1,038 research outputs found

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    The doctoral research abstract. Vol:9 2016 / Institute of Graduate Studies, UiTM

    Get PDF
    FOREWORD: Seventy three doctoral graduands will be receiving their scroll today signifying their achievements in completing their PhD journey. The novelty of their research is shared with you through The Doctoral Abstracts on this auspicious occasion, UiTM 84th Convocation. We are indeed proud that another 73 scholarly contributions to the world of knowledge and innovation have taken place through their doctoral research ranging from Science and Technology, Business and Administration, and Social Science and Humanities. As we rejoice and celebrate your achievement, we would like to acknowledge dearly departed Dr Halimi Zakaria’s scholarly contribution entitled “Impact of Antecedent Factors on Collaborative Technologies Usage among Academic Researchers in Malaysian Research Universities”. He has left behind his discovery to be used by other researchers in their quest of pursuing research in the same area, a discovery that his family can be proud of. Graduands, earning your PhD is not the end of discovering new ideas, invention or innovation but rather the start of discovering something new. Enjoy every moment of its discovery and embrace that life is full of mystery and treasure that is waiting for you to unfold. As you unfold life’s mystery, remember you have a friend to count on, and that friend is UiTM. Congratulations for completing this academic journey. Keep UiTM close to your heart and be our ambassador wherever you go. / Prof Emeritus Dato’ Dr Hassan Said Vice Chancellor Universiti Teknologi MAR

    Emoji as a Proxy of Emotional Communication

    Get PDF
    Nowadays, emoji plays a fundamental role in human computer-mediated communications, allowing the latter to convey body language, objects, symbols, or ideas in text messages using Unicode standardized pictographs and logographs. Emoji allows people expressing more “authentically” emotions and their personalities, by increasing the semantic content of visual messages. The relationship between language, emoji, and emotions is now being studied by several disciplines such as linguistics, psychology, natural language processing (NLP), and machine learning (ML). Particularly, the last two are employed for the automatic detection of emotions and personality traits, building emoji sentiment lexicons, as well as for conveying artificial agents with the ability of expressing emotions through emoji. In this chapter, we introduce the concept of emoji and review the main challenges in using these as a proxy of language and emotions, the ML, and NLP techniques used for classification and detection of emotions using emoji, and presenting new trends for the exploitation of discovered emotional patterns for robotic emotional communication

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    Unobtrusive Assessment Of Student Engagement Levels In Online Classroom Environment Using Emotion Analysis

    Get PDF
    Measuring student engagement has emerged as a significant factor in the process of learning and a good indicator of the knowledge retention capacity of the student. As synchronous online classes have become more prevalent in recent years, gauging a student\u27s attention level is more critical in validating the progress of every student in an online classroom environment. This paper details the study on profiling the student attentiveness to different gradients of engagement level using multiple machine learning models. Results from the high accuracy model and the confidence score obtained from the cloud-based computer vision platform - Amazon Rekognition were then used to statistically validate any correlation between student attentiveness and emotions. This statistical analysis helps to identify the significant emotions that are essential in gauging various engagement levels. This study identified emotions like calm, happy, surprise, and fear are critical in gauging the student\u27s attention level. These findings help in the earlier detection of students with lower attention levels, consequently helping the instructors focus their support and guidance on the students in need, leading to a better online learning environment
    • …
    corecore