96,695 research outputs found

    Theory and Practice of Cross Traffic Estimation via Probes

    Get PDF
    Active probing began by measuring end-to-end path metrics, such as delay and loss, in a direct measurement process which did not require inference of internal network parameters. The field has since progressed to measuring network metrics, from link capacities to available bandwidth and cross traffic itself, which reach deeper and deeper into the network and require increasingly complex inversion methodologies. However, although active probing heuristics are based on queuing systems, to the best of our knowledge, a rigorous probabilistic treatment of probing methods has been lacking. As a result, important issues of system identifiability have been neglected: it is not known, even in principle, what can and cannot be measured in general, nor the true limitations of existing methods. We provide a blackprobabilistic treatment for the measurement of cross traffic in the 1-hop case. We first derive inversion formulae for the law of cross traffic and related processes, and explain their fundamental limits, using an intuitive geometric framework. We then use the resulting insight to design practical estimators for cross traffic, which we test in simulation and validate by using router traces. The estimators perform well, but have natural limitations, which are explained in detail

    Intersection SPaT Estimation by means of Single-Source Connected Vehicle Data

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Current traffic management systems in urban networks require real-time estimation of the traffic states. With the development of in-vehicle and communication technologies, connected vehicle data has emerged as a new data source for traffic measurement and estimation. In this work, a machine learning-based methodology for signal phase and timing information (SPaT) which is highly valuable for many applications such as green light optimal advisory systems and real-time vehicle navigation is proposed. The proposed methodology utilizes data from connected vehicles travelling within urban signalized links to estimate the queue tail location, vehicle accumulation, and subsequently, link outflow. Based on the produced high-resolution outflow estimates and data from crossing connected vehicles, SPaT information is estimated via correlation analysis and a machine learning approach. The main contribution is that the single-source proposed approach relies merely on connected vehicle data and requires neither prior information such as intersection cycle time nor data from other sources such as conventional traffic measuring tools. A sample four-leg intersection where each link comprises different number of lanes and experiences different traffic condition is considered as a testbed. The validation of the developed approach has been undertaken by comparing the produced estimates with realistic micro-simulation results as ground truth, and the achieved simulation results are promising even at low penetration rates of connected vehicles

    MR-BART: Multi-Rate Available Bandwidth Estimation in Real-Time

    Full text link
    In this paper, we propose Multi-Rate Bandwidth Available in Real Time (MR-BART) to estimate the end-to-end Available Bandwidth (AB) of a network path. The proposed scheme is an extension of the Bandwidth Available in Real Time (BART) which employs multi-rate (MR) probe packet sequences with Kalman filtering. Comparing to BART, we show that the proposed method is more robust and converges faster than that of BART and achieves a more AB accurate estimation. Furthermore, we analyze the estimation error in MR-BART and obtain analytical formula and empirical expression for the AB estimation error based on the system parameters.Comment: 12 Pages (Two columns), 14 Figures, 4 Tables

    Spatial inference of traffic transition using micro-macro traffic variables

    Get PDF
    This paper proposes an online traffic inference algorithm for road segments in which local traffic information cannot be directly observed. Using macro-micro traffic variables as inputs, the algorithm consists of three main operations. First, it uses interarrival time (time headway) statistics from upstream and downstream locations to spatially infer traffic transitions at an unsupervised piece of segment. Second, it estimates lane-level flow and occupancy at the same unsupervised target site. Third, it estimates individual lane-level shockwave propagation times on the segment. Using real-world closed-circuit television data, it is shown that the proposed algorithm outperforms previously proposed methods in the literature

    Assessing the Value of Time Travel Savings – A Feasibility Study on Humberside.

    No full text
    It is expected that the opening of the Humber Bridge will cause major changes to travel patterns around Humberside; given the level of tolls as currently stated, many travellers will face decisions involving a trade-off between travel time, money outlay on tolls or fares and money outlay on private vehicle running costs; this either in the context of destination choice, mode choice or route choice. This report sets out the conclusions of a preliminary study of the feasibility of inferring values of travel time savings from observations made on the outcomes of these decisions. Methods based on aggregate data of destination choice are found t o be inefficient; a disaggregate mode choice study i s recommended, subject to caveats on sample size

    Applications of sensitivity analysis for probit stochastic network equilibrium

    Get PDF
    Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported
    • …
    corecore