19 research outputs found

    Effect of Temperature of Electrolyte Solution On Cu/Ni Layer On Low-Temperature Voltage Range Measurement Performance

    Get PDF
    The electroplating method is considered an economical way in coating manufacture. However, this method is more widely used to treat chemical waste management and material properties engineering. The purpose of this research is to make a low-temperature sensor Cu/Ni film using an electroplating method assisted by an external magnetic field. The materials used are nickel (Ni) and copper (Cu), placed as anode and cathode. The electrolyte solution used is made from a mixture of H3BO3 (40 g/L), NiSO4 (260 g/L), and NiCl2 (60 g/L). The deposition process is carried out using an external magnetic field of 200 G and installed perpendicular to the deposition current, 120 s deposition time, and 3 Volt voltage. Preparation of Cu/Ni layer sensor samples is done by changing the electrolyte solution's temperature by varying the temperature between 30 ºC to 70 ºC with intervals of 10 ºC. The results of the research show that in testing the performance of the low-temperature sensor, each Cu/Ni layer sample has been able to offer its character as a low-temperature sensor. The character is indicated by changes in the output voltage's value following changes in the thermocouple value. Each sample at variations in the temperature of the electrolyte solution shows that the measured voltage range varies with the most extensive voltage range the sample has with deposition at 60 ºC.Keywords: Electrolyte Solution Temperature, Voltage Range, Cu/Ni layer, Low-Temperature Sensor, Electroplating

    Experimental of surface roughness and tool wear on coolant condition technique using Aluminium alloy 319 used in automotive industries

    Get PDF
    The present day the applications of machining part tolerances, like the automotive industries aimed to reduce the fuel consumption of their vehicle by reducing the total mass per vehicle and the method process for machining. Understanding of the interaction and significance machining parameters are important to improve the efficiency of any machining process and the accuracy part produced. The objective of this research is to analyze the machining parameters (spindle speed, depth of cut and feed rates) in a three machining conditions (dry, wet and 1.0 mm coolant nozzle size on the surface roughness and tool wear using Respond Surface Method (RSM) on the CNC Lathe machine with 2 axes movements. The synthetic soluble oils, and coated cemented carbide Al2 O3 insert were used as a workpiece material and cutting tool respectively. The result of the machining experiment for Aluminum alloy 319 was investigated to analyze the main factor affecting surface roughness using the analysis of Variance (ANOVA) method. The optimum selection of the cutting conditions effectively contributes to the increase in the productivity and reduction in the production cost; therefore almost attention is paid to this problem. In cutting process, optimization of cutting parameters is considered to be a vital tool for improvement in output quality of a product as well as reducing the overall production time. The acquired results showed that the coated cemented carbide Al2 O3 insert gives the optimum overall performance in terms of surface roughness and tool wear with the smallest orifice size coolant. The research also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms using the mathematical model and equations, generated by CCD based on RSM method

    Evaluation of temperature distribution for bone drilling considering aging factor

    Get PDF
    Bone drilling is a routine operation in surgeries, such as neurosurgery and orthopedics. However, the excessive drilling temperature may cause severe thermal damage to the bone tissue. Therefore, the drilling temperature determination of bone tissue can reduce the harm caused by thermal damage. A time-varying temperature field simulation model of bone drilling was set up by ABAQUS software in this paper, based on the Johnson-Cook model. Then it was validated with experiments by drilling cortical bone of fresh bovine shaft of the femur. The relative error between the experimental values and the theoretical values within 7.67% showed a good consistency. Furthermore, the aging factor is also considered to evaluate the temperature field of bone drilling. The results showed that the drilling temperature near the bone-drill area increased significantly. The drilling temperature of cortical bone decreases sharply with the radial distance and exhibits a hysteresis lag in the axial distribution. The aging factor mainly affects the peak of drilling temperature. The peak of drilling temperature tends to increase with age. The peak drilling temperature in the elderly (70y) was up to 6.8% higher than that in the young (20y), indicating that the elderly is more prone to excessive drilling temperature. Therefore, special attention should be paid to the temperature control of elderly bone tissue

    Finite element modeling of temperature fields on the cutting edge in the dry high-speed turning of aisi 1045 steel

    Get PDF
    High-speed turning is an advanced and emerging machining technique that, in contrast to the conventional machining, allows the manufacture of the workpiece with high accuracy, efficiency and quality, with lower production costs and with a considerable reduction in the machining times. The cutting tools used for the conventional machining cannot be employed for high-speed machining due to a high temperature induced in machining and a lower tool life. Therefore, it is necessary to study the influence of high cutting speeds on the temperature distribution in different typologies of cutting tools, with the aim of evaluating their behavior. In this paper, a finite element method modeling approach with arbitrary Lagrangian-Eulerian fully coupled thermal-stress analysis is employed. The research presents the results of different cutting tools (two coated carbide tools and uncoated cermet) effects on average surface temperature fields on the cutting edge in the dry high-speed turning of AISI 1045 steel. The numerical experiments were designed based on different cutting tools like input parameters and different temperature field zones like dependent variables in the dry high-speed turning of AISI 1045 steel. The results indicate that the dry high-speed turning of AISI 1045 steel does not influence significantly the temperature field zones when P10, P15 or P25 inserts are used. Therefore, the use of a dry high-speed turning method, which reduces the amount of lubricant and increases productivity, may represent an alternative to turning to the extent here described.Postprint (published version

    FINITE ELEMENT MODELING OF TEMPERATURE FIELDS ON THE CUTTING EDGE IN THE DRY HIGH-SPEED TURNING OF AISI 1045 STEEL

    Get PDF
    High-speed turning is an advanced and emerging machining technique that, in contrast to the conventional machining, allows the manufacture of the workpiece with high accuracy, efficiency and quality, with lower production costs and with a considerable reduction in the machining times. The cutting tools used for the conventional machining cannot be employed for high-speed machining due to a high temperature induced in machining and a lower tool life. Therefore, it is necessary to study the influence of high cutting speeds on the temperature distribution in different typologies of cutting tools, with the aim of evaluating their behavior. In this paper, a finite element method modeling approach with arbitrary Lagrangian-Eulerian fully coupled thermal-stress analysis is employed. The research presents the results of different cutting tools (two coated carbide tools and uncoated cermet) effects on average surface temperature fields on the cutting edge in the dry high-speed turning of AISI 1045 steel. The numerical experiments were designed based on different cutting tools like input parameters and different temperature field zones like dependent variables in the dry high-speed turning of AISI 1045 steel. The results indicate that the dry high-speed turning of AISI 1045 steel does not influence significantly the temperature field zones when P10, P15 or P25 inserts are used. Therefore, the use of a dry high-speed turning method, which reduces the amount of lubricant and increases productivity, may represent an alternative to turning to the extent here described

    Measurement of micro burr and slot widths through image processing: Comparison of manual and automated measurements in micro‐milling

    Get PDF
    In this study, the burr and slot widths formed after the micro‐milling process of Inconel 718 alloy were investigated using a rapid and accurate image processing method. The measurements were obtained using a user‐defined subroutine for image processing. To determine the accuracy of the developed imaging process technique, the automated measurement results were compared against results measured using a manual measurement method. For the cutting experiments, Inconel 718 alloy was machined using several cutting tools with different geometry, such as the helix angle, axial rake angle, and number of cutting edges. The images of the burr and slots were captured using a scanning electron microscope (SEM). The captured images were processed with computer vision software, which was written in C++ programming language and open‐sourced computer library (Open CV). According to the results, it was determined that there is a good correlation between automated and manual measurements of slot and burr widths. The accuracy of the proposed method is above 91%, 98%, and 99% for up milling, down milling, and slot measurements, respectively. The conducted study offers a user‐friendly, fast, and accurate solution using computer vision (CV) technology by requiring only one SEM image as input to characterize slot and burr formation

    On the Influence of Infra-Red Sensor in the Accurate Estimation of Grinding Temperatures

    Get PDF
    Workpiece rejection originated by thermal damage is of great concern in high added-value industries, such as automotive or aerospace. Surface temperature control is vital to avoid this kind of damage. Difficulties in empirical measurement of surface temperatures in-process imply the measurement in points other than the ground surface. Indirect estimation of temperatures demands the use of thermal models. Among the numerous temperature measuring techniques, infra-red measurement devices excel for their speed and accurate measurements. With all of this in mind, the current work presents a novel temperature estimation system, capable of accurate measurements below the surface as well as correct interpretation and estimation of temperatures. The estimation system was validated by using a series of tests in different grinding conditions that confirm the hypotheses of the error made when measuring temperatures in the workpiece below the surface in grinding. This method provides a flexible and precise way of estimating surface temperatures in grinding processes and has shown to reduce measurement error by up to 60%.Ministerio de Educacion,Cultura y Deporte DPI2017-82239-P AIE/FEDER, U
    corecore