458 research outputs found

    Evaluation of a dual-T-type converter supplying an open-end winding induction machine

    Get PDF
    The multilevel inverter is a promising technology compared to two-level inverters in the applications of ac-drives and smart-grid applications. In this paper, a dual-T-type three-level inverters is used to drive an open-end winding induction machine. The Space-Vector Pulse-Width Modulation is selected as a good-performing control strategy to control the dual-inverter. Furthermore, an optimized method is used to select the proper switching state for the new configuration to decrease the converter losses. A comparison between the proposed configuration and the conventional diode clamped converter is made. The proposed drive system is designed and modelled by using Matlab/Simulink. It is shown that the converter can give the same hexagon, wave forms and harmonic spectrum of the five level converter. An optimized switching state selection is used to reduce the converter losses. The advantages and drawbacks of the dual-T-type configuration are discussed. In addition, the harmonic analysis and the loss calculations of the dual-T-type converter are provided and compared to the T-type three-level converter and the conventional five-level diode-clamped-converter

    PWM control techniques for three phase three level inverter drives

    Get PDF
    In this paper two very efficient pulse width modulation techniques were discussed named Sin pulse width modulation and space vector pulse width modulation. The basic structure of the three-level inverter neutral-point clamped is introduced and the basic idea about space vector pulse width modulation for three-level voltage source inverter has been discussed in detail. Nearest three vectors space vector pulse width modulation control algorithm is adopted as the control strategy for the three phase three level NPC inverter in order to compensate the neutral-point shifting. Mathematical formulation for calculating switching sequence has determined. Comparative analysis proving superiority of the space vector pulse width modulation technique over the conventional pulse width modulation, and the results of the simulations of inverter confirm the feasibility and advantage of the space vector pulse width modulation strategy over sin pulse width modulation in terms of good utilization of dc-bus voltage, low current ripple and reduced switching frequency. Space vector pulse width modulation provides advantages better fundamental output voltage and useful in improving harmonic performance and reducing total harmonic distortion

    Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Generator Systems

    Get PDF
    Wind energy plays an increasingly important role in the world because it is friendly to the environment. During the last decades, the concept of a variable-speed wind turbine (WT) has been receiving increasing attention due to the fact that it is more controllable and efficient, and has good power quality. As the demand of controllability of variable speed WTs increases, it is therefore important and necessary to investigate the modeling for wind turbine-generator systems (WTGS) that are capable of accurately simulating the behavior of each component in the WTGS. Therefore, this thesis will provide detailed models of a grid-connected wind turbine system equipped with a doubly-fed induction generator (DFIG), which includes the aerodynamic models of the wind turbine, the models of the mechanical transmission system, the DFIG models and the three-phase two-level PWM voltage source converter models. In order to obtain satisfying output power from the WTGS, control strategies are also necessary to be developed based on the previously obtained WTGS models. These control schemes include the grid-side converter control, the generator-side converter control, the maximum power point tracking control and the pitch angle control. The grid-side converter controller is used to keep the DC-link voltage constant and yield a unity power factor looking into the WTGS from the grid-side. The generator-side converter controller has the ability of regulating the torque, active power and reactive power. The maximum power point tracking control is used to provide the reference values for the active power at the stator terminals. The pitch angle control scheme is used to regulate the pitch angle and thus keep the output power at rated value even when the wind speed experiences gusts. Various studies in the literature have reported that two-level converters have several disadvantages compared with three-level converters. Among the disadvantages are high switching losses, high dv/dt, and high total harmonic distortion (THD). Hence, the models and field oriented control schemes for three-level neutral-point-clamped (NPC) converters are also investigated and applied to a WTGS. Besides, an advanced modulation technology, namely, space vector PWM (SVPWM), is also investigated and compared to traditional sinusoidal PWM in a WTGS

    A Fault-Tolerant Control Strategy for Three-level Neutral-Point Clamped (NPC) Inverter

    Get PDF
    When the open-circuit fault occurs on neutral-point clamped (NPC) inverters, it can cause the distortion of output currents, excessively large fluctuation of output voltages, and unbalanced neutral-point potential. Currently, several existing fault diagnosis methods are able to identify the fault types, but they are unable to identify the switching devices where the open-circuit faults occur. Furthermore, even if the open-circuit faults can be identified, the implications caused by open-circuit faults need to be further addressed. This thesis is focused on diagnosing the open-circuit faults and mitigating the problems caused by these faults. An effective fault diagnosis method is proposed in his study to identify the switching devices where the open-circuit faults occur. The characteristics of different distorted currents are firstly analyzed. By normalizing the sampling currents, calculating the average currents and comparing them with thresholds, different faulty switching devices can all be identified. To address the issues caused by these faults, a fault-tolerant control strategy is proposed. By replacing the impossible space vectors caused by these faults with other vectors which can generate the same output voltages, the problems of distortion of output currents and excessively large fluctuation of output voltages can be solved. But the excessively large difference of neutral-point potential still exists. To address the above issue, a model predictive control strategy is proposed to solve the problem of excessively large difference of neutral-point potential. A cost function is built to track the reference vector and suppress the difference of neutral-point potential. The Lagrange function is used to solve the action times of different space vectors. Furthermore, it is shown that when the neutral-point potential is initially unbalanced, the developed strategy is still able to make the potential balanced and greatly reduce its fluctuation

    MATLAB/SIMLINK Model for Three Phase Hybrid Multilevel Inverter Based on Half Bridge Modules

    Get PDF
    Nowadays the multilevel inverters are widely used in power electronic applications. The multilevel inverters are recommended for medium and high voltage applications. Multilevel inverters have become more popular due to reduced switching losses, low costs, low harmonic distortion and high voltage capability when compared to traditional PWM inverters. This paper deals with hybrid multilevel converter which is synthesize of neutral point clamped and cascaded multilevel inverter. The hybrid multilevel converter is proposed for medium voltage large power ratings. The proposed converter consisting of voltage source inverter connected with half bridge modules at each phase. With the proposed connection large portion of energy can be preceded by the VSI by connecting single multi pulse rectifier. The smaller power shares processed within the half bridge modules. The modulation scheme for hybrid multilevel inverter is naturally achieved by using logic circuit. The modulation scheme for four-level version is analyzed in detail for higher modulation (HM), three level version is analyzed for lower modulation (LM). This modulation scheme allows unidirectional power flow in all DC sources. For unidirectional application, the diode bridges are employed at rectification input side. The modulation schemes of sinusoidal pulse width modulation (SPWM), space vector PWM (SVPWM) are analyzed by using MATLAB/SIMLINK. The comparison of THD’s for SPWM and SVPWM modulation techniques done by using MATLAB/SIMLINK. Keywords:Hybrid Converters, Multilevel Converters, PWM Modulation, Three Phase Inverters

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    COMPARATIVE STUDY ON CARRIER OVERLAPPING PWM STRATEGIES FOR THREE PHASE FIVE LEVEL DIODE CLAMPED AND CASCADED INVERTERS

    Get PDF
    This paper proposes three Carrier Overlapping PWM (COPWM) methods that utilize the (CFD) control freedom degree of vertical offsets among carriers. They are: COPWM-A, COPWM-B, COPWM-C these three methods are simulated . This paper presents a comparative study of diode clamped and cascaded three phase five-level inverters based on sinusoidal PWM& modified space vector PWM control techniques. Performance analysis is based on the results of simulation study conducted on the operation of the multilevel inverters using MATLAB/ SIMULINK. For comparison purposes, non-overlapping phase disposition PWM (PD PWM) using SPWM and modified space vector PWM is also presented. The performance parameters chosen the work included fundamental output voltage and total harmonic distortion. . A hardware set up was developed for a single-phase 5-level cascaded inverter topology using constant pulses
    • …
    corecore