1,448 research outputs found

    Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host–Guest Interactions

    Get PDF
    Photoinduced shape morphing has implications in fields ranging from soft robotics to biomedical devices. Despite considerable effort in this area, it remains a challenge to design materials that can be both rapidly deployed and reconfigured into multiple different three-dimensional forms, particularly in aqueous environments. In this work, we present a simple method to program and rewrite spatial variations in swelling and, therefore, Gaussian curvature in thin sheets of hydrogels using photoswitchable supramolecular complexation of azobenzene pendent groups with dissolved α-cyclodextrin. We show that the extent of swelling can be programmed via the proportion of azobenzene isomers, with a 60% decrease in areal swelling from the all trans to the predominantly cis state near room temperature. The use of thin gel sheets provides fast response times in the range of a few tens of seconds, while the shape change is persistent in the absence of light thanks to the slow rate of thermal cis–trans isomerization. Finally, we demonstrate that a single gel sheet can be programmed with a first swelling pattern via spatially defined illumination with ultraviolet light, then erased with white light, and finally redeployed with a different swelling pattern

    Mechanical Self-Assembly of a Strain-Engineered Flexible Layer: Wrinkling, Rolling, and Twisting

    Get PDF
    Self-shaping of curved structures, especially those involving flexible thin layers, has attracted increasing attention because of their broad potential applications in e.g. nanoelectromechanical/micro-electromechanical systems (NEMS/MEMS), sensors, artificial skins, stretchable electronics, robotics, and drug delivery. Here, we provide an overview of recent experimental, theoretical, and computational studies on the mechanical self-assembly of strain-engineered thin layers, with an emphasis on systems in which the competition between bending and stretchingenergy gives rise to a variety ofdeformations,such as wrinkling, rolling, and twisting. We address the principle of mechanical instabilities, which is often manifested in wrinkling or multistability of strain-engineered thin layers. The principles of shape selection and transition in helical ribbons are also systematically examined. We hope that a more comprehensive understanding of the mechanical principles underlying these rich phenomena can foster the development of new techniques for manufacturing functional three- dimensional structures on demand for a broad spectrum of engineering applications.Comment: 91 pages, 35 figures, review articl

    Reconfigurable Periodic Porous Membranes & Nanoparticle Assemblies

    Get PDF
    The thesis here will cover two parts of my research. The focus of the first part of the thesis will be using responsive hydrogel materials to manipulate the pattern transformation at microscale (Chapter 3-5), and meanwhile using the finite element method (FEM) to guide new designs of the periodic porous structures that can undergo controlled pattern transformation processes (Chapter 6). In beginning, I design fabrication methods of micro-structures from responsive hydrogel materials via micro-/nano- imprinting. The responsiveness of the hydrogels is introduced by incorporating responsive monomers into the hydrogel precursors. Here, the responsiveness of the hydrogel leads to the tunable swelling ratio of the hydrogel under external stimuli, e.g. pH, temperature, and variation of humidity, so that the imprinted nano-/micro- structures can be dynamically controlled. Later, upon using FEM simulation, we design and experimentally test the deformation and mechanical properties of the periodic porous membranes based on different collapsing modes of kagome lattices. The experiments are performed at macroscopic scale taking advantage of powerful 3D printing prototyping. As the deformation phenomenon is scale independent, the observed phenomenon is applicable to predict the deformation of the micro-structures. In the second part of the thesis, we investigate two colloidal assembly systems. First (Chapter 7-8), we utilize the new form of silica nanoparticles with chain-like morphology to generate sharp nanostructures on the coating surface that minimize the contact between liquid and solid phase, and thus improve dramatically the water repellency on the coating surfaces. The stability test of the superhydrophobicity against hydrodynamic/hydrostatic pressure, low surface tension liquid, and vapor phase condensation, are also investigated for a complete interpretation of the wetting behavior. Secondly (Chapter 9), I design colloidal suspensions matching the inter-particle interactions with those used in theoretical study of colloidal assembly within the confined the space. The beauty of the system is that the colloidal suspension can be cross-linked and lock the assembled structures, so that the assembled structure can be observed under electron microscope and compare to theory and simulation. So far, a good consistence has been observed, indicating a validated design of the systems

    Recent progress in the shape deformation of polymeric hydrogels from memory to actuation

    Get PDF
    Shape deformation hydrogels, which are one of the most promising and essential classes of stimuli-responsive polymers, could provide large-scale and reversible deformation under external stimuli. Due to their wet and soft properties, shape deformation hydrogels are anticipated to be a candidate for the exploration of biomimetic materials, and have shown various potential applications in many fields. Here, an overview of the mechanisms of shape deformation hydrogels and methods for their preparation is presented. Some innovative and efficient strategies to fabricate programmable deformation hydrogels are then introduced. Moreover, successful explorations of their potential applications, including information encryption, soft robots and bionomic systems, are discussed. Finally, remaining great challenges including the achievement of multiple stable deformation states and the combination of shape deformation and sensing are highlighted
    • …
    corecore