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ABSTRACT 

NANO- AND MICRO-STRUCTURED TEMPERATURE-SENSITIVE HYDROGELS 

FOR RAPIDLY RESPONSIVE DEVICES 

MAY 2020 

QI LU, B.ENG., BEIHANG UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Ryan C. Hayward 

This thesis aims to extend the understanding and explore the application of temperature-

responsive hydrogel systems by integrating microelectromechanical systems (MEMS). 

Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous 

fields, and interfacing with micro- and nano-fabrication techniques will open up more 

possibilities.  

In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel 

surface instability was developed. This dynamic platform is constructed by embedding 

micro-heater devices under temperature-responsive surface-attached hydrogels. The fast 

and regional temperature change actuates the stretching and relaxation of the seeded human 

artery smooth muscle cell (HASMC) via controllable surface creasing instability. This 
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device is engineered to mimic the in vivo environment of HASMCs, with independent 

control over substrate stiffness, mechanical cues and peptide attachment chemistry, and the 

response of HASMCs is inspected by the differentiation marker expression change.  

In Chapter 3, the swelling and deswelling kinetics of hydrogel sheets with high polymer 

content is inspected, with micro-heaters providing abrupt local temperature change. 

Poly(N-isopropylacrylamide) (PNIPAM) molecules can form hydrogen bonds with both 

water molecules and polymer chains, while poly(N,N-diethylacrylamide) (PDEAM) 

molecules can only form hydrogen bonds with water. The kinetics of the two hydrogel 

systems are systematically compared, revealing that while PDEAM shows one-step mass 

transport-limited kinetics, PNIPAM shows two-step kinetics behavior, presumably 

reflecting the strong influence of inter-molecular hydrogen bonding.  

The following two chapters document the attempts to further investigate into the 

hydrogel/MEMS interface. In Chapter 4, photo-patterning technique assists the study of 

regional modulus contrast influencing the formation of creases on the soft hydrogel surface, 

and it is demonstrated that the dimensions of the stiff patterns are relevant in directing the 

creasing direction. In Chapter 5, a photo-patternable sacrificial layer is designed based on 

crosslinking chemistry and gelation physics to potentially enable the construction of more 

complex MEMS devices.  
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CHAPTER 1 

INTRODUCTION 

1.1 Responsive hydrogels 

Hydrogels are three-dimensional hydrophilic polymer networks that adopt a specific 

volume when exposed to water, and can contain the water within their structure. The 

hydrophilicity of the polymer network is usually provided by high polarity moieties, so the 

most frequently used materials include synthetic polymers like poly(2-hydroxyethyl 

methacrylate) (PHEMA), poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG), as 

well as natural derivatives like cellulose, alginate, and hyaluronic acid1. The crosslinking 

in the network prevents the polymer chains from dissolving into the aqueous solution, and 

the crosslinking can be categorized into chemical crosslinking of covalent bonds and 

physical crosslinking of non-covalent interactions, such as hydrogen bonding, ionic 

interactions, metal-ligand coordination, and guest-host complexation.  The solvent 

contained in the network helps to prevent the network from collapsing, so the small 

molecules can transport into and out of the hydrogel through its porous structure, providing 

resemblance to biological tissues and allowing for biocompatibility.  

As is described in Flory-Rehner theory, osmotic pressure drives the water to flow into the 

hydrophilic hydrogel network, but the network elasticity prohibits the network from 

infinite expansion, and the swelling equilibrium is achieved when the elasticity of the 

network is counterbalanced by the expansion due to the solvent absorption2. This 

equilibrium swollen state depends on the hydrogel properties, such as 
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hydrophobicity/hydrophilicity balance, crosslinking density and degree of ionization, 

which can be altered by the environmental stimuli, such as temperature, pH, ionic strength, 

chemical reagents, light, and electric field3,4. When the hydrogel property is changed by 

the formation or destruction of secondary chemical interactions, reactions of functional 

moieties, or corresponding osmotic pressure differentials, the swelling equilibrium will be 

interrupted and the hydrogels will undergo volumetric expansion or shrinkage, known as 

swelling and deswelling5,6. This stimuli-responsiveness of hydrogel systems makes them 

useful in many areas, including drug delivery, sensing devices and soft actuators, tissue 

engineering, smart optical systems and smart surfaces7–11. 

1.1.1 Thermal responsive hydrogel 

Among various stimuli responsive hydrogel systems, temperature triggered hydrogels are 

the most widely studied because they can respond to an easily regulated environmental cue 

and they can be developed to in vivo devices or controlled drug delivery carriers. The 

temperature responsive hydrogels can be constructed using physical crosslinks whose 

properties depend on ambient temperature, such as hydrogen bonding and hydrophobic 

interactions. More commonly, temperature-responsive hydrogels are constructed from 

monomers with both hydrophobic groups such as methyl, ethyl and propyl groups and a 

hydrophilic moiety such as an amide, and the switching between hydrophobicity and 

hydrophilicity is dependent on the ambient temperature. This temperature responsiveness 

is reflected as solubility change for linear polymers, and volumetric change for crosslinked 

networks. The temperature where the transition occurs is called the volume phase transition 

temperature, where a phase change occurs between the polymer and the solvent. Some 

polymer solutions  undergo phase separation below the critical temperature, thus showing 
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a upper critical solution temperature (UCST) behavior, such as polysulfobetain in aqueous 

solution12, and the interpenetrating network composed of polyacrylamide and poly(acrylic 

acid)13. But the more commonly observed and investigated hydrogels have lower critical 

solution temperature (LCST) properties, where the polymer becomes more soluble in the 

solvent upon cooling. The LCST of a polymer system can be tuned by the changing ratio 

of hydrophilic and hydrophobic groups, the co-solvent, crosslinking density and other 

molecular architectures14–19. There are many polymers that have LCSTs in water, such as 

poly(N-isopropylacrylamide), poly(N,N-diethylacrylamide), poly(N,N-dimethylamino 

ethylmethacrylate), poly(vinylisobutyroamide) and hydroxypropyl cellulose20–24.  

Among all polymers with a LCST, poly(N-isopropylacrylamide) (PNIPAM) is the most 

intensively studied, because its LCST in water is 32 ℃, close enough to the physiological 

relevant temperature for biomedical applications. At temperatures below LCST, the 

enthalpy decrease from the hydrogen bonding between the amide and the ambient water 

molecules is dominant over the entropy decrease from the interaction between hydrophobic 

parts and the surrounding water molecules, resulting in a negative free energy for mixing, 

so hydration is favored. When the temperature is elevated above the transition temperature, 

the hydrogen bonds are disrupted, resulting in a positive mixing free energy dominated by 

the positive entropy change, so dehydration is favored and the polymer chain 

collapses20,25,26. One important property of PNIPAM is the sharp volume phase transition 

at critical temperature, and the only other known non-ionic polymer that shares this feature 

is poly(N,N-diethylacrylamide) (PDEAM), because of their rather hydrophobic alkyl side-

groups21,27–29. DEAM monomer has a chemical structure that is very similar to NIPAM, 

and an LSCT of 30 ℃, close to 32 ℃ of PNIPAM. However, by PNIPAM having a 
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isopropyl group and PDEAM two ethyl groups as the substituting alkyl groups, PNIPAM 

has a hydrogen bond donor group of –NH, so it can form inter-molecular hydrogen bonds, 

while PDEAM cannot. This difference makes PDEAM an ideal molecule to investigate the 

effect of inter-hydrogen bonding in hydrogel systems, such as the hysteresis between the 

association and disassociation process of PNIPAM chains in water30, and the difference in 

single-chain elongation mechanics between PNIPAM and PDEAM31.  

1.1.2 Surface instabilities and constrained swelling 

When soft elastic materials are under compression, constrained swelling or differential 

growth, and the loading exceeds some critical point, the surface can form instability 

features to minimize the total energy of the system. The surface instabilities include 

wrinkling, creasing, buckling, folding, ridging and so forth, and they are observed in our 

daily lives at various length scales32–34. Surface instabilities used to be considered as 

failures in fabrication, but are currently under extensive study as a method to generate 

surface patterns and construct responsive surfaces. Researchers have exploited the 

instability of soft materials to dynamically control wettability35, and optical properties36, 

as well as to fabricate stretchable circuits for flexible electronics37, active components in 

microfluidic devices38 and serve as probes for material properties39.  

Among the surface instabilities, wrinkling and creasing are most extensively studied. 

Wrinkling occurs when a thin layer supported on a thicker soft substrate is compressed, 

and the total energy is minimized through balancing the bending energy of the stiff film 

and the stretching energy of the soft substrate. A well-ordered sinusoidal curve shape is 
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adopted, and the critical strain 𝜀𝑤𝑟𝑖𝑛𝑘𝑙𝑒 = 0.25 (
3𝐸𝑠̅̅ ̅

𝐸𝑓̅̅ ̅̅
)

2

3
, wrinkling wavelength 𝜆𝑤𝑟𝑖𝑛𝑘𝑙𝑒 =

2𝜋ℎ𝑓 (
𝐸𝑓̅̅ ̅̅

3𝐸𝑠̅̅ ̅
)

1

3
, and amplitude 𝐴 = ℎ𝑓 (

𝜀

𝜀𝑤𝑟𝑖𝑛𝑘𝑙𝑒
− 1)

1

2
, where 𝐸𝑓

̅̅ ̅ is the plane strain modulus 

of the film, 𝐸𝑠
̅̅ ̅is the plane strain modulus of the substrate, ℎ𝑓 is the film thickness and 𝜀 is 

the strain.  

It is predicted by Biot using a semi-infinite neo-Hookean scenario that the free surface of 

an elastomer would form sinusoidal waves when the plane strain exceeds 0.46, but this was 

never observed experimentally, because creasing instability occurs before this critical 

strain40. Creasing is the instability where a soft material surface releases the compressive 

stress by folding against itself, forming self-contacting regions with a discontinuity at the 

tip41–44. The onset strain for creases to form is 0.438 for uniaxial compression, and 0.35 for 

plane strain condition44. The wavelength of creasing 𝜆 = 3.5𝐻(1 − 𝜀), where H is the 

thickness and ε is the compressive strain45.  

Creases can occur when a thin, soft hydrogel film attached on a non-swelling rigid substrate 

swells above a critical value. The gel takes up water, but the lateral expansion is restricted 

by the underlying substrate, so it only swells in the thickness direction. This constrained 

swelling process generate an equibiaxial in-plane compression in comparison to the free-

standing hydrogel that can equilibrate to a stress free state, and when this compression 

strain 𝜀 (𝜀 = 1 −
𝑙0

𝑙
, where 𝑙0 is the initial dimension of the hydrogel sheet and 𝑙 is the 

dimension of the free-standing gel at equilibrium) is over the critical value, the creases will 

form on the hydrogel surface to relieve the compression, as is shown in Figure 1-146. When 
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the surface-attached hydrogel is stimuli-responsive, the formation, shape or the 

disappearance of the creases can also be controlled accordingly upon environmental change. 

When the swelling ratio of the surface-attached hydrogel can respond to environmental 

stimuli, the formation, shape or the disappearance of the creases can be controlled 

accordingly. Researchers have used this tunable creasing instability to study the buckling 

modes of hydrogel beams47, control the dynamic display of surface patterns48,49, trigger 

surface instabilities by electrical field50, develop dynamic cell stretching devices51, direct 

the formation of ordered structure of liquid crystals in hydrogels52,53, and fabricate smart 

surfaces with adjustable adhesive properties54.  

Figure 1- 1 Creasing on a surface-attached hydrogel. (a) Unidirectional swelling of a 

surface-attached gel results in a biaxial compressive stress, which can be partially relieved 

by localized creasing of the gel surface. (b) An optical micrograph of the crease structures 

formed upon swelling of a surface-attached gel. (Reproduced from Ref. 46 with 

permission from The Royal Society of Chemistry.) 
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1.1.3 Kinetics of hydrogel swelling 

The swelling of a hydrogel is a kinetic process where mass transport and mechanical 

deformation are coupled55. For relatively small deformation, linear kinetic theories can 

describe the swelling kinetics of polymer gels. Tanaka, Hocker and Benedek developed a 

linear diffusion theory where the hydrogel is treated as a mixture of solid and liquid, and 

the swelling is treated as a polymer network diffusing into a solvent negligible fluid 

displacements56,57. However, hydrogels usually undergo large deformation when swelling, 

so linear poroelasticity theory was adopted because it treats the hydrogel as a continuum 

with pore pressure as a state variable, and it describes the process of solvent migrating into 

the network, making it a good tool to describe the coupled process of matrix deformation 

and mass transport58–62. Also, non-linear approaches were developed to describe occasions 

with even larger deformations63–66. The diffusion theory in a poroelastic matrix predicts 

that in a diffusion-limited swelling transition of a hydrogel, the characteristic time is 

directly proportional to the square of the size of the gel and inversely proportional to the 

diffusion coefficient of the network (𝜏 =
𝑎2

𝐷
, where a is the gel size and D is the diffusion 

coefficient).  

For the materials system that will be used in this thesis, i.e. temperature-responsive 

hydrogel thin films initially prepared at low polymer concentration (e.g., ~10% by weight), 

it is reported that Biot’s theory of linear poroelasticity is capable of describing the kinetics 

process of both free 3D swelling and constrained 1D swelling67. The thickness of the 

hydrogel is much smaller than the lateral dimensions, and it is the distance that solvents 

have to migrate for equilibrium. This greatly reduces the swelling time constant, and also 
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makes the hydrogel swell uniformly across the lateral area by ignoring the lateral diffusion 

(except for very close to edges). Based on Fick’s law, if the swelling process is limited by 

the 1D solvent diffusion in a poroelastic network, then for a hydrogel thin film attached to 

a stiff substrate, the characteristic time for swelling is given by  𝜏 =
4𝐻2

𝜋2𝐷
, where H is the 

hydrogel thickness as made.  

1.2 Microfabrication technologies 

Microfabrication is a collection of techniques that are used to fabricate devices in the 

micrometer to sub-micron range. It has not only been applied to the semicondustor industry 

that it originated from, but is also leveraged in the development of various other fields, 

including  microelectromechanical systems (MEMS), micro-fluid devices, solar cells, flat-

panel displays and optoelectronics68. The development of microfabrication technologies is 

rapid and now there is an extensive collection of tools that are tailored to various purposes, 

so this section intended to give an introduction of the techniques that are used in this thesis, 

both established procedures carried out in cleanroom facilities and lab based systems that 

offer better flexibility.  

1.2.1 Photolithography and benzophenone crosslinking 

Among the many operations in microfabrication, the microlithography process is the 

limiting factor for feature dimensions, and photolithography is the most widely used 

method. It is a technique to transfer the pattern from a master mask to the samples on a 

substrate by selectively removing parts of the photoresist and exposing the other parts of 

the substrate. Photoresists are photosensitive materials, whose solubility can be changed 
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by photochemical reactions upon the illumination of UV light through the photomask. 

Some photoresists dissolves faster when exposed to UV light, making the exposed areas 

soluble in developers, so the pattern on the substrate will have the same binary feature as 

on the photomask, so they are called positive tone photoresists; other photoresists becomes 

insoluble in developers after exposure, so the pattern on the substrate is the negative 

counterpart to that of the photomask, and they are called negative tone photoresists. These 

photoresists act as a recording medium for the features as well as a barrier material to 

protect the underlying substrate from the later etching processes.  

Photolithography techniques were used in the fabrication of many devices in the thesis, 

however, many of the photo-patterning, photo-grafting and photo-crosslinking processes 

are carried out using benzophenone chemistry. Crosslinking occurs upon illumination, 

rendering the network insoluble; this process can be compared to the negative tone 

photoresists, only it does not require soft bake and post exposure bake procedures.  

Benzophenone chemistry is widely studied and used because it is chemically stable, 

inactive under ambient illumination, and its working wavelength does not damage the 

majority of biomolecules69,70. As is shown in Figure 1-2, when benzophenone is activated 

by UV light, ground state benzophenone is excited to a singlet state, which rapidly and 

efficiently transforms to the n-π* triplet state71. This triplet being a diradical, can abstract 

an aliphatic hydrogen, especially the one α to electron rich heteroatoms (most commonly 

nitrogen, sulfur and oxygen) or the one on a weak carbon-hydrogen bond, yielding a ketyl 

radical and an aliphatic carbon-centered radical. These radicals can initiate a 

polymerization of vinyl monomers, and also can form C-C bonds upon coupling72,73. To 

prevent phase separation and the migration of benzophenone, instead of doping into the 
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system, benzophenone is often covalently linked to the polymer backbone as a pendent 

group74. These copolymers are employed for photo-crosslinking and photo-grafting 

purposes, and these reactions do not require oxygen-free environment and can proceed in 

ambient conditions75–77.   

1.2.2 Thin film deposition 

Thin films are the building blocks of microstructures, and they serve various functions such 

as conductors, insulators, semiconductors, reflectors and so on. The common methods to 

deposit a thin film onto substrate or constructed surfaces are physical vapor deposition 

(PVD) and chemical vapor deposition (CVD). The difference between the two is whether 

chemical reactions take place in the deposition process78.  

Physical vapor deposition is an atomistic deposition process where thin film forms by 

condensation of atoms or molecules on the surface of the substrate due to evaporation, ion 

bombardment, or sputtering79,80. In this thesis work, thin films of metal are deposited onto 

the substrate by E-beam evaporation, where the metal source crucible is heated and melted 

under a high energy electron beam, then the vaporized metal is grown onto the substrate 

with a slow rate and highly directional fashion.  

Figure 1- 2 Photo-crosslinking process of polymers by benzophenone pendant groups. 
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Compared to physical vapor deposition, chemical vapor deposition has a higher deposition 

rate, lower operation temperature, better uniformity, and can be used to for more categories 

of materials81. The thin film is grown onto the surface by one or a series of chemical 

reactions in the vapor phase. In this thesis work, thin films of silicon dioxide is fabricated 

using plasma enhanced chemical vapor deposition (PECVD). It is a technique where the 

chemical reaction takes place after a plasma is generated in the reactor chamber82,83.  

1.3 Thesis organization 

With regards to the aforementioned background and current challenges, this thesis focuses 

on understanding nano- and micro-structured temperature-sensitive hydrogel systems, and 

using them for rapidly responsive devices.  

In Chapter 2, a hydrogel-based cell stretching device is developed to serve as in vitro 

models of atherosclerotic vessel walls. This stretching device is actuated by controlling 

hydrogel surface instabilities via regional rapid temperature change, and it achieved robust 

cyclic stretching of human artery smooth muscle cells (HASMCs) at physiologically 

relevant conditions. 

Chapter 3 focuses on the swelling/deswelling kinetics of high polymer concentration 

temperature-responsive hydrogel films. With rapid temperature change provided by micro-

heater devices, the kinetics of two polymer networks with LCST behavior (PNIPAM and 

PDEAM) are investigated in order to study the effect of inter-molecular hydrogen bonding.  
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 In Chapter 4, the influence of stiff patterns on the formation of creases on hydrogel surface 

will be examined. The formation and development of creases on spatially patterned 

hydrogel surface under biaxial compression is systematically studied.  

In Chapter 5, a copolymer system with two orthogonal crosslinking modalities are used to 

fabricate a photo-patternable sacrificial layer.  
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CHAPTER 2 

DEVELOPMENT OF HYDROGEL-BASED CELL SCTRETCHING 

DEVICES AS IN VITRO MODELS OF ATHEROSCLETOTIC 

WALLS  

2.1 Introduction 

Atherosclerosis is the hardening and narrowing of arteries caused by the accumulation of 

plaque1. It is a slowly progressing disease that limits blood flow, thus restricting the amount 

of oxygen and other nutrients transported to the body. Furthermore, the built-up plaque is 

a threat to cause blood clots that can block the artery and is the leading cause of heart 

attacks and strokes. Despite the prevalence of atherosclerosis in the general population, 

much about the underlying biology of the disease is unknown and is the subject of ongoing 

research2,3.    

It is known that atherosclerosis develops by the dedifferentiation of smooth muscle cells 

(SMCs)4,5. Unlike many muscle cell types, mature vascular SMCs are not terminally 

differentiated, and can alter their phenotype in response to environmental cues and 

extracellular signals6. SMCs in healthy blood vessels adopt a contractile phenotype and act 

to regulate both blood pressure and blood flow, whereas the SMCs involved in 

pathogenesis of atherosclerosis are synthetic phenotype7,8. If an SMC dedifferentiates from 

a contractile phenotype to a synthetic phenotype, it will experience elasticity decrease and 

shape change from spindle to rhomboid. More importantly, it will have higher migration 
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activity and invade into the intima, where it can proliferate faster and produce more ECM 

proteins, which further stiffens the affected artery wall9,10.  

It is known that cell function is regulated by the combined effect of inter-cellular 

interactions, ECM components, chemical conditions and mechanical cues11,12. The 

complexity of native biological environments makes it difficult to isolate the effect of a 

specific factor on SMC differentiation in vivo. To overcome this limitation, there is 

significant interest in developing in vitro platforms where several variables can be  

independently controlled to systematically probe the effect of biological cues and 

environment on the behavior of SMCs11,13–16.  

Depending on the material of the substrate, there are two main categories of biologically-

relevant in vitro platforms. For research that focuses on monitoring the 

mechanotransduction of SMCs when subject to active, especially cyclic, stretching, 

silicone-based flexible substrate or matrix are widely used, among which Flexcell® Tension 

System and STREX Cell Stretching System are the most commonly used systems17–20. 

These pneumatically controlled devices can provide macroscopic strain with fast speed and 

high accuracy, but they have limited selections of substrate moduli, and the silicone-based 

material system limits the possibilities of surface modifications to increase physiological-

relevancy. Also, these systems operate by macroscopic deformation, so the cells are 

constantly moving in relative to the observing microscope, which makes it difficult to 

monitor the stretching deformation of a single cell. Furthermore, the cells on one substrate 

are under the same strain condition, surface chemistry and substrate stiffness, not allowing 

for high-throughput analysis of cells under different conditions. Due to these limitations of 

silicone-based flexible substrate, there are increasing research efforts contributed to 
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designing and constructing hydrogel-based cell culture substrates. Hydrogel materials are 

biocompatible, and they offer great tunability in substrate properties, making them 

excellent candidates to mimic the ECM for in vitro experiments. Hydrogels can be made 

from biologically derived networks, such as alginate21 and Type I collagen22, as well as 

synthetic polymers, such as polyacrylamide (PAA)23 and poly(ethylene glycol) (PEG)24. 

Biological hydrogels usually inherently contain integrin-binding domains, so they are 

closer to the living conditions of cells in vivo and easier to adapt, but the substrate modulus 

and integrin-binding content cannot be tuned independently25. On the other hand, synthetic 

hydrogels can be engineered to change one factor while maintaining other conditions the 

same, rendering these system suitable for systematic in vitro study26–29. However, currently 

these systems are used to analyze the effect of static factors (substrate modulus, integrin-

binding and the differentiation/growth media) on the phenotype change of SMCs30, but not 

capable of offering active stretching cycles, making these systems less physiologically 

relevant the actual living conditions of SMCs. So it is highly desired to develop an in vitro 

platform that can offer both materials property tunability and active mechanical straining.  

It has been reported that a hydrogel-based active platform has been developed for the study 

of mechanical deformation on cultured cells31. This active platform used patterned surface 

creases on a constrained hydrogel to exert tensile strain on cells seeded onto the gel, as 

shown in Figure 2-1.  Upon swelling, the confined gel experienced equibiaxial compression 

and buckled into creases above the critical strain. The designed topographical features on 

the substrate directed the shape and position of creases32, thus the cell seeded in between 

two neighboring parallel creases were stretched under plane strain. Furthermore, because 

the swelling of the hydrogel is responsive to the environmental temperature change, the 
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depth of the creases, and thus the strain imposed on the attached cells, can be controlled by 

the ambient temperature of the water bath. While this concept of profiling single cell 

response to stretching has already been proved to be feasible, there are shortcomings of 

this platform. Firstly, the environmental temperature change was slow because it was 

achieved by adjustment of media bath temperature. The operating frequency (~30 

min/cycle) of the device was not representative of physiological condition33. Also, this 

device was not suitable for high-throughput design because it was restricted to one 

hydrogel with one surface peptide functionality, and offered the same actuation condition 

across every crease on the same chip.   

 

Figure 2- 1 (a) A schematic illustration of the prototypic cell stretching device with 

creased hydrogels. (b) Optical microscope pictures of C2C12 myoblast cells subjected to 

strains in the x-direction of (upper) 0 at 37 ℃ and (lower) 20% at 26 ℃. (Figure 

Reproduced from Ref. 30 with permission from The Royal Society of Chemistry.) 
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Building upon the prototype cell stretching platform described above, a physiologically 

relevant cell stretching platform to study the response of SMCs to different factors is 

developed. This micro-heater driven hydrogel-based cell stretching device can operate at a 

frequency that is similar to resting pulse rates (≈1 Hz), and the temperature is near body 

temperature (≈37 ℃). This active cell stretching device includes several improvements and 

overcomes the major shortcomings of the previous device design. The device structure is 

shown in Figure 2-2. First and foremost, faster kinetics are achieved by regional 

temperature control and actuation. Micro-heaters are embedded under the temperature-

responsive hydrogels, providing fast temperature change by Joule heating instead of slow 

heating of the entire bath, and at the same time, reducing the distance over which water 

molecules must be transported in and out of the poroelastic hydrogel network when driven 

by osmotic pressure. Another merit of the micro-heaters is the controllability of frequency, 

amplitude and actuation area by altering the electric signal input and the dimension of the 

micro-heaters. Secondly, the important features that control cell response in vivo, such as 

substrate stiffness, cell stretch ratio, and cell matric interactions can be individually altered 

by adjusting the hydrogel composition, tuning the electrical input, and changing the 

chemical modification on the hydrogel surface, respectively. This allows for a systematic 

method to characterize the single cell response to stretching and how each physiological 

factor influences cell behaviour. Finally, the platform has the potential to be scaled up to 

high-throughput arrays, where different stretch regimes are applied to individual cells on 

different integrin-binding patches on a single chip.  
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Figure 2-2 Schematic of the micro-heater driven hydrogel-based cell stretching platform.  

2.2 Materials and methods 

This work is in collaboration with the Peyton Group in Chemical Engineering at UMass 

Amherst. We focus on device design, fabrication and evaluation, while the Peyton group 

carries out peptide synthesis, cell culture and phenotype characterization. 

2.2.1 Microfabrication 

The micro-heaters were fabricated by a photolithography – metal deposition – lift-off 

process. Coverslip substrates were cleaned by sequential sonication in water, ethanol and 

acetone for 10 min each. After cleaning, negative tone photoresist NR9-1000PY was used 

to pattern the substrates via photolithography performed on a Suss MicroTech Mask 

Aligner. Then a 200 nm thick gold layer was deposited onto the template following the 

deposition of a 10 nm chromium adhesion layer by CHA Electron Beam Evaporator with 

Cryopump, followed by another 10 nm chromium adhesion layer. The micro-heater circuits 

were harvested after a lift-off process in acetone.  
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To prevent current leakage from the heating circuit, an 350 nm insulation layer of  silicon 

dioxide was deposited onto part of the substrate by plasma enhanced chemical vapor 

deposition using an STS Vision 310 PECVD System, while leaving part of the circuit not 

covered for connection to the function generator signal source.  

The topographical features on the substrate were fabricated by photolithography of SU-8 

(MicroChem), an epoxy-based negative photoresist. A 500 nm thick film of SU-8 2000.5 

was firstly overlaid on the insulating SiO2 by photolithography to promote adhesion, then 

SU-8 2050 photoresist was spin-coated onto the substrate to achieve 40 μm thickness, 

followed by exposure under UV light (356 nm) and development in propylene glycol 

methyl ether acetate (PGMEA). The SU-8 surface was then treated by a monolayer of 

benzophenone to covalently bond the upcoming hydrogel network to the epoxy substrate34.  

2.2.2 Preparation of surface attached hydrogels 

The temperature responsive hydrogel was prepared from a degassed aqueous pre-gel 

solution containing 811.7 mM N-isopropylacrylamide (NIPAM), 81.2 mM sodium acrylate 

(NaAc), and 6.3 mM N,N’-methylenebisacrylamide (BisAA). Methacrylate functionalized 

Rhodamine B was added to the pre-gel solution to prepare fluorescent hydrogels used for 

confocal microscopy. For every 200 μL of pre-gel solution, 1.5 μL of N,N,N’,N’-

tetramethylethylenediamine was added as catalyst and then 1.5 μL of  a 10 wt% aqueous 

ammonium persulfate solution was added as initiator. Immediately after initiation, the 

mixture was loaded between a methacryloxypropyltrichlorosilane treated substrate and a 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane treated release coverslip 

separated by 300 HN Kapton spacers, defining the hydrogel thickness to be 75 μm. The 
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gelation process was allowed to proceed for over 30 min in a vessel constantly purged with 

nitrogen. The gelation process is under 365 nm UV light to activate the benzophenone into 

radicals, covalently anchoring the formed hydrogel network to the substrate. 

It should be noted that the hydrogel composition can be engineered to different stiffness, 

as shown in Table 2-1. The storage modulus (G’) and loss modulus (G’’) of each hydrogel 

composition were characterized by rheometer, and the Young’s modulus was estimated 

from the equation 𝐸 = 2𝐺(1 + 𝜈), where ν is Poisson’s ratio, taken as 0.5 for hydrogels.  

Table 2- 1 Hydrogel compositions and moduli 

2.2.3 Photo-patterning of peptide cocktail on hydrogel surfaces 

Following gelation, the hydrogel surface was patterned with patches of peptides, as 

markers to control the cell seeding positions, so that SMCs can be stretched as designed/ 

facilitate the selective seeding of SMCs. As shown in Table 2-1, there were two sets of 

peptide cocktail compositions mimicking the integrin-binding sites of an artery with 

atherosclerosis and a healthy artery, respectively35–39. All peptides were synthesized using 

a Liberty Blue Microwave peptide synthesizer and were modified with benzophenone end 

 
NIPAM BisAA NaAc G’ 

(Pa) 

G” 

(Pa) 

E (est) 

(kPa) 

No. (mM) (Wt%) (mM) (Wt%) (mM) (Wt%) 
   

1 322 3.5 2.5 0.037 32.1 0.29 550 80 1.6 

2 644 6.7 5 0.07 64.3 0.56 3800 20 12 

3 644 6.6 15 0.2 193 1.6 4900 200 15 

4 861 8.6 15 0.2 258 2.14 5500 200 17 

5 1072 10.4 15 0.2 322 2.6 7000 200 21 

6 1288 12.2 15 0.2 385 3.0 7800 200 24 

7 1610 14.9 11 0.14 322 2.5 15500 400 46 

8 1610 14.5 22.5 0.28 635 4.8 24500 500 73 
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groups to allow for UV crosslinking. After applying 10 μL of 0.1 mg/mL peptide in PBS 

solution onto the hydrogel surface, mask-free photolithography was performed with a 

pattern of UV light (365 nm, pE-100, CoolLED) generated using a digital micromirror 

device (DLP Discovery 4100, 0.7 XGA, Texas Instruments) attached to an inverted optical 

microscope (Nikon ECLIPSE Ti). Finally, the hydrogel was washed with fresh PBS to 

remove the unattached peptide.  

Table 2- 2 Peptide cocktail compositions 

Peptide 

cocktail 
Sequence 

% 

Weight 

% 

Molar 

Healthy 

cocktail 

Collagen III 

BP-CGPGPPGPPGPPGPPGPPGAOGERGPPGPP 

GPPGPPGPP  

70% 41% 

Collagen I 

BP-CGPGPPGPPGPPGPPGPPGFOGERGPPGPP 

GPPGPPGPP  

15% 25% 

Elastin 

BP-GCGVGVAPG 
15% 34% 

Unhealthy 

cocktail 

(Athero 

cocktail) 

Collagen I 

BP-CGPGPPGPPGPPGPPGPPGFOGERGPPGPP 

GPPGPPGPP  

40% 21.5% 

Fibronectin 

BP-CG-PHSRN-GGGGGG-RGD-S  
40% 46% 

Osteopontin 

BP-CGG-SVVYGLR 
20% 32.5% 

Primary human aortic smooth muscle cells (HASMCs) were purchased from a commercial 

source and routinely cultured in Dulbecco's Modified Eagle Medium (DMEM, Fisher 

Scientific) supplemented with HEPES (Fisher Scientific) as the buffer, 10% fetal bovine 

serum (FBS, Fisher Scientific) and 1% penicillin/streptomycin (P/S, Fisher Scientific) at 

37°C. Cells between passages 4–12 were used for all experiments. Cells were seeded on 
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the peptide patterned hydrogels and incubated for 96 hours in CO2 free incubator before 

device actuation. 

2.2.4 Characterization methods 

To characterize the temperature of the gel surface above a microheater, a 24-gauge flexible 

microprobe (5.5 Hz, IT-24P from Physitemp) was connected to a MAX 6675 signal 

amplifier and then to an Arduino Uno board, which finally transmit the acquired 

temperature data to a laptop.  

A Nikon A1R Multiphoton laser scanning confocal fluorescence microscope was used to 

characterize the 3D shape of the hydrogel devices at different temperatures. The 3D-

stacked confocal images were generated by Nikon’s Confocal NIS-Elements software.  

A Keithley 3390 function generator was used to drive the micro-heaters. Ga-In liquid alloy 

was used to promote connection between needle from micro-positioner (Quarter) and the 

micro-heater. 

The actuation was observed under a Zeiss optical microscope and recorded by ZEN 

software. The images were analyzed by Image-J, and the tracking was accomplished by 

Tracker software. 

2.3 Results and discussion  

2.3.1 Microheater and temperature change 

The designed shape and dimension of the micro-heaters are shown in Figure 2-3(a). In 

order to locally change the temperature to actuate two parallel creases, the micro-heaters 
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were designed in pairs. They were separated by 100 μm, which was comparable to the 

length of a single HASMC. The micro-heaters were designed to be double-spiral for a more 

uniform temperature spatial profile40. The microheater devices was made of gold of 200 

nm thickness, thus the resistance can be calculated to be 𝑅 =
𝜌𝐿

𝑆
= 78 𝛺.  

The local temperature will change upon the cyclic heating of the micro-heaters, and this 

change is highly dependent on the spatial position. The relevant position of interest is where 

the cell would occupy, i.e. on the gel surface in the middle of two neighboring micro-

heaters. So a micro-probe is placed in the desired position using a micro-manipulator, as 

shown in Figure 2-3(b).  

Figure 2-4(a) shows the temperature read-out of a system operating under 1.5 V at 1 Hz 

(0.5 s on, 0.5 s off). The y-axis is the temperature change in comparison to the ambient 

temperature, T-T0. The first few cycles showed a trend of temperature elevation until the 

system reached thermal steady state after ~10 s, where the highest temperature in the ‘on’ 

state, and the lowest temperature in the ‘off’ state were constant for each cycle. The 

Figure 2- 3 (a) Micro-heater design and dimensions; (b) Micro-probe detecting 

temperature change.  
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temperature increase above ambient temperature for ‘on’ and ‘off’ state were 7.9 ± 0.7 ℃ 

and 4.4 ± 0.6 ℃, respectively.  

When the micro-heaters are driven at a different voltage, the heating power is different, so 

the highest temperature when the heater is on and the lowest temperature when the heater 

is off will change accordingly. The high and low temperature for different operating 

voltages is shown in Figure 2-4(b). The greater the temperature difference between the high 

point and the low point of the heating cycle, the larger the swelling ratio change, and thus 

the higher the strain exerted on the cell in the center.  

It is important to choose a suitable operating voltage, because the temperature change being 

either too large or too small will render the system less physiologically relevant. If the 

operating voltage is too low and the temperature difference between the high point and the 

low point is too small, the mechanical stretch exerted on the cell will be too small 

comparing to the in vivo conditions. On the other hand, if the operating voltage is too high, 

not only the mechanical strain will be too high due to the large swelling ratio change, but 

Figure 2- 4 Performance of micro-heaters under the hydrogel. (a) Temperature change 

when the micro-heaters are driven at 1Hz, 1.5V.  (b) Gel surface temperature when 

micro-heaters are on and off at different input voltage. 
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also the living cells on the gel surface will experience drastic cyclic temperature change. 

Thus, 1.5 V was chosen as the operating voltage as it gave a physiological temperature 

variation range as well as sufficient dynamic swelling to produce creases that strain the 

cells at physiologically-relevant strains41–43. To mimic physiological temperature, the 

ambient temperature was changed in the incubation box so that the high and low 

temperature during actuation was approximately 39 ℃ and 35 ℃.  

2.3.2 Responsive swelling/deswelling and crease depth 

With the micro-heater system fabricated and characterized, it was important to understand 

the swelling behavior of the hydrogel at different temperatures.  The 3-D shape of a device 

was inspected using laser scanning confocal microscopy and reconstructed by z-stacking 

the captures slices at different thickness position.  

From a starting temperature of 26 ℃, 1.1 V and 0.8 V direct current was used to elevate 

the temperature to 39 ℃ and 35 ℃, respectively, matching the peak and valley 

temperatures during a heating cycle. As shown in Figure 2-5, the hydrogel had a higher 

swelling ratio at lower temperature, so the creases were deeper and thus the stretch ratio 

applied to the hydrogel surface was higher. On the contrary, when local temperature was 

raised, the hydrogel swelled less, leading to a decrease in the crease depth and thus the 

stretch applied to the hydrogel surface was lower. If we used the contour length change 

along the gel surface between two crease tips as a measure of stretching deformation, then 

this length was increased from 240 μm to 261 μm by the change of temperature from 39 ℃ 

to 35 ℃. This suggested that the tensile strain at this cross-section was 8.8%, and it was 

due to the deepening and relaxing of creases from cyclic temperature change. Also, as the 
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single HASMC were to be seeded at the apex of arc, it was noted that the z-position of the 

plane of interest was elevated by 15 μm from 39 ℃ to 35 ℃. Accordingly, adjustments 

would be made during cell imaging.  

 

Figure 2- 5 Confocal micrograph of hydrogel cross-section at 35 ℃ (top) and 39 ℃ 

(bottom) (Scale bar = 50 μm);  

2.3.3 Peptide patterning and cell seeding 

To seed cells onto soft material surface with a spatially resolved pattern, photo-patterning 

of light-responsive cell-binding peptides can be used to define cell attachment sites. The 

peptide was attached to the hydrogel surface via benzophenone chemistry activated under 

UV light.  Figure 2-6 (a) shows the pattern on the maskless photolithography. When the 

attached peptide was RGD peptide, the lysine on the peptide can be labeled by fluorescein 

isothiocyanate (FITC) and the fluorescent microscope picture of Figure 2-6 (b) showed the 
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patterning was successful. The green background corresponds to the non-specific 

adsorption of FITC molecules into the hydrogel network.  

 

Figure 2- 6 UV-patterning of binding peptide and cell seeding. (a) the mask pattern 

uploaded to Digital Micro-mirror Devices; (b) Fluorescent microscope picture of the 

patterned hydrogel surface after FITC labeling; (c) HASMCs cultured on 5 kPa hydrogels 

patterned with atherosclerosis peptide cocktail. (d) HASMCs cultured on 25 kPa 

hydrogels patterned with healthy peptide cocktail. 

To spatially control the location of HASMCs, we changed the peptide composition to the 

cocktail shown in Table 2-2, and seeded HASMCs on the patterned gel surface. The cell 

seeding experiments showed that the peptide patterning was successful and the HASMCs 

selectively resided on sites patterned with peptides. It should be noted that the pattern shape 

and dimensions were designed to accommodate one HASMC per site, and the 

concentration of the peptide cocktail were selected so that enough anchoring was provided 
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in the patterned surface, while the background absorption is not sufficient for seeding. As 

shown in Figure 2-6 (c), seeded HASMCs showed the same pattern as the mask when the 

peptide cocktail mimicking atherosclerosis affected arteries were patterned onto a hydrogel 

of shear modulus 5 kPa. Figure 2-5 (d) shows the cell positions after the healthy peptide 

cocktail solution was photo-patterned onto a hydrogel of modulus 25 kPa. These results 

indicated that this method was a feasible approach to selectively seed cell onto desired 

location at single cell level.  

It was desired to pattern one HASMC per location to cut off the communication between 

cells. Using the same method, a single HASMC was seeded on the hydrogel surface in the 

center of two neighboring micro-heaters, as shown in Figure 2-7. The dark lines are part of 

the micro-heaters and the two grey rectangular pads are the SU-8 steps.  

 

Figure 2-7 One HASMC is patterned in between two micro-heaters. 

2.3.4 Cell stretching 

When the micro-heaters were cyclically driven to actuate the hydrogel to swell/deswell, 

the cells were repeatedly stretched and relaxed, as shown in Figure 2-8. Figures 2-8 (a) 
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shows the optical micrographs of a single HASMC in the relaxed state (up) and under 

tensile stretch (down). The position of the two ends of the cell were tracked using Tracker 

software and the distance was plotted against time, as shown in Figure 2-8 (b). The 

frequency of this cyclic stretching process was calculated by the reciprocal of the time 

interval between neighboring peaks, and it is calculated that this cell was stretched at a 

frequency of 0.99 Hz, matching the frequency of the driving voltage. It should be noted 

this calculation has an uncertainty 0.04 Hz, and it is comes from the limitation of imaging 

speed, 14 frames per second. The stretch ratio of this SMC, defined as the cell length at 

elongated state divided by the cell length at relaxed state, was measured to be 6.4 ± 1.0 %. 

More specifically, the stretch ratio was obtained by dividing the maximum length of each 

cycle by the minimum length of the same cycle, and the uncertainty came from the variation 

among the cycles. Besides the cyclic stretching of this SMC, six more stretching 

experiments were analyzed, as is shown in Figure 2-8 (c). The stretching frequencies were 

calculated to be 1.01 ± 0.11 Hz, 1.00 ± 0.10 Hz, 1.00 ± 0.17 Hz, 1.02 ± 0.22 Hz, 1.00 ± 

0.08 Hz and 0.98 ± 0.03 Hz, respectively, yielding the average stretching frequency to be 

1.00 ± 0.10 Hz. The strain ratios were calculated to be 5.9 ± 0.3 %, 5.5 ± 0.2 %, 5.2 ± 0.4 %, 

6.9 ± 0.6 %, 6.0 ± 0.4 % and 6.0 ± 0.4 %, respectively, giving the average stretch ratio of 

6.0 ± 0.5 %. This result is reasonably close to the rough estimate based on contour length 

change as discussed above, and is comparable to the physiological stretch that HASMCs 

experience in vivo44. Currently, this cell stretching device can operate for as long as 40 

minutes and exert steady cyclic strain onto the cell at a constant rate. 
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Figure 2- 8 Deformation of a single HASMC under cyclic actuation. (a) Micrograph of an 

HASMC in the relaxed state (top) and stretched state (bottom); (b) The length of the 

HASMC change with time during cyclic actuation. (c) the length change of 6 other 

HASMCs tested  
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2.3.5 Effect of stretching on cell phenotype 

Figure 2- 9 Expression of differentiation markers by smooth muscle cells on SMC 

stretching device. (a) Calponin, smooth muscle actin and Ki67 expression by SMC 

stretched for 10 minutes. (b) Calponin, smooth muscle actin and Ki67 expression by 

SMC stretched for 30 minutes. (c-e) Quantification of expression of (c) calponin, (d) 

smooth muscle actin and (e) Ki67 in stretched and unstretched cells. (f) Colocalization 

analysis on calponin and smooth muscle actin expressed by the single SMCs. 
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It is known that atherosclerosis develops by the dedifferentiation of SMCs. SMCs alter 

their phenotypes in response to environmental cues and extracellular signals. During 

atherosclerosis, SMCs dedifferentiate from a contractile phenotype to a synthetic 

phenotype. More importantly, they have higher migration activity and invade into the 

tunica intima, where they can proliferate faster and produce more ECM proteins, which 

further stiffens the affected artery wall.  

To obtain the phenotype of the SMCs after stretching, immunofluorescence staining for 

differentiation markers such as α-smooth muscle actin (α-SMA) and calponin was done as 

shown in Figure 2-9 (a) and 2-9 (b). The stretched cells were also stained for proliferation 

marker Ki67. Preliminary staining experiments showed that SMCs assumed differentiated 

morphology after the stretching as seen in vivo. The SMCs stretched for more than 10 

minutes (stretched) expressed more α-SMA and calponin than the cells stretched for less 

than 10 minutes (control), which are quantified in Figure 2-9 (c) and 2-9 (d). α-SMA and 

calponin were also observed to be colocalized in the stretched cells, with a Pearson’s R 

value of 0.96, as is shown in Figure 2-9 (f). Preliminary result also showed reduced Ki67 

expression in the stretched SMCs compared to the control ones as shown in Figure 2-9 (e). 

Hence, the creased hydrogel-based device provided an in vitro cell stretching platform with 

ECM mimicking peptides to capture ECM-cell interactions. 
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2.4 Conclusion and future work 

We created a well-controlled, biologically-relevant, hydrogel-based in vitro cell stretching 

device. This platform mimicked the active environment that human artery smooth muscle 

cells (HASMC) live in, providing a platform to study the response of a HASMC to different 

substrate modulus, mechanical stretch, and insoluble chemical signals. Ultimately, this 

platform is anticipated to provide insight into how these factors conspire in HASMC 

dedifferentiation and development of atherosclerosis. 

This platform has the potential for actuating and analyzing cells in a high throughput 

fashion. The device can be engineered in chemical integrin-binding motifs, hydrogel 

modulus and stretch ratio. Different peptide cocktails can be patterned on different regions 

of the hydrogel surface. With a more complex circuit design, different parts of this device 

can be actuated at different voltages, thus different stretching strains. It is expected that 

Figure 2- 10 Device design for high-throughput actuation and analysis, where multiple 

conditions are integrated onto one chip.  
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future systems will enable the independent control of multiple regions on one device, as is 

shown in Figure 2-10.  
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CHAPTER 3  

SWELLNG KINETICS OF HIGH POLYMER CONCENTRATION 

TEMPERATURE-RESPONSIVE HYDROGEL FILMS BY FAST 

TEMPERATURE CHANGES 

3.1 Introduction 

Hydrogels containing poly(N-isopropylacrylamide) (PNIPAM) and other temperature-

sensitive copolymers have broad applications, such as drug delivery vehicles, sensors, 

actuators and tissue engineering matrices. Upon environmental stimuli change, the volume 

of the hydrogel may change accordingly to reach the new equilibrium between network 

elastic energy and osmotic pressure, and this volume expansion or shrinkage is called 

swelling and deswelling, respectively. The kinetics of these swelling and deswelling 

processes is important in the performance of these hydrogel systems. For instance, slower 

kinetics would be favored for the controlled, sustained drug release purposes, while faster 

kinetics would benefit a actuator or sensing system. Thus, a thorough understanding of the 

swelling/deswelling kinetics is crucial in these applications and device designing. 

Although there have been substantial efforts to understand the kinetics of hydrogel swelling 

and deswelling over the decades1,2, unanswered question remain. 

The swelling kinetics of PNIPAM hydrogels have been found to vary substantially cased 

on fabrication method and thus monomer density. A PNIPAM hydrogel can be fabricated 
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from the copolymerization of pre-gel solutions containing monomers, initiator and 

acrylamide crosslinkers, and this hydrogel will have high water content and relatively low 

monomer fraction of around 10%. This composition is used in the hydrogel kinetics study 

by Yoon et al1, and the light responsive composite hydrogel system by Hauser et al3, where 

both studies report that the swelling and deswelling kinetics were limited by the mass 

transport in a poroelastic system, where the time constant is proportional to the square of 

dimension of interest, and inversely proportional to the diffusivity. More specifically, in 

Hauser’s free-standing thin hydrogel sheets, gel sheets undergo deswelling when the 

illumination is turned on, and reswell when the light is turned off. When the normalized 

dimension of the gel sheet (
𝑑

𝑑0
) is plotted against time (t), the curve is fitted well by a single 

exponential curve, as is shown in Figure 3-1 (a) and (b), where the characteristic time τ is 

determined by the equation following the equation τ =
4𝐻2

𝜋2𝐷
, where H is the thickness of 

film and D is the diffusivity of water molecules in the network1.  Figure 3-1 (c) shows the 

scaling relation between characteristic time and sample thickness is consistent with the 

poroelastic mass-transport limited process.  
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On the other hand, PNIPAM hydrogels can also be fabricated by hydrating a crosslinked, 

nearly dry polymer film in the glassy or melt state, where the water content is lower and 

the monomer content is relatively high, depending on the crosslinking density but typically 

over 25 %. In the systems discussed here, the crosslinking is carried out by the UV activated 

Figure 3- 1 The kinetics curves of the (a) deswelling and (b) swelling process of 

PNIPAM composite gel sheets of different thickness; (c) The log-log plot of time 

constants  vs. film thickness; (d) The kinetics curves of dense PNIPAM waveguiding 

actuators changing bending angle when exposed to light and when the light is off. 

Different curves correspond to different exposure time. Figures are reproduced with 

permission from Ref 3: Hauser, A.W., Evans, A.A., Na, J.‐H. and Hayward, R.C. 

(2015), Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. 

Angew. Chem. Int. Ed., 54: 5434-5437 (Copyright John Wiley and Sons) and Ref. 4:  

Zhou, Y., Hauser, A.W., Bende, N.P., Kuzyk, M.G. and Hayward, R.C. (2016), 

Waveguiding Microactuators Based on a Photothermally Responsive Nanocomposite 

Hydrogel. Adv. Funct. Mater., 26: 5447-5452. (Copyright John Wiley and Sons) 
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benzophenone radicals extracting a hydrogen from another polymer chain and forming 

covalent C-C bonds. In the waveguiding micro-actuator work by Zhou and coworkers, 

these dense PNIPAM gels are made into a thin strip, whose volumetric change controls the 

bending angle of the bilayer system4. In Chiappelli et al’s thermochromic photonic 

multilayer device, these pre-made PNIPAM networks are casted into thin films, whose 

thickness change alters the peak reflective wavelength of the Bragg mirror multilayer 

system5. Both works report that the kinetics of the system responding to the environmental 

stimuli change show a two-step pattern. More specifically, as is shown in Figure 3-1(d), 

the bending angle of Zhou’s waveguiding micro-actuator is plotted against time, and the 

curve is well described by a bi-exponential fit with two characteristic times. The reported 

shorter characteristic time is not far from the time scale of a mass transport limited 

poroelastic system , taking a typical diffusion constant of ~ 10-11 m2 s-1 for PNIPAM gels 

in poroelastic transport6. And the longer characteristic time suggests that there are slower, 

more complex internal relaxation processes that controls the later stages of 

swelling/deswelling kinetics. As for the possible source of this slower relaxation process, 

it is interesting to learn that Schmaljohann and coworkers also observed that surface 

attached, crosslinked PNIPAM gels show two time ranges of swelling. In their system, the 

time scale is much slower, and the slow kinetics is attributed to the existence of 

poly(ethylene glycol) (PEG) side chains7. This raises the possibility that the second step of 

the dense PNIPAM gel swelling/deswelling kinetics is associated with hydrogen bonding 

effects, as PEG side chains may interact with neighboring moieties.  

Hydrogen bonding effect is important in the swelling and deswelling behavior of PNIPAM 

gels. It is known that the hysteresis between PNIPAM swelling and deswelling is due to 
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the inter-molecular hydrogel bonds8–10. To better understand the role of hydrogen bonding 

in the hysteresis, poly(N,N-diethylacrylamide) (PDEAM) is often used as a control 

molecule, for it has a similar chemical structure to PNIPAM, a LCST (~30 ℃) close to 

PNIPAM (32 ℃), but unable to form hydrogen bonds due to the lack of –NH group9,11.  

Here, to investigate whether the two-step kinetic pattern of dense PNIPAM hydrogels is 

associated with the inter-molecular hydrogen bonding effect, we use PDEAM and 

PNIPAM copolymers of the same composition to compare against each other, while all 

other factors, such as sample dimension, hydrogel composition, environmental stimuli 

change,  should remain the same.   

In a smart system, the environmental cues will trigger the actuating part of this system, 

thus in a kinetics study, it is important that the environmental stimuli change is abrupt, so 

that the response of the system reflects its own properties, instead of being limited by the 

gradual environment change rate. This requirement is particularly challenging in this study 

of characterizing the swelling/deswelling kinetics of temperature responsive PNIPAM gels, 

because firstly, the high specific heat capacity of water makes it difficult to rapidly alter 

temperature of a relatively large volume; and secondly, the motion of fluids under 

temperature gradient and the heat transfer in the process is difficult to control. So the micro-

heater systems developed in Chapter 2 can be used in here to achieve fast, regional control 

of the temperature. 

3.2 Materials and methods 

The copolymers used in this research are a random copolymer of N-isopropylacrylamide 

and 4-acryloyloxybenzophenone [P(NIPAM-BP)] and a random copolymer of N,N-
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diethylacrylamide and 4-acryloyloxybenzophenone [P(DEAM-BP)]. Both copolymers can 

form hydrogen bonds with adjacent water molecules, so they exhibit an LCST behavior in 

aqueous solution, making the hydrogel swell/deswell upon temperature change. Both 

copolymers are crosslinkable under UV illumination, so the polymer films can be 

photopatterned. The difference between the two polymers is that the –NH group on 

P(NIPAM-BP) can act as hydrogen bond donors to form inter-chain hydrogen bonding, 

while the lack of it makes P(DEAM-BP) not able to form any inter-molecular hydrogen 

bonds.  

3.2.1 Synthesis of P(NIPAM-BP) and P(DEAM-BP) 

Polymers were synthesized by conventional free radical polymerization using 

azobisisobutyronitrile (AIBN) re-crystallized from methanol as the initiator. The monomer 

of 4-acryloyloxybenzophenone (BP) was used as received.  

2.218 g of N-isopropylacrylamide (NIPAM) monomer and 0.1 g of  4-

acryloyloxybenzophenone (BP) were copolymerized in 20 mL of 1,4-dioxane at 70 ℃ for 

16 h under nitrogen following three freeze-pump-thaw cycles, resulting in a copolymer 

containing 1.4% of BP. The polymer was purified by precipitation into hexane, washed 

under vacuum filtration and dried overnight in a vacuum oven prior to use. 1H NMR was 

performed using a Bruker 400 MHz spectrometer with chloroform-d as the solvent to 

characterize the composition of PNIPAM copolymer.  

2.493 g of N,N-diethylacrylamide (DEAM) monomer and 0.1 g of  4-

acryloyloxybenzophenone (BP) were copolymerized in 20 mL of 1,4-dioxane at 70 ℃ for 

16 h under nitrogen following three freeze-pump-thaw cycles, resulting in a copolymer 
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containing 1.8% of BP. The polymer was purified by precipitation into hexane, washed 

under vacuum filtration and dried overnight in a vacuum oven prior to use. 1H NMR is 

performed using a Bruker 400 MHz spectrometer with chloroform-d as the solvent to 

characterize the composition of PDEAM copolymer.  

 

Figure 3- 2 Chemical structures of (a) poly(N-isopropylacrylamide)-r-(benzophenone 

acrylate) and (b) poly(N,N-diethylacrylamide)-r-(benzophenone acrylate). 

3.2.2 Preparation of free-standing hydrogel disks 

Drop-casting was used to prepare PNIPAM and PDEAM films with a uniform thickness. 

To facilitate the later release of hydrogel films from the substrate, a layer of poly(acrylic 

acid) (PAA) was first spin-casted (3 wt% in water, 2000 rpm) onto the silicon substrate 

and then crosslinked with calcium ion in saturated CaCl2 solution as the sacrificial layer12. 

The PNIPAM and PDEAM copolymers were dissolved in anhydrous 1-propanol, and then 

the solution was drop casted onto the silicon wafers coated with PAA sacrificial layer. The 

solvent was slowly evaporated at 45 °C in a closed glass jar (0.13 oz, Freund Container), 

resulting in polymer films of different thickness by changing the solution concentration 

and amount. The thickness of the dry polymer films were measured with a mechanical 

profilometer (Bruker Dektak XT® stylus profiler).  
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The polymer film was then patterned using maskless photolithography based on a digital 

micromirror array device (DMD, DLP Discovery 4100, 0.7XGA, Texas Instruments). Each 

mirror of the DMD can be controlled through a computer between on and off state, 

generating light patterns with a resolution of 1024x768 pixels by reflecting collimated UV 

light (365 nm, pE-100, CoolLED). Then the UV light patterns are projected to the sample 

through an inverted microscope (Nikon ECLIPSE Ti) to photo-crosslink desired regions 

on the polymer film. Then the film is developed in a marginal solvent to dissolve the 

uncrosslinked regions without swelling the crosslinked parts too much, followed by 

nitrogen blow drying. The marginal developing solution was a mixture of ethanol and water 

(5:3, v/v) for PNIPAM copolymer films, and a mixture of toluene and hexane (5:7, v/v) for 

PDEAM copolymer films.  

Finally, the PAA sacrificial layer was dissolved in 1x phosphate buffered saline (PBS), 

exchanging the Ca2+ crosslinkers out and allowing the patterned samples to release from 

the substrate into the desired position.  

3.2.3 Micro-heater fabrication and experimental set-up 

It has been reported that micro-heaters of double spiral design provide a more uniform 

temperature profile compared to other shapes such as meander, honeycomb, S-shape and 

fan-shape13. The temperature uniformity can be improved when the center region has 

relatively lower heating power compared with outer regions, which will be compensated 

by the heat distribution behavior. In this Joule heating case, the heating power depends on 

the resistance of the metal lines, so by changing the width and gap of the features, regional 

resistance can be tuned. Thermo-graphic analysis shows that optimum temperature 
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uniformity can be obtained when every stripe is reduced by a factor of 0.85 moving 

outwards from the center14. Based on this analysis, the micro-heaters are designed and 

fabricated accordingly. The size of the micro-heaters are designed to be larger than the 

hydrogel disks, so that the temperature variation across the hydrogel lateral dimensions is 

minimized. Figure 3-3 (a) displays a micro-heater device with side length of 620 μm, 

thickness of 100 nm, and width of 20 μm at the outer line. The resistance of this micro-

heater is calculated to be 90.7 Ω, as confirmed using a multi-meter (Fluke 87V). It should 

be noted that the resistance of metals increases with higher temperature, following the 

equation 𝑅 = 𝑅0[1 + 𝛼(𝑇 − 𝑇0)], where 𝑅0 is resistance at reference temperature 𝑇0, 𝑅 is 

resistance at 𝑇 and 𝛼 is the temperature coefficient of resistance, which has the value of 

0.0034 /℃ for gold. 

As described in Chapter 2, the fabrication of microheaters followed a photolithography – 

metal deposition – lift-off process. A 100 nm layer of gold was deposited onto the patterned 

photoresist, and the double spiral circuit was made after acetone washing off the remaining 

photoresist. The fabricated micro-heater device was shown in Figure 3-3 (a). Then a 350 

nm layer of SiO2 was deposited onto the heaters for insulation purposes, while leaving the 

far ends of the micro-heater foots uncovered for future connection to the power source.  
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The kinetics testing set-up is shown in Figure 3-3 (b). A droplet of PBS was placed on the 

substrate, and the free-standing hydrogel disks were placed on the top of the micro-heaters 

by micro manipulator (Burleigh, PCS-4100).  

It is known that the initial swelling process of crosslinked PNIPAM is slow in kinetics due 

to the complex chain correlations in the collapsed state4, so this kinetic study would focus 

on the deswelling and the re-swelling. The dry film is released in PBS and kept in solution 

for a period of time long enough to allow full swelling in room temperature.  

The swelling/deswelling process upon temperature change is monitored and recorded using 

an upright optical microscope (Zeiss, Axiotech Vario). The heating and cooling process 

was run several cycles to check the reproducibility. The graph processing and analysis is 

done using Image J software. 

Figure 3- 3 (a) Micrograph of the microheaters; (b) illustration of the kinetics testing set-

up (not to scale). 
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3.3 Results and discussion 

3.3.1 Micro-heater performance 

For a system where the kinetics of swelling and deswelling is limited by mass transport in 

a poroelastic system, the characteristic time τ is estimated by τ =
4𝐻2

𝜋2𝐷
. The typical 

diffusivity for PNIPAM hydrogel in poroelastic transport is approximately 1.5 × 10-11 m2s-

1, so the time scale for the swelling/deswelling of a 10 μm thick hydrogel should be around 

10 s. This is an important time scale to compare with the ambient temperature change rate. 

Zhou, et al attempted to investigate the kinetic behavior of hydrogel sheets but were limited 

by the slow temperature change provided by a temperature stage used to heat the entire 

solution bath in which the hydrogel sheet was immersed15.  

The local temperature change when the micro-heater was turned on was recorded by a 

microprobe placed above the micro-heaters in the PBS solution. When the heater was 

turned on at t=0 s, the temperature change is shown in Figure 3-4 (a), and this trend was 

fitted by an exponential to give a characteristic time of 0.31 ± 0.05 s. Similarly, when the 

Figure 3- 4 Temperature change in PBS solution above the micro-heater device when (a) 

micro-heater is turned on at 0 s and (b) microheater is turned off at 0 s. 
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heater was turned off at t=0 s, the local temperature decrease was shown in Figure 3-4(b), 

and the characteristic time was fitted to be 0.17 ± 0.03 s. Both time scales are significantly 

shorter than the estimated 10 s time scale based on diffusion limitation. 

3.3.2 Weighting fits to exponential decay curves 

When the ambient temperature was changed, the dimension of the hydrogel sheet changed 

in response. This change was recorded by capturing pictures of the hydrogel sample at a 

certain frame rate. So the dimensions were monitored at a linear relation to the time, but 

the exponential decay nature of this change determines that the importance of the data 

points on describing the fit are not the same. To be more specific, the dimensions recorded 

at the earlier stage should weigh more in the exponential decay fitting compared to the 

dimensions acquired at the later stages. If the plot was not adjusted or weighted accordingly, 

the data points at the later stage of the transition would have a disproportionately important 

impact on the fitting results, while the earlier stages are relatively overlooked. So it is 

important to find a weighting method that can take into account the importance of data 

changing with the location of the data on the timeline, so that the dimension change is 

better described by the fitted exponential curve. 

The most straightforward method of weighting the data is to put a pre-factor on each 

dimension measurement, and this pre-factor is determined by when this measurement was 

taken on an exponential decay function of 𝐶𝑡 = 𝐶0𝑒−
𝑡

𝜏, where Ct is the weighting pre-factor 

at time t, C0 is the initial weighting factor at time t=0, and τ is the characteristic time of this 

exponential decay. It is expected that this characteristic time would match the characteristic 

time of the dimension change transition.  
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One shortcoming of this weighting method is that a pre-factor has to be calculated for each 

measurement. Also, at the later stages of the dimension change, this pre-factor would be 

very small, making each dimension measurement have little impact on the fitting, but still 

all measurements have to be taken. To simplify this weighting method, binning method 

combined with an averaged representation value can be used in here. Firstly, dimension 

measurements taken at different times are categorized into different time periods, time 

Category 1 being from 0 to T, Category 2 being from T to 2T, Category 3 being from 2T 

to 4T, and so on. Then the weight of data in each category is set, and would be the same 

within the category, W1 for Category 1, W2 for category 2, W3 for Category 3, and so on. 

Finally, instead of having Wn as the pre-factor for Category n, measurements in Category 

n would be taken 1 out of 
1

𝑊𝑛
 with a pre-factor of 1, so that the required measurement is 

reduced while the weight of this category is not changed. 

The binning method here is designed as this: for measurements taken in Category 1 (0-T), 

W1=1, i.e. all measurements are counted as effective. For measurements in Category 2 (T-

2T), W2=
1

2
, meaning one out of 2 measurements is counted as effective. For Category 3 

(2T-4T), W3=
1

4
, one out 4 measurements is counted, moving on with this method, one out 

of 8 for Category 4 (4T to 8T), one out of 16 for Category 5 (8T to 16T), one out of 32 for 

Category 6 (16T to 32T) and so forth.  
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Whether this binning method is a representative way of describing the exponential decay 

nature can be tested by plotting the weight in each category against normalized time. To 

be specific, for Category n, the weight, Wn, is the probability of one measurement being 

counted as effective, and the associated time is the median time of the category: 0.5T for 

Category 1, 1.5T for Category 2, 3T for Category 3 and so forth. The plot is shown in 

Figure 3-5, and the red curve indicates the exponential decay curve of 𝑊 = 𝑊0 + 𝐴𝑒
−

𝑡/𝑇

𝑡0 , 

where A=1.3±0.1 and t0=1.6±0.1, with a R2 of 0.99, showing it is a good description of the 

exponential decay. With the characteristic time of this binning method t0 being 1.6, the 

binning time unit T should be 
𝜏

1.6
, where τ is the characteristic time of the dimension change, 

so that the characteristic time of this binning method matches the characteristic time of the 

actual dimension change.  

 

Figure 3- 5 The category weight in binning method and the 

exponential decay fit.   
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This binning method can be extended to bi-exponential decay fittings. For a biexponential 

decay with two characteristic times τ1 and τ2, the categories could be decided as followings, 

where T1=
𝜏1

1.6
 and T2=

𝜏2

1.6
: 0-T1 is Category 1, T1-2T1 is Category 2, 2T1-4T1 is Category 3, 

and so on, until the upper limit of Category N is greater than T2, then this category is 

decided as 2(N-2)T1-T2, and then T2 is used as the binning unit to categorize later stages: T2-

2T2 is Category (N+1), 2T2-4T2 is Category (N+2), and so forth. This data weighting and 

averaging method was applied to data analysis for all kinetic measurements. 

 3.3.3 Deswelling kinetics of P(DEAM-BP) and P(NIPAM-BP) hydrogel sheets 

Firstly, the relationship between the two-step exponential trend and the existence of inter-

molecular hydrogen bonding was investigated. As the hydrogen bonding free control 

system, PDEAM hydrogel sheets of different thickness (15.0 μm, 26.5 μm and 39.6 μm at 

dry state) were used to test the deswelling behavior under increased temperature induced 

by the micro-heater. As the materials system with inter-chain hydrogen bonding, PNIPAM 

hydrogel sheets of different thicknesses (5.2 μm, 11.7 μm and 35.9 μm) were tested under 

the same condition. The hydrogel disks were allowed to fully swell in PBS solution at room 

temperature, and then the deswelling process was initiated by switching the micro-heater 

on. The dimension change was monitored and recorded, and the radii at different times 

were normalized against the initial radius of the hydrogel disk.  

The dimension change of the 39.6 μm thick PDEAM hydrogel disk was plotted against 

time in Figure 3-6 (a). To investigate whether single exponential decay (𝑦 = 𝑦0 + 𝐴𝑒−
𝑡

𝜏) 

or double exponential decay (𝑦 = 𝑦0 + 𝐴1𝑒
−

𝑡

𝜏1 + 𝐴2𝑒
−

𝑡

𝜏2) should be used to describe this 
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trend, both fitting are shown in Figure 3-6 (a), blue curve being single exponential and red 

curve being double exponential. It can be observed that a single exponential decay is 

sufficient in describing the trend, while the double exponential curve almost overlaps with 

the single exponential curve. Moreover, because the single exponential decay equation 𝑦 =

𝑦0 + 𝐴𝑒−
𝑡

𝜏 can be replotted into (𝑦 − 𝑦0) = 𝑙𝑛𝐴 −
𝑡

𝜏
 , so dimension change against time 

can be plotted in semi-log scale to investigate whether the trend can be described by a 

single exponential fitting. As is shown in the inset of Figure 3-6 (a), the normalized radius 

was semi-log replotted against time, and a linear fit is shown as the blue line. The 

characteristic time τ extracted from the slope (τ=13.3 ± 0.5 s) agreed with the characteristic 

time from the direct single exponential decay fitting (τ=12.9 ± 0.7 s). In summary, the 

deswelling of a PDEAM hydrogel disk is a one-step exponential decay process.  

Similarly, the dimension change of the 5.2 μm thick PNIPAM hydrogel disk was plotted 

against time in Figure 3-6 (b), and both single and double exponential decay fittings were 

attempted, shown as the blue curve and the red curve, respectively. It can be observed that 

the blue single exponential decay curve did not describe the deswelling trend well, while 

the red double exponential curve fits the data well. Moreover, when the dimension change 

data is replotted in the semi-log scale as in the inset, it is clear that the trend is not linear, 

but suggests two steps. These features indicated that the deswelling of a PNIPAM hydrogel 

disk is a two-step process, and it needs a double exponential fit to describe.  
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The investigation of deswelling of hydrogel disks not only yields the qualitative correlation 

of hydrogen-bond containing systems and the two-step kinetics behavior, but can also be 

used for quantitative study. As is shown in Figure 3-7 (a), the deswelling process of 

Figure 3- 6 The dimension change of (a) a 36.9 μm thick PDEAM hydrogel disk and (b) a 

5.2 μm thick PNIPAM hydrogel disk in the deswelling process. The blue curve is the 

single exponential decay fit, and the red curve is the double exponential decay fit. Inset: 

semi-log replotting of the dimension change with the blue line showing the linear fit. 
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PDEAM hydrogel disks of different thickness were all fitted well by the single exponential 

decay curve of 𝑦 = 𝑦0 + 𝐴𝑒−
𝑡

𝜏, where the characteristic times for hydrogels disks of 15.0 

μm, 26.5 μm and 39.6 μm were 2.3 ± 0.1 s, 7.6 ± 0.3 s and 12.9 ± 0.7 s, respectively. As is 

shown in Figure 3-7 (b), the time constants were plotted with respects to hydrogel thickness, 

and the relation was fitted by a 𝜏 = 𝑘𝐻𝑥 line, where H is the sheet thickness, and k is a 

constant determined by diffusivity. The exponent x was fitted to be 1.82 ± 0.22, and was 

close to the poroelastic mass-transport limited situation of τ =
4𝐻2

𝜋2𝐷
, and the diffusivity can 

be calculated to be approximately 2.3 × 10-11 m2/s, which is not far away from the reported 

value of a hydrogel system with similar modulus and polymer fraction6.  
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The deswelling kinetics of PNIPAM hydrogel sheets was also further studied. The 

dimension change of PNIPAM hydrogel sheets was also recorded, normalized, and plotted 

against time.  All the curves showed a two-step process, and were fitted by the double 

exponential equation of 𝑦 = 𝑦0 + 𝐴1𝑒
−

𝑡

𝜏1 + 𝐴2𝑒
−

𝑡

𝜏2 . The parameters to describe the 

deswelling process of PNIPAM hydrogel sheets of different thickness were listed in Table 

3-1. While the two characteristic times of the bi-exponential fit, τ1 and τ2 , do not exhibit a 

clear trend, it should be noted that the ratio between the pre-factors, A1 and A2, does not 

vary much across different samples and thicknesses. This observation shows that the 

contribution ratio of the two steps in the deswelling kinetics is related to the material 

property.  

Table 3- 1 The kinetic parameters of the deswelling process of PNIPAM hydrogel sheets 

Thickness(m) Sample A
1
% A

2
% τ

1
 (s) τ

2
 (s) 

5.2 
1 69.5 30.5 1.1 ± 0.04 21.0 ± 2.3 

2 70.1 29.9 1.2 ± 0.04 22.4 ± 2.8 

11.7 
1 77.9 22.1 0.9 ± 0.3 9.0 ± 0.8 

2 60.2 39.8 0.7 ± 0.1 26.7 ± 5.2 

35.9 
1 82.0 18.0 1.8 ± 0.7 8.2 ± 0.7 

2 76.8 23.2 0.8 ± 0.04 11.3 ± 2.1 

 

Figure 3- 7 (a) Deswelling kinetics of PDEAM hydrogel sheets of different thickness, 

fitted with single exponential decay curves; (b) log-log plot of characteristic time against 

thickness, fitted with τ ~ Hx relation. 
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3.3.4 Swelling kinetics of P(DEAM-BP) and P(NIPAM-BP) hydrogel sheets 

As the counter-process of the deswelling kinetics experiment discussed before, the 

hydrogel disks were kept at elevated temperature to equilibrate in the shrunken state, and 

then triggered to re-swell by abruptly switching off the micro-heater and decreasing the 

ambient temperature.  The dimension change of PDEAM hydrogel disks (15.0 μm, 26.5 

μm and 39.6 μm thick) and PNIPAM hydrogel disks (5.2 μm, 11.6 μm and 35.9 μm thick) 

were monitored and recorded.  

Similar to the deswelling process, the swelling process of PDEAM hydrogel sheets are well 

described by single exponential equation of 𝑦 = 𝑦0 + 𝐴𝑒−
𝑡

𝜏 , and the characteristic times 

for hydrogel disks with thickness of 15.0 μm, 26.5 μm and 39.6 μm were 1.7 ± 0.1 s, 8.6 ± 

0.4 s and 12.9 ± 1.3 s, respectively. The time constants were plotted against gel thickness, 

and the relation was fitted by = 𝑘𝐻𝑥 , where H is the sheet thickness, and k is a diffusivity-

related constant, as is shown in Figure 3-8. The exponent x was fitted to be 2.2 ± 0.5, close 

to the poroelastic mass-transport limited situation, and the diffusivity is estimated to be 1.0 

× 10-10 m2/s.  

Figure 3- 8 Reswelling process characteristic times against PDEAM hydrogel disk 

thickness, in log-log plot and fitted by τ ~ Hx relation. 
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The swelling kinetics of PNIPAM hydrogel sheets were more complex. The normalized 

dimension change of PNIPAM disks were plotted against time, as is shown in Figure 3-9 

for different thickness. Firstly, it is observed that the radius of the hydrogel disk do not 

increase immediately after switching off the micro-heater. This delay is not due to the slow 

temperature change, as is characterized by the temperature probe. Also, this delay was not 

observed in the PDEAM system, suggesting that it is related to the inter-molecular 

hydrogen bonding that only exists in PNIPAM hydrogels. This delay possibly displays the 

disassociation of inter-molecular hydrogen bonding, before which the network cannot 

expand freely. Also, it is observed that the length of this delay increases with the increase 

of hydrogel disk thickness. It takes 3-5 s before the 5.2 μm thick disk starts to rapidly 

expand, 7-9 s for the 11.6 μm sample, and more than 1 min for the 35.9 μm sample. 

Secondly, after the initial plateau, the dimension change of the hydrogel disk follows an 

exponential decay trend. This trend is more easily observed in the two thinner samples, 

while the 5-minute recording did not capture the full swelling process of the thick sample. 

It shows that with the increase of disk thickness, the time required to reach the equilibrium 

dimension increases accordingly. A more quantitative investigation was attempted. The 

onset t=0 s was shifted to the onset of rapid dimension increase, and then the dimension 

change was fitted by the single exponential decay equation. All three samples are well 

described by the curve, yielding characteristic times of 5.9 ± 0.2 s for 5.2 μm thickness, 

13.9 ± 0.5 s for 11.6 μm thickness, and 170 ± 27 s for 35.9 μm thickness. It should be noted 

that these fittings are not accurate due to the difficulty in the determination of the onset of 

expansion. In summary, the inter-molecular hydrogen bonding in the PNIPAM system 
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yields a very different swelling kinetics behavior in contrast to the mass transport limited 

process in the hydrogen-bond free PDEAM system.  

3.4 Conclusion and future work 

The observed two-step behavior of a high monomer concentration PNIPAM hydrogel 

during swelling and deswelling was investigated using the fast temperature change 

provided by the micro-heater platform. PNIPAM and PDEAM dense hydrogels were 

fabricated and compared against each other to investigate the effect of hydrogen bonding 

on the two-step swelling/deswelling kinetics pattern. With the deswelling kinetics of 

PDEAM gels well described by single exponential relation, and that of PNIPAM gels 

requiring bi-exponential fitting, it is concluded that the two-step deswelling behavior of 

PNIPAM gels is associated with the inter-molecular hydrogen bonding in the system. The 

effect of inter-molecular hydrogen bonding on the kinetics is also present in the swelling 

process. In contrast to PDEAM hydrogel disk swelling being limited by mass transport, the 

swelling process of PNIPAM hydrogel disk shows a delay at the initial stages, followed by 

a single exponential decay expansion. Both the delay time and the later expansion 

characteristic time increase with the higher thickness.  

Figure 3- 9 Swelling kinetics of PNIPAM hydrogel sheets of thickness (a) 5.2 μm, (b) 

11.6 μm and (c) 35.9 μm. 
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The system used here can be expanded to other responsive systems with different content 

of hydrogen bonding moieties. It would be worth investigating how the content of 

hydrogen bonding interactions affects the weight of the two exponential decay steps.  
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CHAPTER 4 

CREASES ON HYDROGEL SURFACES WITH PATTERNED STIFF 

FILMS 

4.1 Introduction 

Creases are found to exist in biological systems, for example the sulci in the primate 

cerebral cortex1, neurogenic placodes in embryos2 and certain tumors3. There has been 

growing interest in the biological relevance of such surface instabilities, as well as how 

these processes might enable the design of sensors and actuators4. As hydrogels are widely 

adopted platforms for mimicking a biological environments in vitro, the study of creasing 

instabilities in hydrogel systems is important not only for fundamental understanding but 

also for leading us to better understand more complex biological phenomena and finally 

guiding us in better designs of biomimetic devices5.  

Experimentally, creases are observed in compressed elastomers and gels6,7. A hydrogel 

undergoes extensive volume change upon immersion into a penetrating solvent so that the 

osmotic pressure induced by mixing with solvent is balanced by the elastic tension of the 

polymeric network. A free standing hydrogel can expand isotropically in three dimensions, 

however, a hydrogel that is constrained to a stiff substrate and has a thickness much lower 

than its lateral dimensions can only expand in the direction normal to the substrate. The 

constrained swelling can be decomposed into two steps: an isotropic 3-d swelling to the 

stress-free state followed by a biaxial compression back to the initial lateral dimensions; 
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whenever this compression locally exceeds a critical strain, creases are formed to relieve 

stress.  

In many applications such as actuators8–10, microfluidics11, flexible electronics12–14 and cell 

culture15,16, the spatial patterning of hydrogels is required. Although there have been a 

number of studies about wrinkling instabilities of patterned surfaces17–21, there is limited 

understanding about how surface creases will form and develop with the existence of 

spatially patterned modulus contrast22,23. It should be noted that Ouchi et al conducted 

research on surface instabilities of elastomers capped with patterned stiff films in response 

to uniaxial compression24. To extend this line of inquiry to surface attached hydrogel 

systems that are under biaxial compression, this chapter describes the study of the 

formation and development of creases on spatially patterned hydrogel surface. It should be 

noted that the content in this chapter is more preliminary than a usual thesis chapter.  

4.2 Materials and methods 

The hydrogel was prepared on a silicon wafer, cleaned by sonication in water, ethanol and 

acetone followed by a pre-treatment with [3-(methacryloxy)-propyl]trichlorosilane to 

provide covalent anchoring. The degassed aqueous pre-gel solution contained 766 mM N-

isopropylacrylamide (NIPAM), 136 mM sodium acrylate (NaAc), and 4.5 mM N,N’-

methylenebisacrylamide (BisAA). For hydrogels prepared for fluorescent confocal 

imaging, methacrylate functionalized Rhodamine B was added to the pre-gel solution. To 

initiate free radical polymerization, 0.3 mL of N,N,N’,N’-tetramethylethylenediamine and 

1.0 mL of a 10 wt% aqueous ammonium persulfate solution were added to 200 mL of pre-

gel solution. The mixture was loaded by capillary action between a substrate and a release 
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coverslip separated by 125 μm Kapton spacers. The gelation was carried out in a sealed 

chamber under positive pressure of nitrogen, and was allowed to proceed for 30 min before 

separating the release coverslip from the gel. The hydrogel composition was chosen so that 

the critical strain for crease formation is within the swelling ratio range achieved by 

temperature change of 22 ℃ to 50 ℃, so the onset and disappearance of the creases can be 

observed by temperature change25. 

Epoxy-based photoresist SU-8 2000.5 was firstly spin-coated onto a substrate previously 

coated with a thin layer of poly(acrylic acid) (30 kg mol−1, Aldrich) crosslinked with Ca2+ 

as a sacrificial layer. Then the film was transferred to the hydrogel by pressure, and released 

in phosphate buffered saline (PBS). But the attachment between the epoxy film and the 

hydrogel was sometimes poor. Also, it required a physical mask for the patterning, so this 

method was used only in early stage fabrications. 

For better attachment, the poly(p-methylstyrene) (PpMS) copolymer film was used for later 

fabrication. The PpMS copolymer was prepared by radical polymerization, with a feeding 

ratio of 95% p-methylstyrene (pMS), 4.9% benzophenone acrylamide (AAmBP) as UV-

crosslinker and 0.1% fluorescein-o-acrylate as marker dye for confocal fluorescent imaging. 

AAmBP was synthesized according to a previously reported literature procedure via 

reaction of acryloyl chloride and 4-aminobenzophenone in dichloromethane and 

triethylamine26. AIBN was obtained from Aldrich and re-crystallized from methanol prior 

to use. All other monomers were used as received. After three freeze-pump-thaw cycles 

and a nitrogen purge for 30 min, the polymerization was initiated by AIBN and carried out 

at 75 ℃ in 1,4-dioxane for 20 h. The product was purified by precipitation into stirring 

methanol, washed by filtration and dried in vacuum oven overnight. The composition ratio 
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in the copolymer was confirmed by 1H NMR in d-DMSO (Bruker 400 MHz) to be the same 

as the feed ratio, and the molecular weight was determined by size exclusion 

chromatography (SEC) with dimethylformamide (DMF) (0.01 M LiCl) as the eluent to be 

Mn of 24 kDa with a dispersity of 2.3 against poly(methyl methacrylate) standards for 

calibration. 

The photo-crosslinkable PpMS was dissolved in toluene to yield 100 mg/mL solution, then 

spin-coated onto a nitrogen-dried PNIPAM gel surface to achieve a stiff layer of 1μm 

thickness. This film was then irradiated with a pattern of  UV light (365 nm, pE-100, 

CoolLED) via maskless lithography using a Digital Micromirror Devices (DLP Discovery 

4100, 0.7 XGA, Texas Instruments) attached to an inverted optical microscope (Nikon 

ECLIPSE Ti), followed by immersing the sample to a marginal solution of toluene/hexanes 

mixture (2.75:1, v/v) to dissolve the uncrosslinked regions. The thickness of the stiff 

patterns was measured by Stylus Profilometer (Dektak 150, Veeco Instruments, Inc.). 

The formation and disappearance of creases were monitored by an upright optical 

microscope (Zeiss, Axiotech Vario). The cross-sectional profile was reconstructed using 

Nikon’s Confocal NIS-Elements software from z-stack figures taken from a laser scanning 

confocal microscope (Nikon A1 Spectral Confocal).  

4.3 Results and discussion 

4.3.1 Dimension design 

First, we consider the characteristic length scales determined by the modulus and thickness 

of PNIPAM hydrogel and PpMS stiff layer, namely the theoretical wavelength of wrinkling 



76 

 

(λw) and creasing (λc). It was revealed that in a uniaxially compressed elastomer system, 

the surface buckling patterns changed with the dimensions of the stiff patterns, and these 

regimes were decided by the ratio of the actual dimensions in regards of the characteristic 

lengths24. So with the goal of investigating the conditions for crease formation on the 

surface of a hydrogel under biaxial compression, it is important to first calculate the 

wavelength of wrinkling (λw) and creasing (λc) from equations 𝜆𝑤 = 2𝜋ℎ𝑓 (
�̅�𝑓

3�̅�𝑠
)

1/3

and 

𝜆𝑤 ≈ 3𝐻, where ℎ𝑓 is the thickness of the stiff film, H is the thickness of the hydrogel 

substrate, 𝐸𝑓
̅̅ ̅ is the plane strain modulus of the film, 𝐸𝑠

̅̅ ̅ is the plane strain modulus of the 

substrate21,27. In this system, the dimensions and properties of the materials were chosen 

so that the wavelength of wrinkling and creasing are almost the same, i.e. ℎ𝑓 = 0.5 𝜇𝑚, 

𝐻 = 125 𝜇𝑚, 𝐸𝑓
̅̅ ̅ = 2 𝐺𝑃𝑎 and 𝐸𝑠

̅̅ ̅ = 3 𝑘𝑃𝑎, giving 𝜆𝑤 of 380 μm and 𝜆𝑤 of 375 μm.  

These calculations gave a characteristic length of 380 μm, and the patterns were designed 

accordingly, as shown in Figure 4-1, la and lb are the pattern lengths perpendicular to and 

parallel to the gap, respectively. 

Figure 4- 1 Stiff pattern design on (a) 1-D patches and (b) 2-D 

islands 
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4.3.2 Effect of 1-D strips on creasing formation 

Firstly, we studied the problem in a 1-D manner, to see how the stiff patches, where la was 

comparable to the characteristic length while lb was much longer, influence creasing 

behavior. The SU-8 stripes were 2 cm in length, 2 orders of magnitudes larger than the 

characteristic length, and several hundred microns wide, comparable to the characteristic 

length. Figure 4-2 is a cross-sectional view under fluorescent confocal microscope of SU-

8 stripes (160 μm wide with 10 μm gap) on a hydrogel. We can change the swelling ratio 

of the hydrogel substrate by changing temperature and ionic strength of the PBS solution. 

At 20 ℃ and 68 mM PBS (0.5x PBS), the swelling ratio of a free-standing hydrogel was 

approximately 1.61 in length, corresponding to a compressive strain of 0.38 for the 

constrained system. The SU-8 stripes appeared to be flat on the gel surface, and the gap 

distance was the same as initially patterned, as shown in the top picture where the red 

features are the SU-8 stripes and dark gaps are of the same width. As we elevated the 

temperature and reduced the salt concentration, at 50 ℃ and 27 mM PBS (0.2x PBS), the 

swelling ratio was increased to 1.73 and the system was under 42% strain. Due to the 

contrast of fluorescent microscopy, the creases could not be observed, but the obvious gap 

narrowing indicated by arrows implied the presence of creases. Furthermore, when we 

lowered the temperature back to 20 ℃ and diluted the salt concentration of the environment 

to 14 mM PBS (0.1x PBS), the swelling ratio was elevated to 1.92 and the system was 

under 48 % strain. In this condition, every other gap between two stripes disappeared, as 

shown by the arrows, which confirmed the deepening of the creases were capable of 



78 

 

bringing two neighboring stripes into contact. It is noted that the other gap was widened 

because the surface area remained the same.  

 

Figure 4- 2 Surface topographical change with temperature and ionic strength: SU-8 

stripe on PNIPAM hydrogel. 

4.3.3 Effect of 2-D patches on crease formation 

With the knowledge that under 1-D conditions, creases tend to form parallel to the stiff 

pattern’s long axis, it is natural to move on to the 2-D case where both dimensions of the 

stiff film pattern are comparable to the characteristic length.  

To start, as shown in Figure 4-3, two 547 μm × 547 μm squares separated by a 34 μm gap 

were patterned on the hydrogel. When the sample was swelled in 20 ℃ 136 mM PBS (1x 

PBS), which equates to a strain of 37.5%, the creases formed perpendicularly to the sides 

of the PpMS pads, which were pushed together due to the compression from the gel. This 

is shown in the two confocal images that a crease was formed in the center of the gap 

(Figure 4-3 (c)), and the stiff film was bent in the direction perpendicular to the gap to 

release stress (Figure 4-3(b)).  
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Figure 4- 3 (a) Optical micrograph of creases on hydrogel surface with two 547 μm × 547 

μm square PpMS stiff patterns. (b) and (c) are fluorescent confocal images of the cross-

sectional view of the stiff pattern on hydrogel along the two indicated lines. 

As is demonstrated in Figure 4-4, the formation and disappearance of creases can be 

modulated by temperature changes because of the thermally-responsive nature of PNIPAM. 

At 50 ℃, the swelling ratio of the hydrogel was low and the induced compression was 

below the threshold for creasing, so there were no creases observed. When the temperature 

was decreased to 20 ℃, the swelling of the hydrogel led to the increase of compressive 

strain, and a crease formed in the gap, bringing the two pads together. The side along the 

gap (lb) was 1 mm.  
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Figure 4- 4 Optical micrographs of hydrogel surface topography in 1x PBS with 547μm × 

1mm stiff PpMS patterns with 34 μm gap at (a) 20 ℃ and (b) 50 ℃.  

However, when we decreased the stiff pattern side length along the gap, the influence on 

the crease was changed. As shown in Figure 4-5(a), when lb was halved from the initial 

square shape, there was no sign of creases forming in the gap. The stiff film was also bent 

under the compression from the swelling of neighboring hydrogel. As we further decreased 

the side length to 137 μm, Figure 4-5(b) shows that the swollen hydrogel invades onto the 

stiff pattern and forces the film to rotate in width direction into the hydrogel below to 

release the strain.  

 

Figure 4- 5 Optical micrograph and confocal images (taken from the cross-section 

indicated by the red line) of PpMS film of (a) 547 μm × 137 μm and (b) 547 μm × 273 

μm on hydrogel. 
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Other dimensions of the PpMS patterns were tested and the results were summarized in 

Table 4-1. In the table, ⊥ stands for creasing direction perpendicular to gap, ∥ for creasing 

direction parallel to gap and × for creasing directions not influenced. 

Table 4- 1 Crease direction vs. stiff pattern dimensions 

la (μm) 
Ratio to characteristic 

length 

Aspect ratio (la:lb) 

4:1 2:1 1:1 1:2 1:4 

547 1.44 ⊥ ⊥ ∥ ∥  

274 0.72   × ∥  

137 0.36     × 

4.4 Conclusion and future work 

By fabricating surface attached hydrogel thin films with covalently bonded stiff patterns 

on top, it is demonstrated that the stiff patterns influence the formation of creases on the 

hydrogel surface. When the stiff film is slender and has the shorter side length comparable 

to the characteristic length while the longer side is much longer, the creases tend to orient 

themselves along the gaps and can bring the two neighboring stripes into contact. When 

the stiff patterns have both sides comparable to the characteristic length, the direction of 

the creases is relevant to the pattern dimensions. It is observed that creases tend to form in 

the gap between two islands until the gap is too short then the creases from perpendicular 

to the gap to bend or rotate the island. When the crease forms in the gap, the deepening of 

the crease can close the gap and bring the pads together.  

The findings from this project can contribute to both fundamental study of soft matter 

mechanics and the development of environment sensors. The study of the effect of stiff 
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patterns on the creases can be enriched by varying the dimension and ratios to construct a 

phase diagram, as well as be extended to the strain aspect of how the critical strain where 

creases start to form will be affected. On the application aspect, the phenomenon of creases 

deepening upon temperature change, thus bringing two neighboring patterns into contact 

can be applied to design sensors. If the conductivity of the system is controlled by the 

contact between two patterns, then by triggering the underlying hydrogel to change its 

swelling ratio and form self-contacting creases, a sensor with a very high on/off ratio can 

be constructed. This design has been carried out on an elastomer-based sensor for 

mechanical strain28, and it is expected that a stimuli-responsive hydrogel system would 

have broader stimuli choices and a wider application potential.  
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CHAPTER 5 

PHOTOPATTERNABLE SACRIFACIAL LAYER WITH 

ORTHOGONAL CROSSLINKING MECHANISMS 

5.1 Introduction 

Microelectromechanical systems (MEMS) are miniature integrated devices or systems that 

combine electronical and mechanical components, and they are usually fabricated by 

manufacturing techniques adapted from the semiconductor industry, including lithography, 

electrodeposition, etching and molding1,2. MEMS have been applied to micro-sensors, 

micro-actuators, microfluidic devices, biomedical devices, micromachines and 

microrobotics, among other systems3,4. In the fabrication of MEMS devices, sacrificial 

layers play important roles in extending the complexity of structures that are accessible. A 

sacrificial layer is a thin layer of material deposited between structural layers for 

mechanical separation, which is later removed to free the structural layers and allow 

mechanical devices to move relative to the substrate. The most widely used sacrificial layer 

materials are silica and other metal oxides, which can be etched by hydrofluoric acid, but 

they suffer from the limited selectivity in more complex systems and the high risk of the 

HF etching process5,6. Organic polymers are investigated to be release layers for different 

systems. For example, polyimide later removed by reactive ion etching (RIE) is used in 

inorganic systems, but this process has little selectivity for organic materials7,8; photoresists 

can be removed by acetone wash or thermal degradation, but these release methods are not 

compatible with polymeric materials systems9,10. Poly(vinyl acid) (PVA) and poly(acrylic 

acid) (PAA) are also developed as sacrificial layers that can be removed by water or 
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aqueous solution, and they are used in surface micromachining with different materials 

systems11. 

Due to the increasing complexity of MEMS structures, there is a growing need for 

sacrificial layers that can be spatially patterned, so that a higher precision of selective 

release of actuating components within devices can be achieved, and the downsizing of 

MEMS device can be furthered. It is reported by Chen and coworkers that by combining a 

photoresist layer with an oxide layer as a hard mask, followed by RIE, an underlying 

polyimide sacrificial layer can be patterned, and finally released by oxygen plasma12. Also, 

Harnett developed a heat-depolymerizable polycarbonate sacrificial layer system that can 

be patterned by electron beam lithography and then released in isopropanol13. But both 

methods have a rather harsh patterning process that can likely only be used for inorganic 

MEMS systems, and not for organic MEMS systems. A milder method that can be used in 

organic systems has been developed by Ferrell and coworkers, but process was very 

complicated: first, a PVA sacrificial layer was coated with PMMA and photoresist, and 

then patterned by photolithography, then the structural polymer was applied by a PDMS 

stamp-assisted micromolding process followed by a bonding process under heat and 

pressure, and finally the PVA sacrificial layer was released by immersion in water14. 

In this chapter, a photo-patternable sacrificial layer with two orthogonal crosslinking 

mechanisms is developed, as is shown in Figure 5-1. The photo-patternable feature is from 

the UV crosslinkable benzophenone moieties in the polymer, and the release is achieved 

by the pH-sensitive imine bonds formed between the diamine crosslinker and the 

benzaldehyde functional group in the polymer system. The density of crosslinks is 

controlled such that the absence of either type of crosslinking will place the loosely 
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crosslinked polymers below the gel point; while the activation of both crosslinking groups 

will render the material an insoluble network. The content in this chapter is more 

preliminary than a typical thesis chapter. 

Figure 5- 1 (a) Mechanism of the photo-patternable sacrificial layer using two orthogonal 

crosslinking methods; (b) the mechanism of the two orthogonal crosslinking methods. 
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5.2 Materials and methods 

Firstly, the monomer 4-formylphenyl methacrylate (BA) was synthesized by a reaction of 

4-hydroxybenzaldehyde (2.5 g) and methacryloyl chloride (2.4 mL). The reactants were 

dissolved in 20 mL of anhydrous dichloromethane (DCM) with 3.13 mL trimethylamine, 

and allowed to react for 20 h in room temperature, followed by extraction by ethyl acetate. 

The solution was washed by brine and then dried with sodium sulfate, then finally dried in 

a vacuum oven overnight. The structure was confirmed by 1H NMR. 

The monomers oligo (ethylene glycol) methyl ether methacrylate (OEGMA) (2.375 g), 4-

formylphenyl methacrylate (BA) (0.114 g) and 4-acrylamidobenzophenone (BP) (0.050 g) 

were copolymerized by reversible addition−fragmentation chain-transfer (RAFT) 

polymerization. The initiator was 2,2’-azobis(2-methylpropionitrile) (AIBN) and the chain 

transfer agent was butyl 2-cyanopropan-2-yl-carbonotrithioate. The reactants were 

polymerized in a mixture of 10 mL ethanol and 10 mL 1,4-dioxane at 65 ℃ for 20 h under 

nitrogen following three freeze-pump-thaw cycles. The resulting polymer was purified by 

dialysis in water and lyophilization. 1H NMR (Bruker 400 MHz) revealed the copolymer 

composition as OEGMA:BA:BP = 19:3.6:1. DMF GPC was used to determine a Mn of 5.5 

kg/mol with a dispersity of 1.3 against PMMA standards.   

Figure 5- 2 Chemical structure of the P(OEGMA-BA-BP) copolymer. 
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Then the linear copolymer was crosslinked by imine bonding with a diamine small 

molecule. The P(OEGMA-BA-BP) copolymer (0.212 g) and hexamethlenediamine (4.4 

mg) were dissolved in deionized water and allowed to react for 24 h under room 

temperature. The resulting polymer was dialyzed against water and lyophilized to purify. 

Gel permeation chromatography (DMF as eluent) showed an increase in molecular weight, 

1H NMR showed a decrease of approximately 30% in the aldehyde proton signal, and 

infrared spectroscopy showed an increase in the C=N stretching peak, revealing the 

formation of the imine bond.  

The lightly-crosslinked polymer were then dissolved in methanol and spin-casted into a 

thin film. Parts of the film was exposed to 365 nm UV illumination (Lumen Dynamics, 

XCite 120Q) through a mask, and then the film was developed in a marginal solution of 

toluene/hexane mixture (11:3, v/v). Finally, the film was dissolved in a pH=4 hydrochloric 

acid solution. The optical micrographs are taken with an upright optical microscope (Zeiss, 

Axiotech Vario). 

5.3 Results and discussion 

5.3.1 Photo-patterning and acid release 

To start with, the feasibility of constructing a photo-patternable sacrificial layer by 

benzophenone crosslinking and imine bonding was tested. When the copolymer was lightly 

crosslinked by the diamine linking two aldehyde moieties through imine bonding, it was 

still soluble in toluene and can be casted into thin films. The benzophenone moieties in the 

thin film will be activated under 365 nm UV light and form covalent bonds with 

neighboring chains. The activation of the benzophenone crosslinking will render the film 
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insoluble in the developer solvent mixture. So when this film is partially exposed and 

developed, the illuminated area will remain on the substrate, while the unexposed part will 

be washed away by the developer, as is shown in Figure 5-3 (a). 

 

After patterning and developing, it is important to fully dissolve the film to release the 

overlaying structure. The film was immersed into a mildly acidic (pH=3) aqueous solution 

to break the imine bonds, leaving only benzophenone crosslinking in the film, bringing the 

system below the gel point and rendering the polymer soluble again in the aqueous solution, 

Figure 5- 3 (a) Spin-cast diamine-crosslinked copolymer film after UV patterning and 

POEGMA developing; (b) the UV crosslinked layer is released after acid wash 
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as is shown in Figure 5-3 (b) that the the UV-exposed portion of the film is washed away. 

The crossed scratches are to show the position is the same in Figure 5-3 (a) and (b).  

5.3.2 Suspended cantilever structure 

The next step is to demonstrate that this photo-patternable sacrificial layer can be used to 

construct a suspended cantilever structure. The P(pMS-BP) copolymer from Chapter 4 was 

used as a stiff structural layer. The sacrificial layer was firstly spin-casted and patterned, 

then at the stage of some part of the substrate was exposed after development, the P(pMS-

BP) copolymer was spin-coated onto the substrate and patterned under 365 nm UV light 

by digital mirror devices. After developing, a glassy polymeric rectangle shape is deposited 

onto the edge of the sacrificial layer, part of the structural film on the sacrificial layer and 

the other part is directly on the bare Si substrate, as in Figure 5-4 (a). Then the sacrificial 

layer is released in acidic solution, but the PpMS layer is not damaged by the acid, left as 

a cantilever, as in Figure 5-4 (b). The suspension of the released part of the PpMS film was 

confirmed by mechanically poking the right part of PpMS film with tweezers. It should be 

noted that the sacrificial layer was not uniform across the sample, which can possibly be 

improved by changing to other spin-coating solvents in the future.   
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5.4 Conclusion and future work 

In this chapter, a photopatternable sacrificial layer was developed by incorporating two 

orthogonal crosslinking mechanisms, benzophenone crosslinking under UV illumination 

and acid-cleavable imine bonding between aldehyde and diamine. The patterning was 

carried out by maskless lithography and the development conditions used were mild. A 

freely suspended layer of PpMS was constructed by this method. 

This photopatternable sacrificial layer has great potential in being applied in the fabrication 

of complex MEMS devices. Instead of the current mechanical scratching operations, this 

photopatternablity offers improved precision and complexity. For example, biomedical 

MEMS devices are usually made from polymeric materials due to their biocompatibility, 

and their development trend of miniaturizing and more complex hierarchical architectures 

will benefit from this method.  

  

Figure 5- 4 The construction of a PpMS cantilever using the photo-patternable sacrificial 

layer. (a) Scheme and micrograph of structural layer deposited on the edge of sacrificial 

layer; (b) Scheme and micrograph of structural layer suspended after the release of the 

underlying sacrificial layer.  
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CHAPTER 6 

CONCLUSION AND OUTLOOK 

The aim of this thesis was to further the understanding and explore the application of nano- 

and micro- structured responsive hydrogel systems by interfacing with 

microelectromechanical systems (MEMS). Upon the change of environmental stimuli, 

free-standing hydrogels undergo volumetric change, known as swelling and deswelling, 

and surface-attached hydrogels may buckle into creases when under sufficient compression. 

MEMS devices and micro-fabrication techniques allow for investigations of the hydrogel 

system in the aspects of kinetics, mechanics and responsiveness, in local regions and micro-

scale features, in contrast to bulk materials that are more often studied.  

A major limitation in the application of responsive hydrogel systems is that the swelling 

kinetics are limited by the diffusion limit of solvent molecules, so miniature features and 

shorter transport distance are desired. Micro-heaters fabricated through traditional 

microfabrication procedures were used to achieve fast and regional temperature change by 

Joule heating, and were used in both the development of an in vitro platform for biomedical 

studies and the fundamental investigation of hydrogel swelling and deswelling kinetics. In 

Chapter 2, the fast temperature change induced the cyclic swelling and deswelling of the 

PNIPAM hydrogel, and the deepening and relaxation of parallel creases exerted stretching 

strain on the human artery smooth muscle cell (HASMC) attached in between. This 

hydrogel-based system was optimized mechanically and chemically to mimic the in vivo 

environment of a HASMC in the aspects of artery wall stiffness, rate and magnitude of 

cyclic mechanical stretch, and integrin-binding sites. The resulting platform was well-
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controllable and biologically relevant, and was used to study the expression change of 

differentiation marker proteins in SMCs. In Chapter 3, microheaters were used to 

investigate the source of a widely-observed but not well-understood phenomenon that 

PNIPAM hydrogel systems with a high solid content exhibit a two-step pattern in the 

swelling/deswelling kinetics. Free standing PNIPAM hydrogel sheets and PDEAM 

hydrogel sheets that lack inter-chain hydrogen bonding were prepared and compared 

systematically, leading to the conclusion that inter-chain hydrogen bonding was associated 

with the two-step pattern of PNIPAM gels, while the kinetics of PDEAM gel volumetric 

change was limited by mass transport in poroelastic networks. These two works showed 

that introducing MEMS into responsive hydrogel systems can overcome the limitation of 

bulk hydrogel systems in ambient environment, and many research and applications can be 

derived from this interface.  

These two examples lead us to expect the wide possibilities arise at the interface of 

responsive hydrogel systems and MEMS technology. MEMS being a mass-producible 

low-cost technology, responsive hydrogel systems can be fabricated into arrays to amplify 

their output to small changes in the environmental stimuli. The dramatic volumetric change 

in hydrogel swelling and deswelling process exhibits high reversibility and reproducibility, 

making them desirable triggering or actuating components in microfluidic devices. Also, 

one could imagine the incorporation of polymeric MEMS system into hydrogel-based 

biomedical sensors and actuators, where the biocompatibility and responsiveness of 

hydrogels are preserved, while the MEMS devices would provide environmental cues with 

better precision and remote controllability. Furthermore, incorporating MEMS into soft 

hydrogel systems would open up new approaches in the fabrication of flexible electronics, 
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soft sensors and actuators. Surely there are still challenges in this field, for example: the 

poor affinity between water-containing organic network and the inorganic rigid MEMS 

materials may result in delamination failure of the device; the dramatic thermal, electrical 

and mechanical property mismatch of components may render the device only functional 

under some specific environmental requirements; and the slow kinetics of hydrogel 

systems will be the rate-limiting step of MEMS sensors and actuators. These challenges 

may spur the advance of adhesion sciences and processing technologies, but also can be 

turned into new innovation possibilities, such as the mismatch being exploited to construct 

instability-based actuators where higher on/off ratio, and the kinetics lag contributing to 

self-sustaining oscillator designs.  

Besides incorporating MEMS devices into hydrogel systems as the trigger, photo-

patterning techniques were also applied to hydrogel systems in order to introduce modulus 

contrast in the study of hydrogel surface instability mechanics. Stiff pads were patterned 

onto the soft hydrogel substrate by photolithography, and it was demonstrated that stiff 

pads can influence the formation of creases nearby, and the crease direction .can be altered 

by changing the dimension of the pads.  

Moreover, the knowledge in hydrogel networks and crosslinking mechanisms contributed 

to a potentially powerful tool in MEMS fabrication. A photo-patternable sacrificial layer 

was obtained by the careful design of two orthogonal crosslinking mechanisms. The 

sacrificial layer could be patterned under UV illumination by benzophenone grafting, and 

was released by the cleavage of imine bonds in mild acidic aqueous solution. 
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Although this thesis mainly used temperature-responsive hydrogel systems, it should be 

noted that the integration of MEMS could extend the possibilities offered by hydrogel 

systems with responsiveness to other stimuli, such as pH, electric fields and magnetic fields. 

I hope our work presented in this thesis can contribute to the future fundamental studies 

and application developments regarding responsive hydrogel systems and MEMS 

techniques in a various fields.  
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