601 research outputs found

    HAL — The Missing Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion

    Get PDF
    Hardware manipulations pose a serious threat to numerous systems, ranging from a myriad of smart-X devices to military systems. In many attack scenarios an adversary merely has access to the low-level, potentially obfuscated gate-level netlist. In general, the attacker possesses minimal information and faces the costly and time-consuming task of reverse engineering the design to identify security-critical circuitry, followed by the insertion of a meaningful hardware Trojan. These challenges have been considered only in passing by the research community. The contribution of this work is threefold: First, we present HAL, a comprehensive reverse engineering and manipulation framework for gate-level netlists. HAL allows automating defensive design analysis (e.g., including arbitrary Trojan detection algorithms with minimal effort) as well as offensive reverse engineering and targeted logic insertion. Second, we present a novel static analysis Trojan detection technique ANGEL which considerably reduces the false-positive detection rate of the detection technique FANCI. Furthermore, we demonstrate that ANGEL is capable of automatically detecting Trojans obfuscated with DeTrust. Third, we demonstrate how a malicious party can semi-automatically inject hardware Trojans into third-party designs. We present reverse engineering algorithms to disarm and trick cryptographic self-tests, and subtly leak cryptographic keys without any a priori knowledge of the design’s internal workings

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Rethinking Watermark: Providing Proof of IP Ownership in Modern SoCs

    Get PDF
    Intellectual property (IP) cores are essential to creating modern system-on-chips (SoCs). Protecting the IPs deployed in modern SoCs has become more difficult as the IP houses have been established across the globe over the past three decades. The threat posed by IP piracy and overuse has been a topic of research for the past decade or so and has led to creation of a field called watermarking. IP watermarking aims of detecting unauthorized IP usage by embedding excess, nonfunctional circuitry into the SoC. Unfortunately, prior work has been built upon assumptions that cannot be met within the modern SoC design and verification processes. In this paper, we first provide an extensive overview of the current state-of-the-art IP watermarking. Then, we challenge these dated assumptions and propose a new path for future effective IP watermarking approaches suitable for today\u27s complex SoCs in which IPs are deeply embedded

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    The Future of Semiconductor Intellectual Property Architectural Blocks in Europe

    Get PDF
    Semiconductor intellectual property (IP) blocks, also known as IP cores, are reusable design components that are used to build advanced integrated circuits (ICs). It is typically impossible to create new IC designs without pre-designed IP blocks as a starting point. These design components are called Âżintellectual propertyÂż blocks because they are traded as rights to use and copy the design. Firms that focus on this business model are often called ÂżchiplessÂż semiconductor firms. IP cores are perhaps the most knowledge-intensive link in the information economy value chain. They define the capabilities of billions of electronic devices produced every year. As all products are becoming increasingly intelligent and embedded with information processing and communication capabilities, future developments in semiconductor IP will have a profound impact on the future developments in the overall knowledge economy and society. At present, the IC industry is approaching the most fundamental technological disruption in its history. The rapid incremental innovation that has led to exponential growth in the number of transistors on a chip and expanded the applications of ICT to all areas of human life is about to end. This discontinuityÂżthe end of semiconductor scalingÂżopens up new business opportunities and shifts the focus of ICT research to new areas. The main objective of this study is to describe the current state and potential future developments in semiconductor IP, and to relate the outcomes of the study to policy-related discussions relevant to the EU and its Member States.JRC.J.4-Information Societ
    • …
    corecore