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Abstract: Active probing began by measuring end-to-end path metrics, such as delay and loss, in a direct measurement process
which did not require inference of internal network parameters. The field has since progressed to measuring network metrics,
from link capacities to available bandwidth and cross traffic itself, which reach deeper and deeper into the network and require
increasingly complex inversion methodologies. However, although active probing heuristics are based on queuing systems, to the
best of our knowledge, a rigorous probabilistic treatment of probing methods has been lacking. As a result, important issues of
system identifiability have been neglected: it is not known, even in principle, what can and cannot be measured in general, nor the
true limitations of existing methods. We provide a probabilistic treatment for the measurement of cross traffic in the 1-hop case.
We first derive inversion formulae for the law of cross traffic and related processes, and explain their fundamental limits, using an
intuitive geometric framework. We then use the resulting insight to design practical estimators for cross traffic, which we test in
simulation and validate by using router traces. The estimators perform well, but have natural limitations, which are explained in
detail.
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Théorie et Pratique de l’Estimation du Trafic Transversal par des Sondes
Résumé : Les méthodes de sondes actives ont initialement été introduites pour l’évaluation de propriétés vues de bout en bout
par les flots, telles que les délais ou les pertes. Ces méthodes ont ensuite été étendues à l’estimation de paramètres internes du
réseau, tels que la capacité des liens et plus récemment la bande passante disponible ou encore les propriétés statistiques du trafic
transversal. Cette vision de plus en plus détaillée de l’intérieur du réseau traversé nécessite des méthodes d’inversion de complexité
croissante. Même si les heuristiques à base de sondes actives sont souvent fondées sur des méthodes des files d’attente, il n’existe
pas encore à notre connaissance de cadre théorique permettant de poser les questions d’identifiabilité, et on sait donc très peu
actuellement sur ce qui peut être effectivement être estimé dans ce cadre. Dans cet article, nous proposons un cadre probabiliste qui
permet de poser les questions d’identification de la loi du trafic transversal, dans le cas particulier d’un seul saut. Nous établissons
une formule d’inversion permettant d’analyser les propriétés du trafic transversal et nous montrons les limitations de cette méthode
d’inversion au moyen d’arguments géométriques simples. Nous utilisons cette formule d’inversion pour définir des estimateurs de
la loi du trafic transversal que nous testons par simulation et sur des traces de trafic obtenues par des mesures sur des routeurs. Ces
estimateurs sont utilisables dans la pratique, avec des limitations que nous expliquons en détail dans l’article.

Mots-clés : Mesure, sonde active, trafic Internet, routeur, estimateur, identification, file d’attente, réseau.
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1 Introduction

Active probing has become one of the main ways in which the
performance of IP networks such as the Internet are measured.
In active probing, a stream of probe packets are injected from
a source at the edge of the network, and collected at cooperat-
ing receiver(s). From the known packet sizes, and the measured
timestamps of emission and reception, information on both static
network parameters and traffic conditions can be inferred.

The literature initially focused on link bandwidth estimation,
[9, 3, 16], and in particular that of the smallest link, the bottle-
neck bandwidth. More recently, estimation of available band-
width along a path, which is a function not only of the physical
network but also of all the cross traffic impacting on the probes,
has attracted considerable interest [10, 19]. Far less attention
has been paid to the idea of using probing to measure queueing
processes in routers, or properties of the cross traffic itself (see
however [20, 18, 15]), although there is a general acceptance
that this can be a very difficult problem over multiple hops. In
fact, there are deeper underlying issues of system identifiability
which equire investigation. There is currently no consensus on
what can and cannot in fact be measured. For example, there are
no results available capable of determining what the true limita-
tions of existing techniques actually are, or if their goals are even
feasible. One way of thinking about the problem is in terms of
ambiguity, are there different cross traffics which can give rise
to the same observations? We will show that the answer is yes,
however the more important question is whether this is true not
just of sample paths but of the underlying distributions which
define the cross traffic.

In this paper we make what we believe to be one of one first
steps toward the understanding of the in-principle potential and
limitations of active probing methods. We do this by looking in
some detail into the problem of measuring the distribution of the
cross traffic process through the histories probes accumulate in
traversing a hop. Since the probes interact with the cross traffic
via queueing systems, it can be viewed as an ‘inverse queue-
ing problem’. It necessitates considering, in a joint fashion, the
statistics of both the queueing process and that of the arriving
traffic, and is very different from the traditional questions stud-
ied in queueing theory. We show that, in a simple yet well mo-
tivated 1-hop setting, complete inversion may be possible, or
impossible, depending on details of the traffic itself, and we de-
fine what this means precisely. Previous network inference work
which is statistically rigorous, notably the network tomographic
literature (see [22] and references therein), are based on selected
abstractions of probe delay behaviour. They do not deal with a
true queueing system model as we do here.

The second aim of the paper is to use the insights gained
through the in-principle inversion procedure we develop, to de-
fine statistical estimators for the distribution of the cross traffic
which can be used in practice. To our knowledge this is one of
the first works where a rigorous probabilistic treatment has been
given to such a problem. We provide a number of different esti-
mators, suitable for different circumstances, and explain in de-
tail the principles on which they work, and when and why they
may fail. We make extensive use of geometric arguments and il-
lustrations to give an intuitive account. We evaluate their perfor-

mance in Monte Carlo simulations using cross traffic processes
which are reasonable first models of Internet traffic. We also
make use of a detailed Internet traffic trace, to give an indica-
tion of the utility of the method under realistic conditions which
deviate from the technical assumptions, described below, used
in the inversion. In addition, we perform simultaneous probing
experiments and accurate passive capture in the Internet back-
bone, and use it to evaluate the performance of the estimators
under real world conditions.

Although in general a single hop is of limited usefulness as
a model of a multi-hop route, we explain how our approach
has advantages over existing methods based on this idea which
widen its applicability.

We use the prevailing hop model consisting of a FIFO queue
to which both cross traffic packets and probes effectively arrive
instantaneously, but flow out deterministically as they are seri-
alised onto the output link. In this picture, the service time of
the traffic is associated to the input process itself, rather than the
server, and arrival and departure times are measured from the
end of packets. This abstraction of hop behaviour is appropriate
in today’s Internet where store and forward router architectures
are common, with fast switch fabrics where through-router de-
lays are concentrated in output buffers. It was recently validated
using real data collected at the input and output interfaces of a
router in the Sprint backbone network [5].

2 In-Principle Inversion

We consider a simplified problem consisting of a single hop,
whose FIFO single server queue is characterised by a determin-
istic service rate µ, and an infinite buffer. We take the probes
to be of constant size chosen to be p bytes, corresponding to
x = p/µ > 0 seconds of workload. We will comment on the
role of x as a parameter.

Let {Tn} and {T ′
n} be the sequence of arrival and departure

times respectively of the probes to the queue. Since the {Tn}
can be chosen by the prober and are assumed known, the raw
data of a probing experiment are the departure times, or equiva-
lently, the end-to-end hop delays {Dn = T ′

n − Tn}. The broad
problem can now be stated as follows:

Given a knowledge of the measured delays, what can be learnt
about the probability laws governing the cross traffic?

It is convenient to describe the input traffic in terms of a ran-
dom measure A, whereby the workload (measured in seconds
after dividing by µ) arriving to the queue in a time interval I is
denoted by the random variable A(I). In this way we include
point or continuous arrivals in a unified and general framework.

Our aim is to recover as much information as possible about
the cross traffic described by A. For this to be feasible, the statis-
tics of the system should not change fundamentally over time,
and the probes must be able to collect representative samples
of them. The corresponding technical assumptions are that A is
stationary (i.e. for all intervals I , A(t+I) has a law that does not
depend on t) and that the sequence of end-to-end probe delays
is stationary and ergodic.

For the mathematical development in this section and the next,
it is necessary to state specific joint assumptions on A and the
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{Tn}. For the purposes of this paper we will assume one of
the following two models. We show in the appendix that the
stationarity and ergodicity assumptions are satisfied in each.

• Model 1: {Tn} is an arbitrary renewal point process. It is
independent of A, which has stationary independent incre-
ments, and infinite support for all t;

• Model 2: {Tn} is deterministic (i.e. periodic) with fixed
interarrival time t. The sequence of stochastic processes
{A([it, it + v)), 0 ≤ v ≤ t}i∈N is independent and identi-
cally distributed. The following technical assumption is
also made: A[0, t) = 0 with a positive probability and
achieves values larger than t−x with a positive probability.

The raison d’être of these two models and their differences and
relative merits will be discussed later and in particular in Sec-
tion 3.

Throughout this section we will for simplicity use Model 1,
which includes as an important special case cross traffic packets
arriving as a Poisson process, where the packet sizes are inde-
pendently drawn from some distribution. In fact our approach
is general enough to be applied in other situations, for example
probe streams do not have to be renewal; one could for instance
consider the interarrivals {Tn+1 − Tn} to be Markov.

It is important to understand that our approach takes the inva-
sive effect of probes fully into account. In no way is a low rate
probing stream required (either locally or on average) by the in-
version methods presented, or the estimators based on them.

We begin by giving the generic equations governing the sys-
tem. We then derive recursion relations connecting the observed
delays, and go on to explain the principle of the inversion ap-
proach under our statistical assumptions of Models 1 and 2. The
relationship between the results here and questions of identifia-
bility will be left to the next section.

2.1 An Approach to Inversion

Using standard queueing theory for FIFO queues (for example
see [2]), the equation describing probe delays can be written as

T ′
n+1 = x +

[

(T ′
n + A[Tn, Tn+1))

∨ sup
v∈[Tn,Tn+1]

(v + A([v, Tn+1))
]

, (1)

where x ∨ y denotes the maximum of x and y. The left hand
argument of ∨ dominates when the probes are in the same busy
period, as then the departure time of probe n + 1 is simply de-
termined by the cross traffic A([Tn, Tn+1)) filling the space be-
tween them. If this is not the case then the supremum, which
allows the calculation of the waiting time experienced by probe
n + 1, will dominate instead.

Subtracting Tn+1 from both sides of the equation above, a
recursive relationship emerges for the delay Dn = T ′

n − Tn.
Instead of using absolute delay however, it is convenient to work
with the time series {Rn}, where Rn = Dn − x ≥ 0 is the
excess delay above the minimum value of x, the probe service
time. In terms of the Rn the recursion becomes

Rn+1 = (x + Rn + Cn) ∨ Bn , (2)

where

Cn = A([Tn, Tn+1)) − (Tn+1 − Tn), (3)

Bn = sup
v∈[Tn,Tn+1]

(A([v, Tn+1)) − (Tn+1 − v)) . (4)

Note that Bn and Cn are functionals of the cross traffic over
the interval [Tn, Tn+1) only, and are neither influenced by the
probes nor by the queue state. The following important rela-
tionships hold:

1. Bn ≥ 0 (take v = Tn+1),
2. Bn ≥ Cn (take v = Tn),
3. Bn ≤ Cn + (Tn+1 − Tn) (since Bn ≤ A([Tn, Tn+1)) ).

We can interpret Cn as the net work that arrives in [Tn, Tn+1),
and it takes values in (−(Tn+1 − Tn),∞). Thus, Cn gives
information on the integral of the cross traffic over a typical
probe inter-arrival, whereas Bn gives some information on the
peak. More precisely, Bn is the system workload that would be
seen at time Tn+1 if we considered only the cross-traffic arriv-
ing in [Tn, Tn+1). For example, Bn − Cn is maximized when
the traffic arriving over [Tn, Tn+1) occurs in a burst just before
Tn+1. Another example from network calculus is given in the
appendix.

The technical conditions listed as Model 1 or Model 2 have
the following important consequences:

1 Rn, which is determined by what the n-th probe encounters
when it arrives in the queue at time Tn, is independent of
(Bn, Cn, (Tn+1 − Tn)), which is a function of the traffic
arriving after Tn;

2 The sequence {Rn} is an ergodic Markov chain, and there-
fore admits a (unique) stationary and ergodic regime under
natural rate conditions (see appendix).

In what follows, we will assume the system to be in its stationary
regime.

We now describe the core ideas of the inversion procedure.
Since we know the joint process of the excess delay {Rn} and
the probe arrivals {Tn}, we know in particular the conditional
law of Rn+1 given Tn+1 − Tn and Rn. Rephrased in terms of
sample paths, we have a complete history of the random vari-
ables {Rn} and {Tn}, and can therefore pick out those n which
correspond to Tn+1 − Tn = t and Rn = r, for any fixed t > 0,
r ≥ 0, and consider the corresponding Rn+1 values. The con-
ditions on ergodicity given above ensure that all values of r are
visited arbitrarily often (for a large enough number of probes),
and since in addition (Bn, Cn) is independent of Rn, all possi-
ble 3-tuples (Rn, Bn, Cn) will occur arbitrarily often. The con-
ditional delays correspond to a sequence of (B, C) pairs sharing
the same fixed t, of which a representative element can be writ-
ten

C = A([0, t)) − t, (5)

B = sup
0≤v≤t

(A([v, t)) − (t − v)). (6)

The corresponding recursion relation linking the residual delay
R of such a probe to the residual delay S of the next probe,
which arrives a time t later, is given by

S = [x + R + C] ∨ B. (7)

INRIA
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We now again use the property that R is independent of (B, C).
It follows that S is determined by the observable R, and the
independent unobservable joint distribution of (B, C). As the
unknown is now just a 2-dimensional distribution, this is an im-
portant increase in tractability brought about by fixing t and by
the technical assumptions. If we can determine this distribution,
then we know in particular the marginal distribution of C, and
thereby the distribution of A(t) = C + t. Here we have written
A(t) as a shorthand for A([0, t)).

The above was for a single t fixed. For this sub-problem the
task has been reduced to recovering the unobservable joint dis-
tribution of (B, C), based on the observable (and therefore, in
this section, known) joint distribution of (R, S). To proceed
with the inversion, we henceforth assume that all variables, in-
cluding time, are discrete. This assumption is not essential, as
the discretisation can be made as fine as we wish, and in appli-
cations using real data, discretisation is in any case unavoidable.

We denote the discrete density and the 2-dimensional cumu-
lative distribution function (CDF) of (B, C) respectively by

h(k, l) = P (B = k, C = l), (8)

H(k, l) = P (B ≤ k, C ≤ l), (9)

in the domain of definition k ≥ 0, l ≥−t.
We write c(l) and C(l), l ≥ −t, for the density and CDF

respectively of the marginal corresponding the variable C, and
similarly b(k) and B(k), k ≥ 0, for B. In addition, it is conve-
nient to define the following ‘approximations’ to c(l) and b(l):

c(k, l) =

k
∑

i=0

h(i, l) (10)

b(k, l) =

l
∑

i=−t

h(k, i). (11)

The sets of k, l pairs in the sums defining c(·, ·) and b(·, ·)
appear in Figure 1 as finite horizontal and vertical bars respec-
tively.

The relationships 1–3 listed above imply that h(k, l) = 0 out-
side of the diagonally oriented ‘feasible strip’ defined by

feasible strip: (k, l) : k − t ≤ l ≤ k, k ≥ 0, (12)

as seen in Figure 1. This implies in particular the important fact
that c(k, l) = c(l) as soon as k ≥ l + t.

2.2 Inversion Expressions

Let fr(s) = P (S = s|R = r). We can write down this con-
ditional probability by accounting the cases when either the left
or the right hand arguments in Equation (7) equals s. Due to the
independence of R from (B, C), this can be simply written as

fr(s) = P (B ≤ s, C = s − r − x)

+ P (B = s, C ≤ s − r − x − 1) (13)

= c(s, s − r − x) + b(s, s − r − x − 1) (14)

=H(s, s − r − x) − H(s − 1, s − r − x − 1). (15)

PSfrag replacements

k = s1k = s2

−t

−x

0 B

C

l1

l2
fr2

(s2)

fr1
(s1)

Figure 1: The domain {k, l} where the joint density h(k, l) of
(B, C) vanishes is shown as white. The support of (B, C) is
the strip k − t ≤ l ≤ k, k ≥ 0 shown as the light coloured
band. An observation of (R, S) = (r, s) corresponds to a
(B, C) = (k, l) value lying inside an angle shaped set with cor-
ner at (k∗, l∗) = (s, s − r − x). Two angle sets are shown
(shaded), corresponding to Class 1 (corner outside the strip,
k = s1), and Class 2 (corner inside, k = s2). The region where
aggregates of x + 1 = 3 atomic masses are connected is the
exclusion zone where individual h values cannot be directly de-
termined.

This probability corresponds to a sum of h(k, l) over an ‘angle
shaped’ set, with corner at

(k∗, l∗) = (s, s − r − x).

Two examples of angle sets are illustrated in Figure 1. A par-
ticular observation of S = s given R = r corresponds to a
(B, C) = (k, l) value, which, although unobservable, must lie
inside the angle set defined by (r, s). We see that the available
information concerning h(k, l) comes in the form of the prob-
abilities, given by fr(s) for different observed (r, s), of falling
into different angle sets. All other knowledge of the joint density
must be obtained by combining such sets in different combina-
tions. We will now describe how this works in more detail with
the aid of Figure 1.

A given (k, l) value may be included in many angle sets corre-
sponding to different (r, s), however the mapping between (r, s)
and the corner (k∗, l∗) is linear, and hence uniquely invertible:
(r, s) = (k∗−l∗−x, k∗). Consider then the possible locations of
the ‘corners’. For a fixed r, as s is increased the corresponding
corner values (k∗, l∗) = (s, s − r − x) move upward, tracing
out a line parallel to the main diagonal. As r decreases these
diagonals translate upward, however the highest of these, corre-
sponding to r = 0, is not the upper boundary of the strip, but
lies below it on the line l = k−x. We discuss the consequences
of this for invertibility in the next section.

We now derive inversion expressions, in three classes. The
first class aims to directly determine c(l). It is simple and in-
tuitive, being based on restricting to cases where the queue is
known to be ‘linear’, that is when it is certain that the probes
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share the same busy period. The second is based on the idea
that conditioning on linearity may be too strong, and require too
much data in practice, motivating expressions for the approxi-
mation c(k, l) to c(l), justified by the idea that we can ignore
zones where the density is likely to be small. The third class
is totally different, being based on a transform viewpoint rather
than operating purely in the time domain. However, it relies
fundamentally on the prior time domain results to obtain infor-
mation on A for different values of t. Its advantage is that it
allows us to combine different t values in a natural way. It is
however based firmly on Model 1. For example it does not hold
for Model 2.

2.2.1 Inversion: Class 1

The first inversion expression uses the observation from sec-
tion 2.1 that B ≤ C + t, which implies that B ≤ x + r + C if
R = r ≥ t− x. Hence, for r ≥ t− x, Equation (7) implies that

P (S = s|R = r) = P (x + R + C = s|R = r)

= P (C = s − r − x|R = r)

= P (C = s − r − x), (16)

which is a function of the delay variation u = s − r. The last
step follows from the independence of R and (B, C) established
above. Thus, for each fixed R = r obeying r ≥ t − x we have

c(l) = fr(l + r + x). (17)

In terms of angle sets, The above simply corresponds to taking
a corner (k∗, l∗) with l∗ = s − r − x, and k∗ large enough so
that the horizontal component of the angle completely traverses
the strip (see the rightmost angle in Figure 1). The vertical com-
ponent in such cases falls below the strip, and thereby contains
zero probability.

Since the above expression is true for many different r values,
it is desirable to combine them, as this would make better use of
data in the practical case. A general linear combination can be
written as

c(l) =

∞
∑

r=t−x

ar−(t−x)fr(l + r + x), (18)

where the ai are any set of non-negative weights that sum to
unity. Intuitively, a good choice is to select weights that reflects
the data available: ar−(t−x) = P (R = r|R ≥ t − x). It turns
out that the resulting expression is the same as if we had set out,
looking across different r values, to explicitly collect together
all relevant observations with constant u:

P (S − R = u|R ≥ t − x) = P (x + C = u|R ≥ t − x)

= P (C = u − x)

=

∞
∑

r=t−x

P (S − R = u, R = r)/P (R ≥ t − x)

=

∞
∑

r=t−x

P (S − R = u|R = r)P (R = r))/P (R ≥ t − x)

which is of the form of Equation (18). Defining gr(u) to be
P (S − R = u|R ≥ r), we get:

c(l) = gt−x(l + x). (19)

The collection of (r, s) values used in this expression is illus-
trated in Figure 2(a), where the shading indicates the corre-
sponding weight.

The above expressions essentially choose observations corre-
sponding to large delay values of the first probe in a pair. The
large delay ensures that the queue is busy until the next probe
arrives. The difference between such a delay and the next de-
lay is used to estimate the distribution of cross-traffic arriving
between them.

(a) Estimator 1 (c) Estimator 2

(b) Estimator 3 (d) Estimator of h

Figure 2: The various inversion expressions use different por-
tions of the (R, S) space, shown here. The corresponding equa-
tion numbers are: (a) ĉ1: (19) (shading indicates weights used);
(b) ĉ2: (22) (correction terms give the vertical components); (c)
ĉ3: (24) (uniform weighting over N values of r); (d) ĥ: (33)
(shading indicates term type).

We conclude with a comment on the role of x. Since increas-
ing x widens the exclusion zone, and more generally increases
delays without impacting on the density h(k, l), it serves to in-
crease the available range of r values, thereby improving the
applicability of expressions in Class 1.

2.2.2 Inversion: Class 2

The expressions for c(l) above relied on r ≥ t − x. Think-
ing ahead to practical situations with limited data, such values
may be rare or even entirely unavailable. However, if h(k, l) is
sufficiently concentrated at small k and l, then we may be able
to use c(k, l), defined in Equation (10), as a valid surrogate for
c(l). We accordingly consider expressions based on c(k, l).

Let

Fr(s) =
∑

i≤s

fr(i) = P (S ≤ s|R = r)

INRIA
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be the CDF corresponding to fr(·), which is observable. Using
Equation (15), we can solve for c(k, l) as follows:

c(k, l) = H(k, l) − H(k, l − 1)

= Fk−l−x(k) − Fk−l−x+1(k)

=

k
∑

i=0

[fk−l−x(i) − fk−l−x+1(i)]

= fr(r + l + x) + Fr(r + l + x − 1)

− Fr+1(r + l + x), (20)

where r = k − l − x. The second and third lines follow imme-
diately from the fact that H(k, l) = Fk−l−x(k) is by definition
a ‘rectangle’ set that can be decomposed into nested angle sets.

Comparing Equation (17) to (20), we see that the first term is
still fr(r + l + x), however it is no longer equal to c(l) unless
r ≥ t − x, in which case the extra terms in Equation (20) are
equal and cancel.

Equation (20) provides us with an exact expression for c(k, l)
which we can think of as an approximation to c(l). We continue
by considering different assumptions on which components of
Equation (20) are considered to be negligible, resulting in new
expressions.

Weak Assumption:
Consider Equation (20) for a given l. If in fact h(k, l) is negligi-
ble for k > kl, where kl ∈ [l, l + t− 1] lies inside the strip, then
it is as if the strip were narrower, and c(l) = c(k, l) whenever
k ≥ kl. We refer to this as the weak assumption. It is reason-
able to expect that it holds in many cases, at least for sufficiently
large l, as increasing k corresponds in some sense to ‘tail’ events
of low probability. It leads to the following approximation for
each fixed r obeying r ≥ rl = kl − l − x:

c(l) ≈ Fr(r + l + x) − Fr+1(r + l + x), (21)

assuming h(l + r′ + x, l) = 0 ∀ r′ > r.

Equation (21) uses only a single r ≥ rl. As in the previous
section, it makes sense to combine different values to reduce
variabililty. Using uniform weights results in a satisfying can-
cellation of fr(s) terms, which would not occur if weighted av-
eraging were used. Using r now as a parameter obeying r ≥ rl,
we obtain:

c(l) =
1

N

r+N−1
∑

r′=r

[Fr′(r′ + l + x) − Fr′+1(r
′ + l + x)].

=
1

N

r+N−1
∑

r′=r

fr′(r′ + l + x)+

Fr(r + l + x − 1) − Fr+N (r + N + l + x − 1)

N
.(22)

The first term is the average of N expressions of the form of
Equation (20), whereas the second includes h(k, l) values that
are not affected by the weak assumption. In Figure 2(b) the
(r, s) values required by the extra terms appear as the vertical
lines.

Strong Assumption:
If kl is such that h(kl, l) can be considered a tail probability, it

is reasonable to expect that this may also be true of h(kl, l
′) for

l′ values close to l. This motivates the following strong assump-
tion, which in addition to the weak assumption, supposes that
h(k′, l′) vanishes for all l′ < l when k′ ≥ kl, or equivalently
r′ ≥ rl. In other words, all elements directly below, and below
and to the right of, the point (kl, l). It is not difficult to see that,
for a fixed r obeying r ≥ rl = kl − l − x, this leads to

c(l) ≈ fr(r + l + x), (23)

assuming h(l + r′ + x, l) = 0 ∀r′ > r

and h(l′ + r′ + x, l′) = 0 ∀r′ ≥ r, l′ < l.

As we did with Equation (21), we can average N consecutive
values starting from a given r ≥ rl, yielding

c(l) ≈
1

N

r+N−1
∑

r′=r

fr′(r′ + l + x). (24)

The leftmost angle in Figure 1 is an example of the terms (an-
gles) in this sum whose corner lies inside the strip. The stronger
assumption has resulted in the loss of the difference term of
Equation (22). The corresponding plot Figure 2(c) shows that
the vertical lines have vanished, leaving a diagonal set similar to
Figure 2(a), only with uniform weights.

We can also perform averaging with a natural set of weights as
we did with the class 1 inversion methods. Recall that gr(u) =
P (S − R = u|R ≥ r), and let pr(r

′) denote the conditional
probabilities P (R = r′|R ≥ r), interpreted as a set of weights
which sum to 1. Using the strong assumption one can show that

c(l) ≈

∞
∑

r′=r

fr′(r′ + l + x)pr(r
′)

=

∞
∑

r′=r

P (S = l + x + R|R = r′)P (R = r′|R ≥ r)

=

∞
∑

r′=r

P (S − R = l + x|R ≥ r)

= gr(l + x). (25)

This is formally the same expression as Equation (19)! however
now r is smaller than t − x, and the corners of the angles set
involved are inside the strip.

Just as we did for fr(s), we can define a CDF corresponding
to gr(u), and establish the following identity:
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Gr(u) =

u
∑

i=x−t

gr(i) = P (U ≤ u|R ≥ r), (26)

=

l
∑

l′=−t

gr(l
′ + x),

=
l

∑

l′=−t

∞
∑

r′=r

fr′(r′ + l′ + x)pr(r
′),

=

∞
∑

r′=r

pr(r
′)

l
∑

l′=−t

fr′(r′ + l′ + x),

=
∞
∑

r′=r

pr(r
′)Fr′(r′ + l′ + x), (27)

=

∞
∑

r′=r

pr(r
′)H(r′ + l + x, l), (28)

which shows that the CDF corresponding to gr(u) can be viewed
as a weighted sum of rectangle sets, with the same (l indepen-
dent) weights as before.

For this class, increasing x has the advantage that a fixed
(r, s) observation now corresponds to an angle which is lower in
the strip (corresponding to larger r values), whereas the density
h, being independent of probes, has not changed. Hence, this
same (r, s) pair is now more likely to fall into a region where
the weak and strong assumptions hold than before. For the same
reason, higher r values now have higher probability, allowing
larger r′ values to be used for a fixed number of observations.
Each of these advantages is consistent with the intuition that
increased local invasiveness increases the chances of probes be-
ing in the same busy period, where information can be extracted
about c(l). The disadvantage is the the widening of the ambigu-
ity zone of course decreases the observability of h.

2.2.3 Inversion: Class 3

In this section we assume Model 1, that is that A has indepen-
dent increments and the probes arrive as a renewal process, and
we return to the continuous time and space framework. The ob-
servation at the heart of this section is that such a process is
uniquely characterized by its Lévy exponent α(u). One way of
accessing α(u) (provided natural regularity conditions are satis-
fied) is through the Laplace transform of the Lévy process, de-
fined by φu(t) = E[e−uA(t)]. Independent increments implies
that the transform obeys

φu(t+s) = E[e−uA(t+s)] = E[e−uA(t)e−uA(s)] = φu(t)φu(s),
(29)

the canonical solution to which is φu(t) = e−α(u)t. For a Pois-
son process with intensity λ for example, α(u) = λ(1 − e−u).
More generally, in the case of the simple model of Internet traf-
fic discussed in Section 2, namely when random sized packets
arrive as a Poisson process, then

α(u) = λ(1 − F (u)),

where F (u) is the Laplace transform of the service time distri-
bution. We can therefore determine α(u) simply by inverting

the exponential solution:

α(u) =
−1

t
log E[e−uA(t)]. (30)

Through α(u), we obtain full knowledge of the process A sim-
ply by knowing the marginal A(t) at a single t value.

Although in principle only a single t is needed, for practical
estimation purposes it is pertinent to consider multiple values.
For example with renewal probe arrivals, it is natural that many
different t values occur. These could be combined linearly using
Equation (30) to form a new expression for α(u):

α(u) = −

∫ ∞

0

b(t)

t
log E[e−uA(t)] dt, (31)

where the b(t) is a weighting function such that
∫ ∞

0 b(t) dt = 1.
It is reasonable to choose this function to be equal to a(t), the
inter-arrival time density between probes, so that greater weight
is given to t values which occur more often. Equation (31) is
remarkable as it combines information from different t values
in a natural way, something that is very difficult to do using the
expressions of Classes 1 and 2. It therefore makes better use of
available samples, which will be useful in practice, especially
for passive probing.

Although the above is transform based, the marginal A(t)
must first be determined, and the only means we have to achieve
this is to use the Class 1 and 2 inversions described above. There
are therefore many possible expressions for α(u) in terms of
observables, corresponding to combining different choices of
weights in Equation (31), together with the variety of expres-
sions from Classes 1 and 2.

3 Ambiguity, Invertibility & Identifiabil-
ity

As already mentioned, our aim is to identify, that is to fully
know, the nature of the cross traffic based on the observations of
probes. If this cannot be done in a sample path sense, then we
wish at least to determine in full the stochastic laws describing
the statistics of the traffic. It should be clear from Equation (2)
that the best thing that can be identified in the present context
is the (Bn, Cn) sequence. In view of the fact that this sequence
is i.i.d. under our assumptions, the law of the process will be
identified simply if one can determine the 2-dimensional joint
distribution or law of B and C, conditional on t, from the obser-
vations. We shall say that the system is invertible (resp. pathwise
invertible) if this law (resp. sequence) can be estimated from the
observations and that it is ambiguous (resp. pathwise ambigu-
ous) if more than one such law (resp. sequence) is compatible
with the observations.

It is easy to see that our system is pathwise ambiguous, namely
that different cross traffics can give rise to the same sequence of
observed probe delays, even in a single hop model.

To show pathwise ambiguity, consider a case where two probes
share the same busy period, and where a number of cross traf-
fic packets arrive and are ‘trapped’ between them. The arrival
order of the cross traffic packets could be changed, or a num-
ber of them could be replaced with a smaller number with an
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equivalent total service time, without altering the delays of ei-
ther probe. Similarly, when two successive probes do not share
the same busy period, these probes have actually no way of sens-
ing what happens at every point along the interval of time sep-
arating them. More precisely, all modifications of cross traffic
which leave unaffected the (distinct) busy periods containing the
probes in question lead to the same pathwise observations. So,
if cross traffic is such that pairs of successive probes are never
in the same busy period, then there is clearly a wide variety of
cross traffic processes that lead to the same pathwise observa-
tions.

It is not difficult to see that when probes never belong to the
same busy period, then there is ambiguity in law too. We shall
see below that even if one excludes this case and assumes that
there are infinitely many pairs of successive probes that belong
to the same busy period and that moreover probe delays form
an ergodic sequence (on the positive half-line), then there is still
ambiguity in law for Model 2.

Hence, at least under the assumptions of Model 2, it is not
possible in general to identify the statistics of cross traffic via
probing, even in the one hop model.

3.1 Ambiguity of Model 2

The results of Sections 2.2.1 and 2.2.2 were based on what could
be obtained about A(t) using the distribution of S given R for a
given probe separation T = t. The most that could be hoped for
is a complete recovery of the density h(k, l) of the joint variable
(B, C) which underlies A(t). We now consider to what extent
this can be achieved.

Since h(k, l) = c(k, l) − c(k − 1, l), Equation (20) provides
us with a convenient formal way of calculating the joint density:

h(k, l) =

k−1
∑

i=0

[2fk−l−x(i) − fk−l−x−1(i) − fk−l−x+1(i)]+

[fk−l−x(k) − fk−l−x+1(k)] (32)

= Fk−l−x(k) + Fk−l−x(k − 1)−

Fk−l−x+1(k)−Fk−l−x−1(k − 1). (33)

Equation (33) provides h(k, l) using three values of r, namely
k−l−x and k−l−x±1, and several values of s. The collection
of (r, s) values required is illustrated in Figure 2(d).

Since Fr(s) is undefined for r < 0, the above expression for
h(k, l) can be used only when k − l − x ≥ 1. Hence, we in
fact cannot determine individual h(k, l) values for k − l ≤ x!
We call this region, marked with smaller rectangles in Figure 1,
the exclusion zone. However, Equation (20) shows that, for
fixed l, we do know c(l + x, l) which is the sum of h(k, l) over
l ≤ k ≤ l + x, that is the mass in an aggregate traversing the
width of the exclusion zone (an exception occurs when l = −x,
where h(0, l) = c(0, l) is known from Equation (20)). Note that
other aggregates involving (k, l) values in the zone cannot be
calculated. In particular, the marginal b(k) of B cannot be de-
termined. In other words, Model 2 is law ambiguous. The probe
size x here plays a key role. Smaller x reduces the exclusion
zone and enables h to be determined more fully.

The above can also be explained geometrically in terms of
angle sets. The highest placed angles are those corresponding to

r = 0, whose corners correspond to the diagonal comprising the
lower edge of the exclusion zone. Since points in the interior of
the zone, that is l ≥ k−x− 1, cannot be corners, it follows that
for a given l ≥ −x the only angles passing through points in the
zone are those whose horizontal members align at l = s−r−x.
Consequently, it is impossible to resolve the h(k, l) values in the
interior of the zone.

To understand why the corners cannot lie in the interior of the
exclusion zone, note that the horizontal component c(s, s− r −
x) of the angle set (r, s) (refer to Equation (15)) corresponds to
(k, l) pairs such that the two probes share the same busy period,
whereas the vertical component b(s, s − r − x − 1) contains
scenarios where they do not. Because of the invasive impact of
the probe size x however, they must be in the same busy period
if l ≥ k − x, which is precisely the definition of the exclusion
zone.

3.2 Invertibility of Model 1

We saw in Section 2.2.3 that in the case when the measure A has
stationary independent increments, it is possible in principle to
determine, from the knowledge of the marginal A(t) = A[0, t)
for a single t, the function α(u) known as the Lèvy exponent
which fully characterises the system. It follows that, from this
single t, we learn not just the marginal A[0, t), but all there is
to know about the entire measure A. As a result, we also know
in principle the joint law of (B, C), for all t. Thus in this case
there is no fundamental barrier to system identifiability. The
ambiguities found in Section 2.2.3 do not hold because of the
following property of processes with independent increments:
the Lévy exponent (which here is identifiable) fully determines
the law of the process.

There is no contradiction between the ambiguity present for
a fixed t, corresponding to the existence of the exclusion zone
described above, and the resolution of that ambiguity in the con-
text of Model 1. The exclusion zone relates to what can be
directly inferred on the basis of measurements made at a con-
stant t, with no additional information. Recall that the law of C,
and therefore of A(t), can indeed be recovered based on such
observations. The structure inherent in Model 1 effectively pa-
rameterises the problem, so that (B, C) is contrained to be of a
certain form such that if the law of C is known, then so is that of
(B, C). The same logic does not hold for Model 2, quite simply
because no additional structure is given.

3.3 Comments on Model 1 and 2

The processes from Model 1 with independent increments are
quite general in that they can include both a continuous compo-
nent consisting of a diffusion process (e.g. Brownian motion),
and a jump component consisting of a compound arrival Pois-
son point process. The following process is a relevant example
of a pure jump component: packets arrive instantaneously at
Poisson epochs, bringing with them a random amount of server
load correponding to independent samples of some packet size
distribution.

In Model 2, no specific assumption is made on the law of A
within each of the intervals [it, (i+1)t), and it is therefore more
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general than Model 1 in this respect. The motivation for Model 2
is that the assumption of independent increments from Model 1
is a strong one which applies at all time scales. In particular
infinite divisibility, a well known, property of Lévy processes
[2], cannot hold in real systems due to physical constraints such
as minimum packet sizes. On the other hand, independent in-
crements can be a reasonable physical model in a range of scale
above the level of packet size, but below the long-range depen-
dence operating at, say, 1 second and above. Hence the fact that
there is a typical time scale, namely t, where Model 2 holds,
makes physical sense.

In Model 2 however, even if the law of A[0, t) can be ob-
tained, this is not sufficient in general to infer the complete law
of A. In this case there are limits to system identifiability. How-
ever the joint distribution of (B, C), if determined, still gives
valuable information on A and the queueing process it creates.

4 From Inversion to Estimators

The inversion expressions described in the previous section can
be used as the basis of cross traffic estimators. In this section
we define a number of such, and investigate their fundamen-
tal properties. In particular, we explain the underlying trade-
offs between errors of different kinds, and how they inter-relate,
and discuss the problem of available data. To better focus on
these key issues, we initially use simple cross traffic processes
in simulations designed primarily to investigate and illustrate,
and gradually introduce greater realism, for example issues of
estimator bias and variance, as we proceed.

As we learn more about the behaviour of the estimators, im-
portant details emerge which result in them being modified, be-
coming more complex, but with better performance. The mod-
ifications fall into two groups. First, they arise naturally from
the need to address ‘practical’ issues, such as the setting of pa-
rameters values. These must ultimately be based on data, which
lead to an additional level of randomness, and the estimators
thereby take on a stronger adaptive character. Second, opportu-
nities arise to propose refinements to the estimators through var-
ious kinds of hybridisation. This leads to improved performance
but the additional complexity has it own drawbacks, including
lack of tractability, and potentially a lack of robustness.

The final estimators we propose do not appear until the end
of Section 4.2. The detailed examination of their performance is
then given in Section 4.3, where we use burstier and more realis-
tic cross traffic models, and offer more systematic performance
results.

4.1 The Underlying Estimators

We construct the initial estimators in two steps. First, the ob-
servable conditional densities fr(s) = P (S = s|R = r) and
gr(u) = P (S−R = u|R ≥ r) are estimated. To do so, we sim-
ply use the empirical frequencies, denoted by f̂r(s) and ĝr(u)
respectively, based directly on the observed (r, s) pairs in the
data. (If there are no samples for a given r = r′, which is
often the case even though fr(s) is typically positive, we set
f̂r′(s) = 0 for all s except the largest where we set the den-

sity to 1. If there are none for all r ≥ r′, then ĝr′(u) = 0
for all u, except the largest.) Such estimators are intuitive, and
enjoy the property that they are naturally normalised. By this
we mean that their empirical CDFs, F̂r(s) =

∑s

i=0 f̂r(i), and
Ĝr(u) =

∑u

i=x−t ĝr(i), monotonically increase from 0 up to 1,
as a CDF should.

In the second step, we select inversion expressions from the
previous section, and replace each of the exact observables fr(s),
gr(u) and Fr(s) by their estimated counterparts.

The first estimators of c(l) we consider are defined in Equa-
tions (34) through (36). The symbol r is used for the free pa-
rameter rather than r, to avoid confusion with the latter’s use as
a sample of the excess delay variable R. Recall that since l is
fixed when estimating c(l), specifying r is equivalent to setting
k = r+l+x, defining the corner (k∗, l∗) = (k, l) of the leftmost
angle used by the estimator.

Estimator ĉ1 arises from Equation (19). It differs from that
equation however in that r is not set to t − x, corresponding
to the largest range of r under Class 1, but is free to take any
value both below and above t − x. It can therefore be seen to
be of either Class 1 or 2, depending on the situation. We have
encountered its Class 2 form already in Equation (25).

Estimator ĉ2 arises from Equation (24). Again, we do not
prescribe the value of the parameter r, but allow it to ‘operate’
as either Class 1 or Class 2. In the latter case, it can be seen as a
form of Equation (18) where the weights are uniformly chosen,
and can be naturally contrasted to estimator ĉ1 using the same r
value.

Estimator ĉ3 arises from Equation (22). It is similar to ĉ2 but
with the addition of correction terms. Unfortunately, these terms
have a negative impact on estimation performance, as we show
below.

ĉ1(l) = ĝr(l + x). (34)

ĉ2(l) =
1

N

r+N−1
∑

r′=r

f̂r′(r′ + l + x). (35)

ĉ3(l) =
1

N

r+N−1
∑

r′=r

f̂r′(r′ + l + x)+ (36)

F̂r(r + l + x − 1) − F̂r+N (r + N + l + x − 1)

N
.

Estimators 2 and 3 use r = r to r = r + N . To ensure
that, for a given r, they use the same amount of information as
ĉ1 in order to simplify comparison, we take N large enough so
that each uses all observations of R ≥ r. This also eliminates
the need to perform parameter selection with respect to N . It is
important to note however that the selection of N has now effec-
tively become random, which complicates any formal analysis.
This is the first of many examples of where a practically sensible
means of parameter selection in fact corresponds to the creation
of more usable, but more complex estimators.
We now define our estimator for h(l, k). We must distinguish
between points in the exclusion zone and those that are not. Out-
side the zone, that is for k− l−x ≥ 1, the estimator arises from
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Equation (33) and is

ĥ(k, l) = F̂k−l−x(k) + F̂k−l−x(k − 1)− (37)

F̂k−l−x+1(k) − F̂k−l−x−1(k − 1).

The estimator for the horizontal aggregates in the exclusion zone
follows from Equation (20):

ĉ(l + x, l) = F̂0(l + x) − F̂1(l + x). (38)

Although it is beyond the scope of this paper to examine in
detail estimators in Class 3, for completeness we show how they
can be defined. Estimators of the Lévy exponent α(u) can be
defined using Equation (30) directly:

α̂0(u) =
−1

t
log Ê[e−uA(t)]. (39)

Ê[e−uA(t)] can be set to E[e−uÂ(t)] and computed using any
of the above estimators for A(t). Alternatively, we can use
the principles of Class 1 inversion directly in the continuous
time and space framework. The queue behaves linearly during
[Tn, Tn+1] if Rn ≥ t − x, where A(t) is simply Rn+1 − Rn +
t − x. Since A(t) is conditionally independent of Rn, we can
estimate E[e−uA(t)] as the sample mean of e−u(Rn+1−Rn+t−x)

conditioned on Rn ≥ t − x:

α̂(u) = −
1

t
[log

∑

n∈Lt

e−u(Rn+1−Rn+t−x) − log |Lt|], (40)

where Lt = {n|Tn+1 − Tn = t, Rn ≥ t − x}. Since α̂(0) = 0,
this estimator is also naturally normalised. We can therefore
perform an inverse Laplace transform to recover, in fact define,
an estimator ĉ4 of the density c(l):

ĉ4(l) = L−1α̂(u). (41)

Again, one could also use this Class 1 inspired estimator in a
Class 2 manner, at the cost of increased bias.

4.2 Properties & Refinements

We use simulations with simple arrival processes, using a min-
imum number of parameters, to illustrate important factors af-
fecting the estimators above. The properties discussed however
are generic and remain valid in more general settings.

As with the analysis of Section 2, the system is fully discre-
tised, with slotted time corresponding to the transmission time
δ = 8d/µ [sec], where d = 10 is the size of the slot measured
in bytes, and µ is the output link capacity. In this setting Pois-
son arrival streams correspond in fact to i.i.d. time series with
marginals being Poisson random variables with parameter λδ,
and the packet service time, queue system time, and delay val-
ues are integer multiples of δ. However, a d = 10 byte granular-
ity means we can think of the unperturbed system as M/G/1 for
most practical purposes, whilst reducing computational issues
and estimation variance. In this section and the next it will be
convenient to present results either as integers from the discrete
time system, l, k, r ecetera (already normalised by δ), or in units
of bytes.

We use periodic probing streams with probes of size p = 40
bytes, so x = p/d = 4, with period t = 10p/d = 40 slot
units, or 400 bytes. Cross traffic arrivals are taken to be ‘Pois-
son’, also with constant packet size p bytes. The above cross
traffic and packet size combination corresponds to a particularly
simple example of a measure A with stationary and indepen-
dent increments. More realistic packet size distributions will be
considered later in this section, in particular when evaluating
performance in Section 4.3, and more complex arrival processes
in Section 5.

4.2.1 The Issue of Available Data

To understand how the estimators behave, it is essential to know
the environment they operate in. The following paragraphs ex-
amine this in detail for the system studied in this subsection,
characterised by the parameters above and ρ = 0.8 and δ = 0.25
[ms].
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Figure 3: The density h(k, l) of (B, C) for ρ = 0.8 (darker
tones indicate higher density), and corresponding contour lines
giving probability per ‘pixel’. The density is concentrated on
discrete l values corresponding to whole numbers of packets.
The two values of l used in Figure 7, −120/d and −320/d, are
shown (d is the number of bytes per time slot).

We begin with Figure 3, where the shaded area visualises the
joint density h(k, l) of (B, C). The density is concentrated on
lines corresponding to whole numbers of packets, and lies away
from the lower edge of the strip for almost all l values. This in-
dicates that the weak and strong assumption will hold for many
corners (k∗, l∗) well inside the strip. The density is particu-
larly concentrated near the l axis, corresponding to low per-slot
burstiness of the cross traffic. The superimposed contour lines
give an idea of the probabilities corresponding to the ‘pixels’ of
this shading, which were drawn at full slot resolution1

Knowing where the density becomes negligible tell us which
r values are necessary to measure it, and therefore informs the
choice of the parameter value r which controls the range of r
used by the estimators. The next question is, how available are
these desirable r values? or equivalently, what is the probability

1For visual clarity, the contour lines, here and elsewhere, were smoothed to emphasise
the l values corresponding to whole numbers of packets. At other l values the contours cut
in much closer to the l axis.
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Figure 4: The density m(r, s) of (R, S) (left), and its trans-
formation into angle density a(k, l) (right). Darker tones indi-
cate higher density. Contour lines are for probability per ‘pixel’.
Lines of constant u = r − s are mapped to horizontal lines in
the (k, l) plane.

that the angle sets they correspond to will be seen? It is instruc-
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Figure 5: Superimposing angle density onto contours of h(k, l)
for ρ = 0.2 (left) and ρ = 0.8 (right). The angle density is
given by the shading, and the cross traffic density by two contour
lines. The degree of coverage of h by the angle density varies
significantly.

tive to first visualise the density m(r, s) of (R, S), as seen in the
left plot in Figure 4. Mass is concentrated on lines of constant
u = r − s at large r, since there the queue cannot empty be-
tween the consecutive probes corresponding to r and s (recall
that their separation is fixed here at t), and so they must share
a busy period. The probe separation u is then constrained to be
multiples of a cross traffic packet service time. Note that that
marginals of R and S are identical.

To see how the density m(r, s) impacts on estimation, it is
in fact more useful to transform this information on ‘available
data’ into a form which is directly readable in the (k, l) plane.
Recall that there is a 1-1 mapping between (r, s) pairs and an-
gle corners: (k∗, l∗) = (s, s − r − x). Applying this mapping
to m(r, s) induces what we call the angle density, a(k, l). Fig-
ure 4(b) displays the angle density, together with corresponding
contour lines. It allows us to directly see where angles are likely
to lie in a given experiment. The affine mapping has taken ver-
tical/diagonal/horizontal lines in (r, s) space and mapped them
to diagonal/horizontal/vertical lines in (k, l) space respectively.

Figure 5 gives a representation of angle density a(k, l) and
the cross traffic density h(k, l) in the same plot, for two values
of ρ. To avoid overcrowding the figure, the shading is given
for angle density with no contours, and two contours are given
for h, with no shading. As is clearly seen in the low utilisation
case, where h is concentrated is not necessarily where the angle
density is located. More generally, it is clear that to resolve h
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Figure 6: Superimposing contours of the ‘available mass’ used
by estimators, over the density h(k, l), for ρ = 0.4 (top) and
ρ = 0.8 (bottom).
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Figure 7: Estimator bias and variance as a function of r. The
horizontal line is the true value of c(l). (a) l = −3p/d, or −120
bytes. The bias begins at −80 bytes. (b) l = −8p/d, or −320
bytes. The bias begins at −280 bytes.

well across the (k, l) plane, we need a sufficient ‘coverage’ of
angle density, and that whether this is achieved will depend on
the number of observations as well as the queueing statistics
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(which are a function of ρ, or more precisely, of the combined
cross traffic and probe traffic processes).

Angle density shows where the ‘available data’ is located in
the strip, however estimators make use of sets of angles. Thus,
to see what is actually available for an estimator to use, we must
sum over these sets. Recall from the previous section that each
choice of l and r designates a set of angles whose corners can be
defined by l and constant u = s−r = l+x, or equivalently k =
r+l+x. The mass contained in these angles, that available to an
estimator, is precisely the integral of m(r, s) over the subset (see
for example Figure 2(a)) defined by s − r = u for r ≥ r, which
is also precisely gr(u)P (R ≥ r). In other words, this is simply
the sum of the angle density a(k, l) contained in the horizontal
segment defined by a given fixed l and k ≥ k. The lower plot
in Figure 6 repeats the h(k, l) density from Figure 3, this time
without the contours. Instead, contours are drawn based on the
density of available mass used by an estimator as just defined.
Using them, for any given l we can easily see which regions in
the strip are data rich or data poor from the point of view of an
estimator of c(l). The answer clearly depends on l. The upper
plot in the figure shows the two densities for ρ = 0.4, where the
coverage is worse.

In conclusion, two important questions: whether strong or
weak assumptions hold (and the shape of these regions), and
whether there is sufficient data available to an estimator, depend
strongly on l. Furthermore, the interplay between the densities
h(k, l) and a(k, l) over the plane is crucial. The feasibility of
estimation depends strongly on l, and furthermore there is an
intrinsic difficulty in that the degree of ‘coverage’ may not be
adequate. For low levels of burstiness/utilisation, the marginal
of R is concentrated near R = 0, resulting in available mass
which is strongly concentrated near (k, l) = (0, 0). However
under these same circumstances, h(k, l) is concentrated near
(k, l) = (0,−t). The overlap of the two is small, and any es-
timator will have great difficulty, essentially because the region
where the data is needed in order to measure the (b, c) values
which occur, is precisely where data is scarce. Coverage is de-
termined not by utilisation alone but by the spread of (r, s) val-
ues seen, which depends on ρ, burstiness, as well as the number
of observations.

4.2.2 A Bias/Variance Tradeoff at Fixed l

We now examine estimator performance for l = −3p/d, or
−120 bytes. For this value of l, the lower plot in Figure 6 show
that conditions are good: the available mass contour lines shows
that the region where h(k, l) is concentrated is well covered, and
also that there is considerable mass available in the angles both
inside and to the right of the strip. Furthermore, h(k, l) is small
for a considerable distance to the left of the righthand boundary
of the strip. Hence both ĉ1 and ĉ2 can be expected to perform
well either as Class 1 or Class 2. Figure 7(a) compares the mean
and standard deviation of the estimators, based on n = 1000
probes, as a function of the parameter r. The mean and standard
deviation were estimated using N = 1000 independent experi-
ments, each yielding a single sample for each estimator (and for
each r). The estimated mean is shown with 1.96σ confidence in-
tervals near the center of the plots. The outer curves are drawn

one standard deviation (of the estimator) to either side of the
means.

For r ≥ t − x each estimator operates as Class 1. As ex-
pected each gives approximately unbiased estimates of c(l) in
this case. Also has expected, the uniform weighting scheme of
ĉ2 is less effective, resulting in larger variance. The correction
terms in Equation (36) separating ĉ2 and ĉ3 identically cancel
under Class 1 in theory, however estimates of them do not. Ef-
fectively an imperfect estimate of zero is added! resulting in
increased bias and variance (not shown).

For r < t − x each estimator operates as Class 2. As r de-
creases, we expect each to become biased. This is indeed what is
observed, however there is no sharp change at r = t− x, since
the strong assumption holds very well. For example a bound
on the total error due to the assumption: mass ignored plus the
undesirable mass included in the angle at (k, l), is only 0.1% of
c(l) (i.e. (c(l)− c(k, l) + b(k, l− 1))/c(l) = 0.001). At small r
however when the strong assumption finally fails, the bias of ĉ1

is much worse, because its weighting scheme was not designed
to cope with the errors inherent in Class 2. As before however,
the variance of ĉ1 is lower, as greater weight lies in the data rich
zones where r and s are smaller. Again the correction terms of
ĉ3 worsen its performance (not shown) relative to ĉ2. Since they
are in the form of a difference of two quantities of similar size,
they are sensitive to errors.

In conclusion, there is a classic bias variance trade off oper-
ating, which begins once the strong assumption ceases to hold.
This value of r, which plays the role of the effective Class 1/Class 2
boundary, is clearly visible in Figure 7(a) as the point where the
bias of ĉ1 begins to be noticeable. To the left of this point, c1

has rapidly decreasing variance at the cost of increased bias,
whereas ĉ2 reacts more slowly. Figure 7(b) shows an analogous
study for a smaller l = −8p/d, or −320 bytes. Similar con-
clusions on bias and variance hold as before for each estimator
separately, however the point marking the beginning of the bias
increase now occurs earlier at r = −8p/d, again in line with
the failure of the strong assumption as seen visually in Figure 6
(lower plot).

Consider now the effect of reducing n on the results in Fig-
ure 7. To first order, the qualitative behaviour remains the same,
but the standard deviation of estimates increase. To mitigate
this, one could be led to select smaller values of r to capture
more data, and in order to control the resulting increase in bias,
c2 may becomes more attractive in comparison to c1. Thus
which estimator is preferable (at least in terms of bias), and in
particular the success of a Class 1 inspired approach, is also de-
pendent on the global amount of data available, and not only its
repartition with l.

The above demonstrates the value of the Class 2 inspired esti-
mator, and the necessity on not insisting on always having linear
behaviour of the queue for estimation. This is a key advantage
of the techniques we present here, which, being based on (R, S)
pairs arising from adajent probes, can be though of as falling
into the packet-pair class in a generalised sense. In earlier packet
pair methods it was crucial that the probes share the same busy
period and were back to back. Here this is not the case. Class 2
based estimators not only can be used, but they may even out-
perform those based on Class 1 ideas. Furthermore, because of
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this, greater values of t can be used than before, because the
push into the data-poor regime, to the detriment of Class 1 es-
timators, is no longer a fundamental barrier. Finally, the need
for Class 2 is in any case generic, since the data-poor regime
cannot be avoided when estimating the distribution C(l), since
the estimation will always be data-poor for at least some l.

The innovation of our approach can be described as follows.
In the past delay observations were divided into two categories
according to an (inferred) busy period/idle period criterion for
probes [17]. Although this is a very intuitive approach well
suited to heuristic methods, it is difficult to carry it further. In-
stead, we employ conditioning with respect to R, thereby pro-
viding a sequence of subsets of probe delay, indexed by r. These
subsets vary in their proportions of probes pairs which share, or
not, the same busy period. From each subset an estimate can be
obtained. For large enough r, the sets fall into Class 1 and there-
fore contain only the busy cases, so that estimates based on these
are bias free. As we enter Class 2 at smaller r, this is no longer
the case but it remains approximately so until the strong assump-
tion is broken. By viewing the problem in this way, we have a
sequence of estimators of steadily decreasing bias but increas-
ing variance as r increases. The estimation problem can now be
framed as an optimisation problem, whereby the point along the
sequence from which we are prepared to accept estimates is de-
cided based on some metric combining bias, variance, and some
measure of cost. This may involve a notion of ‘probe budget’,
or a fixed time horizon for measurement together with some in-
vasiveness constraint.

4.2.3 From Density to Distribution

In this section we consider in more detail the dependence of the
estimators on l. It is instructive to do this by looking at estimates
of the CDF C(l), defined by

Ĉj(l) =

l
∑

i=−t

ĉj(i), (42)

for each of j = 1, 2, 3, rather than examining the density esti-
mates ĉj(l) directly. To complete the above definition, we must
also specify the parameter values r(l) used for each l. The esti-

mators can be thought of as a random functions, whose samples
are the empirical CDFs. The expection, bias, and variance of
each estimator are likewise functions of l. Note, by the defi-
nition above and the definitions of the CDF of the observables
given earlier, that Ĉ1(l) = Ĝr(l + x).

Figure 8(a) compares Ĉ1(l) with r(l) = 4p/d, again based on
n = 1000 probes, against C(l), using the same cross traffic as in
Section 4.2.2, and again using td = 10p bytes. The expectation
function (calculated as the average of N = 1000 realisations)
is very close to the true CDF, and the variance, illustrated infor-
mally by the plotting of 10 individual samples, is likewise small.
Both however are functions of l: the bias is greatest at small l,
whilst the variance is larger at intermediate values. The lower
bias at larger l is easy to understand from Figure 3 given how the
diagonal r(l) = 4p/d moves to the right of where h(k, l) is sig-
nificant, allowing the strong assumption to hold. Note that, since
ĉ1(l) = ĝr(l+x), and r(l) is constant, the natural normalisation
of Ĝr(u) is naturally transferred to Ĉ1(l). Thus, even though
estimates of ĉ1(l) must eventually be poor when l is very large,
this does not prevent good behaviour of the CDF. Thus natural
normalisation is an extremely desirable property.

Figure 8(b) offers exactly the same comparison as in plot
(a), only for Ĉ3(l). Because of the correction terms in Equa-
tion (36), ĉ3(l) does not possess the natural normalisation en-
joyed by both ĉ1 and ĉ2. Consequently, the errors in the density
(apart from being individually considerably worse as discussed
above) are not constrained to cancel at large l in the same way,
leading to CDF estimates with fundamentally flawed properties.
As a result, ĉ3(l) will not be considered further.

Since ρ = 0.8 in Figure 8(a), there is enough data to pro-
vide good estimates at most l values of significance. Figure 8(c)
shows how the performance of Ĉ1(l) drops significantly when
ρ = 0.4 (expectation estimates only are shown, again based on
N = 1000). The l dependence of the bias is now strong and
clearly visible, as is the dependence on the choice of r. When
moving from r = 3p/d to the lower diagonal of 4p/d, the bias
becomes even worse at small l but improves markedly at large
l. This suggests that an ‘adaptive’ strategy, where r(l) truly de-
pends on l, could be used improve estimation. An example of
this is given, where a transition from Ĉ1(l) with r = 3p/d to
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Ĉ1(l) to r = 4p/d occurs at l = −4p/d (i.e. at A(t)d = 6p
bytes or 6 packets arriving between probes).

As the potential benefit of making r a function of l is signif-
icant, we next examine this issue in detail. We find that we are
not free to adapt r(l) in any arbitrary manner, but must proceed
carefully, and furthermore that the attempt to optimise perfor-
mance in this way brings with it some intrinsic difficulties which
negate some of the advantages.

From this point on, we omit results for Ĉ2, concentrating
solely on Ĉ1. We do this mainly because the results for the two
are very similar in the cases of interest, namely where avail-
able data is poor and where good estimator performance is a
challenge. This is because in that case typically either 0 or 1
angles are found at any given point in the strip. Consequently,
the weights appearing in the definition of ĉ1 become, in a sample
path sense, uniform, just like those of ĉ2. Another way of stating
this is that the empirical estimate of gr(u) is so poor that it com-
pletely fails to reproduce the features of the true distribution.
The other reason is that, in cases where more data is available
and the empirical estimates are not so poor, the best perform-
ing estimates (based on the results we show later and others not
shown in this report) are those which emphasize the avoidance
of bias. In the language of Figure 7, the region at small l where
the c1 and c2 become significantly different is avoided.

4.2.4 Determining r(l)

In this section we examine issues relating to a definition of r(l),
and propose an algorithm to estimate it in practice. The extra
steps required to build a composite estimator, in the spirit of Fig-
ure 8(c), which uses r(l) to direct which of a bank of available
constant r estimator to use at any given l, are left to section 4.2.5.

Our guiding principle follows from the observations of the
previous section: if r(l) can be chosen to match where the strong
assumption begins to fail, essentially tracking the boundary where
the density in Figure 3 drops off, then the bias-variance tradeoff
observed in Figure 7 could be well managed for each l. How-
ever, this approach will fail when there is insufficient data to
measure the position of this boundary, as for example in Fig-
ure 5(b), where the density h(k, l) of (B, C), roughly speaking
centered about (k, l) = (0,−t) (note the tiny black region), is
well separated from the density of available data, centered about
(k, l) = (0,−x), corresponding to (r, s) = (0, 0), i.e. with high
probability the probe delays are close to the minimum. In fact
there are a number of interconnected issues here which must be
considered before a suitable choice of r(l) can be found, as we
now detail.

Redefining the strong assumption
The density h(k, l) is two-dimensional, and is therefore intrin-
sically difficult to estimate well. In particular, attempting to es-
timate quantiles of c(l) for each l individually may be a hope-
less task when there are only a small number of angles, perhaps
even zero, available at that l. Consequently, we will redefine
the strong assumption in terms of the CDF of c(l), C(l), to help
stabilise estimation.

It is easy to see from Equation 8 that C(l) = H(k, l) for
k ≥ l + t. We approximate this by H(k, l), k ≤ l + t, thereby
potentially ignoring the part of the density nearest the right hand

edge of the strip. This creates an error

es(k; l) = H(l + t, l) − H(k, l) ≥ 0 (43)

corresponding to the sum of h(k, l′) over a trianglar region de-
fined by k > k, l′ ≤ l, and the lower boundary of the strip. Such
a definition is similar in spirit, but technically slightly different,
to what one would obtain if we assumed the single-l strong def-
inition of Equation 23 over a range l′ ≤ l. A minor difference is
that the new definition includes the density lying strictly below
the corner (k, l), which was previously excluded. The larger dif-
ference is that the previous definition implied that, for any l, the
estimate of C(l) would assume zero mass in a ‘strong assump-
tion region’ adjacent to the lower edge of the strip for all l′ ≤ l.
In contrast, here for any given l, the mass neglected is only that
in the triangular region described, and does not enter k < k.
Thus the new definition demands progressively weaker condi-
tions as l increases, compared to the previous one. In practical
terms, it makes better use of the available data.
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Figure 9: Examples of C(l)-based strong assumption curves for
θ = {0.0004, 0.01, 0.1} (3 grey curves) for ρ = 0.8. Estimates
from the saturation algorithm are also shown for different win-
dow sizes w.

We define the strong assumption curve at probability thresh-
old θ as follows:

ks(l; θ) = max(0, argmin
k≥0

es(k; l) < θ) (44)

that is, for each l, the leftmost k value within the strip such
that the error due to the strong assumption does not exceed θ.
Figure 9 gives examples (estimates makes using N = 1000000)
of the strong assumption curve for three threshold values at high
utilisation. In this figure, and others below, we show results for
a more realistic tri-modal distribution of packet size, introduced
formally in Section 4.3.

Estimating the strong assumption curve
Recall that the sum over a rectangle set H(k, l) = Fk−l−x(k),
our approximation to C(l), can be estimated using F̂r(s), or
Ĝr(l + x) as defined above (more precisely, from Equation 28,
if r = r corresponds to θ under the new definition it follows
that Gr(l + x) ≤ 1− θ, since the rectangles in the sum (beyond
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Figure 10: Strong curve estimation with ρ = 0.2 (top) and ρ = 0.8 (bottom) for (left to right) l = {4, 60, 140, 300}. The 6 thin lines
(resp. single thick grey line) are estimates of H(k, l) using 500 (resp. 1 million) probes. The r values selected by the saturation
algorithm are shown as vertical lines, can be compared to the strong assumption values ks(l; θ) for θ = {0.00004, 0, 01}.

the first term) have corners further to the right). Figure 10 plots
Ĝr(l + x) against r (rd [bytes]) for a range of four l values, for
low (top row) and high (bottom) utilisation. The noisy curves
are several independent estimated functions each based on a sin-
gle realisation of n = 500 probes, whereas for comparison, the
thick grey curve derives from a realisation employing 1 million
probes. As r increases, Gr(l + x) increases monotonically to
attain C(l) (shown as the horizontal line) at r = t − x = 246
(the full height vertical line). The estimates roughly follow
this pattern, however since the available data monotonically de-
creases with r, the crucial limiting behaviour becomes obscured
by noise which can take extreme values. Moreover, the curves
show non-ergodic features in that they oscillate about a limit-
ing level which is not necessarily C(l) but some random offset
from it. As a result, it is not feasible to target the point lying
on a strong assumption curve given by a small threshold θ. We
therefore adopt a less ambitious approach which aims to find
the point at which the steadily increasing phase of the estimate
curve saturates. We first smooth the curve to reduce the sam-
ple variability, so that the systematic increase at small r can be
seen more clearly. The intuition is that when the underlying
‘expected’ curve has saturated, then the variability will cause
the curve to cease to become monotonic despite the smoothing.

Saturation Algorithm:
i) select a window size w (performance insensitive to value)
ii) smooth the Ĝr(l +x) estimates using a moving average win-
dow filter of width w (the filter is causal, thus there is an edge
effect over the first w − 1 values).
iii) if r = t − x, set r = t − x and exit, else set r to the first r
for which the smoothed curve ceases to be non-decreasing2.

The algorithm is guaranteed to terminate with a value 0 ≤ r ≤
t − x. Note that for l < 0 the minimum r value is constrained
by the shape of the strip. In Figure 10 values are only plotted

2In the implementation, it was not necessary to actually smooth, but only to see if the
new window element entering on the right is smaller than the one departing.

from the first entry into the strip on. The full height vertical line
marks r = t − x.

As noted above, it is not feasible to locate the point kx(l; θ)
on a strong assumption curve for a given θ. By comparing the
algorithm outputs in Figure 10, given by the thin half height
vertical lines, against the thicker vertical lines corresponding to
ks(l, θ) for two values of θ, we see that the saturation algorithm
outputs indeed do not track any particular θ value. Indeed, the
algorithm is influenced not only by the distance to the saturation
level C(l), but also by the variability of the curves, which trigger
the algorithm to exit once they become too severe in the down-
ward direction. Thus in some informal sense, the algorithm is
performing a tradeoff between bias and variance rather than be-
ing concerned solely with the strong assumption curve (which
would correspond to emphasizing the bias only). Although this
means that, unfortunately, the algorithm performance cannot be
tested in isolation by comparing against a target θ, it is in other
respects entirely appropriate, since as already noted, ks(l; θ)
may be inherently impossible to measure without bias if the cov-
erage of h is poor. On the other hand, the expected r(l) curves
(projected into the (k, l) plane) of Figure 9, estimated by using
a million sample simulation, shows that the algorithm does on
average output a function which roughly correspond to a strong
assumption curve (in this case with θ ≈ 0.001) as originally in-
tended. This graphs also illustrates the fact that r(l) generally
decreases with l, following the strong assumption curve.

Figure 9 also shows the important property of insensitivity of
the algorithm with respect to the window size parameter larger
than 1. Here, d is 10 bytes and t is 250 slots. Hence, w = 25
(slots) corresponds to t/w = 10. Since the algorithm perfor-
mance was good as long as w was neither too close to 0 or t,
we use a default value of t/w = 10. Later, we also justify this
choice by comparing performance of CDF estimation with var-
ious window sizes.
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4.2.5 Defining the Composite Estimator

They are many possible ways in which one could make use of
r(l) to design new estimators. The example in Figure 8(c) at the
end of Section 4.2.3 simply moved from one constant-r CDF
estimator to another at a particular value of l. This simple ap-
proach in fact enjoys an important property which is not easy to
guarantee in general. This is the fact that, since constant-r es-
timators are naturally normalised (i.e. they tend to 1 at large l),
so is the new adaptive estimator, and this extends immediately
to arbitrary r(l).

One can therefore define a r(l) based estimator as follows.
First, calculate r(l) as in the previous section. For each of the
different r values appearing in the function, calculate the cor-
responding estimator Ĉ1(l). The idea is that by moving be-
tween members of this ‘bank’ of constant-r estimators, we can
obey r(l) whilst simultaneously preserving natural normalisa-
tion. This property would not have been the case if instead for
example we had tried to adapt the density estimate instead of the
CDF, say by setting ĉ(l) = ĝr(l)(l + x).

The disavantage of the above naive or raw composite method
is that there is no guarantee that the resulting CDF is monotonic,
the CDF could move downward when we switch to a new mem-
ber of the bank. Thus, although it could be used to estimate a
given fixed quantile, it is not useful for measuring the probabil-
ity of smaller sets, as it may assign negative probability to them.
We investigated three methods which modify the above to form
a monotonic composite estimator whose sample functions are
both normalised and monotonic.

Monotonicity Algorithm:
First calculate a raw composite CDF C(l). Then:
L2R: move left to right, forming C ′(l) = max(C(l), C ′(l−1)).
R2L: move right to left, forming C ′(l) = min(C(l), C ′(l+1)).
Data Pinning: obtain the number nl of probes with R ≥ r(l),
initialize a set Q of processed l values to null. In order of de-
creasing size of nl, recursively assign C ′(l) = C(l), then en-
sure its consistency (enforce monotonicity) at all l values al-
ready in Q, then add l to Q. More precisely: ∀l′ ∈ Q < l,
set C ′(l) = max(C ′(l), C ′(l′)) and ∀l′ ∈ Q > l, C ′(l) =
min(C ′(l), C ′(l′)).

The third algorithm ‘pins’ the estimate at the l values which
have the most available data whilst enforcing monotonicity, pro-
ceeding recursively between the pinned values until the entire
function is determined. This corresponds to a kind of constrained
interpolation, weighted by available data.

Figure 11 gives an example of a raw composite estimate based
on r(l), together with the three monotonicity enforcing algo-
rithms just described. The upper curves are the expected CDF
functions, obtained by averaging over n = 1000 independent
experiments. The lower curves show the standard deviation of
the same estimates as a function of l (using the same vertical
scale). The raw curve shows a reasonably small bias at all l,
and a clear lack of monotonicity (although this may be due es-
timation error: the expected curves may be monotonic though
individual sample functions of course are not). In compari-
son, as expected L2R makes the estimate move up, and R2L
move down. Perhaps unexpectedly, Data Pinning shows results
which are almost indistinguishable from R2L. Since r(l) mostly
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Figure 11: Statistics of composite estimators Ĉ ′
1(l) based on

r(l) with t/w = 10 (t = 10 and ρ = 0.2). The raw and
three monotonic composite estimators are shown. Monotonic-
ity causes a large bias (compare upper expected curves with the
true CDF in grey) which is not compensated by a corresponding
decrease in standard deviation (lower curves).

decreases with increasing l, R-t-L and data pinning algorithms
perform close to each other. This is also true for the standard
deviation of the two, which is better than that of raw and L2R.
In all cases however, the monotonicity algorithms create signifi-
cant differences in bias, for small changes in standard deviation.
Bias is the main problem introduced by the need for an algo-
rithm for monotonicity.

Three example sample paths of each estimator, in a data poor
case with ρ = 0.1, are shown in Figure 12. Because their be-
haviour is similar, to reduce clutter we show Data Pinning but
not R2L. The sample paths of the raw composite estimator are
extreme. Typically they rise to 1 at small l where there is no data
and hence where bias is extreme, before improving at intermedi-
ate l. At large l data is again scarce but the natural normalisation
property limits the absolute size bias can take. The L2R estima-
tor performs very poorly as it locks in the terrible performance
at small l, estimates cannot decrease at larger l. Data Pinning
(and R2L, not shown) perform much better, but we see that their
variance is considerable. It is important to note that here we are
zooming in performance under very difficult conditions where
there is ‘almost no data’ for the estimator to work with. Under
richer data scenarios, all these variants perform quite well.

From these results we learn that there is limited benefit from
attemping to ‘smooth’ r(l), as a way of reducing the number of
values that r(l) takes and therefore the ill-effects of the mono-
tonicity algorithm. Even if r(l) were taken to be piecewise con-
tant with only two values, in data poor cases we may still be
moving between sample CDFs which are very crude, resulting
in large errors over large ranges of l values. Indeed, in scenar-
ios where angles are so scarce that there are only j values of l
where they can be found, the corresponding sample CDF will
contain only j − 1 jumps, a very crude approximation of the
true C(l) which has an uncountable infinity of them. This is
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Figure 12: Sample Plots of Raw and Monotonized Estimates
for ρ = 0.1 and t = 1.67pmax/d. We do not show the R-t-
L estimates to reduce clutter. This plot illustrates how the bias
and variance of per-l estimates are dependent. This dependence
causes that across-l metrics (sup-norm and L1-norm) to have
different trends than the per-l metrics.

typical of problems found in empirical estimation of discrete (or
continuous) densities from limited data.

4.2.6 An Adaptive Constant r Estimator

The ‘underlying’ estimators have r a constant. They are attrac-
tive due to their simplicity, however in practice, one must select
the value of the parameter r, and this must at some level be cho-
sen from data to avoid very poor performance. In some cases
one may already have a good idea of the important parameters
controlling h, particularly ρ and t, and thereby have reasonable
values of the marginal of R, from which appropriate values of
r could be tabulated, for example by estimating some quantile
of rq of R. In other cases, quantiles of R could be estimated
continuously over some timescale. At one extreme, r would be
determined based only on the data used to estimate C(l) itself,
at which point the estimator can no longer be regarded as a con-
stant r one, but a more sophisticated adaptive one where r is a
random variable.

In the next section we consider an adaptive estimator of this
type whereby r is selected according to the following principle:
to locate the edge of available data. That is, it aims to find an r
small enough so that some data will lie below it in the strip (as it
is essential that the estimators will have some data to work with),
but not to go much smaller (higher in the strip) than that, in order
to avoid bias. The appropriate way to measure ‘data available’
is absolute in this case, rather than relative. Accordingly we
choose r = min{t − x, r∗}, where r∗ = F̂−1

r ((n − m)/n) is
the r corresponding to having at least m observations. Note that
when data is plentiful r will default to r = t − x, as as r values
to the right of the strip are always bias free.

There is still a need to automatically select m. We do not
consider this here but examine performance using a range of

different m values to determine the potential of this class of es-
timator.

4.3 Estimator Performance
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Figure 13: Examples of expectation and standard deviation of
estimate functions for ρ = 0.2. Here r(l) is raw monotonic.

In this section we examine the performance of variants of Ĉ1,
as defined at the end of the previous section, as a function of
cross traffic, and of the probe periodicity t. Specifically, the
variants and parameter values are:

• Constant r:

– r = 0, the naive packet pair heuristic

– r = t − x, pure Class 1 (low bias, high variance)

– r = quantile corresponding to m = 8

• Adaptive constant r:

– m = 2 use very little data (low bias, high variance)

– m = 8 compare adaptive to constant above

– m = 50 use more data (higher bias, lower variance)

• Composite estimator using r(l):

– Data Pinning: the main candidate (t/w = 10)

– raw: best case for composite method (t/w = 10)

– R2L and L2R: for robustness comparisons

Note that, in particular under Model 1, we are not restricted
to periodic probes, but it is convenient to continue to consider
this case here so as to maximize the number of samples for a
given number of probes n, and concentrate on the estimator per-
formance as such.

We abandon constant packet sizes entirely from now on, and
move to a trimodal packet size distribution similar to that found
in the Internet:

p(i) =



















0.5, i = 40;

0.1, i = 580;

0.4, i = 1500;

0, otherwise,

(45)
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Figure 14: Sup-norm performance using trimodal packet sizes. (a) 7 estimators as a function of ρ, t = 1.67pmax/d; (b) The same
estimators with t = 6.67pmax/d; (c) Dependence on t, with ρ = 0.6. Here r(l) denotes the raw composite estimator.
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Figure 15: L1-norm performance using trimodal packet sizes. (a) 7 estimators as a function of ρ, t = 1.67pmax/d; (b) The same
estimators with t = 6.67pmax/d; (c) Dependence on t, with ρ = 0.6. Here r(l) denotes the raw composite estimator.

and use probes of 40 bytes (conveniently, each value of i is
an integer multiple of d = 10). Although packet arrivals re-
main Poisson, the workload arrival process, which in an in-
terval t consists of a Poisson distributed number of packets,
each with random size given by the discrete density {p(i)}, is
a Compound Poisson distribution, which is much more bursty
when p(i) is not concentrated on a single value (the constant
packet size case). We calculate the CDF of this distribution by
using a numerical approximation of an exact formula for c(l),
being simply the Poisson weighted (with parameter λt) sum of
terms, where term j is the j-fold convolution of the density p(·)
above, calculated directly in the time domain. The pointwise er-
ror can be controlled and was chosen here to be 1e-5, negligible
compared to other factors.

We begin with Figure 13, where a similar representation to
Figure 11 is given. We see that the naive r = 0 estimator has
bias so high that its variance function is small, indicating that
the great majority of estimates share the same poor behaviour.
Using r = t − x in this case produces very low bias but high
variance, as expected. By entering into the strip and using r =
219 (the quantile corresponding to m = 8 on average), we add
bias at small l, but gain reduced variance over all l as a result.
The adaptive version of this estimator, using m = 8 in a per-
estimate sense, improves the bias performance with no variance
penalty. Finally, the raw composite estimator shows low bias for
most l values, and lower variance at most l values, indicating
that it is worth pursuing estimators of this type.

Performance results of the type shown in Figure 13 are too de-
tailed to allow coverage of the parameter space governing cross
traffic characteristics. To assess estimator performance in a way
which combines bias and variance, and examines an entire CDF,
we define the following two measures, each of which returns a
single number to evaluate a given sample function.

• Sup: E = supl |Ĉ(l) − C(l)|

• L1: E = 1
lq+t+1

∑lq
l=−t |Ĉ(l) − C(l)|,

where lq the qth quantile of C(l).
The first of these measures the worst departure from the true
CDF over all l, whereas the second gives a measure of the av-
erage departure. We cannot let lq = ∞, as this would be iden-
tically zero for any two distributions, no matter how different,
due to the domination of the tail where C(l) ≈ 1 out to infinity.
Instead, we assess the degree of difference only over the main
body of the distribution. In practice we use q = 0.95.

For each measure the random variable E takes values in [0, 1].
Our performance metrics are the MSE, defined as

MSE = IE[E ]2 + Var[E ], (46)

of the corresponding measures. These also take values in [0, 1].
The expection and variance of E are estimated, in the usual way,
using N = 1000 independent experiments, and are of interest in
their own right, as components of the MSE.

Results are given in Figure 14 for the (root) MSE using the
Sup measure. The three plots sample the (ρ, t) parameter space
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Figure 16: Sup-norm performance of various composite estimators. The ρ access is repeated for three window sizes: (t/50, t/10,
t/2). (a) As a function of ρ, t = 1.67pmax/d; (b) As a function of ρ, t = 6.67pmax/d; (c) Dependence on t, with ρ = 0.6.
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Figure 17: L1-norm performance of various composite estimators. The ρ access is repeated for three window sizes: (t/50, t/10,
t/2). (a) As a function of ρ, t = 1.67pmax/d; (b) As a function of ρ, t = 6.67pmax/d; (c) Dependence on t, with ρ = 0.6.

which controls h and therefore C. Figure 14(a) shows perfor-
mance as a function of ρ for a fixed t. We see that the naive
estimator r = 0, which blindly applies the packet pair heuris-
tic, performs very poorly, whereas the Class 1 estimator with
r = t − x performs as well as the sophisticated variants once
ρ exceeds 0.2. This indicates that for these (ρ, t) combinations
there is sufficient data, and the methods are effectively default-
ing to using r = t − x. We see a steady improvement as ρ
increases, as increasing data leads to lower variance and hence
MSE. Here the raw composite estimator was used.

Figure 14(b) shows the effect of increasing t by a factor of 4.
The effective loss of available data sees r = t − x performing
poorly now until ρ is at least 0.8, since there is little mass to
the right of the strip, except at very high utilisation. At ρ = 0.1,
data is so scarce that all methods have errors which are equal be-
caue they are the worst possible, namely equal to 1 for some l.
Significant improvement is achieved by using the tuned Class 2
estimators which enter into the strip, not not too far, provided
that ρ is high enough. The adaptive estimators all perform well,
however the need to choose m wisely is apparent: as ρ increases,
larger m performs better, although at still larger ρ, they all de-
fault to t−x as so perform identically. The adaptive and constant
variants of m = 8 perform similarly, although the adaptive one
is consistently slightly better. Finally, the raw composite esti-
mator shows uniformly good results, demonstrating a satisfying
adaptivity to the amount of data available.

Figure 14(c) shows the effect of increasing t at fixed ρ = 0.6
(the first and fourth t values correspond to those of plots (a) and

(b) respectively). Not surprisingly, all methods perform worse at
greater t, as there is less effectively less data available (their are
some exceptions in a few cases at the largest two t values. We
do not fully understand these, but they are probably due to the
definition of the ‘truncated L1’ measure which does not scale
appropriately as C(l) evolves with t. In particular, there is a
need to exclude the tail not only at large l but also at small. As
the left tails grows in length as t (recall that IE[C] is proportional
to t, this will reduce the measure at large enough t. There may
also be some contribution due to variability in our estimation of
these performance curves, which use only N = 500 probes).
At larger t, the cross traffic is effectively less bursty as far as
observations by probes are concerned. Just as in the case of low
utilisation, reduced burstiness robs the probes of the variation in
delays they require to obtain data from the required region. In
particular it is more difficult to find mass to the right of the strip.
From plot (c) we see that, although errors build quite rapidly
for larger t, good estimator design has the potential to slow this
growth substantially, whereas the extremes t = 0 and t = t −
x perform very badly in general. Again we find that the raw
composite estimator successfully adapts to the changing traffic
conditions, whereas for the adaptive estimator m must be chosen
appropriately.

Figure 15 shows the analogous plots but using the L1 mea-
sure. The same general results are found, although the root MSE
errors are smaller, as this is no longer the worse case error. The
composite estimator performs even better with respect to this
metric, and therefore seems to be the best estimator overall.
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As the raw composite estimator shows considerable promise,
we now subject it and its monotonized variants to a more de-
tailed performance study. Figures 16 and 17 explore the perfor-
mance over (ρ, t) space in a similar way to before. In each plot,
the 3 different monotonicity algorithms, and the raw compos-
ite, are compared, for each of three different window sizes. To
avoid clutter, the results for different window sizes have been
displaced horizontally using duplicate ρ axes. It is important
to understand that here the results pertain to the (root) MSE of
a single sample. Thus, the l value at which the Sup is found
will vary from sample to sample. In contrast, Figure 11 showed
displayed expected results for each l fixed.

The results of Figures 16 and 17 show a remarkable lack of
variation across both the methods and the window sizes. Part
of this is understandable. For each window size, each mono-
tonicity algorithm uses the same underlying raw r(l), and so
shares the same environment in terms of data availability. For
very large t however we do see that windows sizes that are too
large perform poorly, which can be understood by noting that
when data poor, selecting smaller r is necessary to capture the
few angles that are available, whereas larger w will favour the
algorithm triggering at larger r. We also find that when there
is a difference, Data Pinnning performs best among the mono-
tonic estimators, as we might expect from the insights of Fig-
ure 11. In fact for these per-sample metrics, it performs even
better than the raw composite, although the differences are typ-
ically small. This apparent contradiction can be explained by
noticing that looking at ensemble performance with l fixed, or
not, corresponds in fact to two very different metrics which are
not obliged to correspond. It seems that, although at a fixed l
raw is clearly superior (recall Figure 11), sample functions are
so variable that good behaviour at some l is systematically com-
pensated by worse behaviour elsewhere, resulting in a final per-
formance which is less dependent on the details of the mono-
tonicity algorithm than one might have supposed (we speculate
that the different variants effectively select from the same un-
derlying sample functions, but select a different one in differ-
ent samples). This is good news in the sense that it seems that
the low bias of the raw composite estimator can effectively be
achieved in a monotonized version, and in particular, the results
of Figure 14 and Figure 15 for the raw composite, which corre-
spond to the central plots in Figures 16 and 17, still hold for the
monotonic variants, especially Data Pinning. Finally, we note
that L2R performed best in some data rich cases (small t and
large ρ) not shown here.

It is worth remembering that in data poor cases, sample func-
tions can be extremely crude and large errors are made by all
methods, for example sample CDFs containing only 1 or 2 jumps,
which typically have a Sup error of 1. When collecting statistics
over large numbers of samples however to estimate the MSE,
this becomes less apparent as the jump positions change, re-
instating details of the structure of the CDF which are absent
from individual samples. On the other hand, if data is plenti-
ful, then the sample functions are relatively detailed and almost
monotonic from the beginning, and so the effect of the different
algorithms is not very large. Thus, the differences between al-
gorithms and methods manifest themselves in the intermediate
zone where data is neither too scarce, nor plentiful.

5 Trace Analysis

In this section we use real data from core Internet routers to
demonstrate the performance of our estimators with real traffic.
We use both passive trace data, and a unique data set involving
simultaneous passive capture and active probing.

5.1 Trace Driven Simulations

We use the same queueing system as that used in Section 4.3.
We generated the cross traffic by replaying the traces from the
full router experiment described in [6], to which we had access.
This experiment recorded all packets entering every interface of
a router over a 13-hour time period. We model the output buffer
of a particular OC-3 output interface that has a reasonably high
utilization, and replay the cross traffic that passed through it.

5.1.1 Data Overview
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Figure 18: Traffic characteristics at the OC-3 link. Top: byte
intensity measured over 1 [sec] intervals. Four 5 [min] long
regions are identified with a spread of ρ values. Bottom plots:
lag-1 autocorrelation estimates, based on looking at A(t) for
t = 1ms and t = 0.25ms, calculated over 5 minute intervals.

By using these traces, we do more than make use of a source
of realistic cross traffic. Because of the complete monitoring,
fine grained detail of all input packets destined to the chosen
output are also available. It is therefore possible to reproduce
the true (B, C) values, and compare them to those predicted by
the estimator ĥ(k, l).

As they are real traces, we did not control the ρ values in the
traces a priori. To obtain a spread of values, we first observe the
actual traffic intensity, averaged over 1 second intervals, of bytes
to the OC-3 link. As shown in the upper plot in Figure 18, these
range from ρ = 0.4 to 0.7. Four 5 minute portions of the trace,
identified in order of increasing ρ as P1, P2, P3, P5 (note the
inversion) and P4, were chosen to provide a spread across this
range. We use the cross-traffic arrival processes corresponding
to these to drive the simulations.

We make an attempt to measure the degree to which the cross
traffic obeys the i.i.d. assumptions of A(t) at each of t = 0.25ms
and t = 1ms, by estimating the 1st lag correlation coefficient
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Figure 19: Marginals of R for the trace portions of Figure 18.
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Figure 20: Comparison of measured and estimated h(k, l) for
P1 (300, 000 probe packets), with d = 10 and and plotting res-
olution of 5d or 0.1ms for t = 12.9pmax/d (0.001s).

for the time series corresponding to the number of bytes in non-
overlapping intervals of width t across the trace. The results,
shown in the lower plots in Figure 18, are small over the trace
and are reasonably consistent with independence. Not surpris-
ingly, it holds a little better for the larger value of t = 1ms.

Figure 20 shows a comparison of estimated and measured
h(k, l). Despite the fact that the estimation of a 2-dimensional
distribution is inherently difficult, (although the density is plot-
ted at a resolution above that of δ) it is clear that the essence of
the queueing behavior as encapsulated in the packet-pair related
data (B, C) is being captured by the estimator.

Figure 19(a) plots the distribution of excess packet delays,
due to the trace traffic alone, for P1 to P4. There is a con-
siderable spread across the different sub-traces, and therefore
the delays experienced by probes in the corresponding experi-
ments will likewise differ, resulting in different available data
and thereby different estimator performance. To get a feeling
for the trace data, note that the quantile r0.99 is greater than
0.25ms in all cases, and not more than 1ms except in P4 where
the intensity is highest.

5.1.2 Performance

Examples of individual estimates are given in Figure 23 to show
the effects of utilisation and the number of probes n. As we
can see, each has a dramatic impact on the ability of the esti-
mator to see the numerous atoms of the true distribution, and
hence to recover the structure of the CDF. The utilisation has

a largest impact, and can be thought of as controlling the over-
all bias, whereas increasing n improves the reproduction of the
CDF structure, thereby reducing error in a given sample, or al-
ternatively provides more data which decreases variance.

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

l*d (KB)

C
D

F

Actual
N=500
N=50

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

l*d (KB)

C
D

F

Actual
N=500
N=50

Figure 23: We plot sample estimates with different number of
probes n for for utilization 68% and 31%, with t = 12.9pmax/d
(1ms).

Figures 21 and 22 are the analogous results to Figures 14 and
15 using n = 500 and a discretization level of d = 10 bytes per
slot. Here the t values are larger than those used before.

The relative performance across estimators is similar to that
seen earlier and the absolute performance is reasonable at the
values of ρ available. The t dependence explored in Figure 21(c)
again reinforces the findings from the previous section. The
composite estimator, using Data Pinning, is now the best per-
former in all plots and for both the Sup and L1 measures. How-
ever we see that for large enough t, the difference between es-
timators begins to diminish as they are asked to deliver the im-
possible, with errors which correspondingly approach the max-
imum of 1, first in the Sup metric, and then L1.

5.2 Active-Passive Experiment

To test our estimators in real network conditions, we conducted
novel active probing experiments in which we sent probe streams
along a path in a tier-1 ISP. Essentially, we performed pure 1-
hop probing. In a true multi-hop path, the links other than the
predominant bottleneck add noise to the observations. Other
factors such as path persistence of cross-traffic also affect per-
formance. Quantifying these is extremely path-dependent and
out of our scope.

5.2.1 Experimental Setup

We chose a router in a tier-1 ISP that had an OC-192 link of
utilization around 50% (ρ = 0.5). We injected packets across
this router through an active probing device. Our active prob-
ing device was an Ixia 400T [8], a specialized hardware device
that is typically used to test routers. This device sent packets
on an OC-12 link that was connected via an un-utilized OC-48
link to our chosen router. Packets were addressed to suitable
IP addresses so that they would be output on the chosen OC-
192 link. We programmed the active probing device using a Tcl
command-line interface provided. This allowed us to generate
our probe streams. Due to factors of load, we could not generate
periodic streams. Hence, we used widely-separated packet pairs
with intra-pair separation t. As discussed earlier, packet pairs
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Figure 21: Estimator Sup-norm performance using router traces. We use data pinning monotonic algorithm with r(l). (a) As a
function of ρ, t = 6.45pmax/d (500µs); (b) As a function of ρ, t = 25.8pmax/d (2ms); (c) Dependence on t, with ρ = 0.6.
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Figure 22: Estimator L1-norm performance using router traces. We use data pinning monotonic algorithm with r(l). (a) As a
function of ρ, t = 6.45pmax/d (500µs); (b) As a function of ρ, t = 25.8pmax/d (2ms); (c) Dependence on t, with ρ = 0.6.

can be used as long as the consequences in Section 2.1 are true.
The cross traffic is not controlled in any way.

We monitored the input OC-48 and output OC-192 links us-
ing GPS-synchronized DAG cards. This provided us with the
arrival and departure times of the probe packets. The output
link monitor also provided us with the departure timestamps of
the intervening cross-traffic. These timestamps which were ac-
curate to sub-microsecond levels and allowed us to calculate the
empirical A(t). Since the arrival timestamps of cross-traffic to
the output queue could not be measured, we could not calculate
B(t). Hence we evaluate the performance of our estimators in
calculating C(l) only.

5.2.2 Performance

Due to probing load constraints we could only conduct N = 10
experiments at a particular time. We sent n = 250 packet
pairs, for a range of separations t ∗ d varying from 625 bytes
(t = 500ns) to 40KB (32µs). To achieve such small separation
using an OC-12 link, we used small probes of size 40 bytes. Uti-
lization levels could not be controlled in the experiments, how-
ever the performance of the estimators could be tested under
operational conditions for a range of timescales t.

The resulting t dependence performance curves are plotted
in Figure 24. Although here we control neither the queueing
model nor the cross traffic, the results, at least for td ≥ 5, are
reminiscent of those seen earlier. In particular, the composite
estimator performs the best, with an error at least twice that of

the commonly used r = 0 estimator over a wide range of t.
Also, as t increases, the performance worsens much much more
slowly using the composite or m = 8 adaptive estimator than
the Class 1 estimator with r = t − x. The graphs show that
estimates with MSE not exceeding 0.2 can be obtained even for
t ∗ d about 10 times the transmission time of 1500 bytes.

For very small t values near 1µs, we see a clear increase in
MSE. There are several possible reasons for this. First, we ob-
served that errors in our probe generation times (essentially, our
control of t) could be as large as 50% over these scales. Second,
the independent increment assumption is likely to break down
at these time scales.

6 Discussion and Future Work

This paper tackles the question of the in-principle potential of
probing methods, viewed as a question in system identifiability.
We show that, even in the 1-hop case, invertibility may be pos-
sible or not, depending on the nature of the cross traffic and the
probing stream.

Using the insights gained, we defined several estimators of
cross traffic, explained their principles of operation, their strengths
and weaknesses, and investigated their statistical performance
as a function of key parameters, such as utilisation, and the
probe separation. We found that in many circumstances they
performed quite well. We gained considerable insight into ex-
actly why their performance varies as a function of cross traffic
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Figure 24: Estimator performance in live active/passive experi-
ments. Dependence on t (ρ = 0.50).

and probing parameters. For example, the idea of ‘coverage’
of the cross traffic distribution by the available data can pre-
dict what kind of performance is achievable. When coverage is
close to non-existant, then no method can perform well, whereas
when coverage is very good, even simple methods perform well.
Inbetween these extremes lie the cases where sophisticated esti-
mation can make a very significant difference.

We then tested the estimators using real traffic of two kinds:
data from highly detailed router monitoring experiment where
full details of the queueing could be compared with the model
predictions, and live experiments where simultaneous high pre-
cison passive monitoring again allows comparisons to be made.
We found that the result using real data where comparable with
those in our simulations, suggesting that the methods are robust
enough to be useful in practice.

Our work can be seen as a generalisation of packet pair, where
useful information can be extracted for far greater probe separa-
tions than has been supposed in the past.

Active probing for capacity estimation of the bottleneck link
bandwidth has been studied in [4, 9, 12, 16]. One of these
techniques can be used to determine µ in our scheme, if nec-
essary. Available bandwidth estimation has been the focus of
many prior works [7, 11, 21]. Essentially, they all focus on es-
timating the first-order moment of the cross-traffic arrival pro-
cess. In contrast, our goal is to estimate the entire cross-traffic

arrival process. Also, many of these [7, 11] assume fluid mod-
els for cross-traffic unlike our assumptions of a discrete packet-
based system. Recent work [13, 14] analyzing single-hop avail-
able bandwidth techniques has characterized the discrepancy be-
tween fluid flow and packet-based models. They do not focus
on estimating cross-traffic properties. Another class of network
inference work is the network tomography literature (see [22]
and references therein) which is mostly focused on estimating
delays at queues.

Some prior work [1, 18, 20] has focused on cross-traffic esti-
mation. To our knowledge, all of them assume a specific cross-
traffic arrival process, e.g. multi-fractal wavelet, Poisson. Based
on this assumption, they attempt to estimate the parameters de-
scribing these processes. Our work is more general in two ways.
First, our assumptions are more general and encompass a vari-
ety of processes. Our results with real experiments also bears
this out. Second, our system framework makes it possible to be
adapted to other kinds of assumptions too.

There are many directions for future work. These include
formalising the performance of the estimators presented here,
and further refining the estimators themselves. The question of
probe stream design enters naturally at this point and will also
be the focus of future work. Finally, the validation of the sta-
tionary assumptions assumption in practice, and robustness to
the breaking of it, is an important point to investigate.
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A Ergodicity

In Model 1, the independence between A and Tn and the strong
Markov property imply that the sequence {(Bn, Cn)} is i.i.d. and
the law of C has an infinite support (thanks to the assumption
that A has an infinite support). Hence {Rn} is an irreducible
and ergodic Markov chain on the positive half line provided the

rate condition

x

E(Tn+1 − Tn)
+ E(A(0, 1]) < 1

is satisfied.
In Model 2, the sequence {(Bn, Cn)} is i.i.d. by assumption,

so that {Rn} is a Markov chain. For this Markov chain to be
irreducible and ergodic on the whole half line, under the rate
condition given above, it is enough that P (A[0, t) = 0) > 0 and
that P (A[0, t) > t − x) > 0.

B Meaning of B, example from Network
Calculus

Assume that A is (σ, ρ)-regulated (in the sense of network cal-
culus [2], with ρ ≤ 1, that is that it obeys

A([s, t)) ≤ (t − s)ρ + σ, ∀s ≤ t,

where σ is the burst parameter and ρ the rate parameter. Then

Bn = sup
s∈[Tn,Tn+1]

A([s, Tn+1)) − (Tn+1 − s)

≤ sup
s∈[Tn,Tn+1]

(σ + (Tn+1 − s)ρ − (Tn+1 − s))

= σ.

where the last inequality may be reached within the class of all
(σ, ρ)-regulated measures.
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