topography. Then the performance of the orthogonal polynomials in reconstructing the 

measured topography maps is evaluated. This is followed by the assessment of various 

orthogonal polynomials in prediction of unmeasured locations and the potential risk of 

overfitting. In this study, the topography data are collected using a Pentacam 

videokeratographer and provided by Professor Pinakin Davey at Western University of 

Health Sciences, USA. The data include 200 normal and 174 keratoconic eyes and for 

each eye both anterior and posterior corneal surfaces are measured during the data 

collection process. The original topography, as a map, has a coverage of 14 mm in x and 

y directions, and a resolution of 0.1 mm, resulting in a 141 141  square grid. In practice, 

only certain central circular region of the original map is kept because of data 

incompleteness outside this region as shown in Figure 4-1. In this thesis, the central 5 mm 

radius is used. 
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Figure 4-1. Typical Pentacam topography data viewed from the top. Colours of individual points reflect 

their z coordinates. The continuous circle in the figure has a radius of 5 mm. 

4.2 OP VS. LS 

One of the major differences in determining polynomial coefficients by LS optimisation 

and OP variants is that, for the former, the sample data are fitted to truncated features, the 

coefficients may not represent the real values if the number of features is insufficient and 

there will always be oscillation in values of the coefficients when the truncated number 

changes. To assess this underlying fact and the reliability of OP methods to evaluate the 

polynomials coefficients, a second order function 
2 2( , )z x y x y   is fitted to a series of 

Zernike polynomials by both LS method and OP variants. Theoretically, ( , )z x y  can be 

explicitly expressed by only two terms of Zernike polynomials as 

1 5( , ) 0.5 ( , ) 0.5 ( , )z x y W x y W x y  , i.e. the coefficients of the 1st and 5th Zernike terms are 

both 0.5, while the coefficients of other terms should be zeros. 

First, a 60 60  unit square grid is used to sample ( , )z x y , resulting in 2821 points in the 

unit circle. This set of 2821 points is fitted to Zernike series using orders from 2 to 50 and 

the coefficients are evaluated by LS method. It is obvious that order 2 is sufficient to fit 

this set of points based on the knowledge above because both the 1st and 5th Zernike 
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polynomials are included by order 2. When the order increases, new polynomials terms 

are added to the series, which sequentially changes the coefficients of the existing terms 

as the LS method takes no advantage of the orthogonality of the polynomials. Figure 4-2 

shows errors of the first six Zernike coefficients ( 1 2 6, , ,a a a ) computed by LS method 

expressed as absolute differences between the computed and theoretical values. It can be 

seen that the errors are trivial for all six coefficients and they change with increases in 

polynomial order. This happens because the orthogonality of the polynomials is not valid 

in a discrete manner such that the polynomial terms are no longer independent but 

coupling with each other. In the practice of fitting the aforesaid second order function, 

coefficients of higher order terms that should be zeros are no longer zeros, which forces 

coefficients of lower order terms to change, in order to cancel out the effect of non-zero 

higher order terms. However, the change in the coefficients are seen to be negligible. 

 

Figure 4-2. Vibration of coefficients as evaluated by the LS method while using different Zernike orders 

In addition, to assess the reliability of OP variants in evaluating polynomials coefficients, 

square grids from 15 15  to 300 300  with increments of 15 points in both directions are 

used to sample the above second order function 
2 2( , )z x y x y   and only points that lay 
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inside the unit circle are kept. Using these points (black and green) and boundary points 

(red) as shown in Figure 4-3, the unit circle are divided to triangles and/or squares as 

detailed in Section 3.2.2. 

  

Figure 4-3. Discrete points and the squares and/or triangles representation of the unit circles. In 

representation A, the points are regarded as middle points of pixels and the green points are discarded 

because the corresponding pixels sit partly inside the unit circle. The same green points are kept in 

representation B, which is for INT variant of OP methods. 

The first six Zernike coefficients, corresponding to order 2, are computed by variants of 

OP methods and also the LS method. The absolute errors of coefficients for the 1st and 5th 

Zernike terms along with the root mean square error of all the 6 coefficients with their 

true values are displayed in Figure 4-4. It can be seen that all OP variants tend to compute 

the coefficients more accurately with higher resolution. The zeroth order approximation 

(ZOA) approach obtains most inaccurate coefficients and the improvement of exact 

moments (EM) method over ZOA is not significant. It should also be noted that the 

behaviour of ZOA overlaps with that of EM when evaluating the first coefficients because 

the first Zernike polynomial term is a constant function. It then turns out that the 

interpolation extension of EM approach (INT) gives closest coefficient values to the exact 

ones because not only the polynomials are kept continuous but also the linear 
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approximation of the input surface reduces the difficulties of reconstruction. Nevertheless, 

even though the INT approach is reasonably good, the LS method estimates the true 

values remarkably better regardless of resolution as shown in Figure 4-4. 

 

 

Figure 4-4. Absolute errors of the first and fifth Zernike polynomial coefficients and the root mean square 

error (RMSE) of all the first 6 coefficients with their true values (0.5 for both the first and fifth terms and 

0 for the rest). The errors of coefficients by OP methods are plotted by the left axis while the ones for the 

LS method are displayed by the right axis for better clarity. The horizontal axis represents the number of 

points that are created by different grids. 

Another important advantage of LS method over the OP method is its relatively fast speed. 

Once the polynomials are sampled at the same x and y coordinates, the whole set of 

coefficients are obtained by few matrix manipulations. On the other hand, except for the 

ZOA variant, both EM and INT variants of OP method involve computations of double 

integrals on finite areas of triangles and squares, which makes EM and INT variants 

computationally expensive especially for images or maps with a large number of points. 

Considering the fast speed of the LS method, its high accuracy and simplicity of 

implementation even when the polynomials are not sufficiently sampled (for example in 
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the square polynomials cases), the LS method is employed solely for the following test 

on clinical corneal topography. 

4.3 TOPOGRAPHY RECONSTRUCTION 

One anterior normal corneal topography is randomly chosen and the measurements within 

5 mm radius (7845 data points) are extracted to test the reconstruction capability of all 

the polynomials mentioned in Section 3.2. For the square polynomials defined in 

Cartesian coordinates system, only the circular portion that maximally inscribes the 

original square domain is used to fit the surface. Figure 4-5 shows the goodness of each 

set of polynomials in terms of the reconstruction errors computed using Equation (3.26). 

It can be seen that there are only four trends even though 8 polynomial series are 

considered in total. The performance of Legendre polynomials (LPs) and Gegenbauer 

polynomials (GPs) perfectly overlaps that of the Zernike polynomials (ZPs). Further, the 

radial versions of LPs and GPs produce almost the same results as Orthogonal Fourier-

Mellin polynomials (OFMPs). The performance patterns of these two groups are 

discussed later in Chapter 7. 
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Figure 4-5. Reconstruction errors plotted against order for eight sets of polynomials, for one clinical 

anterior topography of a randomly chosen normal eye. For Gegenbauer polynomials and Gaussian-

Hermite polynomials, only one scaling factor (  or  ) is included in this figure. An inset graph is 

added in the figure to show trivial difference in reconstruction errors of high orders. 

It can be seen that all polynomials tend to fit this particular anterior corneal surface at 

almost the same accuracy level beyond order 10, while obvious differences are observed 

before this point. The OFMPs fit the surface the best at every order, followed by PZPs, 

ZPs and Gaussian-Hermite polynomials (GHPs). There is a cross point between ZPs and 

GHPs, clear superiority of ZPs are seen before order 6 but the GHPs begin to fit the 

surface slightly better after this order and tend to match ZPs in higher orders from 10. It 

should be noted that only 1.5   and 1.5   are used in Figure 4-5 for GPs and GHPs, 

respectively, where the parameters   and   are the scaling factors of the polynomials 

with smaller values turning the shapes of polynomials to local features. In fact, the set of 

LPs is a special case of GPs with 0.5  , and with its overlapping behaviour in Figure 

4-5, it is easy to extend that GPs with different scaling factors but all defined on the same 

unit plane [ 1,1]  may also have the same performance as will be shown later. This 

extension however would not hold when the GHPs are concerned because GHPs are 
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defined as orthogonal on the infinite plane [ , ]   and the calculation of coefficients 

only uses data within the unit circle. The hypothesis of extension herein is supported by 

the results presented in Table 4-1 and Figure 4-6 where various scaling factors of GPs 

and GHPs are tested using the same topography map. For GPs, the reconstruction error is 

given from order 6 to 12; it can be seen that the scaling factor has no effect on the 

reconstruction error. But this is not true for GHPs where larger scaling factors (global 

features) tends to improve the reconstruction outcomes, Figure 4-6. The improvement by 

using larger scaling factors however becomes trivial beyond 1.5   thus only 1.5   is 

kept for further studies. 

Table 4-1. Reconstruction errors (μm) of GPs with different scaling factors   

  

Order 
0.3 0.6 0.9 1.2 1.5 

6 1.113 1.113 1.113 1.113 1.113 

7 0.613 0.613 0.613 0.613 0.613 

8 0.373 0.373 0.373 0.373 0.373 

9 0.306 0.306 0.306 0.306 0.306 

10 0.288 0.288 0.288 0.288 0.288 

11 0.288 0.288 0.288 0.288 0.288 

12 0.288 0.288 0.288 0.288 0.288 
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Figure 4-6. Reconstruction errors of Gaussian-Hermite polynomials with different scaling factors 

With all results so far being given based on a single corneal map, the whole collection of 

topographies from the 200 normal and 174 keratoconic corneas including both anterior 

and posterior surfaces are added to the reconstruction test. Again, only measurements in 

the central 5 mm radius are kept and it should be mentioned that 14 posterior topographies 

of keratoconic corneas are discarded because there are missing measurements within the 

central 5 mm radius in these maps. Further, according to the overlapping results, only 

Zernike polynomials, pseudo-Zernike polynomials, Orthogonal Fourier-Mellin 

polynomials and Gaussian-Hermite polynomials with scaling factor 1.5   are kept and 

the reconstruction errors for orders 6 to 12 are given from Table 4-2 to Table 4-5, 

presented as mean ± 1 standard derivation.  
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Table 4-2. Reconstruction error (μm) for Zernike polynomials, presented as mean ± 1 standard derivation. 

Order 
Anterior  Posterior 

Normal Keratoconic  Normal Keratoconic 

6 1.403 ± 0.573 2.772 ± 1.767  4.339 ± 1.752 7.905 ± 4.456 

7 0.907 ± 0.402 1.674 ± 1.204  3.061 ± 1.28 5.101 ± 3.092 

8 0.497 ± 0.198 0.901 ± 0.671  1.257 ± 0.684 2.118 ± 1.415 

9 0.372 ± 0.106 0.591 ± 0.383  0.79 ± 0.465 1.25 ± 0.9 

10 0.3 ± 0.035 0.387 ± 0.186  0.287 ± 0.001 0.287 ± 0.001 

11 0.295 ± 0.023 0.352 ± 0.129  0.287 ± 0.001 0.287 ± 0.001 

12 0.292 ± 0.013 0.331 ± 0.095  0.287 ± 0.001 0.287 ± 0.001 

 

Table 4-3. Reconstruction error (μm) for pseudo-Zernike polynomials, presented as mean ± 1 standard 

derivation. 

Order 
Anterior  Posterior 

Normal Keratoconic  Normal Keratoconic 

6 1.091 ± 0.509 1.822 ± 1.503  3.575 ± 1.766 5.633 ± 3.882 

7 0.703 ± 0.371 1.168 ± 1  2.472 ± 1.27 3.739 ± 2.635 

8 0.431 ± 0.17 0.66 ± 0.506  1.054 ± 0.629 1.563 ± 1.126 

9 0.334 ± 0.079 0.442 ± 0.217  0.636 ± 0.444 0.909 ± 0.773 

10 0.289 ± 0.008 0.309 ± 0.055  0.286 ± 0.001 0.286 ± 0.001 

11 0.288 ± 0.005 0.3 ± 0.034  0.286 ± 0.001 0.286 ± 0.001 

12 0.287 ± 0.003 0.294 ± 0.021  0.285 ± 0.001 0.286 ± 0.001 

 

Table 4-4. Reconstruction error (μm) for Orthogonal Fourier-Mellin polynomials, presented as mean ± 1 

standard derivation. 

Order 
Anterior  Posterior 

Normal Keratoconic  Normal Keratoconic 

6 1.039 ± 0.502 1.709 ± 1.447  3.438 ± 1.746 5.354 ± 3.79 

7 0.688 ± 0.368 1.116 ± 0.962  2.434 ± 1.262 3.658 ± 2.587 

8 0.417 ± 0.163 0.619 ± 0.466  1.004 ± 0.625 1.459 ± 1.092 

9 0.33 ± 0.077 0.426 ± 0.2  0.635 ± 0.445 0.907 ± 0.773 

10 0.286 ± 0.004 0.294 ± 0.024  0.284 ± 0.002 0.284 ± 0.001 

11 0.284 ± 0.003 0.289 ± 0.014  0.283 ± 0.002 0.284 ± 0.001 

12 0.283 ± 0.002 0.286 ± 0.009  0.283 ± 0.002 0.283 ± 0.001 
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Table 4-5. Reconstruction error (μm) for Gaussian-Hermite polynomials, presented as mean ± 1 standard 

derivation. 

Order 
Anterior  Posterior 

Normal Keratoconic  Normal Keratoconic 

6 1.397 ± 0.573 2.711 ± 1.781  4.321 ± 1.761 7.774 ± 4.418 

7 0.891 ± 0.401 1.628 ± 1.209  3.026 ± 1.284 4.964 ± 3.052 

8 0.482 ± 0.195 0.857 ± 0.658  1.197 ± 0.678 1.957 ± 1.362 

9 0.366 ± 0.104 0.574 ± 0.372  0.751 ± 0.463 1.17 ± 0.87 

10 0.3 ± 0.034 0.384 ± 0.18  0.29 ± 0.003 0.299 ± 0.016 

11 0.295 ± 0.022 0.35 ± 0.124  0.288 ± 0.002 0.291 ± 0.005 

12 0.292 ± 0.013 0.329 ± 0.091  0.287 ± 0.001 0.287 ± 0.001 

 

 

Figure 4-7. Mean reconstruction errors plotted for anterior normal corneal surfaces fitted by ZPs, PZPs, 

OFMPs and GHPs. An inset graph is added in the figure to show trivial difference in reconstruction errors 

of high orders. 

The sequence of reconstruction goodness of the four polynomials are the same for all 

kinds of maps (anterior normal maps, anterior keratoconic maps, posterior normal maps 

and posterior keratoconic maps) and an example is given in Figure 4-7 for the anterior 

normal maps, showing mean reconstruction errors from order 1 to 15. It can be seen from 

Figure 4-7 that, on average, the OFMPs again fit topographies the best, followed by PZPs, 
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ZPs and GHPs. Further, GHPs still tend to match the behaviour of ZPs in orders larger 

than 10. 

The reconstruction errors recorded from Table 4-2 to Table 4-5 also reveals that, in 

general for any particular set of polynomials, the anterior normal corneal surfaces tend to 

be fitted most accurately, followed by anterior keratoconic, posterior normal and finally 

posterior keratoconic surfaces. However, there is a cross-over at order 10, from which the 

posterior surfaces that appeared hard to fit by low order polynomials are fitted slightly 

better than anterior surfaces with order 10 and above. After the significant improvement 

in fitting of posterior surfaces from order 9 to 10, these surfaces are shown to be fitted 

almost equally well with order 10 and above, indicated by the very small standard 

derivation of the reconstruction errors in Table 4-2 to Table 4-5 and visualised by 

boxplots in Figure 4-8 for OFMPs. 

 

Figure 4-8. Boxplots of reconstruction errors by OFMPs from order 8 to 12 for anterior normal, anterior 

keratoconic, posterior normal and posterior keratoconic corneal surfaces. In the right figure, outliers are 

removed and only order 10 to 12 are included. 
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For each boxplot in Figure 4-8, the red line in the box marks the median of all the errors 

and the edges of the box are the 25th and 75th percentiles and the whiskers extend another 

1.5 times of the length from the percentiles to the median. The whiskers length should 

cover approximately 99.3% of the data if they are normally distributed. The data outside 

the whisker reaches are considered outliers and marked with red plus symbols. It can be 

seen from Figure 4-8 that before order 10, the anterior normal corneal topographies are 

fitted most accurately, followed by anterior keratoconic, posterior normal and posterior 

keratoconic topographies. Similar numbers of outliers are found at this stage among all 

kinds of maps. The fits for posterior surfaces then seem to be significantly improved by 

order 10 as shown in the right figure of Figure 4-8, which is reflected by both the small 

magnitudes and narrow distributions of the reconstruction errors. 

The cross-over behaviour above is believed to be caused by additional polynomials terms 

introduced by order 10 and above, which are complex and only helpful for complex 

surfaces while contribute little for simple surface, meanwhile, higher electronic noise 

level when measuring posterior surfaces makes the posterior surfaces noisier and thus 

more complex. Because of the same reason, the less noisy normal keratoconic 

topographies seem to benefit the least from high order polynomials features. However, it 

should be noted that using polynomials with very high orders to fit noisy topography is 

disadvantageous because significant amount of measurement noise is captured while in 

practice it is expected to be filtered. Although the posterior surfaces seem to be fitted 

remarkably well using high orders, their risks of overfitting may be significantly higher 

than the anterior surfaces. In Figure 4-9, the absolute magnitudes of ZPs coefficients for 

typical anterior normal, anterior keratoconic, posterior normal, posterior keratoconic 

corneal topographies are illustrated. ZPs have been selected for this example because their 

shapes are simpler and they have smaller number of terms for a given order. It can be 
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seen from the up-left of Figure 4-9 that the first and fifth terms seem to be most significant 

terms. By carefully looking at the feature shapes of ZPs in Figure 3-6, it is easy to 

understand that the first term tells the average distance of the data points to the reference 

plane passing through the apex. The fifth term generally determines how close the shape 

is to a sphere. For the keratoconic topographies including both anterior and posterior 

surfaces, the second and third features also have relatively big magnitudes; these terms 

generally tell how severe the surface is tilted and are bound to have bigger magnitude for 

keratoconic maps. The other sub-figures in Figure 4-9 shows the magnitudes of higher 

order terms decrease for all maps and collectively more high order terms are seen to have 

big magnitudes for posterior surfaces, and again this is believed to be caused by higher 

noisy levels in these maps. The anterior keratoconic map, although is less noisy, is more 

complex than the anterior normal map, so more high order polynomial terms are needed. 

However, the anterior keratoconic map is seen to benefit less from very high order terms 

than the posterior surfaces as shown in the bottom-right of Figure 4-9 since these terms 

tend to collect more noise-induced complex surface components existing in posterior 

surfaces, which is disadvantageous. 
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Figure 4-9. Magnitudes of coefficients for ZPs up to order 10 for typical anterior normal, anterior 

keratoconic, posterior normal and posterior keratoconic corneal topographies 

4.4 TOPOGRAPHY PREDICTION 

As stated in the introduction, an import function of polynomials fitting is between-point 

interpolation. In addition to reconstruction, it is also of great importance to assess the 

reliability of the polynomials expression in predicting points between the measured points. 

To test this feature, the original data points of each topography map are divided into two 

sets; the first set is considered as the measured locations on the surface and used to 

reconstruct the surface. Once the polynomial coefficients are determined, the locations (x 

and y coordinates) of the second point set are used to predict the corresponding z 

coordinates, which are then compared to the actual measured values and the RMS error 

between the predicted and measured z coordinates denotes prediction error. An 

implementation of such a test is displayed in Figure 4-10 showing mean reconstruction 

and prediction errors for all 200 anterior normal corneal topographies. The original 

Pentacam topography as exported from the instrument usually has 0.1 mm spacing 

between measurements points. The reconstruction in Figure 4-10 selects the first set from 
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these original points such that the spacing becomes 0.2 mm resulting 1961 points, while 

the same number of points are randomly chosen from the rest of original points to assess 

goodness in prediction of the reconstructed surface based on the first data set. It can be 

seen from Figure 4-10 that even though the number of points in reconstruction has been 

reduced to a quarter of the original set, the reconstruction behaviour remains similar with 

Figure 4-7 where all original points are involved in the reconstruction process. 

 

Figure 4-10. Mean reconstruction and prediction errors plotted for anterior normal corneal surfaces fitted 

by ZPs, PZPs, OFMPs and GHPs 

More importantly, it is revealed in Figure 4-10 that overfitting of the original maps may 

occur where the prediction of nearby points may become worse beyond a certain 

polynomial order from which the prediction error begins to increase even if the 

reconstruction is being consistently improved. This phenomenon is due to the fact that 

the reconstruction by LS method is mere an optimisation that focuses only on the points 

that have been included in the calculations, while taking no account of how the 

reconstructed surface would be in the nearby area. With the increase in order, more 
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complex polynomial terms are included in the calculation, which on one hand improves 

the reconstruction outcomes of the included points but on the other hand increases the 

risk of vibrated or excessively curved nearby shapes around the points in this optimisation, 

creating the symptom of overfitting. It is also expected that the inflection of prediction 

curves that appear in Figure 4-10 could take place earlier (under smaller order) if the 

spacing of points in the reconstruction set decreases further beyond 0.2 mm. This is 

validated in Figure 4-11 where sparser sets are selected from the original data points for 

reconstruction and again same number of points are randomly chosen from the rest of the 

original data for assessment of prediction performance.  

 

Figure 4-11. Mean reconstruction and prediction errors by ZPs, PZPs, OFMPs and GHPs using different 

sub-sets of the original anterior normal corneal topography as reconstruction sets 

Except for the PZPs, the inflection orders of the prediction curves for ZPs, OFMPs and 

GHPs all move backwards with the increasing spacing of maps used for reconstruction. 

As a result, the best achieved prediction is worsened. Also illustrated in Figure 4-11, the 

reconstruction errors are seen to become smaller for sparser maps because of the reduced 

number of points employed in the optimisation. 
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It can also be seen from Figure 4-11 that the OFMPs seem to be most sensitive to the 

reduction of points when predicting nearby points around the ones used in reconstruction. 

This is believed to be introduced by rapidly increased complex terms in high order, which 

makes it easier for OFMPs to lead to a more complex reconstructed surface even though 

it passes through the measurements most accurately. While Figure 4-10 and Figure 4-11 

are only concerned with the anterior normal corneal topographies, the inflection orders of 

the prediction errors and the corresponding error values including both reconstruction and 

prediction are given in Table 4-6 to Table 4-9 for all the four groups of topographies – 

anterior normal, anterior keratoconic, posterior normal and posterior keratoconic maps. 

In each table, the last column presents the ratios between prediction and reconstruction 

errors. 

Table 4-6. Inflection orders of prediction curves and the corresponding prediction and reconstruction 

errors by various polynomials for anterior normal corneal topography. The errors are presented as mean 

± 1 standard derivation and in μm. 

 Spacing 
Inflection 

order 

Prediction 

error 

Reconstruction 

error 

Prediction/ 

Reconstruction 

ZPs 

0.2 mm 13 0.299 ± 0.01 0.284 ± 0.01 1.053 

0.3 mm 12 0.309 ± 0.014 0.277 ± 0.014 1.112 

0.4 mm 10 0.325 ± 0.036 0.28 ± 0.034 1.160 

PZPs 

0.2 mm 10 0.3 ± 0.009 0.283 ± 0.009 1.060 

0.3 mm 10 0.311 ± 0.009 0.271 ± 0.009 1.151 

0.4 mm 10 0.341 ± 0.014 0.254 ± 0.011 1.344 

OFMPs 

0.2 mm 9 0.38 ± 0.077 0.32 ± 0.078 1.187 

0.3 mm 8 0.742 ± 0.244 0.396 ± 0.163 1.872 

0.4 mm 6 1.297 ± 0.629 1.005 ± 0.494 1.291 

GHPs 

0.2 mm 13 0.299 ± 0.01 0.284 ± 0.01 1.053 

0.3 mm 12 0.308 ± 0.013 0.277 ± 0.013 1.112 

0.4 mm 10 0.325 ± 0.035 0.28 ± 0.033 1.159 
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Table 4-7. Inflection orders of prediction curves and the corresponding prediction and reconstruction 

errors by various polynomials for anterior keratoconic corneal topography. The errors are presented as 

mean ± 1 standard derivation and in μm. 

 Spacing 
Inflection 

order 

Prediction 

error 

Reconstruction 

error 

Prediction/ 

Reconstruction 

ZPs 

0.2 15 0.315 ± 0.043 0.296 ± 0.044 1.063 

0.3 13 0.337 ± 0.066 0.3 ± 0.067 1.125 

0.4 12 0.372 ± 0.103 0.304 ± 0.091 1.227 

PZPs 

0.2 13 0.308 ± 0.015 0.28 ± 0.014 1.100 

0.3 11 0.327 ± 0.035 0.277 ± 0.035 1.177 

0.4 10 0.363 ± 0.059 0.275 ± 0.056 1.323 

OFMPs 

0.2 10 0.471 ± 0.12 0.281 ± 0.023 1.677 

0.3 8 1.023 ± 0.627 0.595 ± 0.463 1.718 

0.4 7 2.076 ± 1.818 1.059 ± 0.93 1.960 

GHPs 

0.2 15 0.317 ± 0.047 0.299 ± 0.049 1.061 

0.3 13 0.336 ± 0.064 0.299 ± 0.065 1.123 

0.4 12 0.369 ± 0.098 0.302 ± 0.088 1.221 

 

Table 4-8. Inflection orders of prediction curves and the corresponding prediction and reconstruction 

errors by various polynomials for posterior normal corneal topography. The errors are presented as 

mean ± 1 standard derivation and in μm. 

 Spacing 
Inflection 

order 

Prediction 

error 

Reconstruction 

error 

Prediction/ 

Reconstruction 

ZPs 

0.2 mm 10 0.293 ± 0.003 0.284 ± 0.002 1.033 

0.3 mm 10 0.299 ± 0.005 0.277 ± 0.005 1.081 

0.4 mm 10 0.31 ± 0.008 0.269 ± 0.006 1.155 

PZPs 

0.2 mm 10 0.297 ± 0.004 0.28 ± 0.003 1.063 

0.3 mm 10 0.308 ± 0.006 0.268 ± 0.005 1.152 

0.4 mm 10 0.337 ± 0.013 0.251 ± 0.006 1.343 

OFMPs 

0.2 mm 10 0.433 ± 0.07 0.271 ± 0.003 1.598 

0.3 mm 8 1.31 ± 0.713 0.981 ± 0.619 1.335 

0.4 mm 7 3.958 ± 2.113 2.325 ± 1.214 1.702 

GHPs 

0.2 mm 11 0.295 ± 0.004 0.284 ± 0.003 1.039 

0.3 mm 10 0.302 ± 0.006 0.279 ± 0.006 1.080 

0.4 mm 10 0.313 ± 0.008 0.271 ± 0.006 1.155 
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Table 4-9. Inflection orders of prediction curves and the corresponding prediction and reconstruction 

errors by various polynomials for posterior keratoconic corneal topography. The errors are presented as 

mean ± 1 standard derivation and in μm. 

 Spacing 
Inflection 

order 

Prediction 

error 

Reconstruction 

error 

Prediction/ 

Reconstruction 

ZPs 

0.2 mm 10 0.294 ± 0.003 0.283 ± 0.003 1.038 

0.3 mm 10 0.299 ± 0.005 0.277 ± 0.004 1.079 

0.4 mm 10 0.312 ± 0.008 0.268 ± 0.006 1.164 

PZPs 

0.2 mm 10 0.298 ± 0.003 0.279 ± 0.003 1.066 

0.3 mm 10 0.308 ± 0.006 0.268 ± 0.005 1.151 

0.4 mm 10 0.338 ± 0.012 0.25 ± 0.007 1.350 

OFMPs 

0.2 mm 10 0.438 ± 0.065 0.271 ± 0.003 1.616 

0.3 mm 8 1.805 ± 1.205 1.427 ± 1.076 1.265 

0.4 mm 8 4.914 ± 2.342 1.309 ± 0.986 3.754 

GHPs 

0.2 mm 12 0.296 ± 0.003 0.282 ± 0.003 1.051 

0.3 mm 12 0.304 ± 0.006 0.273 ± 0.005 1.112 

0.4 mm 11 0.321 ± 0.011 0.267 ± 0.008 1.201 

 

It can be seen that except for OFMPs, the inflection orders for ZPs, PZPs and GHPs are 

all no less than 10. The best achieved prediction errors at the inflection orders are always 

larger than the corresponding reconstruction errors (Prediction/Reconstruction ratio being 

larger than 1). To better present the sequence of goodness in prediction of all polynomials 

for all kinds of maps, the prediction errors at the inflection orders are displayed in Figure 

4-12 with error bars showing standard derivations.  
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Figure 4-12. Inflection orders of prediction curves and the corresponding prediction errors by ZPs, PZPs, 

OFMPs and GHPs for anterior normal (first column), anterior keratoconic (second column), posterior 

normal (third column) and posterior keratoconic (last column) corneal topography. The horizontal axes 

represent the inflection order, from which the prediction error begins to increase. The prediction errors by 

OFMPs, when the data spacing in reconstruction is 0.3 mm and 0.4 mm, are much larger than the rest and 

thus are displayed at the up-left corner of each column in larger scales. The remaining prediction errors 

are displayed by a small scale showing on the very right side of the figure. All results in figure are in μm. 

As expected, the sensitivity of OFMPs is obvious in all groups of topography, i.e. they 

begin to have difficulty in predicting nearby points in lower orders for all cases, and when 

the spacing increases further the inflection order always decreases for OFMPs. Further, 

the prediction error becomes larger than with other polynomials. In contrast, PZPs tend 

to be most stable for prediction with the inflection orders for PZPs being 10 for most 

cases. For all sets of polynomials, regardless of whether the inflection orders change or 

not, a constant trend is obtained in which the prediction error increases when the spacing 

of points in reconstruction set increases. It should be also noted that while the inflection 

orders are not less than 10 for all polynomials, the prediction errors for posterior surfaces 

are all smaller than that for anterior surfaces. This is consistent with the reconstruction 

behaviour revealed in Figure 4-8 that for polynomial orders of or higher than 10, the 

reconstruction errors for posterior surfaces are smaller than anterior surfaces. However, 

it should be borne in mind that using very high order polynomial terms to fit and predict 
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the nosier posterior surfaces may carry higher risks of overfitting. The trend above does 

not hold for cases where the inflection orders are less than 10 as happened only for 

OFMPs. Except for OFMPs of resolutions 0.3 mm and 0.4 mm, the best achieved 

prediction errors are very small, being less than 0.5 μm on average, however wide range 

of prediction errors are seen for the anterior maps, being widest for anterior keratoconic 

maps. 

4.5 CONCLUDING REMARKS 

This chapter has presented the results of topography fitting. A comparison study on two 

kinds of methods to estimate the polynomials’ coefficients suggested that least-square 

(LS) method was more suitable for fitting corneal topography. While a good number of 

orthogonal polynomials were included in the study, some were seen to provide the same 

performance as for the well-known Zernike polynomials and the extensively studied 

OFMPs, commonly adopted in the image processing community. Only four orthogonal 

polynomials (ZPs, PZPs, OFMPs and GHPs) were then kept for fitting of all corneal 

topographies. The OFMPs were seen to outperform the others in fitting anterior and 

posterior topographies from both normal and keratoconic eyes. Anterior topographies can 

be fitted with reasonable accuracy easier but posterior topographies, which are expected 

to have lower measurement accuracy, may in return be fitted with smaller errors by higher 

order polynomials terms. However, it is not practical to increase the fitting order without 

caution as it is shown that the higher the fitting order is, the more problematic the 

prediction may become. The results of this chapter will be further discussed in Chapter 7. 
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CHAPTER 5  

RESULTS OF TOPOGRAPHY MATCHING 

5.1 INTRODUCTION 

The aim of topography matching study is to assess and further develop methods to 

combine corneal topographies collected from the different viewpoints (central and 

peripheral maps) in order to observe the entire corneal surface. Based on the methods 

given in Section 3.3, this chapter reports the achievements in matching and combining 

multiple topography maps. 

The topography map, obtained using Medmont topographer in this study, covers a 12 mm 

diameter area and is presented by a 50×50 grid, resulting in a resolution of 

12/49 0.245 mm . The coverage of the map is quite wide but the peripheral 

measurements appear to be problematic. As shown in Figure 5-1, an irregular flat area is 

highlighted and this irregular shape is believed to be caused by measurement inaccuracy. 

In fact, the validation of topographic data from current commercially available 

instruments is the subject of a considerable volume of literature, invariably showing a 

loss of repeatability and accuracy at the periphery [284-288]. During the topography 

measuring for this study, data were collected at least twice for both central and peripheral 

maps, which enables a repeatability study to address underlying repeatability and 

accuracy problem as mentioned above. 
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Figure 5-1. A typical central topography provided by Medmont E300, showing irregular peripheral shape 

5.2 REPEATABILITY OF CLINICAL DATA 

In the topography matching study, multiple measurements for each viewpoint led to the 

collection of 42 central and 74 peripheral data pairs. The topographies share the same x 

and y coordinates, meaning the repeatability can be assessed by comparing the z 

coordinates. For each data pair, a series of repeatability errors are computed as root mean 

square errors (RMSEs) in z values of points within circles of radii varying from minimal 

0.245 mm (data resolution) to maximal 6 mm,  

    
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where Rm  is the number of points within a circle of radius R , and 
1 2
,i iz z  are measured 

elevations with the same x, y coordinates. 

It is shown in Figure 5-2 that the repeatability of the measurement decreases with distance 

from the centre towards the periphery. Also, peripheral maps are less repeatable than 

central maps. Although the repeatability test cannot fully reflect the collection accuracy, 

it does indicate that, in practice, only a subset of the measurement is usable. 

mm 
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Figure 5-2. Repeatability tests of clinical height maps. A, C: individual plots for the 42 central and 74 

peripheral map pairs respectively. B, D: corresponding mean curves with error bars ± standard derivation. 

5.3 DATA SETS AND EVALUATION METHODS 

The repeatability study suggests that uncertain collection errors (e.g. noise) may decrease 

the repeatability and accuracy of clinical topography. To avoid these uncertain factors, a 

set of simulated pairs of central (static) and peripheral (dynamic) maps has been generated 

to carry out an initial comparative study of matching techniques. These maps are 

generated based on the same conic surface in Franklin et al. [109] (radius 0 7.2r mm , 

asphericity 0.51Q   ). To prevent the test set from being rotationally symmetric, the 

conic surfaces produced have been elongated in the X direction by a factor 1.05 . The 

simulated maps have the same resolution as clinical data and cover 9 mm diameter 

circular regions, i.e. where the clinical data is deemed reasonably repeatable according to 

Figure 5-2, and with similar coverage to corneal topography available from 

videokeratography maps. The central map is generated directly from the conic surface 

equation, which is then transformed by pre-determined rigid-body transformations 

(rotation, translation) and the peripheral maps are generated using the transformed conic 
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equations. The transformations are designed to simulate typical clinical peripheral data 

overlapping with the central map. 

Clinical collections include various uncertainties represented in this study by simulated 

and quasi-clinical data. In the first exercise the simulated elongated conic section above 

is considered with Gaussian random noise to represent measurement uncertainties 

(typically introduced by electronic noise and data processing procedures). In the second 

and third exercises clinical data is used. The central 9 mm diameter portion from a clinical 

12 mm diameter central map measured from the front is taken to be the central map in 

both exercises. The original 12 mm diameter map is then shifted by the same pre-

determined transformation as above to create the peripheral maps. In the second exercise, 

the peripheral map is obtained by interpolating the shifted original map on the same grid 

as the central map. In the third, points on the shifted original map that lie inside the central 

9 mm diameter are directly kept as peripheral maps. This is different from what happens 

in practice, but the noisy measurement of the transformed map is retained (not smoothed 

by the interpolation process as in the second exercise). 

The algorithms and methods in Section 3.3 are used to attempt to recover the 

transformation that has been applied to the peripheral maps. The convergence properties 

of Direct search (DS) and iterative closest point (ICP) registration methods were 

evaluated with the initial estimate set to  0 0.0 0.0 0.0 0.0 0.0 0.0
T

r . Closest-point 

(CP) and vertical and normal shooting (VS and NS) methods were included and Zernike 

polynomials were applied to fit the static map in VS and NS and to compute surface 

normals as needed. The order of the Zernike polynomials used in the study is primarily 

chosen as 10, i.e. 66 terms. The assessment of registration outcomes was achieved using 

the two error measurements defined below. 
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Alignment error (μm): The root mean square (RMS) of distances (point-to-point or point-

to-plane) of all pairs defined as, 

 
1

( )aE f
m

 r  (5.2) 

where ( )f r  is the objective function in the DS and ICP and m  is number of all data pairs 

in the objective function. 

Registration error: The RMS error between the computed transformation and the exact 

one. 
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where er  denotes the exact transformation and  e i
r  is the thi  term. 

5.4 SIMULATED AND QUASI-CLINICAL EXERCISES 

All the methods and algorithms were coded in MATLAB, and run on a standard personal 

computer with Intel Core i7 processor and 12 GB RAM. The convergence of the different 

registration methods for simulated and quasi-clinical surface pairs is evaluated in this 

section. A set of transformations were considered and the results were found to be similar, 

therefore only one case is given here. The registration outcomes for simulated surface 

pairs with no noise are presented in Figure 5-3, Figure 5-4, and Table 5-1. The closest 

point method is implemented using the closest pairs of discrete points on the two surfaces. 
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Figure 5-3. Convergence of registration algorithms, simulated surface with no noise, aE  vs. iteration. 

It is clear that the ICP point-to-plane routines, implemented by equation (3.43) using the 

Levenberg-Marquardt (L-M) algorithm, give excellent results whereas the DS and ICP 

point-to-point routines converge with significant alignment and registration errors. This 

is due to inflexibility in the objective function that does not permit mutual sliding between 

the static and dynamic surfaces. 
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Figure 5-4. Convergence of registration algorithms, simulated surface with no noise, rE  vs. time. The 

closest-point variants of DS and ICP routines converge extremely rapidly and are shown separately in 

sub-figures on the lower left and right (respectively). 

Table 5-1 shows that ICP variants with vertical and normal shooting produce perfect 

solutions in the absence of noise. The ICP point-to-plane CP variant converges very 

rapidly and gives very good results, but not quite as good as the point-to-plane VS and 

NS routines. The other routines all show significant errors and will not be considered 

further. 
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A comparison of ICP point-to-plane CP, VS and NS routines based on minimisation using 

the Levenberg-Marquardt (L-M) algorithm and the linearisation/least-squares (LLS) 

approach is presented in Figure 5-5 and Table 5-2. In Figure 5-5, the CP convergence is 

illustrated in the first column, VS convergence in the second column and NS convergence 

in the third column. The solid curves show the results of simulated conic surfaces with 

added zero-mean Gaussian noise of standard deviation 2 μm (close to the collection error 

of the topographer). The dash-dot and dotted curves correspond to the second and third 

exercises described towards the end of section ‘Data sets and evaluation methods’. 

Interpolation was carried out using biharmonic spline interpolation [260] in the second 

exercise. Registration outcomes are detailed in Table 5-2 where it is seen that the known 

transformation is recovered to the same (identical) high degree of accuracy by VS and 

NS methods when using L-M and LLS routines for all noisy data sets. 

Table 5-1. Rigid-body transformation by various methods. 

Exact Direct Search method 
Iterative Corresponding Point algorithm 

Point-to-point Point-to-plane 

CP VS NS CP VS NS CP VS NS 
           
x -0.08 0.009 -0.022 0.007 0.009 0.008 0.007 -0.079 -0.08 -0.08 

y -0.25 0.008 -0.037 -0.019 0.006 0.005 0.003 -0.247 -0.25 -0.25 

z 0.08 0.001 0.292 0.261 0.0 0.0 0.0 0.081 0.08 0.08 

tx -2 -0.003 -0.376 -0.175 0.004 0.003 -0.007 -1.981 -2.0 -2.0 

ty 0.5 -0.002 0.121 -0.035 -0.005 -0.006 0.003 0.489 0.5 0.5 

tz -0.3 -0.011 -0.036 -0.028 -0.026 -0.028 -0.027 -0.293 -0.3 -0.3 

Er  0.857 0.701 0.794 0.859 0.858 0.854 9.21E-03 6.29E-08 6.29E-08 
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Figure 5-5. Convergence of ICP point-to-plane routines – noisy data, the registration errors are presented 

in log scale. In all figures, the data sets are distinguished by colours and L-M and LLS methods are 

distinguished by markers and line types. 

Table 5-2. ICP point-to-plane transformations – noisy data 

 Exact 

Closest Point Vertical Shooting Normal Shooting 

Simulated 
Data 

Second 
Exercise 

Third 
Exercise 

Simulated 
Data 

Second 
Exercise 

Third 
Exercise 

Simulated 
Data 

Second 
Exercise 

Third 
Exercise 

L
-M

 

x -0.08 -0.078 -0.066 0.006 -0.083 -0.080 -0.081 -0.082 -0.080 -0.081 

y -0.25 -0.247 -0.242 -0.183 -0.249 -0.250 -0.250 -0.250 -0.250 -0.250 

z 0.08 0.077 0.093 0.249 0.078 0.081 0.079 0.078 0.081 0.079 

tx -2 -1.977 -1.939 -1.392 -1.995 -2.003 -2.001 -1.998 -2.003 -2.001 

ty 0.5 0.495 0.368 -0.355 0.523 0.497 0.505 0.522 0.497 0.506 

tz -0.3 -0.293 -0.276 -0.157 -0.300 -0.300 -0.301 -0.301 -0.300 -0.301 

Er  1.029E-02 6.075E-02 4.401E-01 9.715E-03 1.683E-03 2.227E-03 8.987E-03 1.716E-03 2.625E-03 

L
L

S
 

Er  9.491E-03 3.548E-01 3.620E-01 9.715E-03 1.683E-03 2.227E-03 8.987E-03 1.716E-03 2.625E-03 

x -0.08 -0.079 -0.006 -0.007 -0.083 -0.080 -0.081 -0.082 -0.080 -0.081 

y -0.25 -0.247 -0.253 -0.159 -0.249 -0.250 -0.250 -0.250 -0.250 -0.250 

z 0.08 0.075 0.224 0.018 0.078 0.081 0.079 0.078 0.081 0.079 

tx -2 -1.979 -1.951 -1.255 -1.995 -2.003 -2.001 -1.998 -2.003 -2.001 

ty 0.5 0.504 -0.352 0.070 0.523 0.497 0.505 0.522 0.497 0.506 

tz -0.3 -0.294 -0.278 -0.127 -0.300 -0.300 -0.301 -0.301 -0.300 -0.301 

 

The L-M and LLS approaches generally converge successfully with the LLS routine 

converging fastest. The only exception is that of CP registration with clinical data, in 

which case neither method converges successfully. It is not possible to distinguish 
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between the VS and NS approaches, both of which produce excellent results. However, 

VS is simpler and faster than NS, so there seems to be no reason why NS would be 

preferred over VS. 

5.5 CLINICAL DATA 

In this section, clinical data in the form of measured central and peripheral maps described 

at the beginning of this chapter are used. 10 collections of one central map and four 

peripheral maps (superior, inferior, temporal, nasal) are selected from all available data, 

each collection leading to one combined map. It has already been demonstrated that points 

close to the periphery of both the central and peripheral maps are less accurate than points 

close to the centre. Thus, it would be expected that rejection of peripheral points on both 

maps should lead to better registration, but at the cost of reduced area of combined map. 

In the present investigation, central maps that vary in radius from 3.55 mm to 6 mm are 

considered. In each case of different central-map radius the peripheral-map radius is 

varied from 3.55 mm to the radius of the particular central map in question. The increment 

in radii for both central and peripheral maps is 0.245 mm. The ICP point-to-plane VS & 

LLS routine is used. It is shown in Figure 5-6 (upper-left) that, in general, the more 

peripheral measurements are rejected the smaller is the alignment error, but the increase 

in the size of combined map is lessened, as shown in the remaining sub-figures of Figure 

5-6. It is also can be concluded that when the radius under consideration is below a certain 

value (e.g. radius 4.78 mm) the alignment error changes very little, and is quite small 

(around 1 μm). 
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Figure 5-6. Registration outcomes of clinical maps for one collection. Alignment error of one pair of 

central and peripheral maps (upper left), combined area (upper right) and horizontal and vertical 

dimensions of the combined area (lower left and right) for different radii of central and peripheral maps. 

The alignment error and dimensions of the combined map are detailed in Table 5-3 to 

Table 5-5. In Table 5-3, the four alignment errors concerning four peripheral maps in each 

map collection is averaged and the table lists the mean and standard derivation of this 

averaged value for the 10 map collections. Only pairs with radii no larger than 5.02 mm 

are given since the alignment errors beyond this radius are considered to be large. One 

particular example is that with central and peripheral map radii of 4.53 mm (i.e. diameter 

9.06 mm) when the mean alignment error is found to be 1.40 μm with standard deviation 

0.92 μm. In that case the mean dimension of 10 combined maps is 11.45 mm (standard 

deviation 0.29 mm) horizontally and 11.33 mm (standard deviation 0.40 mm) vertically. 

This result is comparable with the results reported by Franklin et al. [109]. One combined 

map for this example is displayed in Figure 5-7 having an increase in area of 

approximately 65% compared to the original central map. 
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Table 5-3. Alignment error (μm), presented as mean ± 1 standard derivation. 

  Rc(mm) 

  5.02 4.78 4.53 4.29 4.04 3.8 3.55 

Rp(mm) 

5.02 2.71 ± 1.41       
4.78 2.97 ± 1.86 1.93 ± 1.20      
4.53 2.81 ± 1.61 1.77 ± 1.06 1.40 ± 0.92     
4.29 2.35 ± 1.34 1.61 ± 0.96 1.26 ± 0.84 1.06 ± 0.71    
4.04 2.09 ± 1.32 1.45 ± 0.86 1.14 ± 0.80 0.96 ± 0.67 0.81 ± 0.57   
3.80 1.78 ± 1.36 1.29 ± 0.88 0.99 ± 0.78 0.87 ± 0.71 0.73 ± 0.57 0.62 ± 0.53  

3.55 1.54 ± 1.32 1.19 ± 0.92 0.95 ± 0.81 0.83 ± 0.74 0.78 ± 0.68 0.70 ± 0.76 0.56 ± 0.61 

 

Table 5-4. Horizontal dimension (mm) of combined map, presented as mean ± 1 standard derivation. 

  Rc(mm) 

  5.02 4.78 4.53 4.29 4.04 3.8 3.55 

Rp(mm) 

5.02 12.31 ± 0.25       

4.78 11.91 ± 0.27 11.88 ± 0.28      

4.53 11.48 ± 0.25 11.43 ± 0.31 11.45 ± 0.29     

4.29 11.05 ± 0.23 11.03 ± 0.27 11.04 ± 0.30 11.08 ± 0.33    

4.04 10.65 ± 0.27 10.60 ± 0.27 10.59 ± 0.27 10.66 ± 0.33 10.70 ± 0.37   

3.80 10.18 ± 0.27 10.09 ± 0.29 10.08 ± 0.29 10.18 ± 0.30 10.28 ± 0.32 10.31 ± 0.35  

3.55 9.76 ± 0.15 9.56 ± 0.26 9.51 ± 0.30 9.57 ± 0.37 9.51 ± 0.46 9.68 ± 0.59 9.63 ± 0.81 

 

Table 5-5. Vertical dimension (mm) of combined map, presented as mean ± 1 standard derivation. 

  Rc(mm) 

  5.02 4.78 4.53 4.29 4.04 3.8 3.55 

Rp(mm) 

5.02 12.11 ± 0.31       

4.78 11.56 ± 0.28 11.77 ± 0.37      

4.53 11.00 ± 0.34 11.36 ± 0.36 11.33 ± 0.40     

4.29 10.70 ± 0.27 10.92 ± 0.35 10.97 ± 0.37 10.98 ± 0.36    

4.04 10.17 ± 0.30 10.46 ± 0.35 10.50 ± 0.34 10.46 ± 0.33 10.61 ± 0.36   

3.80 9.77 ± 0.27 9.99 ± 0.36 10.07 ± 0.36 10.03 ± 0.37 10.11 ± 0.35 10.25 ± 0.46  

3.55 9.85 ± 0.92 9.59 ± 0.29 9.61 ± 0.36 9.63 ± 0.41 9.69 ± 0.36 9.77 ± 0.61 9.96 ± 1.13 
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Figure 5-7. Area of the combined map. 

5.6 BENEFITS OF MULTI-VIEW REGISTRATION 

The aim of multi-view registration is to uniform the error distribution among all maps 

involved in the matching process, this includes errors between dynamic maps and the 

static map and those between pairs of dynamic maps. The 10 clinical map collections 

above, each including one central (static) map and four peripheral (dynamic) maps, were 

input to a multi-view iterative closest point (MICP) routine as descripted in Section 3.3.5. 

This time the MICP algorithm was employed to find the optimal transformation for all 

four dynamic maps at the same time. Only the central portion with 4.53 mm radius was 

kept for each topography map according to the results in pair-wise registration. 

For each collection of one central and four peripheral maps, three tests were done. In the 

first, no initial guesses were provided to the MICP algorithm as in the ICP registration 

and Levenberg-Marquardt (LM) algorithm was used to solve Equation (3.55). In the 

second test, the extrapolation technique as descripted in the end of Section 3.3.5 was 

added. The mean MICP alignment errors of all the 10 cases are plotted in Figure 5-8 (blue 

and red curves) against the iteration sequence and computing time. It can be seen that the 
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extrapolation method typically introduced more vibrations in the converging path of the 

MICP algorithm but unfortunately it seemed to always predict the next iteration point too 

far from the current searching path and brought few benefits. The converging points with 

or without extrapolation were also seen to be identical among all cases in this study.  

  

Figure 5-8. Convergence of MICP registration. The curves represent the mean MICP alignment error of 

all 10 cases in log scale. The error curves are plotted with respect to iteration number in the left figure, 

while with respect to computing time in the right figure. 

In the third test, the results of the pair-wise registration were adopted as initial guess for 

the MICP algorithm and no extrapolation was included considering outcomes of the first 

two tests. To evaluate the superiority of the MICP algorithm over the ICP algorithm. A 

new set of alignment errors for the outcomes of ICP registration were computed. In details, 

the peripheral maps were transformed using the transformation found in every ICP 

iteration and the errors were then computed based on Equation (3.54). It should be noted 

that these recalculated errors are different from the ones in Table 5-3 where each value is 

the average error for the four pair-wise registrations (dynamic-to-static), while the errors 

between the dynamic maps were not taken into account. The mean of the recalculated 

errors of all the 10 cases are also plotted in Figure 5-8 (in yellow), followed by the mean 

error of MICP registration (in purple) that used the transformation found in the last ICP 
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registration as its initial point. These mean values of registration errors are detailed in 

Table 5-6 with the standard derivations. 

Table 5-6. Overall alignment error (μm), dynamic-to-static error (μm) and dynamic-to-dynamic error 

(μm), presented as mean ± 1 standard derivation. 

 
ICP 

MICP 

 First test Second test Third test 

Overall 2.70 ± 1.43 2.17 ± 1.03 2.17 ± 1.03 1.96 ± 0.88 

Dynamic-to-static 1.40 ± 0.92 1.75 ± 0.96 1.76 ± 0.96 1.67 ± 0.93 

Dynamic-to-dynamic 2.52 ± 2.13 2.01 ± 1.33 2.01 ± 1.33 1.88 ± 1.13 

 

It is obvious from Figure 5-8 and Table 5-6 that, by simultaneously minimising both 

dynamic-to-static and dynamic-to-dynamic alignment errors, the MICP algorithm can 

improve the overall registration and this is particularly true when good initial guess is 

provided as in the third test where 27% decrease in mean overall registration error was 

observed. With no reasonable starting point, the MICP algorithm was seen in the first two 

tests to converge to a less improved point, moreover it took significantly longer. In Table 

5-6, the dynamic-to-static errors represent the equivalent errors that are detailed in Table 

5-3. It can be seen that to minimise the overall alignment error, the dynamic-to-static error 

is increased, this is because the pair-wise registration takes no consideration of relative 

alignment error among the dynamic maps, which usually leads to inconsistency among 

the dynamic maps and thus leave considerable residual dynamic-to-dynamic errors 

uncorrected. MICP algorithm instead tries to balance all error sources. On one hand, the 

accumulated dynamic-to-dynamic errors are reduced and on the other this inevitably 

increases the pair-wise registration error. This phenomenon is well reflected in Table 5-6 

and further detailed in Figure 5-9 where each component in the MICP error metric are 

plotted separated. In each sub-figure of Figure 5-9, alignment error for one particular 

dynamic map to the static map is presented as blue bold curve, while its alignment errors 
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to the rest three dynamic maps were plotted in normal curves. The first several iterations 

with markers are the alignment errors computed by the results of the ICP algorithm and 

the rest are the MICP iterations. It can be seen that, for each dynamic map, the alignment 

errors with other dynamic maps are always bigger than the error with the static map 

(central map) in the stage of ICP registration because the relative information among the 

dynamic maps are ignored. The alignment errors are then seen to move closer in the MICP 

registration stage, balancing the error distribution across all maps. 

 

Figure 5-9. Individual alignment error between each pair of dynamic-to-static or dynamic-to-dynamic 

map along the convergence of the MICP registration. The first part of each curve with markers presents 

the individual alignment errors computed based on the results of ICP registration. 

The results of MICP presented herein are all based on LM algorithm when solving 

minimisation (3.55). This is computationally more expensive compared to ICP algorithm 

where the closed-form solution for the minimisation is used. In the early stage of this 
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study of MICP, the approximated closed-form solution derived in Section 3.3.5 was 

attempted but unfortunately the results were less satisfying, largely due to the omission 

of higher order terms after linear approximation of sine and cosine functions. 

5.7 CONCLUDING REMARKS 

In this chapter, a repeatability study of Medmont topography is conducted showing 

obvious data unreliability to the periphery. Three sets of artificial data are then prepared 

for the test of various matching techniques given in Section 3.3. This leads to the favour 

of point-to-plane ICP algorithm using VS or NS mapping strategies, which produced 

consistently best results in all clinical tests. By matching the peripheral maps one by one 

to the central map, an area increase about 65% is achieved. Although the alignment errors 

through the favoured ICP algorithm are very small, it is then demonstrated that MICP 

algorithm can further refine the registration results of ICP algorithm by minimising 

alignment errors both between peripheral and central maps and peripheral maps 

themselves. Although the reduction in overall alignment errors contributed by MICP is 

not significant, the error distribution across all maps are indeed uniformed and this is 

advantageous to eliminate the inconsistence that may occur in pair-wise ICP registration. 

The drawback of MICP however is its computing costs. To solve an error matric that has 

been enlarged 16 times and without a closed-from solution, the MICP can take 

significantly longer than ICP especially when no reasonable initial guess is provided. The 

results presented in this chapter enables further discussion on topography matching in 

Chapter 7. 
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CHAPTER 6  

RESULTS OF NUMERICAL SIMULATION 

6.1 INTRODUCTION 

A major goal of numerical simulation of corneal refractive surgery is to predict the 

biomechanical reaction of the ocular tissue, especially the cornea, to the surgical 

procedure. The goodness of the numerical prediction can be assessed by evaluating the 

differences between the predicted and measured postoperative corneal topographies. In 

addition, with the geometric shapes of the anterior and posterior corneal surfaces known 

and their relative positions determined by the central corneal thickness (CCT), it is also 

possible to compute the corneal refractive power, which is commonly used in clinical 

practice. Therefore, the difference in refractive powers computed using predicted and 

measured postoperative topographies can also be a measurement of the goodness of the 

numerical simulation. 

This chapter reports the outcomes of numerical simulation as follows. First, an initial 

study on the model structure is conducted to evaluate the effect of different mesh density 

and the superiority of various methods for ablation adjustment. This initial study 

determines an optical model structure that is both reliable and computationally efficient 

and chooses a single ablation adjustment strategy for all patient-specific modelling. 

Second, the results of the parametric study on wound healing stiffness are presented. A 

comparison between the numerical modelling and mathematical simulation (where 

biomechanical effects of surgery are ignored) is then reported and followed by the 

outcomes of the simulation of SMILE procedure in comparison to LASIK. The results of 

tonometry simulation are presented as the last part. 
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6.2 STRUCTURAL STUDY 

In an initial study of the modelling structure, one set of clinical data is randomly chosen. 

As detailed in Table 6-1, a total of 6 model settings are included. The first three 

simulations use the same approach for ablation adjustment, that is, the anterior corneal 

nodes are re-arranged to account for the ablation boundary and a new layer is added for 

the ablation depth. The models in these simulations are only different in the number of 

layers and scleral rings (Figure 6-1 and Figure 6-2). Compared to the third simulation, the 

fourth only marks the location of the ablation (more precisely its posterior surface) 

without adding a visible layer, however the anterior corneal nodes are also re-arranged as 

simulations one to three (referred to Figure 3-23A). The fifth simulation then eliminates 

the node re-arrangement as happened in the first four simulations while still marks the 

necessary locations within the cornea to identify the ablation depth (referred to Figure 

3-23B). In the final simulation, neither the node re-arrangement nor the identification of 

the ablation depth is included. In this simulation, the ablation depth is not adjusted, but 

directly adopted from the clinical measurements. 

Table 6-1. Six model settings tested in an initial study. The epithelial and ablation layers are not 

accounted for the number of layers herein. 

 Simulations 

 1 2 3 4 5 6 

Number of corneal rings 25 25 25 25 25 25 

Number of all rings 70 50 50 50 50 50 

Number of layers 3 3 2 2 2 2 

Re-arranging corneal nodes Yes Yes Yes Yes No No 

Ablation layer Yes Yes Yes No No No 

Marking ablation No No No Yes Yes No 
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Figure 6-1. Models in simulation 1(left) and 2 (right), showing different numbers of scleral rings 

  

Figure 6-2. Cross-sectional views of models in simulation 2 with three layers (left) and simulation 3 with 

two layers (right) 

A static analysis of each model is performed using Abaqus, bringing the IOP to the 

measured value for this particular patient. This is regarded as an initial loading and the 

displacements of all nodes are monitored and the nodes in three particular locations 

(corneal apex, limbal node with maximal x coordinates and posterior scleral pole) are 

listed in Table 6-2. Using the results of this analysis, a stress-free configuration is carried 

out as described in Section 3.4.2. The displacements of the same nodes from the stressed 

A B 

A B 



- 144 - 

 

configuration to the achieved stress-free configuration are recorded and again shown in 

Table 6-2 (in italic). In addition, the tissue thickness at these locations are calculated. 

Table 6-2. Displacements and thickness values at three model nodes after an initial loading and stress-free 

configuration (italic values). The values in the table are all in μm. The thickness at the corneal apex, the 

limbus and the posterior pole of the sclera before any FE analysis are 571 μm, 861.4 μm, and 1033.7 μm, 

respectively. 

  Simulations 

  1 2 3 4 5 6 

Corneal 

centre 

Displacement 
242.5 

235.1 

242.2 

234.8 

242.3 

234.9 

242.3 

234.9 

245.0 

237.0 

245.0 

237.0 

Thickness 
541.1 

601.9 

541.1 

601.9 

541.1 

601.9 

541.1 

601.9 

541.2 

601.7 

541.2 

601.7 

        

Limbus 

Displacement 
149.4 

145.1 

149.2 

144.9 

149.2 

144.9 

149.2 

144.9 

156.8 

152.7 

156.8 

152.7 

Thickness 
840.8 

882.2 

840.7 

882.3 

840.7 

882.3 

840.7 

882.3 

840 

883 

840 

883 

        

Posterior 

pole 

Displacement 
151.9 

145.5 

152 

145.7 

152 

145.6 

152 

145.6 

152 

145.6 

152 

145.6 

Thickness 
1005.5 

1062 

1005.6 

1062 

1005.6 

1062 

1005.6 

1062 

1005.6 

1062 

1005.6 

1062 

 

It is evident from Table 6-2 that the different mesh settings of model layers and scleral 

rings almost have no effect on the simulation results as seen in the first three cases. In the 

fourth simulation, although the ablation layer is not visible, the locations corresponding 

to the nodes in the ablation layer in the third model are identified and contributed to the 

stress-free configuration. It is seen in Table 6-2 that this simplification does not change 

the results of the stress-free configuration. By comparing simulations 4 and 5, it can be 

seen that re-arranging corneal nodes does cause some effect but this is trivial. The 

difference in displacement caused by nodal arrangement is about 3 microns at the corneal 

apex and bigger at the limbal node, being around 8 microns. It should also be noted that 

the displacement of the polar node in the sclera shows no obvious difference among all 6 

simulations. After the initial loading (application of IOP), the thickness at the three 

locations decreased because of the compression introduced by inflation. The differences 

in thickness reduction among all 6 simulations are trivial. This is also true in the thickness 
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increase in developing the stress-free configuration where the release of IOP causes 

relaxation of the tissue and thus increases in tissue thickness. 

The simulations continue to remove the ablation depth in the stress-free configuration 

using either the adjusted ablation depth (obtained along with the stress-free configurations) 

or the original clinical data as in the sixth simulation. The models with the corneal 

thickness being modified and thinned after tissue removal are inflated by the IOP using 

static analysis in Abaqus and in all these simulations, the stiffness of the wound healing 

zone is set to be same as the stromal stiffness. The final inflated model in the first and 

fifth simulations are illustrated in Figure 6-3 and Figure 6-4 where the colour in the 

figures represent the amount of stress in the tissue. 
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Figure 6-3. Cross-sectional views of models used in simulations 1 and 5. Red circles in the figures mark 

the regions with maximal stress. 

It can be seen from Figure 6-3 that even if the model structures are different, the two 

inflated models share almost identical stress patterns. In both models, there are clear gaps 

at the flap edges and these are largest opposite the sites of the hinges. In Figure 6-4, it can 

be seen that the flap carries almost no stress except for the hinge zone. In simulation 1, 

the central corneal rings are not circular because the nodes are reconfigured to meet the 

ablation depth and the need to build a layer for the ablation depth. It should be noted that 

in both Figure 6-3 and Figure 6-4 noticeable stress concentration can be found, which is 
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located in the transition zone from the limbus to the cornea (Figure 6-3, marked by red 

circles) and the two sides of the flap hinge (Figure 6-4, marked by red circles). Although 

this may not change the corneal deformation behaviour, local mesh refinement may be 

helpful to eliminate the observed stress concentration. 

 

 

Figure 6-4. Top views of models used in simulations 1 and 5. The corneal flap bears significantly less 

stress compared to the rest of the cornea and the only obviously stressed part is the flap hinge. Red circles 

in the figures mark the regions with maximal stress. 

The anterior corneal surfaces of all 6 inflated models are extracted and compared to the 

clinical anterior corneal topography. The difference between the simulated and clinical 
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anterior corneal surfaces are calculated as root mean square error (RMSE) of z 

coordinates. To do this calculation, the clinical topography is fitted to Zernike 

polynomials of order 10, and the locations on the clinical topography that are 

corresponding to the same x and y coordinates of the simulated anterior surface are 

sampled using the Zernike expression, which would allow the actual calculation of the 

RMSE. Only nodes in the central 3.5 mm radius are included and the calculated RMSE 

are listed in Table 6-3.  

Table 6-3. Surface fit with the clinical measurements for the 6 simulations. The root mean square errors in 

this table are in μm. 

 Simulations 

 1 2 3 4 5 6 

RSME 5.89 5.89 5.90 5.93 5.72 8.33 

 

It can be seen from Table 6-3 that the final outcomes of the simulated postoperative 

anterior surfaces differ from the clinical measurements with similar amounts in the first 

4 simulations. This difference in topography is slightly smaller in the fifth simulation and 

increased significantly in the last simulation. The slight difference of RMSE in the fifth 

simulation relative to the first four cases could be caused by the different layout of the 

corneal nodes such that the ablation depth is sampled at different locations from the 4th 

order Zernike expression for the ablation depth. This means different sampling errors may 

occur because the Zernike expression itself is a rough approximation of the actual ablation 

depth that is applied in clinical practice and this approximation carries fitting errors. In 

this particular case, the RMSE is smaller in the fifth case but this may not be the same for 

another set of clinical data from a different patient. Nevertheless, the effect of the ablation 

adjustment is obvious when comparing the last simulation to the rest. In this simulation, 

the ablation adjustment is not implemented, and as a result a noticeable increase (46% in 

comparison with the fifth simulation) in RMSE is observed and this is believed to be 
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caused by applying an ablation depth pattern in a stressed fashion on a stress-free 

configuration. In Figure 6-5, the error distributions in surface fit for the 6 simulations are 

plotted in 3D. It can be seen that the distributions for the first five cases are almost 

identical, while obvious pattern change is seen in the last case. 

 

Figure 6-5. Distributions of errors in surface fit with the clinical measurements for the 6 simulations. Sub-

figures A to F are for simulations 1 to 6. 

The outcome of this initial structural study suggests that reducing the number of layers 

and element sizes of the sclera do not affect the output of the FE analysis and the two 

approaches of ablation adjustment lead to almost identical simulation results. The nodal 

re-arrangement of the central cornea, to account for the ablation boundary, does not 

guarantee a closer fit with the clinical postoperative outcomes because the available 

measurements of the ablation depth are limited such that the low order Zernike expression 

may have considerable discrepancy with the actual ablation that is applied in the patient 

eye. This Zernike expression may thus only predict a rough boundary of the actual 
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ablation profile. For this reason, re-arrangement of the central corneal nodes has not been 

conducted in all subsequent studies for reasons of simplicity.  

6.3 PARAMETRIC STUDY OF WOUND HEALING 

Using the outcome of the initial study, each of the 60 sets of patient data is used to create 

a patient-specific numerical surgery model. This step includes modification of an 

idealised model to fit the patient topography data, creation of a stress-free configuration 

based on the patient IOP measurement, reduction of corneal thickness by an adjusted 

ablation depth and inflation of the resulting model after defining the flap and the wound 

healing zone. The parametric study on wound healing aims to evaluate effect of the wound 

healing stiffness on the simulation outcome in terms of fitting error between the 

numerically predicted and clinically measured anterior corneal surfaces. In this 

parametric study, the varying stiffness of the wound healing layer is controlled by the 

value of parameter 1  of the stromal material. In details, the value of parameter 1  of the 

wound healing layer is set proportional to that of the stroma, the ratio of 1  between the 

wound healing layer and the stromal layer is called stiffness ratio because it acts as a 

scaling factor of the tangential modulus of the material. In each case, the surface fit is 

quantified by the RMSE as descripted earlier in the initial study, but this time five RMSEs 

are considered for five values of radius of the central area over which the quality of 

topography match is assessed. This area varies in diameter between 3 and 7 mm. The 

mean errors are plotted in Figure 6-6 and detailed in Table 6-4 with standard derivation. 
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Figure 6-6. Average root mean square errors between 60 numerically predicted and clinically 

postoperative anterior corneal surfaces, with error bars representing ± 1 standard derivation. The errors 

are plotted against the stiffness ratio of the wound healing with the value 1.0 meaning the same stiffness 

as the stroma outside the wound healing area. 

Table 6-4. Average root mean square errors between 60 numerically predicted and clinically 

postoperative anterior corneal surfaces, presented as mean ± 1 standard derivation. The unit of the values 

is μm. 

Comparison 

diameter 

Stiffness ratio 

0.5 1 2.5 4.5 7.5 10.5 

3 mm 1.50 ± 0.59 1.54 ± 0.59 1.63 ± 0.60 1.67 ± 0.60 1.64 ± 0.58 1.58 ± 0.56 

4 mm 2.20 ± 0.80 2.15 ± 0.78 2.19 ± 0.78 2.22 ± 0.77 2.19 ± 0.74 2.13 ± 0.71 

5 mm 3.38 ± 1.32 3.15 ± 1.19 2.96 ± 1.07 2.92 ± 1.02 2.87 ± 0.98 2.83 ± 0.97 

6 mm 5.33 ± 2.14 4.87 ± 1.96 4.31 ± 1.72 4.05 ± 1.60 3.93 ± 1.55 3.88 ± 1.54 

7 mm 7.78 ± 3.04 7.06 ± 2.84 6.03 ± 2.59 5.56 ± 2.47 5.35 ± 2.39 5.31 ± 2.36 

 

Figure 6-6 shows that the mean errors increase with radius and they are less than 2 

microns in the central 3mm diameter area. On the other hand, the fits in the central 3mm 

and 4mm do not seem to change much with different levels of wound healing stiffness, 

Table 6-4. The errors computed in areas with larger diameters (5mm, 6mm and 7mm) 

show a clear trend that the fit between predicted and measured surfaces becomes better 

with higher stiffness in wound healing zone. The decrease in fitting errors, however, 

changes very little when the stiffness is larger than 4.5. In Figure 6-7, the typical error 

distribution over the corneal surface is plotted in 3D for one set of clinical data. In the 
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figure, positive values mean the clinically measured topography is above the predicted 

topography and vice versa. When the wound healing stiffness is higher, it is expected to 

contribute more resistance against the intraocular pressure and thus the cornea becomes 

less inflated, therefore flatter. This, as a result, brings the predicted surface closer to the 

clinical surface. Again it is shown in Figure 6-7 that there is a trivial difference in error 

distribution when the wound stiffness ratio goes beyond 4.5. For these reasons, the 

optimal wound healing stiffness in the current modelling setting is chosen as 4.5 times 

the stiffness in the rest of the stroma. 

 

Figure 6-7. A typical example of distribution of error in surface fit between the predicted and measured 

postoperative anterior corneal surfaces. Sub-figures A to F are for stiffness ratios from 0.5 to 10.5 as 

listed in Table 6-4. 

It should be noted the RMSEs vary largely among the 60 cases as seen in Figure 6-6 and 

detailed in Table 6-4, which raises high levels of uncertainty in selecting the optimal 

wound healing stiffness ratio. In Figure 6-8, individual RMSEs (considering 7mm 

diameter) for all the 60 numerical cases are plotted against wound healing stiffness ratio. 

It can be seen that, although vary notably, the RMSE for each case shares similar trend 

A B C 

D E F 

μm 
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and changes very little beyond ratio 4.5. The choice of optimal wound healing stiffness 

ratio of 4.5 is thus deemed reasonable because of the uniform trend of RMSEs in 

individual cases. The large range of RMSE among cases may have been caused by other 

error sources such as topography and ablation fitting errors, this will be further discussed 

in Chapter 7 and future work with more accurate clinical data may be necessary. 

 

Figure 6-8. Individual root mean square errors between 60 numerically predicted and clinically 

postoperative anterior corneal surfaces, considering the central 7mm diameter. 

6.4 EFFECT OF CONSIDERING SURGERY-RELATED STIFFNESS CHANGES 

From the parametric study in the last section, it is shown that numerical simulations that 

consider the surgery-related stiffness changes in the cornea can produce postoperative 

surgical results that are close to the clinical measurements. In this section, the previous 

simulation results, based on a wound healing stiffness ratio of 4.5, are compared to the 

simple mathematical prediction of the surgery where the biomechanical changes in cornea 

are ignored. This simpler simulation therefore predicts the postoperative corneal 

topographies by subtracting ablation depth profile directly from the anterior corneal 

surface. The same Zernike fitting of the ablation depth is used here to enable direct 

comparison of results. The fit between the predicted and measured surfaces again are 

computed in 5 diameters as shown Figure 6-9, which shows the distributions of RMSE of 
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all 60 numerical simulation cases and corresponding mathematical simulations. For each 

boxplot in Figure 6-9, the red line in the box marks the median of the 60 errors, the edges 

of the box are the 25th and 75th percentiles and the whiskers extend another 1.5 times the 

length from the percentiles to the median. It can be seen that the errors are almost 

normally distributed and only one outlier is identified for all these distributions. The fits 

with clinical measurement using numerical simulation are seen superior in all comparison 

diameters. In addition to the boxplots, the average errors and the standard derivations are 

given in Table 6-5.  

 

Figure 6-9. Box plot of the RMSE for both numerical and mathematical simulations, showing the RMSE 

distribution among all patient-specific cases. 

Table 6-5. Average root mean square errors for both numerical and mathematical simulations, presented 

as mean ± 1 standard derivation. All values are in μm. 

Simulations 
Comparison diameter 

3 mm 4 mm 5 mm 6 mm 7 mm 

Numerical 1.67 ± 0.60 2.22 ± 0.77 2.92 ± 1.02 4.05 ± 1.60 5.56 ± 2.47 

Mathematical 2.77 ± 0.90 3.83 ± 1.37 4.53 ± 1.75 5.18 ± 2.09 6.31 ± 2.76 

 

It can be seen from Table 6-5 that both the mean errors and standard derivations for the 

numerical simulation cases are smaller than the mathematical results. To evaluate the 

overall simulation outcome compared to the clinical ones, the refractive powers are 
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calculated using clinical topographies both preoperatively and postoperatively, as well as 

using the numerically and mathematically predicted topographies postoperatively. 

The calculation considers both anterior and posterior corneal topographies and is done 

using ray tracing. For each case, a bundle of parallel light rays with a diameter of 7mm is 

traced through cornea. The light refraction is modelled on both corneal surfaces and the 

amount of refraction is computed by Snell's law. When the light rays reach the cornea, 

they are convergently refracted by its anterior surface because the refraction index 

increases from 1 in the air to 1.376 in the cornea. A slight divergent refraction is then 

caused by the small reduction in refraction index in the aqueous humour, being 1.336. 

The surface normal needed for the calculation of refraction angles are computed using 

Zernike expressions (order 10) of the surfaces and the average focal length f  of all rays 

referenced to the anterior corneal surface [289] is converted to the equivalent refractive 

power by /n f  where n is the refraction index of the aqueous humour and f  is in unit of 

metre. The converted refractive powers are recorded in Table 6-6 and the linear regression 

plots are shown in Figure 6-10 comparing the correlation of predicted postoperative 

refractive powers both numerically and mathematically with the clinical measurements.  

Table 6-6. Average refractive powers computed using clinical and predicted corneal topographies, 

presented in mean ± 1 standard derivation. All values are in dioptre (D). 

Preoperative Postoperative 

Clinical Clinical Numerical Mathematical 

42.49 ± 1.35 38.15 ± 1.79 38.14 ± 1.78 37.30 ± 1.90 

 

From Table 6-6, it can be seen that all means of postoperative power are smaller than the 

mean power calculated using preoperative clinical data. The actual clinically achieved 

postoperative powers are higher than both numerical and mathematical results but the 

numerical simulations are observed to produce closer results than mathematical 
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simulations. It should be noted however that the calculated refractive power values 

through mathematical simulations would have been the target of the actual surgery plan. 

This expected refractive power was not achieved clinically because the biomechanical 

reaction of the cornea following surgery led to a modified corneal shape such that a 

myopic shift occurred as reflected by the bigger refractive power that was actually 

achieved. The numerical simulation has taken the biomechanical effect into account and 

managed to predict closely the clinical outcomes. This closer outcome of numerical 

simulation is detailed in Figure 6-10 where linear regressions between the predicted and 

measured postoperative refractive powers are sought. The linear correlations confirmed 

that numerical simulations produced better fit of postoperative power than corresponding 

mathematical simulations. 

 

Figure 6-10. Linear correlation between the refractive powers predicted by numerical and mathematical 

simulations, and the clinical refractive powers 
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Having calculated preoperative and postoperative refractive powers, it is now worth 

evaluating the achieved refractive correction, which is the surgically induced refractive 

power change and calculated by subtracting the preoperative refractive power from the 

postoperative refractive power. The results are detailed in Table 6-7 and the Bland-

Altman plots are presented in Figure 6-11 to show the agreement between predicted and 

measured refractive corrections. 

Table 6-7. Average refractive corrections obtained clinically and predicted numerically and 

mathematically. Also listed are the differences between predicted corrections and the clinically achieved 

corrections. 

 Clinical Numerical Mathematical 

Refractive correction -4.34 ± 1.05 -4.36 ± 1.01 -5.20 ± 1.25 

Difference with clinical - -0.02 ± 0.30 -0.86 ± 0.42 

 

 

Figure 6-11. Bland-Altman plots for predicted and measured refractive correction. The continuous lines 

mark the means of differences, while the dashed lines present the 95% confidence limits. 

As expected, the achieved clinical refractive correction is less than the attempted 

correction as represented by the mathematical simulation (Table 6-7). The results also tell 
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that for the purpose of predicting the surgical outcomes, numerical simulation appears to 

be superior. The refractive correction obtained in the numerical simulations agreed with 

the clinical outcomes to a higher level as shown Figure 6-11. This is presented by the 

closer mean difference to zero and the narrower 95% confidence limits. 

6.5 LASIK VS. SMILE 

In this part of the study, the 60 sets of LASIK FE models have been modified to simulate 

the SMILE procedure in order to investigate the differences in outcome between the two 

procedures. As stated in Chapter 3, SMILE models differ from the LASIK models in only 

the definitions of flap (LASIK) and cap (SMILE). The SMILE cap is assumed to have the 

same size as the LASIK flap to enable direct comparison of results. In Figure 6-12 and 

Figure 6-13, the inflated LASIK and SMILE models built for a typical patient are 

presented. In the figures, the colour contours represent stress in the tissue caused by the 

inflation. It is shown from Figure 6-12 that the SMILE cap contributes more in resisting 

the IOP, while the corneal flap in the LASIK model makes almost no contribution (bluer 

colour). Compared to the gap between the flap and the rest of cornea at the opposite side 

to the hinge, the opening in the SMILE cut is considerably smaller. In Figure 6-13, the 

flap and cap are removed to display the stress distribution of underlying tissue. The area 

beneath the flap is seen to be more stressed than the area beneath the cap. This is expected 

because corneal flap is not functional in this inflation process. 
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Figure 6-12. Cross section of inflated LASIK (top figure) and SMILE (bottom figure) models using one 

typical set of patient data. The contour colours represent the stress in the tissue. The epithelium layers are 

removed in both models. 
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Figure 6-13. Top view of inflated LASIK (top figure) and SMILE (bottom figure) models using one 

typical set of patient data. The contour colours represent the stress in the tissue. The epithelium and flap 

layers are removed in both models. 

Without the contribution of flap in bearing the internal pressure, it is expected the cornea 

(especially the central cornea) in LASIK would undergo larger displacement under the 

same IOP. This is supported by Figure 6-14 where it is shown that corneal apex underwent 

more displacement in the LASIK models compared to the SMILE models, while the 

limbal displacement, which should not be affected much by corneal action, show no 
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obvious difference. Combined, these results should lead to more curved corneal shapes 

in the LASIK models and hence less correction for myopia. 

 

Figure 6-14. Linear correlation of corneal apical rise and limbal rise in LASIK and SMILE models 

In Figure 6-14, the limbal point is chosen as the right node from the z-x cross section 

(limbal nodes with maximal x coordinates), and it is necessary to examine the symmetric 

property of the cornea behaviour because the cuts for flap and cap are asymmetric, leading 

possibly to some asymmetric corneal behaviour under IOP. The results in Figure 6-15 

and Figure 6-16 show that this effect is negligible with almost perfect agreement between 

the right and left, superior and inferior limbal rises. In LASIK, the hinged flap, although 

carries little stress at the hinge, may have contributed too little to affect overall symmetric 

corneal behaviour. On the other hand, the SMILE cap is only separated from the rest of 

model by a small incision, and this also seems to have a negligible effect in changing the 

symmetric corneal behaviour. 
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Figure 6-15. Linear correlation of limbal rises in LASIK models between the right and left, superior and 

inferior limbal nodes 

 

Figure 6-16. Linear correlation of limbal rises in SMILE models between the right and left, superior and 

inferior limbal nodes 
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Having been acknowledged that the more curved corneal shapes may be obtained in 

LASIK models (thus greater refractive powers), it is worth validating this by mean of 

refractive powers. Following the same ray tracing approach as stated in Section 6.4, the 

corneal refractive powers of the SMILE models are computed and compared to that of 

the LASIK models which have been given earlier. In addition, the refractive powers in 

models before application of IOP are also computed. The average values are given in 

Table 6-8. It can be seen from Table 6-8 that corneal refractive powers after application 

of IOP are increased by small amounts in both LASIK and SMILE models. The values 

for LASIK and SMILE are very close, however they are seen to be slightly larger in 

SMILE models, which is out of expectation because the corneal shapes in SMILE models 

under IOP are expected to be less curved thus carry less refractive powers. This 

phenomenon is discussed later in Chapter 7.  

Table 6-8. Average corneal refractive powers computed using corneal topographies before and after 

application of IOP in LASIK and SMILE models 

Without IOP 
Under IOP 

LASIK SMILE 

36.18 ± 2.20 36.84 ± 1.85 36.94 ± 1.84 

 

It should be noted that, even though it seems like the SMILE offers slightly less myopic 

correction (with higher residual refractive power), the greater corneal movement 

outwards in the LASIK models should be considered. As such, there will be an additional 

myopic shift in LASIK models compared to the SMILE correspondence, which lessens 

the myopic correction of LASIK. Combined, the myopic correction of the LASIK should 

be less than that of the SMILE. 
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6.6 TONOMETRY 

The LASIK and SMILE models established in this thesis have enabled numerical study 

of tonometry to evaluate the influence of surgical applications on the IOP estimates using 

the Goldmann applanation tonometer (GAT) and Corvis ST (CVS). The IOP estimates 

IOPGAT for GAT and IOPCVS for CVS using INTACT (with preoperative corneal 

thickness), LASIK and SMILE models are obtained following the methods described in 

Section 3.4.8 and listed in Table 6-9.  

Table 6-9. Average IOP estimates by GAT and CVS using INTACT, LASIK and SMILE models, 

presented as mean ± 1 standard derivation. Also listed are the ratio between the estimated IOP and the 

true IOP. IOP values are in mmHg. 

True IOP 
Estimated by GAT  Estimated by CVS 

INTACT LASIK SMILE  INTACT LASIK SMILE 

16.91 ± 1.99 17.25 ± 2.14 13.12 ± 1.94 13.27 ± 1.99  21.59 ± 3.60 16.59 ± 3.72 16.18 ± 3.68 

 1.02 ± 0.05 0.78 ± 0.07 0.78 ± 0.07  1.27 ± 0.13 0.97 ± 0.15 0.95 ± 0.15 

 

Very close IOP estimates compared to the true values are obtained in INTACT models 

by GAT; it can be seen from Table 6-9 that there is only 2% overestimation by average. 

Using the same INTACT models, the CVS leads to a mean overestimation of 27%. This 

notably larger overestimation is discussed in Chapter 7. From Table 6-9, it is evident that 

surgical applications have significant effect on tonometry. Significant reduction in IOP 

estimates are found from INTACT to LASIK and SMILE models which takes place in 

both GAT and CVS studies and is visualised in Figure 6-17 to Figure 6-18. In GAT, the 

reductions rates are 23.9% and 23.0% for LASIK and SMILE, and these become 23.2% 

and 25.1% in CVS. All these reduction rates are very similar. 
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Figure 6-17. Linear correlation of true IOP and estimated IOPGAT 

 

Figure 6-18. Linear correlation of true IOP and estimated IOPCVS 
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Being indirect method to measure IOP, GAT and CVS are reported to be influenced by 

the corneal thickness. The linear relations between the central corneal thickness (CCT) 

and ratio between estimated IOP and true IOP are sought in Figure 6-19 and Figure 6-20 

for GAT and CVS, respectively. In the figures, the CCT values for LASIK and SMILE 

models are obtained by subtracting the central ablation depth from the CCT values for 

INTACT models. It is seen that CCT is highly related with the ratios; thicker CCT values 

tend to result in overestimation of true IOP and vice versa. With the CCT being reduced 

in LASIK and SMILE models, the IOP values estimated by GAT and CVS are both 

reduced significantly. 

It should be noted, although the LASIK and SMILE models are different in corneal 

integrity, the IOP estimates by both GAT and CVS differ little between LASIK and 

SMILE as seen from Figure 6-17 to Figure 6-20. This suggests that the corneal resistance 

against tonometric pressure remains similar after LASIK and SMILE procedures. 

 

Figure 6-19. Linear correlation of CCT and ratio between estimated IOPGAT and true IOP 
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Figure 6-20. Linear correlation of CCT and ratio between estimated IOPCVS and true IOP 

6.7 CONCLUDING REMARKS 

In this chapter, an initial study considering the modelling strategies are included, leading 

to a reasonable mesh approach and ablation adjustment method. Using the results of this 

initial study, 60 sets of patient data are used to conduct a parametric study on wound 

healing, the outcomes of which show that the wound healing zone needed to be at least 

4.5 times as stiff as the rest of the stroma to produce a reasonable fit with the measured 

postoperative outcomes. With this optimal stiffness ratio, the models can closely predict 

the clinical surgical outcomes and show significant advantages over the simple 

mathematical simulation of refractive surgery where the biomechanical effect of the 

surgery is ignored. This reliability of numerical simulation has supported later a 

comparative study between the LASIK and SMILE procedures, revealing that greater 

impact is introduced by LASIK procedure. This greater impact is then shown to have little 
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effect on the IOP estimates by GAT and CVS. The outcomes and results of this chapter 

will be discussed in Chapter 7. 
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CHAPTER 7  

OVERALL DISCUSSION AND CONCLUSION 

7.1 INTRODUCTION 

The results presented in the last three chapters concerning topography fitting, topography 

matching and numerical simulation of refractive surgery are discussed in this chapter. 

Overall conclusions are then given, followed by recommendations for future work. 

7.2 OVERALL DISCUSSION 

7.2.1 Topography fitting 

The topography fitting study is concerned with the fitting of corneal topography to 

polynomials, it assessed various polynomials that are either well-known in the ocular 

community or extensively studied in the image processing field. 

The reliability and capability of these polynomials in representing surfaces are mainly 

determined by the forms of the polynomial terms and the number of terms associated with 

the polynomial order. The core step of this representation is the estimation of coefficients 

for individual polynomial terms. In this thesis, two major approaches are considered, 

namely Orthogonal Projection (OP) and Least squares (LS) methods. A comparison 

between these methods suggested that the LS method, which has been used as the standard 

routine in ocular community, is more accurate than the main variants of the OP method. 

There are three variants of OP, namely zero order approximation (ZOA), exact moment 

(EM) and interpolation extension of EM (INT). The ZOA variant discretises the 

orthogonal polynomials to cope with the discrete points, while the EM variant treats the 

discrete points input as a piecewise-constant function which in theory should result in 
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better estimation of the coefficients. However, the superiority of EM over ZOA is not 

significant, and it is the INT variant that improves, to a large extent, the accuracy of the 

computed coefficients because it approximates the surface as piecewise-linear function. 

A common problem for OP variants is that they all need a sufficient number of data points 

in the orthogonal domain. In addition, the EM and INT variants need to evaluate a large 

number of double integrals on triangles or squares, making them computationally 

expensive especially for the INT variant (three times the amount of integrals compared to 

EM). It is because of this inefficiency of the OP method that only LS method is solely 

employed to fit clinical data in this study. 

The reconstruction results based on clinical topographies indicate that the conventionally 

used Zernike polynomials (ZPs) may not be the best option for fitting of optical surfaces 

such as the one considered in this paper – corneal elevation map. In fact, the set of ZPs 

appear to be among the worst fitting options if the reconstruction error is considered. 

The square polynomials such as Legendre polynomials (LPs) and Gegenbauer 

polynomials (GPs) with various scaling factors, although are only kept within a circular 

portion inside the complete square domain, match the fitting performance of ZPs at all 

orders. This can be explained by looking at the explicit expressions in Table 7-1 where 

ZPs have been expressed in a Cartesian coordinates system. It is easy to derive that the 

optimisation problems expressed by Equation (3.22) using either ZPs, LPs or GPs reduce 

to the same optimisation problem involving ,( , ) n m

d d n m d d dZ x y a x y    because all of 

them consist of same general polynomial terms. It is natural to understand that the radial 

versions of LPs and GPs match OFMPs for the same reason that the optimisation 

problems based on these polynomials reduce to a single optimisation problem. 
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Table 7-1. Explicit expressions of ZPs in Cartesian system, LPs and GPs. 

ZPs (Cartesian[290]) LPs GPs General polynomials 

1 1 1 1 

x  x  2 x  x  

y  y  2 y  y  

2xy  2(3 1) / 2x   22 ( 1)x     2x  
2 22 2 1x y   xy  24 xy  xy  

2 2x y   2(3 1) / 2y   22 ( 1)y     2y  

 

The OFMPs, although have been used for a considerable period in pattern recognition 

and character identification, have not been adopted in the ocular community for 

representation of corneal topography. The studies in this thesis have shown that the 

OFMPs always fit the target surfaces best at all orders considered. This is believed to be 

because the radial polynomial of OFMPs is independent of the angular frequency such 

that for a certain order, the OFMPs have more polynomial terms and thus offer greater 

fitting power. Following OFMPs in performance is the set of PZPs, which also lead to 

significantly smaller reconstruction errors compared to ZPs, this is believed mainly 

because PZPs also have more polynomial terms than ZPs for the same order as listed in 

Table 3-2. The GHPs have a scaling factor and can change from local features to global 

features, and are orthogonal on the infinite plane due to the exponential term in their 

expressions. The results show that the GHPs also tend to match ZPs at high order when 

the global features of GHPs are used. 

Further to the above comparisons, it is also revealed that the anterior surfaces of normal 

corneas can be fitted relatively easily, followed by anterior surfaces of keratoconic 

corneas, and posterior surfaces of both normal and keratoconic corneas. The anterior 

surfaces are commonly believed to be more accurately measured but keratoconic corneas 

typically have more complex shapes, which increase the difficulties in polynomial fitting. 

The posterior surfaces for both normal and keratoconic corneas are normally noisy 
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because of limitations of the measurement instruments. Higher order polynomials are 

needed to fit these noisy surfaces and the fitting outcomes may in turn be better than the 

less noisy anterior surfaces because those higher order complex polynomials features may 

be only helpful for the noisy and thus more complex surfaces. 

Considering that the main purpose of polynomial fitting is estimating locations on the 

corneal surface that are not measured, a series of prediction tests have been included in 

this study. The results indicate that even though the reconstruction outcomes are 

continuously improved when increasing the polynomial order, the prediction of nearby 

locations by the reconstructed surface may be erroneous. For most polynomials except 

OFMPs, order 10 is shown to be a safe threshold for prediction, at which both the 

reconstruction and prediction errors are small enough (around 0.3μm). The prediction 

behaviour of OFMPs is very sensitive to the data resolution in reconstruction, and this 

may be due to the fact that for the same order, OFMPs have more complex terms. But 

fortunately, if the data resolution is not too low, the prediction by OFMPs is also 

acceptable. The studies show that the minimal prediction errors of OFMPs for resolution 

0.2 mm, although are larger than that of other polynomials, are still less than 0.5μm. It 

should also be noted that the prediction test in this study can only be implemented with a 

spacing distance starting at 0.2mm, which is double that of the original measurements. 

The prediction error based on the original spacing of 0.1mm, although is not able to be 

assessed in this thesis, is expected to be smaller. 

The prediction practice above can be cast as an interpolation problem. One can easily 

relate this to various choices of interpolation algorithm such as linear, spline interpolation 

methods and so forth. Considering this, the prediction exercises in Chapter 4 are repeated 

using several standard interpolation methods and the results are listed in Table 7-2 to 



- 173 - 

 

Table 7-5, where the best achieved prediction errors for each map have been extracted 

from Chapter 4 for comparison. Four standard interpolation methods are included, namely 

linear interpolation, natural neighbour interpolation, cubic spline and biharmonic spline 

interpolation. It can be seen that the biharmonic spline interpolation method resulted in 

the best prediction outcomes among the four methods but the prediction errors of 

interpolation methods are all bigger than the polynomial fitting approach for all kinds of 

maps with all resolutions. The prediction by interpolation becomes significantly worse 

with increase in the spacing (especially for posterior surfaces) while remains similar by 

polynomial fitting. There is a clear superiority of performance by interpolation methods 

in anterior normal corneal topography, followed by anterior keratoconic, posterior normal 

and posterior keratoconic corneal topography, respectively. 

Table 7-2. Prediction errors by polynomial fitting and various standard interpolation methods for anterior 

normal corneal topography. The errors are presented as mean ± 1 standard derivation and in μm. 

Spacing 
Polynomial 

fitting 

Interpolation 

Linear 
Natural 

neighbour 
Cubic spline 

Biharmonic 

spline 

0.2 0.295 ± 0.006 9.04 ± 0.494 3.75 ± 0.185 2.368 ± 0.098 0.367 ± 0.007 

0.3 0.302 ± 0.009 3.167 ± 0.16 3.362 ± 0.168 5.233 ± 0.233 0.397 ± 0.023 

0.4 0.317 ± 0.015 6.703 ± 0.352 6.907 ± 0.358 9.852 ± 0.412 0.483 ± 0.057 

 

Table 7-3. Prediction errors by polynomial fitting and various standard interpolation methods for anterior 

keratoconic corneal topography. The errors are presented as mean ± 1 standard derivation and in μm. 

Spacing 
Polynomial 

fitting 

Interpolation 

Linear 
Natural 

neighbour 
Cubic spline 

Biharmonic 

spline 

0.2 0.3 ± 0.012 9.173 ± 0.701 3.792 ± 0.239 2.424 ± 0.145 0.377 ± 0.026 

0.3 0.312 ± 0.023 3.253 ± 0.209 3.453 ± 0.217 5.088 ± 0.405 0.432 ± 0.076 

0.4 0.339 ± 0.051 6.946 ± 0.506 7.148 ± 0.509 9.934 ± 0.647 0.6 ± 0.2 
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Table 7-4. Prediction errors by polynomial fitting and various standard interpolation methods for 

posterior normal corneal topography. The errors are presented as mean ± 1 standard derivation and in 

μm. 

Spacing 
Polynomial 

fitting 

Interpolation 

Linear 
Natural 

neighbour 
Cubic spline 

Biharmonic 

spline 

0.2 0.293 ± 0.003 12.079 ± 1.307 4.916 ± 0.374 3.003 ± 0.162 0.378 ± 0.013 

0.3 0.299 ± 0.005 4.188 ± 0.314 4.443 ± 0.325 6.547 ± 0.398 0.434 ± 0.043 

0.4 0.31 ± 0.007 8.804 ± 0.74 9.075 ± 0.745 12.514 ± 0.683 0.651 ± 0.148 

 

Table 7-5. Prediction errors by polynomial fitting and various standard interpolation methods for 

posterior keratoconic corneal topography. The errors are presented as mean ± 1 standard derivation and 

in μm. 

Spacing 
Polynomial 

fitting 

Interpolation 

Linear 
Natural 

neighbour 
Cubic spline 

Biharmonic 

spline 

0.2 0.294 ± 0.003 12.367 ± 1.794 5.047 ± 0.482 3.102 ± 0.21 0.412 ± 0.053 

0.3 0.299 ± 0.005 4.323 ± 0.449 4.591 ± 0.462 6.503 ± 0.547 0.556 ± 0.175 

0.4 0.312 ± 0.008 9.19 ± 1.074 9.463 ± 1.077 12.721 ± 0.941 0.938 ± 0.39 

 

In Figure 7-1, the number of maps that were best predicted by various sets of polynomials 

are presented by histogram plots. The polynomial orders for all polynomial sets at which 

the best prediction occurred are also illustrated. It can be seen that the ZPs performed the 

best in prediction, followed by GHPs and PZPs, it is not surprising that OFMPs never 

produced best prediction for any maps. Because of the fact that the GHPs matched ZPs at 

high order, it is reasonable to combine their contributions in prediction. In fact, among all 

maps that were best predicted by GHPs, the prediction errors by ZPs were only 

78.02e m  larger than that of the GHPs on average with a standard derivation of 

61.52e m . 
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Figure 7-1. The set of polynomials that achieves best prediction and the corresponding polynomial order 

for all topography maps 

The comparison here has consolidated the superiority of orthogonal polynomials in 

prediction of corneal topography over various standard interpolation algorithms. Further, 

it is also seen in Figure 7-1 that the majority of the maps were best predicted by order 10. 

This order has been shown to be an important order, beyond which the reconstruction 

errors (as presented in Chapter 4) tend to improve relatively little and the prediction errors 

gradually increase. This particular behaviour, which exists in all polynomials is believed 

to be related to the map radius used in the reconstruction. The maps used so far in both 

reconstruction and prediction studies all had radii 5 mm. Figure 7-2 shows the 

reconstruction errors of maps with smaller coverage, ZPs are used in this particular 

example. The maps used herein come from the same original Pentacam data but smaller 

central portions are kept for reconstruction. Also, an additional group of maps with a 

larger spacing (0.2 mm) is extracted. In Figure 7-2, central portions with radii from 3.0 

mm to 5.0 mm are used and distinguished by different colours. In addition the two 
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spacings are discriminated by line types. As shown in Figure 7-2, the order, at which the 

reconstruction becomes stable tends to be smaller for smaller maps. If this order is called 

the stable order, it is shown that the stable order decreased to 6 when the radius of the 

map was 3.0 mm. On the other hand, even though larger spacing results in fewer data 

points in the reconstruction and leads to slightly smaller reconstruction error, this seems 

not to change the stable order, which agrees well with the results shown in Figure 4-11 

where spacings 0.3 mm and 0.4 mm were additionally included and were not seen to 

change the corresponding stable orders. 

The reduction of stable order shown in Figure 7-2 will potentially cause the inflection of 

prediction error to take place earlier. This is validated in Figure 7-3, in addition to the 

reconstruction test using maps with resolution 0.2 mm, the prediction is also made 

following the same approach in Chapter 4. Figure 7-3 shows the results for OFMPs 

because the inflection of prediction is most obvious using this set of polynomials. The 

solid curves now present the reconstruction errors and the dashed curves are the 

corresponding prediction errors. The inflection point on the prediction error curves are 

marked and it is evident that the inflection order reduces consistently with the stable order. 
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Figure 7-2. Mean reconstruction errors for maps with different radii and resolutions, the reconstruction is 

by ZPs. 

 

Figure 7-3. Mean reconstruction and prediction errors for maps with different radii and resolution 0.2 

mm, the reconstruction and prediction are by OFMPs. The asterisks represent reflection orders. 



- 178 - 

 

7.2.2 Topography matching 

The topography matching is concerned with the problem of combining multiple corneal 

topographies to form a single map covering the entire cornea. Direct search (DS) and 

several variants of the iterative closest point (ICP) algorithm are implemented and tested. 

Convergence of the DS and point-to-point ICP approaches results in significant 

registration and alignment errors even in the case of noise-free simulated data. This is due 

to an over-constrained objective function which insists on tying multiple sets of paired 

points on the static and dynamic maps. However, the point-to-plane ICP routines release 

this constraint by allowing the dynamic surface to slide over the static surface. 

The Nelder-Mead (NM) simplex algorithm was employed in the DS method because of 

its simplicity. The NM algorithm uses the values of the objective functions only without 

numerical or analytical gradients and other higher order derivatives information, it is 

classified as a direct search algorithm and belongs to local and unconstrained 

minimisation algorithms. It would be reasonable to consider other algorithms such as 

quasi-newton and interior-point algorithms or more sophisticated global approaches such 

as genetic algorithm, particle swarm optimisation and simulated annealing optimisation. 

The commercial Matlab software has provided a good number of optimisation tools 

including all of the aforementioned candidates and the coding of DS method in this study 

has enabled easy adoption of new optimisation methods to solve the same problem. In 

addition to the results reported in Table 5-1 of DS using NM algorithm, several other 

optimisation algorithms are attempted to implement the DS method with vertical shooting 

mapping. These algorithms are local approaches including quasi-newton (QN), interior-

point (IP), sequential quadratic programming (SQP), active-set (AS) and global 

approaches including pattern search (PS), particle swarm optimisation (PSO), genetic 

algorithm (GA) and simulated annealing (SA). The rigid-body transformation obtained 
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using these algorithms (including that obtained using NM as presented in Table 5-1) is 

detailed in Table 7-6. Indeed, some optimisation methods, additionally attempted here, 

result in better matching outcomes (bold and italic) but they are generally costly in terms 

of computational time and the results are still not comparable to the more efficient ICP 

variants. It should be noted that the built-in default settings are used herein for all standard 

optimisation methods. Also, it is well known that the performances of these methods 

(especially the local approaches) are significantly influenced by initial/starting points and 

they may unexpectedly fall in local minima. However, a further detailed discussion is 

outside the scope of this thesis and it is unlikely that the DS method with any standard 

optimisation approach could match the speed and accuracy of the ICP variants. 

Table 7-6. Rigid-body transformation by DS method fulfilled by various optimisation algorithms 

Exact 
Local optimisation algorithms Global optimisation algorithms 

NM QN IP SQP AS PS PSO GA SA 

x -0.08 -0.022 6.4E-08 -0.088 -0.173 -0.026 -0.004 -0.190 -0.091 -0.154 

y -0.25 -0.037 2.9E-07 0.026 0.019 -0.257 0.029 -0.208 -0.013 0.252 

z 0.08 0.292 -3.8E-10 0.002 -0.041 0.054 -0.079 0.205 0.075 -0.185 

tx -2 -0.376 6.0E-07 0.000 0.000 -2.017 0.029 -1.893 -0.335 1.761 

ty 0.5 0.121 8.4E-09 0.731 1.377 0.137 0.070 1.114 0.733 0.878 

tz -0.3 -0.036 -1.8E-08 -0.042 -0.129 -0.290 -0.011 -0.338 -0.048 -0.285 

Er  0.701 0.858 0.837 0.903 0.150 0.866 0.264 0.701 1.561 

 

There are two main ICP algorithms, point-to-point and point-to-plane, and for each of 

these there are three variants, closest point (CP), vertical shooting (VS) and normal 

shooting (NS). The CP routine is based on paired discrete points on the two surfaces. The 

VS and NS methods rely respectively on vertical or normal rays projected from the 

dynamic surface to intersect with the static surface. This defines the corresponding points 

on the two maps and requires the continuous definition of the two surfaces - for 

construction of the normals and for determining the points of intersection. In the present 
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study, the continuous surface definition is achieved using orthogonal Zernike 

polynomials. 

The practical application of fitting the series of Zernike polynomials to sets of discrete 

points requires truncation, which is known to be beneficial in that measurement noise, 

present in the high-order (high spatial frequency) terms, is eliminated. The effects of 

Zernike fitting can be seen in Figure 7-4 where the CP variant of the ICP algorithm is 

used. The points with zero-mean Gaussian noise are adjusted to lie on the Zernike-fitted 

surfaces. It is seen that smooth convergence of the registration error is achieved when 

Zernike fitting is applied whereas a persistent oscillation is seen when noisy data is used 

directly. 

 

Figure 7-4. The influence of Zernike fitting on the performance of the ICP CP routine, the registration 

errors are presented in log scale. 

The ICP point-to-plane CP variant results in small registration errors in the cases of noise-

free, noisy and clinical data with a known numerically applied transformation. This error 

might be further reduced by increasing the resolution of the measured data – as is 

achievable with most currently available modern topographers such as the Pentacam used 

in the topography fitting study. Excellent results are obtained by VS and NS point-to-

plane ICP algorithms for simulated noisy data and clinical data with known numerical 
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transformation. These algorithms also result in acceptably small alignment errors when 

using full clinical data (both central and peripheral maps), typically   1.40aE m  , 

  0.92aE m   for central and peripheral maps of 4.53mm radii. An increase in area 

of around 65% was achieved after combining the central map with four peripheral maps. 

The topography matching results achieved in this study are comparable with those 

reported by Franklin et al. [109], however the preferred ICP variant has significant 

advantages over the approach proposed by Franklin et al. First, it only takes a few seconds 

to register all peripheral maps to the central map using ICP algorithm while the 

optimisation process presented by Franklin may take hours. Even though the computing 

power nowadays has been dramatically improved, it is unlikely that this would speed up 

Franklin’s approach to match the ICP algorithm. Second, the use of Zernike polynomials 

in the ICP algorithm overcomes the difficulty in finding reliable corresponding points and 

acts as a noise filter which enables quick convergence and accurate matching. 

The topography matching study used topography maps from the Medmont E300 

topographer and only a limited number of maps were included in this study. However the 

algorithms in this study should also be applicable to topographies provided by other 

instruments. In fact, two sets of central and peripheral topographies were obtained from 

Wenzhou Medical University recently and these topography maps were collected using 

the Pentacam topographer. The VS and point-to-plane variant of the pair-wise ICP 

algorithm was used to match the peripheral maps to the central map in each set and the 

alignment errors were plotted in Figure 7-5. Only the central area with a 4 mm radius was 

kept for all the maps because the large area beyond this radius had missing measurements. 

The mean alignment error of all the pair-wise matching was 1.02 μm with a standard 

derivation of 0.13 μm. Figure 7-6 and Figure 7-7 have shown the combined maps in 3D 
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and X-Y views. It is evident that significant increases in map coverage have been 

achieved for both sets of data. The practice here has provided strong support to results 

reported in Chapter 5 for Medmont data and confidence in applying the matching 

algorithms to topography maps from other instruments. 

 

Figure 7-5. Alignment errors of two sets of Pentacam topographies 
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Figure 7-6. The maps in registration, shown in 3D 
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Figure 7-7. The maps in registration, shown in X-Y views 

7.2.3 Numerical simulation 

The numerical simulation of refractive surgery has concentrated on the most commonly 

used LASIK procedure and was later extended to cover the new, promising SMILE 

procedure. 
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Special efforts were taken to closely model these surgical forms such as accurate adoption 

of patient-specific topography, representative consideration of LASIK flap and SMILE 

cap, and realistic adjustment of the ablation depth profile. Many recent studies tried to 

model refractive surgeries patient-specifically [201, 203, 207, 216], however even though 

they managed to adopt patient-specific topography, none had successfully covered the 

relatively free LASIK flap and accurate ablation profile that would have been applied in 

the clinical practice, making them unable to produce reasonable prediction of the 

postoperative outcome. The numerical simulation of LASIK procedure in this study has 

relied on a more complete set of patient-specific data including corneal topography maps, 

ocular axial length, corneal flap thickness distribution and laser ablation profile. These 

data enabled a more representative simulation of the LASIK procedure and its validation 

in comparison to the clinical postoperative topography. The good match of numerically 

predicted and clinically measured postoperative outcomes made it possible to conduct 

simulation of the SMILE procedure and later the numerical study on effects of corneal 

surgical applications on tonometry. According to the author’s knowledge, numerical 

studies of tonometry after LASIK and SMILE surgeries are still lacking in the literature. 

In this thesis, all numerical models consisted of both the cornea and sclera such that the 

need to approximate the boundary conditions in the limbus was eliminated. A 

comprehensive and representative modelling strategy was designed, which involved 

using a VB programme to generate the idealised model and a Matlab GUI to navigate the 

main simulation steps including adoption of clinical measurements to create clinical 

models, stress-free configurations, simulation of laser tissue ablation and generation of 

LASIK and SMILE models. An efficient and accurate modelling structure was 

determined through an initial study concerning mesh density, nodal arrangement and 

methods of ablation adjustment. Even though the nodal rearrangement in the cornea is 
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not adopted for large scale patient-specific modelling studies, it remains a good candidate 

for future studies when the actual ablation profile is provided more accurately. The 

adjustment of ablation was shown to be necessary and resulted in nearly 50% 

improvement in fit between the simulated and clinically measured postoperative anterior 

corneal topography. 

The wound healing immediate after surgery is believed to significantly contribute to the 

discrepancy between the attempted and achieved surgical outcomes. In this project, a 

parametric study on stiffness of the wound healing zone was carried out and indicated 

that the stiffness of the wound healing layer is at least 4.5 times as stiff as the natural 

stroma. This finding, at first glance, seems to contradict some results that have been 

published by other researchers. On one hand, Schmack et al. [283] found that the cohesive 

tensile strength between corneal wound surfaces was significantly weaker than between 

stromal lamellae. On the other hand, it is well known that IOP measurement after the 

LASIK procedure is generally smaller than the measurement taken before the surgery, 

indicating an overall corneal softening. However, the reduction in cohesive tensile 

strength does not mean softening of corneal wound but may just indicate inadequate 

connection between the wound surfaces. Further, there are mainly two factors after 

surgery that have potential to change the overall corneal stiffness or resistance to internal 

and external forces, these two factors are corneal thickness thinning and material stiffness 

change of the wound layer. In LASIK, corneal thickness thinning includes not only the 

thickness of ablated tissue but also the thickness of the flap because the flap, once cut, 

would lose almost its entire ability to bear internal and external loadings. Obviously, the 

thickness thinning will decrease the overall stiffness of the cornea. However, the corneal 

wound layer with a potentially increased material stiffness, increases the overall stiffness 

of the cornea. 
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Current instruments such as GAT and Corvis ST use contact and non-contact tonometry 

techniques to estimate the IOP. An external pressure is caused by the tonometry methods 

and the response of the cornea to this pressure is dominated by its flexural or bending 

stiffness, which is reliant on the sum of i iE I  for all corneal layers [219], where iE  is the 

Young’s modulus (taken as 0.5 MPa for stroma) and 3 2/12i i i iI t t z   is the second 

moment of area, with it  being the thickness of the thi  layer and iz  being distance from 

mid-thickness of the thi  layer to the corneal mid-thickness. Before the surgery, the 

cornea is modelled by epithelial and stromal layers and these change into a wound healing 

layer with thickness 0.1 mm and a thinned stromal layer. Using the relevant thickness 

values in each patient-specific model, the flexural stiffness before and after the simulation 

of LASIK procedure is calculated and detailed in Table 7-7 and Figure 7-8. For 

comparison, the membrane (in-plane) stiffness, expressed as sum of i iE t , is also included 

and detailed in Table 7-8 and Figure 7-9. 

Table 7-7. Estimated bending stiffness (MPa) before and after LASIK surgery and the changes presented 

by mean ± 1 standard derivation 

 Stiffness Change of stiffness Change in percentage (%) 

Before surgery 6.18e-3 ± 9.18e-4   

After surgery/ 

Stiffness ratio 

0.5 1.44e-3 ± 5.03e-4 -4.74e-3 ± 6.28e-4 -77.1±5.7 

1 1.95e-3 ± 6.42e-4 -4.23e-3 ± 5.97e-4 -69±7.1 

2.5 2.91e-3 ± 9.40e-4 -3.28e-3 ± 6.38e-4 -53.7±10.4 

4.5 3.60e-3 ± 1.18e-3 -2.59e-3 ± 7.59e-4 -42.7±13.1 

7.5 4.19e-3 ± 1.37e-3 -2.00e-3 ± 8.98e-4 -33.3±15.3 

10.5 4.57e-3 ± 1.49e-3 -1.62e-3 ± 9.89e-4 -27.3±16.5 
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Table 7-8. Estimated membrane stiffness (MPa) before and after LASIK surgery and the changes 

presented by mean ± 1 standard derivation 

 Stiffness Change of stiffness Change in percentage (%) 

Before surgery 2.63e-1 ± 1.33e-2   

After surgery/ 

Stiffness ratio 

0.5 1.53e-1 ± 1.93e-2 -1.10e-1 ± 1.20e-2 -42±5.3 

1 1.78e-1 ± 1.93e-2 -8.53e-2 ± 1.20e-2 -32.5±5 

2.5 2.53e-1 ± 1.93e-2 -1.03e-2 ± 1.20e-2 -4±4.5 

4.5 3.53e-1 ± 1.93e-2 8.97e-2 ± 1.20e-2 34.1±4.5 

7.5 5.03e-1 ± 1.93e-2 2.40e-1 ± 1.20e-2 91.2±5.9 

10.5 6.53e-1 ± 1.93e-2 3.90e-1 ± 1.20e-2 148.2±8.1 

 

It is shown in Table 7-7 that the mean bending stiffness values all decreased after surgery. 

Visually in Figure 7-8, it is seen that the majority of bending stiffness values calculated 

after surgery have reduced relative to the values before surgery. There is a clear trend that 

the bending stiffness become larger when stiffer material is used for the wound healing 

layer and the overall corneal softening in terms of bending stiffness is believed to be 

dominated by the corneal thinning caused by cutting of flap and tissue removal. On the 

other hand, the wound healing layer is seen to contribute more in change of membrane 

stiffness before and after surgery. As detailed in Table 7-8 and illustrated in Figure 7-9, 

when the wound healing layer is relatively soft, the membrane stiffness declines 

postoperatively. It then becomes larger than that of the preoperative calculation and this 

begins to take place when the stiffness ratio of the wound healing layer is 2.5 in some 

cases as shown in Figure 7-9. 

These results make it evident that the stiffening of wound healing layer is not large enough 

to compensate for the softening effect of corneal thinning. Therefore, a combined effect 

could be a decline in IOP measurement after surgery. 
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Figure 7-8. Estimated bending stiffness (MPa) before and after LASIK surgery and their approximated 

linear relationships 

 

Figure 7-9. Estimated membrane stiffness (MPa) before and after LASIK surgery and their approximated 

linear relationships 

The studies on topography analysis (especially topography fitting) has provided a 

foundation for numerical simulation when dealing with discrete data sets. The studies 
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include adjustment of the idealised model to build eye-specific clinical models. The 

corneal topography and thickness maps are fitted by Zernike polynomials up to order 10, 

where order 4 is used for ablation data and 2 for corneal flap measurements. Table 7-9 

shows the fitting errors of these data. The corneal topography and thickness maps are 

fitted accurately with errors being around 0.3 μm. Limited by the number of measurement 

points for the ablation profile and corneal flap, lower order Zernike polynomials were 

used to fit these data, resulting in significantly larger fitting errors compared to the more 

complete topography and thickness maps. 

Table 7-9. Surface fitting errors by Zernike polynomials for corneal topography, thickness maps, ablation 

depth data and flap thickness. The errors are represented by mean ± 1 standard derivation and in μm. 

Corneal topography Corneal thickness Ablation depth Flap thickness 

0.34±0.03 0.33±0.03 2.75±1.31 5.96±1.75 

 

The linear correlations between these fitting errors and the RMSE of the predicted and 

measured anterior corneal topography are sought in Figure 7-10 and the results are based 

on numerical models with wound healing stiffness set to 4.5 times the stiffness of the 

stroma. It is seen that there exists notable correlation between the ablation fitting error 

and the RMSE of simulation while no obvious correlation is found for surface fitting for 

corneal topography, corneal thickness map and the flap thickness. The larger fitting error 

of the ablation depth is largely due to the limited number of available data points such 

that fitting these points with high order polynomials may be problematic as reported in 

the prediction study in the topography fitting chapter. As a consequence, the ablation 

profile used in the actual simulation serves only as rough approximation of the clinical 

profile, which may have restricted the numerical simulation in predicting the surgical 

outcomes. Further, it is expected that the numerical simulation can produce better 

prediction of the clinical outcome if the ablation profile information is provided more 
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completely such that the actual tissue removal as would be applied clinically can be 

mimicked more closely. 

 

Figure 7-10. Linear correlations between various fitting errors and the RMSE of numerically predicted 

and clinically measured anterior corneal topography within the central 3 mm radius 

However, regardless of the limitations of clinical data, the numerical simulation has been 

demonstrated to be superior to simple mathematical simulation which does not take the 

corneal biomechanical performance into account. Both the shape of the postoperative 

anterior corneal surface and the estimated corneal refractive power were predicted more 

accurately by numerical simulation and this had provided confidence of using numerical 

methods to simulate other surgical procedures. Following this route, the SMILE 

procedure was studied and the results showed that the SMILE procedure had less impact 

on the corneal integrity. Less stress was caused by the internal pressure (IOP) following 

SMILE and the corneal apex underwent less displacement compared to LASIK models. 

The difference in impact of LASIK and SMILE procedures was localised at the central 
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portion of the cornea as similar stresses and nodal displacements were found at the limbus. 

This finding suggested that SMILE indeed could reduce the risks of ectasia, which was a 

complication that mainly seen after LASIK procedure. The cornea was expected to 

deform more in LASIK and lead to more curved shape, which would result in higher 

refractive power. Interestingly however, the refractive power of the cornea after LASIK 

procedure was showed to be slightly lower than that after SMILE. This unexpected 

phenomenon can be explained by examining the shapes of the anterior corneal surfaces 

after both LASIK and SMILE surgery as shown in Figure 7-11 for one eye. 

 

Figure 7-11. Vertical difference in anterior surfaces of LASIK and SMILE models for one eye. Positive 

value means the surface of LASIK model is above that of SMILE model. The red dashed circle marks the 

region of flap/cap. 

In Figure 7-11, the vertical difference in anterior corneal surfaces of LASIK and SMILE 

models for a typical eye is visualised by subtracting the z coordinates of anterior nodes 

of the inflated SMILE model from that of the corresponding LASIK model, Zernike 

fitting of anterior surface of the LASIK model is employed to do such subtraction. The 

positive values thus mean the anterior surface of the LASIK model is located above that 

of the SMILE model. As expected, the two surfaces are very close at the limbus indicating 

similar deformation at the limbus in both models, which is consistent with the results 
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reported in Figure 6-14 to Figure 6-16. Interesting phenomenon is seen inside the region 

of flap/cap as marked by a red dashed circle in Figure 7-11. Although all nodes inside the 

flap region in the LASIK model underwent larger displacements, the difference profile is 

asymmetric. In the X direction (flap hinge is located at the right side), differences in z 

coordinates tended to be less towards the periphery, which indicated the surface of the 

LASIK model was more curved in this direction. However, the opposite was observed in 

the Y direction, indicating flatter surface of the LASIK model. This is because in the 

LASIK model, the flap thickness was totally free in Y direction whereas the SMILE cap 

was connected to the stroma. Consequently, the flap thickness was not thinned while the 

corresponding thickness in the cap was considerably reduced. The more curved shape in 

X direction tended to result in higher refractive power in the LASIK model but this was 

cancelled out in the Y direction. It was this cancellation that in turn led to slight lower 

overall refractive power in the LASIK model. 

In myopic correction, lower residual refractive power means greater refractive correction. 

However, greater corneal movement outwards in the LASIK model would in turn cause 

larger myopic shift, lessening the myopic correction to a larger extent, compared to 

SMILE. In other words, given that the difference in residual refractive powers of LASIK 

and SMILE models is trivial, the LASIK model should have produced less myopic 

correction. 

In addition to the study of corneal biomechanical behaviour following LASIK and SMILE 

procedures as discussed above, this project has also investigated the Goldmann tonometry 

(GAT) and the newer Corvis ST (CVS). An intact model with full thickness equal to 

preoperative measurement for each eye was included as a reference model. It was shown 

that using this reference model, very close estimates of the true IOP were obtained for 
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GAT but notably larger readings were achieved for CVS. Even though CVS was clinically 

reported to estimate higher IOP readings compared to GAT [247], the larger readings 

obtained in this project might also be caused by imperfections in the simulation process. 

In the CVS simulation, the maximal pressure applied on the cornea was not directly 

measured but roughly assumed to be 95 mmHg. However, other studies used higher 

maximal pressure on the cornea for example in [233], being about 110 mmHg. If this 

pressure is adopted in the model herein, the applanation will take place earlier (smaller 

applanation time 1 (AT1)). Given that applanation pressure 1 (AP1) is determined using 

piston pressure rather than the pressure on cornea as shown in Figure 3-31, a smaller AP1 

may be obtained using a smaller AT1, which consequently leads to smaller IOP readings. 

The influence of central corneal thickness (CCT) on the IOP reading was obvious. The 

ratio between the estimated and true IOP appeared to be larger with thicker corneas. Also 

observed was the reduction in IOP readings for LASIK and SMILE models, compared to 

the reference intact model. This is consistent with clinical studies [256, 258, 259]. The 

difference in readings for LASIK and SMILE however was trivial. This indicates that 

even though corneal integrity is better preserved in SMILE procedure, the bending 

stiffness of the cornea after SMILE remains similar with the post-LASIK cornea. 

7.3 CONCLUSIONS 

This thesis aims to provide a predictive tool for refractive surgery by finite element 

modelling. Patient-specific numerical models are built based on clinical data, and 

topography analysis, including fitting and matching, is essential for creation of these 

numerical models. 

In the topography fitting study, various sets of orthogonal polynomials and methods to 

compute the polynomials’ coefficients are compared. According to the author’s 
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knowledge, this is the first study to assess the predictive behaviour of various polynomials. 

The variants of OP method and LS method are described and applied to fit a simple 

second order function. The results show that the LS method is superior to the OP variants 

in terms of accuracy and calculation speed. Among all the polynomials considered, 

OFMPs are the most successful in representing corneal elevation maps, they 

fit/reconstruct the discrete measurements best and always achieve better accuracy. 

Although they are generally more sensitive to data resolution when predicting nearby 

locations, this can be avoided by using as many as data points in the reconstruction to 

prevent local oscillation of the reconstructed surface caused by high order polynomials. 

On the other hand, the commonly used ZPs are shown to have the worst accuracy in 

reconstruction but show high reliability in prediction. However, this higher reliability in 

prediction is only obvious when dealing with low resolution data. In summary, OFMPs 

has been shown to be a very promising tool for representing corneal topography. They 

reconstruct the discrete corneal topography best and also provide reliable prediction of 

unmeasured locations. 

In the topography matching study, portions of corneal topography are combined by image 

registration. DS and ICP methods are described and applied to simulated and real clinical 

data. The DS and point-to-point ICP routines are based on an objective function that aims 

to reduce the distance between corresponding points that are established at the beginning 

and do not change. This introduces a ‘hard’ constraint resulting in persistent registration 

and alignment errors. The point-to plane ICP routine releases this constraint by allowing 

the dynamic map to slide over the static map. It requires interpolation of the target (static) 

map, which is achieved using a truncated series of Zernike polynomials due to their good 

performance in prediction especially for maps with few measurements. It is found to 

produce excellent results in simulation studies and high-quality results when applied to 
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real clinical data. The point-to-plane ICP algorithm is available in several forms but in 

this study consistently best results were produced by vertical or normal shooting (VS or 

NS). It is found to be robust to measurement noise and insensitive to the chosen starting 

values of the transformation parameters. 

In the numerical simulation study, finite element modelling has been employed to 

simulate LASIK and SMILE procedures. The study has developed a complete process 

using customised Visual Basic and Matlab user interfaces to build idealised and patient-

specific models and navigate the numerical modelling of LASIK and SMILE procedures. 

The process has considered tissue separation between the flap or cap and the rest of the 

stroma, and effect of stromal wound healing introduced by the laser cut. Through a 

parametric study on stiffness of stromal wound, it is demonstrated that the wound layer 

would have a stiffness that is 4.5 times that of the stroma. The numerical simulation was 

demonstrated to be superior to mathematical simulation that consider no biomechanics of 

the eye, in terms of not only the better fit with the clinical outcome but also the ability to 

visualise the biomechanical impact of the surgical procedure on the eye, which enables 

the numerical comparison between different procedures as implied in this thesis between 

LASIK and SMILE. It is revealed that LASIK procedure is more invasive to the eye, 

making the postoperative cornea more vulnerable. With the LASIK flap contributing 

significantly less load-carrying capability against internal pressure compared with the 

SMILE cap, the cornea is seen to be more stressed under IOP and this was most obvious 

in the central part of cornea. However, the visual outcomes in terms of refractive power 

is shown to be similar in post-LASIK and post-SMILE corneas. 

Goldmann tonometry and Corvis ST are studied in this thesis using established LASIK 

and SMILE models as well as intact models with preoperative corneal thickness. 
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Reasonable IOP readings are obtained, showing significantly decreased values after 

LASIK and SMILE procedures, largely due to the reduction of corneal thickness. The 

estimates of IOP are seen to be similar after LASIK and SMILE procedures. 

The studies presented in this thesis have potentials to assist clinical planning of future 

refractive surgery. For the 60 clinical cases studied in this thesis, notable myopic shift in 

comparison to the planned refractive correction was observed and this was accurately 

predicted by the numerical models. In practice, a numerical model can be generated for 

each patient using preoperative topography and the postoperative outcome can be 

predicted by the numerical method presented in this thesis using the existing ablation 

profile. By comparing the predicted and planned refractive corrections, an updated 

ablation profile can be found which should lead to an actual correction that is close to the 

planned one. 

7.4 FUTURE RESEARCH AND RECOMMENDATIONS 

In this thesis, efforts have been made to understand the corneal topography and to study 

the LASIK and SMILE procedures numerically based on clinical data. There are still 

spaces and gaps in the research and some of them are outlined in this section. 

7.4.1 Topography fitting against noise in the map 

The topography fitting study has demonstrated that the corneal topography can be fitted 

with very high accuracy in terms of both reconstruction and prediction, being about 

0.3 μm. The measurements of posterior surfaces are usually thought to be nosier because 

of the electronic noise of the videokeratographer. This motivates a useful extension to 

consider the effect of noise level on the outcome of polynomials fitting, which can be 

done for instance, using artificial topography with added Gaussian noise. 
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7.4.2 Multi-view ICP (MICP) 

The multi-view extension of ICP, MICP, was shown to be useful to eliminate the 

inconsistency between the peripheral maps registered by ICP. The current method to 

solve the minimisation in the MICP algorithm is based on Levenberg-Marquardt (LM) 

algorithm which is computationally expensive in spite of good performance. The closed-

form solution derived in this thesis was shown to have convergence problem possibly due 

to the linearisation of angular components and omission of subsequent high order (second 

order) terms. A quasi-closed form may be possible to only linearise the angular 

components but solve the resulting error metric numerically. This is practical because the 

linearisation has been demonstrated to be acceptable in the ICP algorithm and the problem 

in the MICP algorithm may be solely caused by the omission of high order terms. This 

quasi-closed form is expected to be faster than the LM algorithm. 

In addition, the acceleration method for the MICP algorithm should be explored further. 

Current results showed that the acceleration method always updated the solution 

incorrectly, creating fluctuation in the searching path. It should be noted that only one 

updating criterion has been considered, the fluctuation is usually caused by inappropriate 

criterion and the situation when using other criterion remains unknown. 

Further study on MICP is meaningful and should be tested on other matching problems 

such as combine scleral surfaces. The insignificant benefit of MICP in this thesis may be 

because the topography maps used were measured relative accurately and they were 

simple shapes, such that the inconsistency left by ICP was trivial. The performance of 

MICP on matching more complex or noisy surfaces should be more pronounced. 
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7.4.3 Ablation profile 

In the numerical simulation of LASIK surgery, the ablation profile provided for 

modelling use was roughly given as samples of the actual profile with about 90 data points. 

This may have largely restricted the accuracy in prediction of the patient-specific models. 

Moreover, this profile is usually not possible to obtain due to commercial confidentiality. 

A possible way to overcome this problem is to fit the limited number data points to several 

known formulas for designing ablation profile. These formulas include the classic 

Munnerlyn formula and its improved variants, wavefront-optimised algorithm and so 

forth [192, 291-293]. 

7.4.4 Local mesh refinement 

As mentioned in Chapter 6, stress concentration may occur in some regions of the model. 

This is particularly obvious in transition regions where stiff and soft tissues are connected, 

e.g. regions connecting the limbus and the cornea. The stress concentration phenomenon 

is also observed at the two sides of LASIK flap hinge and SMILE incision. To eliminate 

the stress concentration in these regions, local mesh refinement may be practical. 

Although this is not believed to change the deformation behaviour of the eye globe, it 

may solve some convergence problems when running the models. 

7.4.5 Anisotropy of ocular tissue 

The fibrous cornea and sclera have been observed to be anisotropic [68, 294], which was 

not accounted for in numerical modelling presented in this thesis. This may limit the 

accuracy of the current model in presenting the actual corneal and scleral behaviour 

against internal and external pressures. The embedding of anisotropic material model into 

the current model may benefit from the research on comprehensive material model of 
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cornea within the Ocular and Biomaterial Biomechanics Group (OBBG) which considers 

the spatial variation in orientation of collagen fibrils in the stroma [278]. 

7.4.6 Simulation of stromal wound 

An optimal stiffness ratio between the stromal wound and the stroma was considered to 

be 4.5. In fact the surface fit between the predicted and measured postoperative anterior 

corneal topography was seen to be continuously improved with stiffer wound healing 

layer and the ratios considered in this study was as high as 10.5. The stiffness ratio is a 

ratio applied to the Ogden parameter μ, which means only μ is changed. It might be useful 

to consider the change in another parameter   at the same time and this could be done 

employing inverse modelling techniques. 

Besides, a significant limitation of the numerical models in this thesis is that the wound 

healing layer has been assumed a planner thickness of 100 μm and uniform stiffness 

across the wound zone. Many clinical studies have demonstrated that the wound healing 

is remarkably more active in the LASIK flap margin [50, 59, 283, 295, 296], suggesting 

significant stiffness variation across the wound healing zone from the periphery to the 

centre.  

The effect of edge-localised wound healing layer on the corneal deformation behaviour 

is investigated using one typical set of clinical data. In addition to results for the complete 

wound healing layer as reported in Chapter 6, two models with different edge-localised 

wound healing layers are studied. In each model, certain area of central region in the old 

wound healing layer is set the same material properties as the stroma, as a result, the new 

wound healing layer exhibits an annular shape. The areas of the resulting wound healing 

zones are 72% and 36% of the complete zone. The initial results in terms of refractive 

powers are listed in Table 7-10 and the displacement differences of the anterior cornea 



- 201 - 

 

between the two new models and the one with complete wound healing layer is illustrated 

in Figure 7-12. 

Table 7-10. Effect of edge-localised wound healing layer on the refractive power predicted by numerical 

model 

Clinical 

Numerical: Wound healing layer coverage 

Complete (100%) 
Edge-localised 1 

(72%) 

Edge-localised 2 

(36%) 

37.41 37.66 39.34 38.03 

 

 

Figure 7-12. Displacement difference of anterior corneal surfaces between the models with edge-localised 

wound healing layers and the one with complete wound healing layer. Negative values mean that the 

anterior corneal surface of the model with complete wound healing layer is beneath that of the model with 

edge-localised wound healing layer. The blue dashed circle marks the complete wound healing zone 

while the red marks the inner radius of the annular wound healing zone in the two new models. 

It can be seen from Table 7-10 that, by setting certain area of the central wound healing 

zone to softer stiffness as the stroma, the central cornea is seen to undergo greater 

deformation, resulting in a larger refractive power. Moreover, the cornea is more curved 

when using an edge-localised wound zone with a larger area. This is expected because 

the corneal steepening is localised more centrally in model with edge-localised wound 

healing layer that leaves smaller central area of softer stiffness. From Figure 7-12, it is 

obvious that the displacement differences of the central cornea (2 mm diameter) between 
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the new models with the old model are similar, however the difference is localised more 

centrally for the first new model, creating a steeper resulting corneal shape. 

This initial study shows that the edge-localised wound healing pattern does have some 

effects on the modelling results but it needs more investigation. With more experimental 

studies on corneal wound layer in the future, the creation of a more representative wound 

healing layer with regionally varying material properties may be possible. 

7.4.7 Layered structure of the cornea 

The cornea is currently modelled as a bulk of tissue and even it is divided to several layers, 

the layers are connected with each other. However, the cornea is known to be weak in 

bearing sheer force because of its layered structure. For an inflation practice, the effect of 

sheer stiffness may be negligible, but for simulation of tonometry, this effect may be 

significant. Further study on tonometry should consider the layered structure of the cornea 

for better outcome. This can be done by modelling fraction interaction between corneal 

layers or defining inter-lamellar adhesive strength via adhesion elements as done in [219]. 

7.4.8 Material properties of the sclera 

Studies have shown that the stiffness of the sclera increases with age [276] but may 

decreases in myopic (especially highly myopic) eyes and this tends to be more obvious 

in the posterior sclera [297-299]. However, the material properties of the sclera are 

obtained by inverse modelling using donor sclera aged 50 or above while average age of 

the patients is about 28 years old in this study, indicating a limitation of the numerical 

studies in this thesis. 

Although the sclera is only considered as a boundary support to the cornea, its material 

stiffness may change the deformation behaviour of the cornea. An investigation in effects 
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of varying scleral material properties on corneal deformation has been carried out using 

the same patient data as in the study of edge-localised wound healing layer above. The 

scleral stiffness is set proportional to that in the models reported in Chapter 6, and 

similarly refractive powers and displacement of the anterior corneal surface is compared 

to the old model. The resulting refractive powers are given in Table 7-11 and the 

displacement difference is visualised in Figure 7-13. It is obvious that softer sclera tends 

to create weaker boundary condition in the limbus such that the peripheral corneal is 

allowed to deform with greater freedom, leading to a flatter corneal shape. 

Table 7-11. Effect of varying sclera material properties on the refractive power predicted by numerical 

model 

Clinical 
Numerical: Scleral stiffness ratio 

0.50 0.75 1.00 1.50 2.00 

37.41 37.32 37.51 37.66 37.90 38.09 
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Figure 7-13. Displacement difference of anterior corneal surfaces between the models with softer (A, B) 

or stiffer (C, D) scleral material properties and the one with reference material properties. Negative values 

mean that the anterior corneal surface of the model with reference stiffness is beneath that of the models 

with softer or stiffer scleral material properties. Positive values thus mean the contrast. Similar pattern is 

seen in each row but the two sub-figures have different scales as marked by red squares. 

Further to the study above, the possible regional softening of the sclera in myopic eye is 

studied. Based on the values published in [297], the stiffness of the equatorial and 

posterior sclera is reduced by 8% and 15%, respectively. The stiffness of the anterior 

sclera is kept the same as in the old model. From Table 7-12 and Figure 7-14, it can be 

seen that this manipulation has little effect on the corneal behaviour. 

Table 7-12. Effect of reduced stiffness in equatorial and posterior sclera on the refractive power predicted 

by numerical model. Numerical 1 is for model with reference scleral material properties as in previous 

chapters, while Numerical 2 is for model with reduced stiffness in equatorial and posterior sclera. The 

refractive powers are rounded to the fourth digit to appreciate the difference. 

Clinical Numerical 1 Numerical 2 

37.4121 37.6572 37.6568 
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Figure 7-14. Displacement difference of anterior corneal surfaces between the model with reduced 

equatorial and posterior scleral stiffness and the one with reference material properties. Meaning of the 

values in this figure is the same as in Figure 7-13. 

The studies above on scleral material stiffness indicate the need of further investigation 

in effects of varying scleral material properties on corneal biomechanical behaviour, and 

particularly the emphasis should be on the age-related variation of scleral material 

properties. Given that in vivo characterisation of scleral material properties is somehow 

impossible at present, a reduction of scleral stiffness in younger eye may be practical. 
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