515,315 research outputs found

    Real-time temperature estimation for power MOSFETs considering thermal ageing effects

    Get PDF
    This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications

    Simulating Execution Time and Power Consumption of Real-Time Tasks on Embedded Platforms

    Get PDF
    In this paper, we present PARTSim, an open-source power/thermal-aware simulator for embedded real-time systems. This tool is a fork of the well-known RTSim simulator, which can simulate the timing behavior of a set of real-time tasks with various characteristics when running on a multi-processor platform in presence of a number of real-time scheduling policies. PARTSim extends the functionality of RTSim by introducing support for power-aware embedded platforms exhibiting frequency scaling and specific architectural patterns like the ARM big.LITTLE and DynamIQ ones. Experimental results that compare simulated data against execution profiles collected on real platforms show a simulation error under 10 % for both execution time and power consumption at 90th percentile when simulating the effects of DVFS

    Building a path-integral calculus: a covariant discretization approach

    Full text link
    Path integrals are a central tool when it comes to describing quantum or thermal fluctuations of particles or fields. Their success dates back to Feynman who showed how to use them within the framework of quantum mechanics. Since then, path integrals have pervaded all areas of physics where fluctuation effects, quantum and/or thermal, are of paramount importance. Their appeal is based on the fact that one converts a problem formulated in terms of operators into one of sampling classical paths with a given weight. Path integrals are the mirror image of our conventional Riemann integrals, with functions replacing the real numbers one usually sums over. However, unlike conventional integrals, path integration suffers a serious drawback: in general, one cannot make non-linear changes of variables without committing an error of some sort. Thus, no path-integral based calculus is possible. Here we identify which are the deep mathematical reasons causing this important caveat, and we come up with cures for systems described by one degree of freedom. Our main result is a construction of path integration free of this longstanding problem, through a direct time-discretization procedure.Comment: 22 pages, 2 figures, 1 table. Typos correcte

    KMS, etc

    Full text link
    A general form of the ``Wick rotation'', starting from imaginary-time Green functions of quantum-mechanical systems in thermal equilibrium at positive temperature, is established. Extending work of H. Araki, the role of the KMS condition and of an associated anti-unitary symmetry operation, the ``modular conjugation'', in constructing analytic continuations of Green functions from real- to imaginary times, and back, is clarified. The relationship between the KMS condition for the vacuum with respect to Lorentz boosts, on one hand, and the spin-statistics connection and the PCT theorem, on the other hand, in local, relativistic quantum field theory is recalled. General results on the reconstruction of local quantum theories in various non-trivial gravitational backgrounds from ``Euclidian amplitudes'' are presented. In particular, a general form of the KMS condition is proposed and applied, e.g., to the Unruh- and the Hawking effects. This paper is dedicated to Huzihiro Araki on the occasion of his seventieth birthday, with admiration, affection and best wishes.Comment: 56 pages, submitted to J. Math. Phy

    Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems

    Get PDF
    In photovoltaic solar energy systems, power management algorithms (PMAs), usually called maximum power point tracking (MPPT) algorithms, are widely used for extracting maximum available power at every point in time. However, tracking the maximum power has negative effects on the availability of solar energy systems. This is due, mainly, to the created disturbances and thermal stresses on the associated power electronic converters (PECs). This work investigates the effects of PMA on the lifetime consumption, thermal stresses and failures on DC-DC converters used in solar systems. Firstly theoretical analysis and modelling of photovoltaic solar systems including converter’s electro thermal characteristics were developed. Subsequently, experiments on photovoltaic solar systems were carried out using two different PMAs, namely, perturb and observe (P&O) and incremental conductance (IC). Real-time data was collected, under different operating conditions, including thermal behavior using thermal imaging camera and dSPACE. Converters’ thermal cycling was found to be approximately 3 ◦C higher with the IC algorithm. The steady state temperature was 52.7 ◦C, for the IC while it was 42.6 ◦C for P&O. Although IC algorithm offers more accurate power management tool, it causes more severe thermal stresses which, in this study, has led to approximately 1.4 times greater life consumption compared to P&O

    Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Get PDF
    This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models

    In situ nanoindentation: probing nanoscale multifunctionality

    Get PDF
    Nanoindentation is the leading technique for evaluating nanoscale mechanical properties of materials. Consistent developments in instrumentation and their capabilities are transforming nanoindentation into a powerful tool for characterization of multifunctionality at the nanoscale. This review outlines the integration of nanoindentation with real-time electron imaging, high temperature measurements, electrical characterization, and a combination of these. In situ nanoindentation measurements have enabled the real-time study of the interplay between mechanical, thermal, and electrical effects at the nanoscale. This review identifies previous reviews in this area, traces developments and pinpoints significant recent advances (post-2007), with emphasis on the applications of in situ nanoindentation techniques to materials systems, and highlighting the new insights gained from these in situ techniques. Based on this review, future directions and applications of in situ nanoindentation are identified, which highlight the potential of this suite of techniques for materials scientists from all disciplines
    corecore