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Abstract
Purpose Thrust bearings play a critical role in high-speed rotating machinery, such as turbines, pumps, compressors, and 
turbogenerators, by transferring axial loads between the collar and the bearing pads. The lubricating fluid prevents contact, 
friction, and wear between solid parts and acts as a cooling medium. The purpose of this study is to evaluate the first- and 
second-order bearing coefficients of an inclined pad hydrodynamic thrust bearing, which have not been previously investi-
gated, to improve the accuracy of modeling thrust bearings.
Methods In the analysis of thrust bearing systems, the lubricating fluid film is modeled as a massless spring-damper system. 
The finite perturbation method for the governing Reynolds equation is used to calculate the dynamic coefficients of the thrust 
bearing. This is done using the finite difference method (FDM) in polar coordinates.
Results This study investigates the influence of misalignment, rotating speed, and mesh size on the bearing coefficients of the 
thrust bearing. The results show that misalignment angle and film thickness have a clear effect on the dynamic coefficients, 
while changing the rotational speed has no effect on the damping coefficients. The study also investigates the axial force and 
moments and dynamic coefficients of an inclined pad thrust bearing.
Conclusion This study concludes that evaluating the first- and second-order bearing coefficients of the thrust bearing using 
the finite perturbation method can improve the accuracy of modeling thrust bearings. The study also highlights the signifi-
cant influence of misalignment and film thickness on the dynamic coefficients of the thrust bearing. The results presented 
in this study provide valuable data that can be used as input for rotor dynamics analyses in high-speed rotating machinery.

Keywords Thrust bearing · Reynolds equation · Finite difference method · Non-linear dynamic coefficients

List of Symbols
C��  1st order damping coefficients, 

𝜂, 𝜁 = z, 𝜃x, 𝜃y, ż, �̇�x, �̇�y
C���  2nd order damping coefficients 

𝜂, 𝜁 , 𝛾 = z, 𝜃x, 𝜃y, ż, �̇�x, �̇�y
Fz  Bearing force in axial direction (N)
h  Fluid film thickness (m)
h1  Minimum fluid film thickness (m)
hs  Fluid film thickness at the inclined part (m)
hmax  Maximum fluid film thickness (m), 

hs = hmax − h1
K��  First-order stiffness coefficients � , � = z, �x, �y
K���  Second-order stiffness coefficients 

� , �, � = z, �x, �y
Mx,My  Bearing moments in x and y directions (N.m)
n  Rotational speed (rpm)
p  Fluid film pressure (N/m2)
r  Radial coordinate
ri  Inner radius (m)
ro  Outer radius (m)
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t  Time (s)
v�  Mean journal speed (m/s), ((ri + ro)∕2)�

x, y, z  Cartesian coordinates
Δz  Axial displacement (m)
Δż  Axial velocity (m/s)
�  Lubricant viscosity (N.s/m2)
�  Angular velocity (rad/s)
�  Circumferential coordinate
�pad  Thrust pad extend angle
�x0, �y0  Misalignment angles in x and y directions
Δ�x,Δ�y  Angular displacements around x and y 

directions
Δ�̇�x,Δ�̇�y  Angular velocities around x- and y-directions

Subscripts
0  Non-linear

Superscripts
f  First order
s  Second order

Introduction

Hydrodynamic thrust bearings are a machine elements that 
are used in rotating machinery to transfer thrust loads from 
a shaft to the bearing pads and used also to reduce wear 
and friction between the rotating “collar” and fixed “bearing 
pads” parts of the system [1]. As a lubricant of the thrust 
bearing, it provides stiffness and damping effect and pre-
vents solid contact between stationary and rotating parts. 
Due to the importance of bearing stiffness and damping 
coefficients in the dynamic analysis of rotor-bearing system, 
many researchers have proposed several methods to calculate 
the dynamic coefficients of a hydrodynamic bearing.

The pressure distribution in hydrodynamic bearings is 
governed by the Reynolds equation which is derived from 
the continuity and Navier–Stokes equations [2]. Pinkus and 
Lynn [3] was the first who solve Reynolds equation numeri-
cally using the finite difference method (FDM) for the thrust 
bearing. Najar and Harmain [4] solved the Reynolds equa-
tion for sector shaped pad thrust bearing using FDM with 
several grid sizes. The pressure was evaluated at various 
locations after performing a through grid refinement. Koç 
[5] described a numerical method for solving Reynolds equa-
tion with aspect to thrust bearing using FDM. A theoretical 
model was developed to calculate the pressure distribution 
and load-carrying capacity for thrust bearing. Heshmat and 
Pinkus [6] introduced an analysis and computer solution for 
the tapered land thrust bearing considering misalignment 
for the thrust faces. The analysis includes the thermal effect 
and cavitation boundary conditions for different geometries. 
Someya and Fukuda [7] used two different methods to solve 
the Reynolds equation which are the non-linear method and 

linear method. The variation of the oil-film thickness and 
pressure for a hydrodynamic thrust bearing under periodic 
load was analyzed then verified experimentally. Vieira et al. 
[8] used a finite volume method to solve the Reynolds equa-
tion to find the pressure distribution and the load-carrying 
capacity in the polar coordinates. The equivalent direct axial 
stiffness and damping coefficients calculated from the pres-
sure distribution and total load capacity. Vieira et al. [9] used 
FDM numerically to investigate the pressure distribution and 
load-carrying capacity of thrust bearing with different geom-
etries. The effect of different operating parameters, such as 
oil viscosity, rotating speed, sector radii, and film thickness 
on pressure distribution and load capacity, were investigated. 
Ettles [10] introduced a computer program to simulate and 
analysis sector pad-shaped tilting thrust bearing. The pro-
gram can solve the coupled elasticity, Reynolds, and energy 
equations. Using this program, the effect of different operat-
ing conditions on bearing performance can be investigated. 
Zhang et al. [11] carried out a simulation design and optimi-
zation for the thrust bearing capacity. The Reynolds equation 
for water-lubricated thrust bearing was solved to calculate 
the pressure distribution and load-carrying capacity. The 
theoretical results verified with the results obtained from 
the experimental work. Najar and Harmain [12] developed 
a finite difference-based numerical model to simulate the 
Reynolds equation. A new cooling circuit configuration con-
sidered, and it is observed that a significant amount of heat 
is removed from the cooling medium.

Kim, et al. [13] evaluated the pressure, load, stiffness, 
and damping of fluid dynamic bearings from generalized 
Reynolds equation and its perturbed equations after trans-
ferring these to finite-element equations. The proposed 
method was verified by comparing the results of coupled 
journal and conical bearing with the simulated method. 
Liming et al. [14] introduced a review about large tilt-
ing pad thrust bearing used in hydropower units. The 
review included the transient and dynamic characteris-
tics, thermal–elastic deformation, and the different meth-
ods for bearing performance prediction. Jang and Lee [15] 
numerically calculated the first-order stiffness and damp-
ing coefficients of coupled journal and thrust bearing from 
Reynolds equation and its perturbed equations using finite-
element method. X. Lin et al. [16, 17] proposed a lubricant 
model to investigate the static and dynamic characteristics 
of the spiral groove (SGTB) water-lubricated thrust bear-
ing at high-speed. The proposed model considered the cen-
trifugal and cavitating effects in calculations. Lin et al. 
[18] studied the effect of interface effect and cavitation 
bubble on the dynamic characteristics of water-lubricated 
spiral groove thrust bearing. The perturbed Reynolds 
equation was solved to calculate the stiffness and damping 
coefficients of thrust bearing. The theoretical results were 
verified with a developed experiment. The results showed 



1959Journal of Vibration Engineering & Technologies (2024) 12:1957–1977 

1 3

that the dynamic coefficients of spiral groove thrust bear-
ing are highly affected by cavitation and turbulent effect. 
Jialei and Liang [19] calculated the stiffness and damp-
ing coefficients of hydrostatic bearing using an improved 
method based on the mathematical perturbation technique. 
The calculated dynamic coefficients from the improved 
method and the convectional method were compared to 
validate the effectiveness of the improved method. Peixoto 
et.al. [20–23] estimated the first-order stiffness and damp-
ing coefficients of the thrust bearing by small perturba-
tion around the equilibrium position using finite-element 
method and compared the calculated coefficients with the 
experimental results. Yadav et al. [24] computed the stiff-
ness and damping of aerostatic thrust bearing with differ-
ent recess geometries using the finite-element method. The 
influence of tilt angle on the aerostatic thrust bearing per-
formance was also analyzed. Lin and Hung [25] presented 
a dynamic analysis of a wide slider with exponential film 
profile considering the squeeze action. The dynamic coef-
ficients were evaluated from the perturbed Reynolds equa-
tion and were compared with the inclined plane profile.

Koutsoumpas, et  al. [26] developed a CFD-based 
thermo-hydrodynamic (THD) numerical model to estimate 
the stiffness and damping coefficients of the thrust bear-
ing at different operating conditions. Srikanth et al. [27] 
described a finite difference technique to solve Reynolds 
and temperature distribution for thrust bearing considering 
viscosity variation. The angular stiffness coefficient, pad 
deformation, and torque were calculated from a coupled 
finite-element method using ANSYS. Iordanoff et al. [28, 
29] used the small perturbation method to solve the Reyn-
olds equation to estimate the stiffness and damping coef-
ficients considering axial and misalignment movements. 
Storteig and White [30] used one-dimensional finite-ele-
ment technique to solve Reynolds equation and the pres-
sure assumed to be in the radial direction and the thermal 
effect included. Then, the dynamic coefficients calculated 
for fixed pad thrust bearing at different geometries. Gad 
[31, 32] analyzed the stiffness and damping coefficients, 
power losses, and load capacity of the gas film thrust bear-
ings at small angular misalignments. A small perturbation 
method was used to evaluate the dynamic coefficients and 
study the effect of static and dynamic angular misalign-
ments on the performance of gas-lubricated foil thrust 
bearing. Shi, et  al. [33] solved the coupled perturbed 
Reynolds equation for a 3-DOF aerostatic thrust bearing 
with orifice restrictor. The effect of film thickness, rotat-
ing speed, perturbation factor, and tilt angle on the thrust 
bearing characteristics are evaluated. L. San Andre’s [34] 
evaluated the effect of misalignment on the dynamic per-
formance of a hybrid thrust bearing. Zero- and first-order 
equations were obtained by introducing a small axial and 
angular motions to the perturbed analysis. Sun et al. [35] 

established a 5-DOF model of the rotor and 3-DOF model 
for rubber supported water-lubricated thrust bearing. A 
mixed thermoelastohydrodynamic (TEHD) model used 
to study the dynamic effect of the thrust bearing on the 
system response under external disturbing moments and 
the results verified experimentally. Nitzschke et al. [36] 
studied the floating-ring thrust bearing and its effect on the 
transient rotor-dynamic simulation by solving the Reyn-
olds equation. The coupling effect between the different 
fluid films is simulated and the difference between coupled 
and uncoupled solution is discussed.

Kim Jang and Kim [37] presented a 5-DOF model for a 
general rotor-bearing system to calculate the stiffness and 
damping coefficients in a hydrodynamic bearings. A small 
amplitude motion of a bearing center is assumed to obtain 
the perturbed equations from Reynolds equation. Then, the 
dynamic coefficients are obtained for journal and thrust 
bearing due to eccentricity and misalignment. Jintanawan 
et al. [38] investigated the thrust bearing axial stiffness and 
damping coefficients, and studied the effect of these coef-
ficients on the axial vibration of disk-spindle system in hard 
disk drives. Temis and Lazarev [39] developed a model to 
calculate the stiffness and damping coefficients of thrust 
bearing considering axial and angular motion. The obtained 
results were compared with the results from STAR-CD soft-
ware and the theoretical and experimental results in the pre-
vious literature. Srikanth et al. [40] used a finite difference 
method to solve the Reynolds equation to find the pressure 
distribution and load-carrying capacity for thrust bearing. 
The dynamic stiffness and damping obtained by varying the 
film thickness and introducing a velocity to the runner.

The radial journal bearing literature shows many attempts 
to use second-order and higher order bearing coefficients; 
see, for example, [41–47]. The authors of these articles 
showed that using higher order bearing coefficients gives 
better approximation to the non-linear bearing forces and 
to the stability analysis. Meanwhile, the literature for thrust 
bearing shows a significant gap in evaluating higher order 
bearing coefficient for thrust bearing. This motivates the 
authors to fill this gap and investigate the significance of 
evaluating the second-order bearing coefficients.

In this article, the finite perturbation method used in ref-
erence [37] is extended to find the second-order dynamic 
coefficients for inclined pad thrust bearing considering a 
3 degrees of freedom. The finite difference method is used 
to find the pressure distribution and load-carrying capac-
ity for thrust bearing. The first- and second-order dynamic 
coefficients are obtained by introducing a small perturba-
tion displacements and velocities of shaft motion and the 
effects of the misalignments on the dynamic coefficients are 
discussed. This method is appropriate for different types of 
thrust bearings and provide a prediction of fluid film forces 
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and moments in non-linear dynamic analysis of fluid film 
rotor-bearing system.

Theoretical Analysis

In this section, the pressure distribution of the thrust bearing 
is calculated using finite difference method. The calculated 
pressure is used to calculate load-carrying capacity, stiff-
ness, and damping coefficients of the hydrodynamic thrust 
bearing. The assumptions for Reynolds equation are the fluid 
film is laminar, Newtonian, isothermal, and incompressible. 
In addition, it is assumed that there is no cavitation, and the 
body inertia forces are negligible. The geometry of the bear-
ing studied in the simulation is inclined pad thrust bearing, 
as shown in Fig. 1. The Reynolds equation governing oil-
film pressure distribution has the following form:

where � is the lubricant viscosity, and r and � are the radial 
and circumferential coordinates, respectively. p and h are the 
oil-film pressure and thickness, respectively. v� is the mean 
speed of journal, and t is the time. The fluid film thickness of 
the bearing in the static equilibrium state can be determined 
as follows:

(1)
�

r�r

(
rh3

12�

�p

�r

)
+

1

r

�

��

(
h3

12�

�p

r��

)
=

v�

r

�h

��
+

�h

�t
,

(2)hstatic =

{
h1 + hs

(
1 −

�

�pad

)
(Inclined pad)

hmax (groove),

where h1 is the minimum film thickness, hs is the tapper land 
height, and �pad is the pad extend angle. The finite perturba-
tion method is used to calculate the dynamic coefficients of 
the fluid film bearing. Accordingly, the steady-state position 
of the runner is perturbed by small translational displace-
ment ( Δz ), small rotational displacements ( Δ�x and Δ�y ), 
small translational velocity ( Δż ), and small rotational veloci-
ties ( Δ�̇�x and Δ�̇�y ). From Fig. 2, the film thickness between 
the bearing and the collar can be expressed as follows:

where h0 is the film thickness at the equilibrium position 
which has the following form:

The thrust plate position can be obtained from the clear-
ance and misalignment angles. In differentiation of the film 
thickness with respect to time, Eq. 3 can be written in the 
following form:

The small perturbation of the fluid film will produce per-
turbation in the fluid film pressure. The perturbed pressure 
distribution can be obtained by the following expression:

where � = z, �x, �y and �̇� = ż, �̇�x, �̇�y.

(3)h = h0 − rΔ�x sin � + rΔ�y cos � + Δz,

(4)h0 = hstatic − r�x0 sin � + r�y0 cos � + zmin.

(5)
𝜕h

𝜕t
= −rΔ�̇�x sin 𝜃 + rΔ�̇�y cos 𝜃 + Δż.

(6)p = p0 +
∑
𝜁

p𝜁Δ𝜁 +
∑
�̇�

p�̇�Δ�̇� ,

Fig. 1  Hydrodynamic thrust bearing geometric structure. a Thrust pad which consist of 6 pads each of 45◦ angular extend and 6 grooves each of 
15◦ angular extend. b Pad surface profile and film thickness illustration
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Reynolds equation [Eq.  1] resolved by substituting 
Eqs. (3), (5, 6) into Eq. (1). Six perturbed equations are 
obtained to calculate the first-order damping and stiffness 
coefficients of the thrust bearing which can be obtained by 
the following two equations:

and

(7)
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3h2h�
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+

6hh�hr
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+

3h2hr�
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)
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(
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+
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pr� +
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)
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where � = z, �x, �y and �̇� = ż, �̇�x, �̇�y,
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(
�p
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��
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hr =
�h

�r
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�h

��
=

{
−
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− r�x0 cos � − r�y0 sin � (Inclined pad),

−r�x0 cos � − r�y0 sin � (Groove).

Fig. 2  Hydrodynamic thrust 
bearing with tilt angles �x0 and 
�y0 : a xy plane, b yz plane, and c 
xz plane [37]
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Calculation of the Load‑Carrying Capacity 
and First‑Order Dynamic Coefficients

The solution of the seven perturbed pressure Eqs. (1, 7, 8) 
is obtained using the finite difference method to determine 
the bearing load-carrying capacity, reaction forces, and 
moments as follows: where p0 is calculated using Eq. (1) 
at �h

�t
= 0:

where F0 is the load-carrying capacity, K�� is the first-order 
stiffness matrix, and C�� is the first-order damping matrix 
which can be expressed as follows:

for which Kzz =
𝜕Fz

𝜕z
, Kz𝜃x

=
𝜕Fz

𝜕𝜃x
, Czz =

𝜕Fz

𝜕ż
, Cz𝜃x

=
𝜕Fz

𝜕�̇�x
 , and 

so on.

Calculation of Second‑Order Non‑linear Dynamic 
Coefficients

The six perturbed pressure equations obtained from Eqs. (7, 8) 
in the first-order dynamic analysis are differentiated with 

(9)F0 =

⎧
⎪⎨⎪⎩

Fz0

Mx0

My0

⎫
⎪⎬⎪⎭
= ∬

r,�

⎧
⎪⎨⎪⎩

−p0
p0r sin �

−p0r cos �

⎫
⎪⎬⎪⎭
r dr d�,

(10)
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⎪⎨⎪⎩

F
f
z

M
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M
f
y
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r,𝜃

�
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�
𝜁

p𝜁Δ𝜁 +
�
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�
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−1

r sin 𝜃

−r cos 𝜃

⎫
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,
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respect to (z, 𝜃x, 𝜃y, ż, �̇�x, �̇�y) for every equation individually to 
get the second-order perturbed equations as follows:

and

where

Previous equations [Eqs. (13, 14)] are solved using finite 
difference method to calculate the second-order dynamic 
coefficients as follows:
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where � , � = z, �x and �y . K��� is the second-order stiffness 
matrix, and C��� is the second-order damping matrix which 
can be expressed as follows:

for which Kzzz =
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Results and Discussion

In this section, a computer program is developed to study 
and analyze an inclined pad thrust bearing with six pads 
which its computational parameters are given in Table 1. 
In the present work, the Gauss–Seidel iterative numerical 
method has been used to solve the boundary value problem 
and the finite difference method is used to replace the par-
tial derivatives in the pressure Eqs. (7, 8, 13 and 14) with 
suitable finite difference operators. A very efficient iterative 
solution approach is the so-called successive over-relaxa-
tion (SOR) method that is used to accelerate the solution 
convergence process. The first- and second-order dynamic 
coefficients of the thrust bearing are investigated with the 
consideration of shaft misalignment. The shaft is assumed 
to have a misaligned angle in �x0 direction. The infinitesimal 
perturbation method is used in the analysis.

As the shaft rotates, it drags the lubricating oil into the 
gap between the collar and the bearing pads and a hydro-
dynamic pressure is developed in the fluid film. The hydro-
dynamic pressure distribution for aligned thrust bearing is 
shown in Fig. 3. As it is clear from the figure, the pressure 
distribution is equal on all the bearing pads, as expected. 
Figure 4 shows the pressure distribution when the runner 
surface is allowed to tilt around x-axis. The flowchart of the 
numerical solution procedure is shown in Appendix B. 

Bearing Force and Moment

The bearing force and moment are obtained for inclined pad 
thrust bearing using the perturbation analysis. The force and 
moment are calculated by applying a small, perturbed dis-
placements and velocities to the equilibrium position for 
the three different methods [based on Reynolds equation 
(Fz Re,Mx Re,MyRe) , the first-order coefficients (Fz1,Mx1,My1) 
and the second-order coefficients (Fz2,Mx2,My2) ]. Three 

Table 1  Thrust bearing computational parameters

Design parameter Value

Viscosity, � 0.036 [N.s/m2]
Minimum film thickness, h1 75 e−6 [m]
Maximum film thickness, hmax 85 e−6 [m]
Taper depth, hs 10 e−6 [m]
Rotational speed, n 7200 [rpm]
Pad angle, �pad 45◦

Groove angle, �groove 15◦

Inner radius, ri 20 e−3 [m]
Outer radius, r0 40 e−3 [m]
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different perturbation values are used to calculate the bear-
ing forces and moments, as shown in Table 2.

Figure 5 shows the variation of the bearing force and 
moment with misalignment angle �x0 . At small values of 

perturbation, the values of forces and moments calculated 
by the three different methods are almost the same as each 
other, as shown in Fig. 5a, b. The higher the perturba-
tion value, the clearer the difference between the values 

Fig. 3  Pressure distribution 
for aligned thrust bearing at 
�x0 = 0, n = 7200 rpm, and 
hs = 10 e−5 m
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Fig. 4  Hydrodynamic pres-
sure distribution for misaligned 
thrust bearing at �x0 = 0.96e−3 
radian, n = 7200 rpm, and 
hs = 10 e−6 m

Table 2  Perturbed values used 
in calculations

Case Δz Δ�x Δ�y Δż Δ�̇�x Δ�̇�y

a 1e−4 × h0 1e−6 1e−6 1e−4 × � × h0 1e−6 × � 1e−6 × �

b 1e−3 × h0 1e−5 1e−5 1e−3 × � × h0 1e−5 × � 1e−5 × �

c 1e−2 × h0 1e−4 1e−4 1e−2 × � × h0 1e−4 × � 1e−4 × �
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of forces and moments calculated using the three different 
methods, as shown in Fig. 5c.

Effect of Mesh Size and Misalignment ( �x0
)

In this section, the effect of mesh size on the dynamic 
coefficients of inclined pad thrust bearing is investigated. 
The first- and second-order dynamic coefficients are plot-
ted in Figs. 6 and 7. The misalignment angle �x0 assumed 
to change from 0 to 0.00096 radian at a rotational speed, 
n of 7200 rpm. There are nine stiffness coefficients and 
nine damping coefficients for the first-order analysis, as 
shown in Fig. 6a, b. The second-order coefficients are 18 

stiffness coefficients in addition to 27 damping coeffi-
cients. From the 27 damping coefficients, only nine sec-
ond-order damping coefficients have values and the rest 
equal zero. Four mesh sizes are used to study the effect of 
mesh size on the bearing dynamic coefficients. The mesh 
sizes used are 15 × 60, 30 × 120, 45 × 180 , and 90 × 360 . 
In Figs. 6 and 7, the bearing dynamic coefficients are plot-
ted versus misalignment angle �x0 at different mesh sizes. 
In Fig. 6, the plotted first-order coefficients are approxi-
mately identical for all coefficients except for Kzz and K�x�x

 
over the full range of misalignment angle �x0 . The results 
of Fig. 7 show that the second-order bearing coefficients 
are approximately identical for all coefficients. However, 

Fig. 5  Thrust bearing axial force Fz (first column), moment about x 
axis Mx (second column), and moment about y axis My (last column) 
versus the misalignment angle �x0 . Three perturbations from the equi-
librium position are used as indicated in Table2, case (a) is presented 
in the first row, case (b) is presented in the second raw, and case (c) 

is displayed in the third row. The force and moments are calculated 
using three methods, (1) integration of Reynolds equation (dotted 
lines), (2) first-order coefficients (dashed lines), and (3) second-order 
coefficients (solid lines)
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for Kzz�x
,Kz�x�x

,K�y�y�y
,C�yz�x

 and C�yz�x
 is mismatched. The 

mesh size 30 × 120 is used in calculating the bearing pres-
sure and dynamic coefficient in the present paper. It is 
clear from the figure that, at a small perturbation, the 
d i r e c t  s t i f f n e s s  a n d  d a m p i n g  c o e f f i c i e n t s 
(Kzz,Czz,K�x�x

,K�y�y
,C�x�x

,C�y�y
) increase with the increase 

of misalignment angle �x0 . In Fig. 7, the variation of the 
second-order stiffness and damping coefficients with mis-
alignment angle �x0 is shown. As shown in the figure, most 

of the second-order coefficients tend to increase with the 
increase in the misalignment value, except for some coef-
f i c i e n t s  s u c h  a s 
(Kzzz,K�yzz

,K�yz�y
,Kz�x�x

,K�xz�y
,Czzz,C�yz�x

,C�xz�y
)  w h o s e 

value decreases with the increase in the misalignment 
value. Also, the values of the damping coefficients 
(C�xzz

,Czz�x
) have the same values. The values of first- and 

second-order dynamic coefficients are illustrated in 

Fig. 6  Variation of first-order dynamic stiffness and damping coef-
ficients with misalignment angle �x0 at different mesh sizes at 
�x0 ∈ [0, 0.96 × 10−3] radian, n = 7200 rpm, and hs = 10 e−6 m. In 

this figure, the dotted line for mesh 15 × 60 , dashed line for mesh 
30 × 120 , solid line for mesh 45 × 180 , and centerline for mesh 
90 × 360
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Fig. 7  Variation of second-order dynamic stiffness and damping 
coefficients with misalignment angle �x0 at different mesh sizes at 
�x0 ∈ [0, 0.96 e−3] radian, n = 7200 rpm, and hs = 10 e−6 m. In 

this figure, the dotted line for mesh 15 × 60 , dashed line for mesh 
30 × 120 , solid line for mesh 45 × 180 , and centerline for mesh 
90 × 360
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Appendix A in Table 3 and 4, respectively, for mesh size 
of 30 × 120. 

Effect of Inclined Film Thickness ( hs ) on the Dynamic 
Coefficients

The dynamic coefficients of the inclined pad thrust bearing 
are investigated versus the variation of the inclined film 
thickness hs of the thrust plate. The film thickness hs 
assumed to change from 10 × 10−6 to 100 × 10−6 m at a 
rotational speed, n of 7200 rpm, and misalignment angle 
�x0 equal to 0.48 e−3 radian. The dynamic pressure distri-
bution of the inclined pad thrust is shown in Fig. 8 with a 
film thickness hs = 10 e−5 . It is clear from Fig. 8 that the 
distribution of pressure has values on all parts of bearing 
pads unlike the previous state when changing the misalign-
ment angle or subsequent state when changing the rotation 
speed, and the pressure has values in some of the bearing 
pads, while its value is equal to zero in the other pads. 
Figure 9 shows the variation of the first-order dynamic 
stiffness and damping coefficients with film thickness hs . 
It is clear from the figure that the direct stiffness and 
damping coefficients (Kzz,Czz) clearly have the greatest 
values among the rest of the coefficients. It is clear that the 
values of the stiffness and damping coefficients 

(Kz�x
,K�xz

,Kz�y
,K�yz

,Czz,C�y�y
) decrease with increasing 

film thickness hs . Also, the coupled damping coefficients 
C�y�x

 and C�x�y
 are equal. In Fig. 10, the variation of the 

second-order stiffness and damping coefficients with film 
thickness hs is shown. As shown in the figure, most of the 
second-order coefficients tend to increase with the increase 
in the film thickness, except for some coefficients such as 
(K�yz�x

,K�x�x�y
,Czz�x

,Czz�y
,C�xz�y

) whose value decreases 
with the increase in the film thickness value.  

Effect of Rotational Speed (n) on the Dynamic 
Coefficients

To study the effect of rotational speed on the dynamic coef-
ficient of the thrust bearing, a constant misalignment angle 
�x0 equal to 0.48 × 10−3 radian is considered, and the rota-
tional speed varied from 2000 to 10,000 rpm. The dynamic 
pressure distribution of the inclined pad thrust is shown in 
Fig. 11 at a constant misalignment angle. The first-order 
stiffness and damping coefficients are shown in Fig. 12. It is 
noticeable from the figure that the stiffness coefficients 
change linearly with the rotational speed, while the damping 
coefficients remain constant as the rotational speed has no 
effect on it and C�x�y

= C�y�x
 . Figure 13 shows the variations 

Fig. 8  Thrust bearing pressure 
distribution at �x0 = 0.48 e−3 
radian, n = 7200 rpm, and 
hs = 10 e−6 m
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of the second-order dynamic stiffness and damping coeffi-
cients of the inclined pad thrust bearing versus rotational 
speed. From Fig. 13, it is clear that the rotational speed has 
no effect on the damping coefficients, while C�xzz

= Czz�x
 . 

This is clear from Eqs. (8) and (14), as the rotational speed 
does not exist in the equations and therefore has no effect on 
the damping coefficients, whether of the first order or of the 
second order.

Conclusion

In this paper, the two-dimensional Reynolds equation 
is solved numerically to model the flow in the fluid film 
between the runner (collar) and the inclined pad thrust bear-
ing. The effect of the shaft collar misalignment on the per-
formance of hydrodynamic thrust bearing is investigated. 

Fig. 9  Variation of first-order dynamic stiffness and damping coefficients with film thickness hs at �x0 = 0.48 × 10−3 radian, n = 7200 rpm, and 
hs ∈ [1 − −10] e−6 m
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Fig. 10  Variation of second-order dynamic stiffness and damping coefficients with film thickness hs at �x0 = 0.48 e−3 radian, n = 7200 rpm, and 
hs ∈ [1 − −10] e−6 m
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Fig. 11  Thrust bearing pressure 
distribution at �x0 = 0.48 × 10−3 
radian, n = 10, 000 rpm, and 
hs = 10e−5 m

Fig. 12  Variation of first-order dynamic stiffness and damping coefficients with rotational speed n at �x0 = 0.48 e−3 radian, n ∈ [2000 − 10, 000] 
rpm, and hs = 10 e−5 m
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Fig. 13  Variation of second-order dynamic stiffness and damping coefficients with rotational speed n at �x0 = 0.48 e−3 radian, 
n ∈ [2000 − 10, 000] rpm, and hs = 10 e−5 m
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The infinitesimal perturbation method is used to calculate 
the dynamic force and moment coefficients by applying a 
small misalignment in x-direction. The first-order dynamic 
coefficients as well as the second-order dynamic coefficients 
are evaluated. The effect of mesh size, misalignment, and 
rotational speed on the bearing dynamic coefficients are 
studied. Among the most important conclusions obtained 
from this paper are the following:

• The force and moment are calculated for the three differ-
ent methods (based on Reynolds equation, the first-order 
coefficients, and the second-order coefficients) almost 
identical and this is an indication of the correctness of 
the calculation method used.

• The mesh size has a slight impact on some coefficients 
of the first- and second-order analysis.

• The dynamic coefficients change with misalignment in a 
non-linear way, while it changes with the rotational speed 
in a linear way.

• The effect of changing fluid film thickness on the 
mechanical coefficients of thrust bearing appears signifi-
cantly, whether in the stiffness coefficients or the damp-
ing coefficients.

• The damping coefficients are not affected by the change 
in rotational speed.

The calculated dynamic coefficients in this paper may be 
used in further prediction of the dynamic characteristics 
of a rotor-bearing system.

Appendix A: The First‑ and Second‑Order 
Dynamic Coefficients of the Thrust Bearing 
Used in the Calculations

See Tables 3 and 4.

Table 3  Second-order dynamic coefficients

�x0 Kzz × 107 Kz�x
× 105 Kz�y

× 106 K�x�x
× 104 K�y�y

× 104 K�x�y
× 104 K�y�x

× 104 K�xz
× 105 K�yz

× 105

0 1.5604 1.5539 −0.0111 0.7314 0.6981 3.3959 −2.9437 0.0169 −0.1144
0.00024 1.6004 0.6628 −0.1744 0.7862 0.6847 3.482 −3.0218 −0.8939 1.3425
0.00048 1.8793 −0.4893 −0.3724 0.9924 0.7562 3.7449 −3.2953 −2.0733 2.862
0.00072 2.7329 −2.6432 −0.6685 1.5374 1.0552 4.3067 −3.767 −4.2636 4.3647
0.00096 4.4901 −7.0252 −1.0545 2.7312 1.5807 5.2716 −4.6013 −8.7386 6.8248

�x0 Czz × 105 Cz�x
× 103 Cz�y

C�x�x
C�y�y

C�x�y
C�y�x

C�xz
× 103 C�yz

0 0.9593 −0.0003 −201.7092 45.976 40.1512 −0.0041 −0.0104 −0.0002 −201.7286
0.00024 0.9845 −0.4283 −202.0487 47.8054 40.7178 0.0613 0.0548 −0.4283 −202.0161
0.00048 1.0651 −0.9144 −203.1379 53.7304 42.4899 0.1299 0.122 −0.9144 −203.033
0.00072 1.2187 −1.5373 −205.1051 65.2916 45.7186 0.2079 0.1965 −1.5373 −204.8684
0.00096 1.4848 −2.4323 −208.3807 86.0589 50.9245 0.3125 0.2925 −2.4323 −207.8438
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Table 4  Second-order dynamic coefficients

�x0 Kzzz × 1012 K�xzz
× 1010 K�yzz

× 1010 Kzz�x
× 1010 K�xz�x

× 109 K�yz�x
× 109 Kzz�y

× 1010 K�xz�y
× 109 K�yz�y

× 109

0 −0.7645 −0.008 0.0539 −0.5789 −0.3612 1.0909 0.0528 −1.2599 −3.453
0.00024 −0.7991 0.5498 −0.6666 −0.0293 −0.4 1.1404 0.8746 −1.3132 −3.4176
0.00048 −0.9943 1.3266 −1.4759 0.7348 −0.5499 1.3149 1.9172 −1.4824 −3.8677
0.00072 −1.5917 2.9274 −2.4071 2.3148 −0.9661 1.6354 3.6076 −1.8611 −5.6681
0.00096 −2.9632 6.6043 −4.1302 5.9272 −1.9881 2.2499 6.1378 −2.5735 −9.1393

�x0 Kz�x�x
× 109 K�x�x�x

× 107 K�y�x�x
× 107 Kz�x�y

× 108 K�x�x�y
× 107 K�y�x�y

× 106 Kz�y�y
× 108 K�x�y�y

× 107 K�y�y�y
× 107

0 −0.3552 −0.0413 0.0022 −1.6056 −0.0004 −4.7038 −3.4098 −0.0071 0.045
0.00024 −0.3914 0.3777 −0.8784 −1.9 0.5314 −3.5542 −3.3915 0.114 0.2769
0.00048 −0.5373 1.0119 −1.9244 −2.7759 1.1954 −2.36 −3.8605 0.2417 0.5954
0.00072 −0.946 2.3359 −3.3073 −4.9975 2.2697 0.3825 −5.6886 0.5283 1.1586
0.00096 −1.943 5.4155 −5.5689 −9.4326 4.0906 6.4373 −9.1551 1.1558 1.8551

�x0 Czzz × 109 C�xzz
× 108 C�yzz

× 106 Czz�x
× 108 C�xz�x

× 106 C�yz�x
× 104 Czz�y

× 106 C�xz�y
× 104 C�yz�y

× 106

0 −3.5567 0.0001 7.4456 0.0001 −1.7046 −0.0548 7.4447 0.009 −1.4897
0.00024 −3.7133 0.214 7.463 0.214 −1.8186 −0.2649 7.4667 −0.3139 −1.5249
0.00048 −4.228 0.4723 7.5251 0.4723 −2.1994 −0.6007 7.5358 −0.665 −1.6369
0.00072 −5.2632 0.8407 7.6414 0.8407 −2.9904 −1.0047 7.6665 −1.1095 −1.8484
0.00096 −7.216 1.4495 7.852 1.4495 −4.5559 1.6521 7.9149 −1.8685 −2.2095

�x0 Kzzz × 1012 K�xzz
× 1010 K�yzz

× 1010 Kzz�x×10
10 K�xz�x

× 109 K�yz�x
× 109 Kzz�y

× 1010 K�xz�y
× 109 K�yz�y

× 109

0 −0.7645 −0.008 0.0539 −0.5789 −0.3612 1.0909 0.0528 −1.2599 −3.453
0.00024 −0.7991 0.5498 −0.6666 −0.0293 −0.4 1.1404 0.8746 −1.3132 −3.4176
0.00048 −0.9943 1.3266 −1.4759 0.7348 −0.5499 1.3149 1.9172 −1.4824 −3.8677
0.00072 −1.5917 2.9274 −2.4071 2.3148 −0.9661 1.6354 3.6076 −1.8611 −5.6681
0.00096 −2.9632 6.6043 −4.1302 5.9272 −1.9881 2.2499 6.1378 −2.5735 −9.1393

�x0 Kz�x�x
× 109 K�x�x�x

× 107 K�y�x�x
× 107 Kz�x�y

× 108 K�x�x�y
× 107 K�y�x�y

× 106 Kz�y�y
× 108 K�x�y�y

× 107 K�y�y�y
× 107

0 −0.3552 −0.0413 0.0022 −1.6056 −0.0004 −4.7038 −3.4098 −0.0071 0.045
0.00024 −0.3914 0.3777 −0.8784 −1.9 0.5314 −3.5542 −3.3915 0.114 0.2769
0.00048 −0.5373 1.0119 −1.9244 −2.7759 1.1954 −2.36 −3.8605 0.2417 0.5954
0.00072 −0.946 2.3359 −3.3073 −4.9975 2.2697 0.3825 −5.6886 0.5283 1.1586
0.00096 −1.943 5.4155 −5.5689 −9.4326 4.0906 6.4373 −9.1551 1.1558 1.8551

�x0 Czzz × 109 C�xzz
× 108 C�yzz

× 106 Czz�x
× 108 C�xz�x

× 106 C�yz�x
× 104 Czz�y

× 106 C�xz�y
× 104 C�yz�y

× 106

0 −3.5567 0.0001 7.4456 0.0001 −1.7046 −0.0548 7.4447 0.009 −1.4897
0.00024 −3.7133 0.214 7.463 0.214 −1.8186 −0.2649 7.4667 −0.3139 −1.5249
0.00048 −4.228 0.4723 7.5251 0.4723 −2.1994 −0.6007 7.5358 −0.665 −1.6369
0.00072 −5.2632 0.8407 7.6414 0.8407 −2.9904 −1.0047 7.6665 −1.1095 −1.8484
0.00096 −7.216 1.4495 7.852 1.4495 −4.5559 1.6521 7.9149 −1.8685 −2.2095
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Appendix B: Numerical Analysis Flowchart

In this Appendix, a flowchart for the numerical analysis 
used to obtain the paper results is presented (Fig. 14).

Author Contributions All authors contributed to the study conception 
and design. Material preparation, data collection, and analysis were 
performed by SK and HS. The first draft of the manuscript was written 
by SK and all authors commented on previous versions of the manu-
script. All authors read and approved the final manuscript.

Input bearing geometric and

operating conditions

Yes

No

Adjust outlet pressure 

Check convergence on the fluid

film pressure  

Compute load carrying capacity and

load moments

Solve the stesdy-state

Reynold's equation with SOR

Obtain the steady-state fluid

film pressure p and film

thickness h0

Set perturbation initial

values

Yes

No

Adjust outlet pressure 

Check convergence on the

perturbation pressure  

Compute the first order dynamic

stiffiness and damping coefficients of

the bearing

  

.

Output the results

  

.

Check convergence on the

perturbation pressure  

No

Adjust outlet pressure 

Yes

Compute the second order dynamic

stiffiness and damping coefficients of

the bearing

Output the results

Fig. 14  Flowchart for the numerical analysis



1976 Journal of Vibration Engineering & Technologies (2024) 12:1957–1977

1 3

Funding The authors declare that no funds, grants, or other supports 
were received during the preparation of this manuscript.

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Declarations 

 Conflict of Interest The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Dimond T, Younan A, Allaire P (2011) A review of tilting pad 
bearing theory. Int J Rotat Mach. https:// doi. org/ 10. 1155/ 2011/ 
908469

 2. Reynolds O (1886) IV. On the theory of lubrication and its appli-
cation to Mr. Beauchamp tower’s experiments, including an exper-
imental determination of the viscosity of olive oil. Philos Trans R 
Soc Lond 177:157–234

 3. Pinkus O, Lynn W (1958) Solution of the tapered-land sector 
thrust bearing. Trans ASME 80(7):1510–1516

 4. Najar FA, Harmain G (2014) Numerical investigation of pressure 
profile in hydrodynamic lubrication thrust bearing. Int Schl Res 
Not. https:// doi. org/ 10. 1155/ 2014/ 157615

 5. Koç E (1990) An investigation into the numerical solution of 
Reynolds’ lubrication equation with special reference to thrust 
bearings. Tribol Int 23(6):429–437

 6. Heshmat H, Pinkus O (1987) Misalignment in thrust bearings 
including thermal and cavitation effects. J Tribol 109:108–114

 7. Someya T, Fukuda M (1972) Analysis and experimental veri-
fication of dynamic characteristics of oil film thrust bearings. 
Bull JSME 15(86):1004–1015

 8. Vieira L, Cavalca K, Nomura P (2011) Analysis of stiffness and 
damping coefficients of lubricated thrust bearings. In: Vibration 
Problems ICOVP 340

 9. Vieira LC, Cavalca KL, Nomura PO (2010) Hydrodynamic 
lubrication evaluation of thrust bearings. In: SAE Technical 
Paper Series

 10. Ettles C (1976) The development of a generalized computer 
analysis for sector shaped tilting pad thrust bearings. ASLE 
Trans 19(2):153–163

 11. Zhang H, Zheng W, Li F (2020) Simulation design and numeri-
cal analysis of bearing capacity of water lubricated thrust bear-
ing. IOP Conf Ser 446(5):6

 12. Najar FA, Harmain G (2016) Performance characteristics in 
hydrodynamic water cooled thrust bearings. J Tribol 10:28–47

 13. Kim H, Jang G, Ha H (2012) A generalized Reynolds equation 
and its perturbation equations for fluid dynamic bearings with 
curved surfaces. Tribol Int 50:6–15

 14. Liming Z, Yongyao L, Zhengwei W, Xin L, Yexiang X (2017) A 
review on the large tilting pad thrust bearings in the hydropower 
units. Renew Sustain Energy Rev 69:1182–1198

 15. Jang G, Lee S (2006) Determination of the dynamic coefficients 
of the coupled journal and thrust bearings by the perturbation 
method. Int Jt Tribol Conf 42592:445–453

 16. Lin X, Wang R, Zhang S, Jiang S (2020) Study on dynamic char-
acteristics for high speed water-lubricated spiral groove thrust 
bearing considering cavitating effect. Tribol Int 143:106022

 17. Zhang S, Jiang S, Lin X (2020) Static and dynamic character-
istics of high-speed water-lubricated spiral-groove thrust bear-
ing considering cavitating and centrifugal effects. Tribol Int 
145:106159

 18. Lin X, Wang S, Jiang S, Zhang S (2022) Dynamic characteris-
tics of high-speed water-lubricated spiral groove thrust bearing 
based on turbulent cavitating flow lubrication model. Chin J 
Mech Eng 35(1):1–21

 19. Jialei D, Liang G (2020) Dynamic coefficients and stability analy-
sis of a water-lubricated hydrostatic bearing by solving the uncou-
pled Reynolds equation. Chin J Aeronaut 33(8):2110–2122

 20. Peixoto TF, Daniel GB, Cavalca KL (2017) Experimental esti-
mation of equivalent damping coefficient of thrust bearings. 
International symposium on dynamic problems of mechanics. 
Springer, Cham, pp 17–29

 21. Peixoto TF, Daniel GB, Cavalca KL (2018) Thermo-hydrody-
namic model influence on first order coefficients in turbocharger 
thrust bearings. International conference on rotor dynamics. 
Springer, Cham, pp 16–31

 22. Peixoto TF, Cavalca KL (2019) Investigation on the angular 
displacements influence and nonlinear effects on thrust bearing 
dynamics. Tribol Int 131:554–566

 23. Peixoto TF, Cavalca KL (2020) Thrust bearing coupling effects 
on the lateral dynamics of turbochargers. Tribol Int 145:106166

 24. Yadav SK, Rajput AK, Ram N, Sharma SC (2018) A novel 
technique to compute static and dynamic performance charac-
teristics of aerostatic thrust bearing. Ind Lubric Tribol. https:// 
doi. org/ 10. 1108/ ILT- 04- 2017- 0090

 25. Lin J-R, Hung C-R (2004) Analysis of dynamic characteristics 
for wide slider bearings with an exponential film profile. J Mar 
Sci Technol 12(3):217–221

 26. Koutsoumpas G, Charitopoulos A, Papadopoulos CI, Fillon M 
(2020) Computational evaluation of dynamic coefficients of 
thrust bearings: effect of artificial texturing on thermohydro-
dynamic performance. Surf Topogr Metrol Prop 8(2):024009

 27. Srikanth D, Chaturvedi KK, Reddy ACK (2012) Determination 
of a large tilting pad thrust bearing angular stiffness. Tribol Int 
47:69–76

 28. Iordanoff I, Stefan P, Boudet R, Poirier D (1995) Dynamic 
analysis of a thrust bearing-effect of misalignment and load. 
Proc Inst Mech Eng Part J 209(3):189–194

 29. Jiang P, Yu L (1999) Dynamics of a rotor-bearing system 
equipped with a hydrodynamic thrust bearing. J Sound Vib 
227(4):833–872

 30. Storteig E, White MF (1999) Dynamic characteristics of 
hydrodynamically lubricated fixed-pad thrust bearings. Wear 
232(2):250–255

 31. Gad AM (2016) Effect of misalignment on the durability of 
gas-lubricated foil thrust bearing. J Eng Sci 44(1):73–90

 32. Gad AM (2017) On the performance of foil thrust bearing with 
misaligned bearing runner. Ind Lubric Tribol 69(2):105–115

 33. Shi J, Cao H, Jin X (2019) Investigation on the static and 
dynamic characteristics of 3-DOF aerostatic thrust bearings 
with orifice restrictor. Tribol Int 138:435–449

 34. San-Andre’s L (2002) Effects of misalignment on turbulent flow 
hybrid thrust bearings. J Tribol 124(1):212–219

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2011/908469
https://doi.org/10.1155/2011/908469
https://doi.org/10.1155/2014/157615
https://doi.org/10.1108/ILT-04-2017-0090
https://doi.org/10.1108/ILT-04-2017-0090


1977Journal of Vibration Engineering & Technologies (2024) 12:1957–1977 

1 3

 35. Sun F, Zhang X, Wei Y, Wang X, Wang D (2020) Stability 
analysis of rubber-supported thrust bearing in a rotor-bearing 
system used in marine thrusters under disturbing moments. Tri-
bol Int 151:106356

 36. Nitzschke S, Ziese C, Woschke E (2021) Analysis of dynami-
cal behaviour of full-floating disk thrust bearings. Technical 
sciences. Bull Pol Acad Sci 69:e139001–e139001

 37. Jang G, Kim Y (1999) Calculation of dynamic coefficients in 
a hydrodynamic bearing considering five degrees of freedom 
for a general rotor-bearing system. J Tribol. https:// doi. org/ 10. 
1115/1. 28340 95

 38. Jintanawan T, Ku C-PR, Zhu J (2004) Effects of thrust hydro-
dynamic bearing stiffness and damping on disk-spindle axial 
vibration in hard disk drives. Microsyst Technol 10(4):338–344

 39. Temis M, Lazarev A (2012) Elastohydrodynamic contact model 
for calculation of axial and angular stiffness in thrust bearing. 
Arch Mech Eng 59(4):453

 40. Srikanth D, Chaturvedi K, Reddy A (2009) Modelling of large 
tilting pad thrust bearing stiffness and damping coefficients. 
Tribol Ind 31(3 &4):23–27

 41. Miraskari M, Hemmati F, Gadala MS (2018) Nonlinear dynamics 
of flexible rotors supported on journal bearings-part i: analytical 
bearing model. J Tribol. https:// doi. org/ 10. 1115/1. 40377 30

 42. Miraskari M, Hemmati F, Gadala MS (2018) Nonlinear dynamics 
of flexible rotors supported on journal bearings-part ii: numerical 
bearing model. J Tribol 140(2):021705. https:// doi. org/ 10. 1115/1. 
40377 31

 43. Weimin W, Lihua Y, Tiejun W, Lie Y (2012) Nonlinear dynamic 
coefficients prediction of journal bearings using partial derivative 
method. Proc Inst Mech Eng Part J 226(4):328–339. https:// doi. 
org/ 10. 1177/ 13506 50111 431526

 44. Sayed H, El-Sayed TA (2022) Nonlinear dynamics and bifurcation 
analysis of journal bearings based on second order stiffness and 
damping coefficients. Int J Non-Linear Mech 142:103972. https:// 
doi. org/ 10. 1016/j. ijnon linmec. 2022. 103972

 45. Sayed H, El-Sayed TA (2022) A novel method to evaluate the 
journal bearing forces with application to flexible rotor model. 
Tribol Int 173:107593. https:// doi. org/ 10. 1016/j. tribo int. 2022. 
107593

 46. El-Sayed TA, Sayed H (2022) Bifurcation analysis of rotor/
bearing system using third-order journal bearing stiffness and 
damping coefficients. Nonlinear Dyn 107(1):123–151. https:// 
doi. org/ 10. 1007/ s11071- 021- 06965-4

 47. Meruane V, Pascual R (2008) Identification of nonlinear dynamic 
coefficients in plain journal bearings. Tribol Int 41(8):743–754. 
https:// doi. org/ 10. 1016/j. tribo int. 2008. 01. 002

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1115/1.2834095
https://doi.org/10.1115/1.2834095
https://doi.org/10.1115/1.4037730
https://doi.org/10.1115/1.4037731
https://doi.org/10.1115/1.4037731
https://doi.org/10.1177/1350650111431526
https://doi.org/10.1177/1350650111431526
https://doi.org/10.1016/j.ijnonlinmec.2022.103972
https://doi.org/10.1016/j.ijnonlinmec.2022.103972
https://doi.org/10.1016/j.triboint.2022.107593
https://doi.org/10.1016/j.triboint.2022.107593
https://doi.org/10.1007/s11071-021-06965-4
https://doi.org/10.1007/s11071-021-06965-4
https://doi.org/10.1016/j.triboint.2008.01.002

	Analysis of Second-Order Thrust Bearing Coefficients Considering Misalignment Effect
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Theoretical Analysis
	Calculation of the Load-Carrying Capacity and First-Order Dynamic Coefficients
	Calculation of Second-Order Non-linear Dynamic Coefficients

	Results and Discussion
	Bearing Force and Moment
	Effect of Mesh Size and Misalignment ( )
	Effect of Inclined Film Thickness (  ) on the Dynamic Coefficients
	Effect of Rotational Speed (n) on the Dynamic Coefficients

	Conclusion
	Appendix A: The First- and Second-Order Dynamic Coefficients of the Thrust Bearing Used in the Calculations
	Appendix B: Numerical Analysis Flowchart
	References




