251 research outputs found

    A bibliography /with abstracts/ on gas-lubricated bearings Interim report

    Get PDF
    Gas lubricated bearings - annotated bibliograph

    Thermal simulation modeling of a hydrostatic machine feed platform

    Get PDF
    Hydrostatic guideways are widely applied into precision and ultra-precision machine tools. Meanwhile, the oil film heat transfer causes thermal disturbance to the machine accuracy. Therefore, it is necessary to study the mechanism of the oil film heat transfer and the heat-transfer-reducing method to improve the machine accuracy. This paper describes a comprehensive thermal finite element (FE) simulation modeling method for the hydrostatic machine feed platform to study methods of reducing machine thermal errors. First of all, the generating heat power of viscous hydraulic oil flowing between parallel planes is calculated based on the Bernoulli equation. This calculation is then employed for the simulation load calculations for the closed hydrostatic guideways, which is adopted by the hydrostatic machine feed platform. Especially, in these load calculations, the changing of oil film thickness (resulted from external loads) and the changing of oil dynamic viscosity (influenced by its temperature) are taken into account. Based on these loads, thermal FE simulation modeling of the hydrostatic machine feed platform is completed to predict and analyze its thermal characteristics. The reliability of this simulation modeling method is verified by experiments. The studies demonstrate that the hydrostatic machine thermal error degree is determined by the oil film heat transfer scale, and this scale is mainly influenced by the relative oil supply temperature to ambient temperature (quantitative comparison of oil supply temperature and ambient temperature). Furthermore, the reduction of the absolute value of this relative oil supply temperature can reduce the oil film heat transfer scale and improve the machine accuracy

    Gas Bearings: Modelling, Design and Applications

    Get PDF
    This book focuses on the modelling and the design process of gas bearings, on the experimental validation of such models, and on their applications. In particular, recent developments about foil bearings, aerostatic bearings, porous bearings, and non-contact precision positioning systems are shown

    Experimental test program for evaluation of solid lubricant coating as applied to compliant foil gas bearings to 315 deg C

    Get PDF
    An experimental apparatus and test procedure was developed to compare the performance of two solid lubricant coatings for air lubricated compliant foil gas bearings in the temperature range of 25 to 315 C. Polyimide bonded additive (SBGC) were tested extensively for durability and frictional characteristics. A partial arc bearing constructed of Inconel X-750 was coated on the bore with one of these coatings. The foil was subjected to repeated start/stop cycles. Performance comparisons reveal that although both coatings survive thousands of start/stop cycles, only the PBGF coated bearing achieves the specified 9000 start/stops. There is enough wear on the SBGC coated bearing to warrant termination of the test prior to 9000 start/stop cycles due to coating failure. The frictional characteristics of the PBGF are better at the elevated temperatures than at lower temperatures; a marked increase in sliding friction occurs as the temperature decreases. The SBGC maintains relatively constant frictional characteristics independent of operating temperature

    Development of porous-ceramic hydrostatic bearings

    Get PDF
    Porous-ceramic hydrostatic bearings have been recently developed. These bearings have demonstrated an exceptional overall performance when compared with conventional technology bearings. However, despite all the benefits, porous-ceramic hydrostatic bearings have yet to find widespread acceptance due to the problems found in tailoring the bearings geometry and size to suit precision engineering applications, while producing porous-structures with consistent and reproducible permeability. Using a series of fine grades of alumina powders in combination with maize starch granules, a new method for the manufacture of porous-ceramic bearings has been developed, based on the starch consolidation technique. By employing this method, it has been demonstrated that is possible to manufacture bearings of different geometries and shapes, with consistent and reproducible properties. The new method also proved to be low cost and environmentally sound. The performance of the new journal bearings has been investigated in a highly instrumented test-rig, and a comparable performance to that of previous porous- ceramic journal research has been observed. In a direct performance comparison between a porous-ceramic hydrostatic journal bearing and a conventional hydrostatic bearing of the same size, the porous-ceramic bearing demonstrated a significant performance improvement in terms of stiffness, power consumption and thermal performance. In previous research, water lubrication proved to significantly improve the spindle thermal performance. However, water lubrication is feared to promote corrosion within the spindle components. In the present research, the effects of water lubrication in porous-ceramic bearing systems were investigated. As a result, it has been demonstrated that corrosion in typical machine-tool materials can be effectively controlled by using inhibitors and low cost surface coatings. On the other hand, it has been also demonstrated that undesirable foaming, air entrainment and microbial growth can potentially develop in water/inhibitors lubrication systems. In this sense, the use of low viscosity oils proved to offer a comparable performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Comparison of Four Numerical Methods of EHL Modeling

    Get PDF

    Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement

    Get PDF
    Microgas turbines are a widespread technology in cogenerative and propulsion applications. Bearings are a key factor in their design and development. The aim of the present research work is the development of the support system for a typical microturbine intended for power generation. To this goal, the present chapter defines the typical requirements of the machine and, afterward, describes the different technologies available to develop the support system of a reliable microturbine. Conventional (rolling element and oil-film) supports and cutting-edge (magnetic, aerodynamic, and aerostatic) bearings are reviewed. Particularly, their suitability to the operating conditions is compared by means of a literature review and elaboration of the relevant data. By analyzing all this information, a new concept for the design of a micro-GT support system is devised. Instead of using a single type of bearing as usual, the new system includes different types in order to take advantage of the best characteristics of each one and, simultaneously, to minimize the effects of the relevant flaws. The innovative support system requires a suitable bearing arrangement, which is compared with the conventional ones. The conceptual design of the innovation is completed by a discussion of its advantages, drawbacks, and prospective improvements

    Advances in Bearing Lubrication and Thermal Sciences

    Get PDF
    This reprint focuses on the hot issue of bearing lubrication and thermal analysis, and brings together many cutting-edge studies, such as bearing multi-body dynamics, bearing tribology, new lubrication and heat dissipation structures, bearing self-lubricating materials, thermal analysis of bearing assembly process, bearing service state prediction, etc. The purpose of this reprint is to explore recent developments in bearing thermal mechanisms and lubrication technology, as well as the impact of bearing operating parameters on their lubrication performance and thermal behavior
    corecore