24 research outputs found

    Reliability Study Of Ingap/gaas Heterojunction Bipolar Transistor Mmic Technology By Characterization, Modeling And Simulation

    Get PDF
    Recent years have shown real advances of microwave monolithic integrated circuits (MMICs) for millimeter-wave frequency systems, such as wireless communication, advanced imaging, remote sensing and automotive radar systems, as MMICs can provide the size, weight and performance required for these systems. Traditionally, GaAs pseudomorphic high electron mobility transistor (pHEMT) or InP based MMIC technology has dominated in millimeter-wave frequency applications because of their high fT and fmax as well as their superior noise performance. But these technologies are very expensive. Thus, for low cost and high performance applications, InGaP/GaAs heterojunction bipolar transistors (HBTs) are quickly becoming the preferred technology to be used due to their inherently excellent characteristics. These features, together with the need for only one power supply to bias the device, make InGaP/GaAs HBTs very attractive for the design of high performance fully integrated MMICs. With the smaller dimensions for improving speed and functionality of InGaP/GaAs HBTs, which dissipate large amount of power and result in heat flux accumulated in the device junction, technology reliability issues are the first concern for the commercialization. As the thermally triggered instabilities often seen in InGaP/GaAs HBTs, a carefully derived technique to define the stress conditions of accelerated life test has been employed in our study to acquire post-stress device characteristics for the projection of long-term device performance degradation pattern. To identify the possible origins of the post-stress device behaviors observed experimentally, a two iv dimensional (2-D) TCAD numerical device simulation has been carried out. Using this approach, it is suggested that the acceptor-type trapping states located in the emitter bulk are responsible for the commonly seen post-stress base current instability over the moderate base-emitter voltage region. HBT-based MMIC performance is very sensitive to the variation of core device characteristics and the reliability issues put the limit on its radio frequency (RF) behaviors. While many researchers have reported the observed stress-induced degradations of GaAs HBT characteristics, there has been little published data on the full understanding of stress impact on the GaAs HBTbased MMICs. If care is not taken to understand this issue, stress-induced degradation paths can lead to built-in circuit failure during regular operations. However, detection of this failure may be difficult due to the circuit complexity and lead to erroneous data or output conditions. Thus, a practical and analytical methodology has been developed to predict the stress impacts on HBTbased MMICs. It provides a quick way and guidance for the RF design engineer to evaluate the circuit performance with reliability considerations. Using the present existing EDA tools (Cadance SpectreRF and Agilent ADS) with the extracted pre- and post-stress transistor models, the electrothermal stress effects on InGaP/GaAs HBT-based RF building blocks including power amplifier (PA), low-noise amplifier (LNA) and oscillator have been systematically evaluated. This provides a potential way for the RF/microwave industry to save tens of millions of dollars annually in testing costs. v The world now stands at the threshold of the age of advanced GaAs HBT MMIC technology and researchers have been exploring here for years. The reliability of GaAs HBT technology is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation provide methods and guidance for the RF designers to achieve more reliable RF circuits with advanced GaAs HBT technology in the future

    GaN HEMT Low Frequency Noise Characterization for Low Phase Noise Oscillator Design

    Get PDF
    The thesis presents low frequency noise (LFN) characterization of Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) for low phase noise oscillator design. First, GaN HEMT technology is benchmarked versus other transistor technologies, e.g., GaAs-InGaP Heterojunction Bipolar Transistor (HBT) and GaAs pHEMT, in terms of noise and power. In the comparison, LFN at given frequency normalized to DC power is used as a benchmark parameter. It is verified that InGaP HBT technology provides better performance in terms of both absolute noise level and normalized values compared to other technologies. However, at higher frequencies where flicker noise is less critical, GaN HEMT has an advantage of higher power. For this reason, GaN HEMT is considered to have good potential for design of oscillators for communication systems with large channel bandwidth. Then, some factors which influence the LFN of two types of GaN HEMTs: AlGaN/GaN based HEMT and AlInN/AlN/GaN based HEMT such as surface passivation methods and variations in transistor geometry are studied. It is seen that the surface passivation has a major impact on the noise level while the effect of transistor geometry (e.g. gate length, gate width and source-drain distance) is insignificant. The best surface passivation, with respect to LFN, is Al2O3 deposited with thermal Atomic Layer Deposition (ALD). Finally, two monolithic integrated circuit (MMIC) oscillators based on GaN HEMT technology are demonstrated. A fixed frequency GaN HEMT oscillator is designed at about 10 GHz with the best achieved phase noise of -100 dBc/Hz @ 100 kHz offset. Another GaN HEMT voltage controlled oscillator (VCO) is also designed with medium (15%) tuning range between 6.45-7.55 GHz, high tuning linearity, average output power about 1 dBm and low phase noise. For a bias of Vd /Id = = 6 V/33 mA, the measured phase noise is -98 dBc/Hz @ 100 kHz and -132 dBc/Hz @ 1 MHz offset frequencies, respectively. This is the lowest phase noise reported for a GaN HEMT based VCO with comparable tuning range and oscillation frequency. Its 1 MHz phase noise performance is comparable to state-of-the-art VCOs based on InGaP-HBT technology with similar tuning range

    MMIC-based Low Phase Noise Millimetre-wave Signal Source Design

    Get PDF
    Wireless technology for future communication systems has been continuously evolving to meet society’s increasing demand on network capacity. The millimetre-wave frequency band has a large amount of bandwidth available, which is a key factor in enabling the capability of carrying higher data rates. However, a challenge with wideband systems is that the capacity of these systems is limited by the noise floor of the local oscillator (LO). The LO in today’s communication systems is traditionally generated at low frequency and subsequently multiplied using frequency multipliers, leading to a significant degradation of the LO noise floor at millimetre-wave frequencies. For this reason, the thesis considers low phase noise millimetre-wave signal source design optimised for future wideband millimetre-wave communications.In an oscillator, low frequency noise (LFN) is up-converted into phase noise around the microwave signal. Thus, aiming for low phase noise oscillator design, LFN characterisations and comparisons of several common III-V transistor technologies, e.g. GaAs-InGaP HBTs, GaAs pHEMTs, and GaN HEMTs, are carried out. It is shown that GaN HEMTs have good potential for oscillator applications where far-carrier phase noise performance is critical, e.g. wideband millimetre-wave communications. Since GaN HEMT is identified as an attractive technology for low noise floor oscillator applications, an in-depth study of some factors which affects LFN characteristics of III-N GaN HEMTs such as surface passivation methods and variations in transistor geometry are also investigated. It is found that the best surface passivation and deposition method can improve the LFN level of GaN HEMT devices significantly, resulting in a lower oscillator phase noise. Several MMIC GaN HEMT based oscillators including X-band Colpitts voltage-controlled-oscillators (VCOs) and Ka-band reflection type oscillators are demonstrated. It is verified that GaN HEMT based oscillators can reach a low noise floor. For instance, X-band GaN HEMT VCOs and a Ka-band GaN HEMT reflection type oscillator with 1 MHz phase noise performance of -135 dBc/Hz and -129 dBc/Hz, respectively, are demonstrated. These results are not only state-of-the-art for GaN HEMT oscillators, but also in-line with the best performance reported for GaAs-InGaP HBT based oscillators. Further, the MMIC oscillator designs are combined with accurate phase noise calculations based on a cyclostationary method and experimental LFN data. It has been seen that the measured and calculated phase noise agree well.The final part of this thesis covers low phase noise millimetre-wave signal source design and a comparison of different architectures and technological approaches. Specifically, a fundamental frequency 220 GHz oscillator is designed in advanced 130 nm InP DHBT process and a D-band signal source is based on the Ka-band GaN HEMT oscillator presented above and followed by a SiGe BiCMOS MMIC including a sixtupler and an amplifier. The Ka-band GaN HEMT oscillator is used to reach the critical low noise floor. The 220 GHz signal source presents an output power around 5 dBm, phase noise of -110 dBc/Hz at 10 MHz offset and a dc-to-RF efficiency in excess of 10% which is the highest number reported in open literature for a fundamental frequency signal source beyond 200 GHz. The D-band signal source, on the other hand, presents an output power of 5 dBm and phase noise of -128 dBc/Hz at 10 MHz offset from a 135 GHz carrier signal. Commenting on the performance of these two different millimetre-wave signal sources, the GaN HEMT/SiGe HBT source presents the best normalized phase noise at 10 MHz, while the integrated InP HBT oscillator demonstrates significantly better conversion efficiency and still a decent phase noise

    DESIGN OF A GAAS DISTRIBUTED AMPLIFIER WITH LC TRAPS BASED BROADBAND LINEARIZATION

    Get PDF
    Increasing the linearity of power amplifiers has been an important area of research because its signal integrity influences the performance of the entire transreceiver system and there are strict regulatory requirements on them. Due to the nonlinear behaviour of power amplifiers, third order intermodulation products are generated close to the desired signals and cannot be removed by filters. Increasing linearity will help bring these distortion products closer to the noise floor. However, it is not an easy task to increase linearity without trading off output power. To maintain the same level of output power generated but with higher linearity, many techniques, each with its own pros and cons, have been implemented to linearize an amplifier. Techniques involving feedback are seriously limited in terms of modulation bandwidth whereas methods such as predistortion and feedforward are very difficult to implement. This project seeks to use a simple method of placing terminations directly to the distributed amplifier (DA), making it a device level linearization technique and can be used in addition to the other system level techniques mentioned earlier. To increase linearity over a broad bandwidth of 0.5 to 3.0 GHz, this work proposes using low impedance terminations (LC traps) at the envelope frequency to the input and output of several distributed amplifiers. This research is novel since this is the first time broadband improvement in linearity has been demonstrated using the LC trap method. Two design iterations were completed (first design iteration has four variants to test the output trap while the second design iteration has three variants to test the input trap). The low impedance terminations are implemented using inductor-capacitor networks that are external to the monolithic microwave integrated circuit (MMIC). Design and layout of the DAs were carried out using Agilent’s Advanced Design System (ADS). Results show that placing the traps at the output of the DA does not truly affect the linearity of the device at lower frequencies but provide an improvement of 1.6 dB and 3.4 dB to the third-order output intercept point (OIP3) at 2.5 GHz and 3.0 GHz, respectively. With traps at the input, measurement results at -5 dBm input power, viii 1.375 V base bias (61 mA total collector current) and 10 MHz two tone spacing show a broadband improvement throughout the band (0.5 GHz to 3.0 GHz) of 3.3 dB to 7.4 dB in OIP3. Furthermore, the OIP3 is increased to 19.2 dB above P1dB. Results show that the improvement in OIP3 comes without lowering gain, return loss or P1dB and without causing any stability problems

    GigaHertz Symposium 2010

    Get PDF

    Microwave and Millimeter-Wave Signal Power Generation

    Get PDF

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    System for high and low frequency noise measurements design and semiconductor devices characterization

    Get PDF
    Orientador: Peter Jurgen TatschTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Este trabalho teve como objetivo a montagem de um sistema de caracterização de ruído de alta e de baixa freqüência, utilizando equipamentos disponíveis no Centro de Componentes Semicondutores da Unicamp. Foi montado um sistema para a caracterização do ruído de baixa freqüência em dispositivos semicondutores e desenvolveu-se um método para a análise da qualidade de interfaces e cálculo de cargas, utilizando o ruído 1/f. Na descrição do ruído em baixa freqüência é apresentado em detalhes todo o arranjo utilizado para a medição, além dos resultados da medida em transistores nMOS e CMOS do tipo p e do tipo n fabricados no Centro. Detalhes importantes sobre o cuidado com a medição, tais como a utilização de baterias para a alimentação dos dispositivos e o correto aterramento, também são esclarecidos. A faixa de freqüência utilizada vai de 1 Hz até 100 KHz. Como aplicação, a medida de ruído é utilizada como ferramenta de diagnóstico de dispositivos semicondutores. Resultados destas medidas também são apresentados. Foi desenvolvido também um sistema para a medição do ruído em alta freqüência. A caracterização teve como objetivo determinar o parâmetro conhecido como Figura de Ruído. Apresenta-se além da descrição do arranjo utilizado na medição, os equipamentos e a metodologia empregada. Em conjunto com as medidas de ruído também são apresentados os resultados das medidas de parâmetros de espalhamento. Para a validação do método de obtenção desse conjunto de medidas, um modelo de pequenos sinais de um transistor HBT, incluindo as fontes de ruído é proposto, e é apresentado o resultado entre a medição e a simulação. A faixa disponível para medida vai de 45 MHz até 30 GHz para os parâmetros de espalhamento e de 10 MHz até 1.6 GHz para medida de figura de ruídoAbstract: The main goal of this work is the development of a noise characterization system for high and low frequency measurements using equipments available at the Center for Semiconductor Components at Unicamp. A low noise characterization system for semiconductors was built and by means of 1/f noise measurement it was possible to investigate semiconductor interface condition and oxide traps density. Detailed information about the test set-up is presented along with noise measurement data for nMOS, p and n type CMOS transistors. There is also valuable information to careful conduct noise measurements, as using battery powered devices and accurate grounding procedures. The low noise set-up frequency range is from 1 Hz up to 100 KHz. Noise as a diagnostic tool for quality and reliability of semiconductor devices is also presented. Measurement data is also shown. A measurement set-up for high frequency noise characterization was developed. Measurements were carried out in order to determine the noise figure parameter (NF) of the HBT devices. Comprehensive information about the test set-up and equipments are provided. Noise data measurements and s-parameters are also presented. In order to validate the measurement procedure, a small signal model for HBT transistor including noise sources is presented. Comparisons between simulation and measured data are performed. The s-parameters frequency range is from 45 MHz to 30 GHz, and noise set-up frequency range is from 10 MHz up to 1.6 GHzDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutor em Engenharia Elétric

    Strained Si heterojunction bioploar transistors

    Get PDF
    This dissertation addresses the world’s first demonstration of strained Si Heterojunction Bipolar Transistors (sSi HBTs). The conventional SiGe Heterojunction Bipolar Transistor (SiGe HBT), which was introduced as a commercial product in 1999 (after its first demonstration in 1988), has become an established device for high-speed applications. This is due to its excellent RF performance and compatibility with CMOS processing. It has enabled silicon-based technology to penetrate the rapidly growing market for wide bandwidth and wireless telecommunications once reserved for more expensive III–V technologies. SiGe HBTs is realised by the pseudomorphic growth of SiGe on a Si substrate, which allows engineering of the base region to improve performance. In this way the base has a smaller energy band gap than the emitter, which increases the gain. The energy band gap of SiGe reduces with increasing Ge composition, but the maximum Ge composition is limited by the amount of strain that can be accommodated within a given base layer thickness. Therefore, a new innovation is necessary to overcome this limitation and meet the continuous demand for high speed devices. Growing the SiGe base layer over a relaxed SiGe layer (Strain Relaxed Buffer) can increase the amount of Ge that can be incorporated in the base, hence, increasing the device performance. In this thesis, experimental data is presented to demonstrate the realisation of sSi HBTs. The performance of this novel device has been also investigated and explained using TCAD tool.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research CouncilGBUnited Kingdo
    corecore