602 research outputs found

    Theta oscillations support the interface between language and memory

    No full text
    Recent evidence shows that hippocampal theta oscillations, usually linked to memory and navigation, are also observed during online language processing, suggesting a shared neurophysiological mechanism between language and memory. However, it remains to be established what specific roles hippocampal theta oscillations may play in language, and whether and how theta mediates the communication between the hippocampus and the perisylvian cortical areas, generally thought to support language processing. With whole-head magnetoencephalographic (MEG) recordings, the present study investigated these questions with two experiments. Using a violation paradigm, extensively used for studying neural underpinnings of different aspects of linguistic processing, we found increased theta power (4–8 ​Hz) in the hippocampal formation, when participants read a semantically incorrect vs. correct sentence ending. Such a pattern of results was replicated using different sentence stimuli in another cohort of participants. Importantly, no significant hippocampal theta power increase was found when participants read a semantically correct but syntactically incorrect sentence ending vs. a correct sentence ending. These findings may suggest that hippocampal theta oscillations are specifically linked to lexical-semantic related processing, and not general information processing in sentence reading. Furthermore, we found significantly transient theta phase coupling between the hippocampus and the left superior temporal gyrus, a hub area of the cortical network for language comprehension. This transient theta phase coupling may provide an important channel that links the memory and language systems for the generation of sentence meaning. Overall, these findings help specify the role of hippocampal theta in language, and provide a novel neurophysiological mechanism at the network level that may support the interface between memory and language

    Theta Coherence Asymmetry In The Dorsal Stream Of Musicians Facilitates Word Learning

    Get PDF
    Word learning constitutes a human faculty which is dependent upon two anatomically distinct processing streams projecting from posterior superior temporal (pST) and inferior parietal (IP) brain regions toward the prefrontal cortex (dorsal stream) and the temporal pole (ventral stream). The ventral stream is involved in mapping sensory and phonological information onto lexical-semantic representations, whereas the dorsal stream contributes to sound-to-motor mapping, articulation, complex sequencing in the verbal domain, and to how verbal information is encoded, stored, and rehearsed from memory. In the present source-based EEG study, we evaluated functional connectivity between the IP lobe and Broca's area while musicians and non-musicians learned pseudowords presented in the form of concatenated auditory streams. Behavioral results demonstrated that musicians outperformed non-musicians, as reflected by a higher sensitivity index (d'). This behavioral superiority was paralleled by increased left-hemispheric theta coherence in the dorsal stream, whereas non-musicians showed stronger functional connectivity in the right hemisphere. Since no between-group differences were observed in a passive listening control condition nor during rest, results point to a task-specific intertwining between musical expertise, functional connectivity, and word learning

    How event-based memories change as a function of forgetting and consolidation

    Get PDF
    Episodic memories are composed of multiple elements, from the people we encounter, the locations we visit, and the objects we interact with. These ‘episodes’ are thought to be stored in memory as coherent event representations and are associated with holistic recollection at retrieval, such that the retrieval of one element is dependent on the retrieval of all other elements from the same event. Evidence for this ‘dependency’ has been shown to emerge from the association between the event elements themselves. Critically, dependency is seen when participants learn three overlapping pairwise associations in a ‘closed-loop’, but not when participants learn only two out of the three possible associations in an ‘open-loop’, suggesting that all pairwise associations between event-elements need to be explicitly encoded for a coherent event representation to emerge. Here I asked whether the associative structure formed at encoding affects how event-based memories are retained over a period of forgetting and consolidation. Recently formed representations are susceptible to forgetting via interference and/or decay, but also undergo memory consolidation; becoming less susceptible to interference and/or decay. As such, retention for an event-based representation will reflect an interaction between forgetting and consolidation. This thesis presents evidence that closed-loops tend to be forgotten in an all-or-none manner, such that closed-loops are more likely to either be retained or forgotten in their entirety. In contrast, open-loops are associated with a more asymmetrical pattern of forgetting as a function of memory reactivation during sleep. Further, the thesis presents fMRI evidence that closed-loops continue to be retrieved in a coherent manner following a period of forgetting and consolidation. These findings suggest that the associative structure formed at encoding has a lasting impact on the coherence of the underlying memory representation

    Data-Driven Classification of Spectral Profiles Reveals Brain Region-Specific Plasticity in Blindness

    Get PDF
    Congenital blindness has been shown to result in behavioral adaptation and neuronal reorganization, but the underlying neuronal mechanisms are largely unknown. Brain rhythms are characteristic for anatomically defined brain regions and provide a putative mechanistic link to cognitive processes. In a novel approach, using magnetoencephalography resting state data of congenitally blind and sighted humans, deprivation-related changes in spectral profiles were mapped to the cortex using clustering and classification procedures. Altered spectral profiles in visual areas suggest changes in visual alpha-gamma band inhibitory-excitatory circuits. Remarkably, spectral profiles were also altered in auditory and right frontal areas showing increased power in theta-to-beta frequency bands in blind compared with sighted individuals, possibly related to adaptive auditory and higher cognitive processing. Moreover, occipital alpha correlated with microstructural white matter properties extending bilaterally across posterior parts of the brain. We provide evidence that visual deprivation selectively modulates spectral profiles, possibly reflecting structural and functional adaptation

    Proper Names and Common Nouns Dissociation: Exploring Differences in Linguistic Processing and Memory Retrieval

    Get PDF
    Tese de mestrado, Ciência Cognitiva, 2022, Universidade de Lisboa, Faculdade de CiênciasPhilosophy and linguistics suggest that proper names and common nouns are dissociate lexicosemantic categories. Evidence from psychology and neuropsychology honours this distinction as it provides indications that they may activate different neuro-functional systems. Nevertheless, there are still some lacks in the literature that must be filled. There are mixed findings about the temporal pole involvement in proper names retrieval. Furthermore, to our knowledge, no study has yet investigated the dissociation of proper names vs. common nouns in light of the welldocumented oscillatory dissociation of episodic theta and semantic alpha as reflecting the distinct declarative memory requirements. Besides, no study has explored the brain-based dissociation between the two categories using images as a stimulus. Our naming task showed that there is a dissociation in the retrieval of proper names being more demanding and source-consuming compared to common nouns. Also, oscillations patterns revealed a more pronounced evoked theta power in the proper names retrieval condition in comparison to the common nouns condition. For the alpha wave, we did not obtain differences between the categories. These results sustain the claim of the existence of functionally and anatomically distinct retrieval pathways for the categories of proper and common names, and thus, a dissociation between proper names and common nouns

    The hearing hippocampus

    Get PDF
    The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information – whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia

    Oscillations cérébrales et performances cognitives : études à l'état de repos en MEG chez des sujets contrôles et des survivants de cancer pédiatrique

    Full text link
    Cette étude s’intéresse au lien entre les dynamiques cérébrales et les capacités cognitives, cette problématique a déjà été explorée auparavant en imagerie cérébrale, notamment à l’aide de tâches effectuées pendant l’imagerie. Cependant la caractérisation de l’activité spontanée a principalement été faite soit avec une faible précision spatiale (capteur EEG/MEG), soit en IRMf qui a une faible résolution temporelle. L’objectif de cette thèse est de caractériser l’activité spontanée au repos au niveau cortical associée à différents processus cognitifs et leur performance. Le second chapitre cherche à établir les corrélats neuronaux de la performance de la mémoire au repos à l’aide des puissances spectrales localisées au niveau des sources corticales. Le troisième chapitre cherche à répliquer les méthodes utilisées dans l’article 1 avec les mêmes participants, mais dans un autre domaine cognitif afin d’établir les corrélats neuronaux de la fluence verbale ainsi que de discriminer une composante verbale et exécutive. Ces deux composantes ont été mises en évidence en utilisant une factorisation avec un test purement exécutif (Trail making test- condition 4) et un autre purement verbal (richesse du vocabulaire). Dans le quatrième chapitre, nous répliquons encore la méthode de l’article 1 avec les mêmes sujets, mais sur un test d’apprentissage verbal. Lors de l’apprentissage verbal, deux stratégies d’apprentissage (sériel et sémantique) possibles sont utilisées de manière concurrente, nous avons cherché à établir si des différences comportementales se traduisaient par des patrons d’activation différents. Dans le cinquième chapitre, nous avons cherché à établir des différences fonctionnelles entre les survivants de la leucémie et des sujets contrôles, puis à établir un lien entre la neurotoxicité et le déficit cognitif rencontré chez cette population, finalement nous avons établi un modèle intégrant neurotoxicité, performance cognitive et marqueur neurophysiologique fonctionnel cérébral. Cette recherche aura approfondi les connaissances sur l’état de repos et principalement fourni les premiers travaux qui mettent en lien l’activité cérébrale spontanée au repos au niveau des sources corticales avec plusieurs tests neuropsychologiques comportementaux. Les résultats ont amené des patrons d’activation spatio-fréquentielle différents, démontrant des spécificités reliées à certains tests comportementaux ou des traitements de l’information (sériel ou sémantique). Finalement les travaux sur les survivants de la leucémie ont montré que l’état de repos pouvait caractériser le fonctionnement des déficits cognitifs à long terme et être un marqueur de remédiation pour de futurs traitements.This study is interested in the link between brain dynamics and cognitive abilities. This problem has already been explored before in brain imaging, notably with the help of task performed during imaging. However, the characterization of spontaneous activity has mainly been done either with weak spatial resolution (EEG/MEG sensor) or in fMRI which has a low temporal resolution. The objective of this thesis is to characterize the spontaneous activity at rest at the cortical level associated with different cognitive processes and their performance. The second chapter seeks to establish the neural correlates of resting memory performance using spectral powers localized at cortical sources. The third chapter seeks to replicate the methods used in article 1 with the same participants but in another cognitive domain in order to establish the neural correlates of verbal fluency as well as to discriminate a verbal and an executive component. These two components were highlighted using a factorization with a purely executive test (Trail making test-condition 4) and another purely verbal one (vocabulary richness). In the fourth chapter, we replicate the method of article 1 with the same subjects, but on a verbal learning test. During verbal learning, two possible learning strategies (serial and semantic) are used concurrently, we sought to establish whether behavioural differences translate into different activation patterns. In the fifth chapter, we sought to establish functional differences between leukemia survivors and control subjects, then to search for a link between neurotoxicity and the cognitive deficit encountered in this population; finally we established a model integrating neurotoxicity, cognitive performance and functional neurophysiological brain markers. This research will have deepened the knowledge on the resting state and mainly provided the first works that link the spontaneous brain activity at rest at the level of cortical sources with several behavioural neuropsychological tests. The results led to different spatio-frequential activation patterns, showing specificities related to certain behavioural tests or information processing (serial or semantic). Finally, work on leukemia survivors has shown that resting states could characterize the functioning of long-term cognitive deficits and be a remediation marker for future treatments

    Modulation of Oscillatory Power and Connectivity in the Human Posterior Cingulate Cortex Supports the Encoding and Retrieval of Episodic Memories

    Get PDF
    Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70–180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items
    • …
    corecore