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Spatial Inference of Traffic Transition Using
Micro—Macro Traffic Variables

Suttipong Thajchayapong and Javier A. Barria, Member, IEEE

Abstract—This paper proposes an online traffic inference al-
gorithm for road segments in which local traffic information
cannot be directly observed. Using macro—micro traffic variables
as inputs, the algorithm consists of three main operations. First,
it uses interarrival time (time headway) statistics from upstream
and downstream locations to spatially infer traffic transitions at
an unsupervised piece of segment. Second, it estimates lane-level
flow and occupancy at the same unsupervised target site. Third,
it estimates individual lane-level shockwave propagation times
on the segment. Using real-world closed-circuit television data,
it is shown that the proposed algorithm outperforms previously
proposed methods in the literature.

Index Terms—Freeway segments, microscopic traffic variables,
spatial inference, traffic anomalies, traffic estimation.

I. INTRODUCTION

ROMPT dissemination of vehicular traffic information

is essential to traffic management center personnel, so
that appropriate and proactive actions are taken to neutralize
any undesirable evolution of the underlying traffic condition.
However, due to cost and topographic limitations, it may not be
feasible to deploy sensors on every road segment. Furthermore,
operation managers could also encounter a sensor or group
of sensors out of service and/or malfunctioning. Therefore,
developing spatial inference algorithms to operate where traffic
variables cannot be directly measured is of great help to traffic
managers and operators as they could continue to operate at
almost the same levels of confidence prior to the onset of an
outage period.

The majority of previously proposed traffic forecast and
estimation models has been developed under an assumption
that traffic variables are locally available at the location of
interest [S]-[7]. On the other hand, a relatively fewer number
of recent models have been designed for spatial inference
on road segments where local information is not available
[4], [8]-[11]. Many of these models are primarily designed
for seasonal/cyclic traffic transitions (e.g., routine patterns on
weekdays [4]), but they have not been explicitly tested with
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unexpected traffic transitions (e.g., an onset of incident [3],
[12], [13]), which can be crucial in real-world operations.

In this context, the ability to incorporate both macroscopic
and microscopic traffic variables is also essential as they can
provide complementary information for spatial inference mod-
els. Macroscopic traffic variables capture aggregate behaviors
of vehicles, whereas microscopic traffic variables describe in-
dividual vehicle behaviors and their interactions [12], [13].
However, most of the previously proposed spatial inference
models [4], [8]-[11] incorporate mainly macroscopic traffic
variables, which cannot capture changes in microscopic-level
characteristics.

Recently, it has been reported in [14] that while a prediction
model based on Newell’s kinematic wave theory [2] performs
very well in heavy-traffic conditions, the model can underper-
form under sporadic congestion or light-traffic conditions. This
finding highlights the increasing interest for real-time monitor-
ing algorithms under a nearly congested situation and low flow
conditions [2], [3]. Furthermore, we note that there has been an
increasing interest in investigating lane-level vehicular traffic
behavior by the transportation research community [12], [13],
[15]-[18]. In this context, closed-circuit television (CCTV)
traffic detectors have gained popularity, as they are reported
to be more cost effective and less prone to damage than loop
detectors [2]-[4]. CCTV cameras can also provide reliable traf-
fic measurements during free-flow and light-traffic conditions
[19], which are very useful for the type of algorithms we are
presenting in this paper as it is based on learning underlying
rules to classify different traffic transitions. Furthermore, since
traffic transition can occur outside the sensor coverage range
(e.g., CCTV camera view) and/or sensors information could
become unavailable due to their associated repair/restoration
time, there is the need to develop novel algorithms that can
overcome such transient or permanent loss of fixed monitoring
positions to enable a nearly seamless operation under these
suboptimal conditions.

The contributions of this paper can be summarized as fol-
lows: An online algorithm is designed to use both microscopic
(variability of interarrival time) and macroscopic (flow, occu-
pancy, and average speed) traffic variables for spatial inference,
which consists of three operations. First, it spatially infers
traffic transitions at an unsupervised target location, in between
two adjacent fixed CCTV camera sensor locations, where traffic
information cannot be directly measured. Second, the algorithm
estimates lane-level flow and occupancy at the same unsuper-
vised target location, which is in a much finer scale than pre-
vious approaches [4]. Third, the proposed algorithm performs
online estimation of lane-level shockwave propagation time by
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assessing temporally local correlation samples of upstream and
downstream speeds.

This paper proposes an enhanced version of the algorithm
in [18], which is designed for spatially inferring both normal
and anomalous traffic transitions. This paper is organized as fol-
lows. Section II reviews related work. Section III describes the
framework of this study. The proposed algorithm is presented in
Section IV, and evaluation results are discussed in Section V.
Finally, Section VI presents final remarks and future work.

II. RELATED WORK

During the past few years, various short-term traffic forecast
and estimation models have been proposed [5], whereas the
most recent efforts have been focused on improving prediction
accuracy and computational efficiency [6], [20], [21] and re-
ducing computational complexity [7]. However, the majority of
these models has been developed under a common assumption
that traffic variables can be directly obtained at the location of
interest.

Relatively much fewer number of studies have been proposed
to operate on road segments where local information cannot
be directly measured, and they are not primarily designed to
be adaptable to unexpected or anomalous traffic transitions
[4], [8]-[11]. Kalman filter (KF)-based approaches have been
shown to have advantages over other methods for online es-
timation of traffic flows. In [4], a KF-based model is used as
an underlining tool to capture spatial and temporal evolutions
of traffic flows on adjacent sites. However, the assessment
in [4] is conducted only with aggregated traffic flows on
weekdays, which follow routine patterns. A recently proposed
traffic surveillance system in [8] also uses an extended KF
(EKF) model to estimate traffic flow and speed on the A3
freeway in Italy. However, the proposed EKF model is designed
for aggregated road-level estimation, and the evaluations were
conducted with only two days of traffic data, and the estimation
accuracy has not been numerically assessed [e.g., with mean
absolute percentage error (MAPE)]. In [9], a context awareness
(e.g., time of day and weather data) model is proposed to infer
traffic congestion levels on road segments, but basic lane-level
traffic variables are not available.

Furthermore, the majority of previous works has not been
developed for lane-level inference as their focus is at a more
coarse-grained level, e.g., at road-level [4], [8], [9], zone-
level [10], or even city-level [11]. A family of geostatistical
interpolation techniques called ordinary kriging [22] has been
extensively used to spatially and collectively infer zonal traffic
conditions over a large area consisting of several road segments.
In [11], the focus is on a long-term inference of annual average
daily traffic flow between the cities across the state of Texas.
Similarly, ordinary kriging is employed over a fixed time du-
ration to spatially infer traffic congested areas consisting of
several road segments in [10]. Although the studies in [10]
and [11] are particularly useful for transportation planning and
policy making at the zonal level, their proposed models cannot
be applied for spatial inference and estimation at lane-level,
which is in a much finer scale. Furthermore, the approach
in [10] is only tested with traffic data collected during rush
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Fig. 1. Measurement and target sites over a space—time diagram.

hours, which follow routine patterns, and there is no explicit
validation between the inferred and the measured values. Un-
like previous models, the algorithm developed in this paper
focuses on the inference of normal and anomalous traffic transi-
tions, lane-level estimations of traffic variables, and shockwave
propagations.

With respect to the inputs used to assess traffic transition,
the majority of the previously proposed short-term forecast
and estimation models only uses macroscopic traffic variables,
which are likely to miss anomalous traffic transitions associated
with individual transient behaviors of vehicles that can occur
under nonrecurring circumstances (e.g., accidents) [5], [12],
[13]. Unlike the majority of the previously proposed models,
the algorithm proposed in this paper is also designed to infer
traffic condition transition by assessing statistics of interarrival
time, which are microscopic traffic variables.

III. ANALYSIS FRAMEWORK

As shown in Fig. 1, the aim is to infer traffic transition and
to estimate a traffic variable y, ;,.n, on lane [y, at time ny and
location x( referred to as target site. Only the measurements
from adjacent sites {x,,, x4}, referred to as measurement sites,
would be used as input that could be measured over space at the
time of inference, €.g., Yz, 10,n0> Yaa,lo,no» and/or at previous
time steps, €.8., Yz, lo,n;s Yru.lonys Yzalomnis A0 Yuy 1.n,;-
Local measurements at the target site z are not used in either
the inference of traffic transition or the estimation of ¥, 1, .n,-
It is also assumed that vehicle travel time and shockwave
propagation time are not known a priori.

The focus of the proposed algorithm is on inferring tran-
sition between free-flow and congested conditions [23] using
information from upstream and downstream measurement sites.
Traffic transitions are classified into free-flow, congested, tran-
sient anomaly, and lane blocking. Free-flow and congested
transitions refer to an onset when traffic starts to evolve to free-
flow and congested conditions, respectively. Transient anomaly
refers to a transition associated with temporarily minor disrup-
tions of traffic flow (e.g., a distraction on a freeway shoulder),
whereas lane blocking refers to a transition associated with
major disruptions (e.g., an accident or a disable vehicle that
blocks lanes) [12], [13]. As transient anomaly and lane blocking
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Fig. 2. Proposed algorithm.

are nonrecurring in nature, they usually cannot be inferred
by seasonal/cycilc components used in previously proposed
models [4], [10], [11].

Estimating lane-level flow and occupancy is also important
as they can further provide fine-scale information for other
road traffic monitoring applications, for example, to calculate
vehicle density or to anticipate future traffic transition [5].
As the algorithm developed in this paper is meant to support
the operation of fixed sensor, flow is defined as the rate of
vehicles passing a point during a given time interval as in HCM
[24], which is a special case of Edie’s for a point in space
[25]. Occupancy refers to a fraction of time that a designated
position is occupied by vehicles. Finally, shockwave is defined
as moving speed drop areas as in [26].

IV. PROPOSED INFERENCE ALGORITHM
A. Overview of the Algorithm

The proposed algorithm operates as shown in Fig. 2. First,
spatial covariance of interarrival time C}, ;, ,, and the difference
of lane-level standard deviations of interarrival time p;, ,, are
calculated in Block I, which are then used to infer traffic
transition at the target site in Block II. The schemes used in
Blocks I and II are described in detail in Section IV-B. The
inferred transition is then used by the estimation model in
Block IIT to select a weighting factor to estimate flow and
occupancy at the target site xq. The scheme used to select a;
in Block III is described in detail in Section IV-D, whereas
the estimation model is described in Section IV-C. Finally,
if a congested transition is inferred, the proposed algorithm
estimates shockwave propagation times in Block IV, which is
described in Section I'V-F.

B. Inference Rule

An important element of the proposed algorithm is the
inference rule, which is used to infer traffic transitions and
to select an appropriate weighting factor a;,, (to estimate
traffic variables in Section IV-C) by assessing only spatial and
temporal variations of interarrival time. The inference rule uses
two microscopic statistics: 1) spatial covariance of interarrival
time Cj, 1, » and 2) the difference of lane-level standard
deviations of interarrival time p;, ,,, which are calculated as in

(1) and (2), respectively, where /1 denotes a lane adjacent to
lo, Xlo,n: [ywd,lo,n—L7 sy Y lony Yz lon—Ls - - - vywu,lo,n]’
Xll,n: [y.rd,ll,n—La sy Yzgliny Yy lyn—Ls - - - aymu,ll,n]a and
51,,n and sy, ,, are the standard deviations of Xln’n and thn,
respectively. The spatial covariance C}, ;, ,, is used to measure
the correlation of variation of interarrival time on adjacent
lanes as well as the spatial variations between upstream and
downstream interarrival times, whereas p;,, ,, is used to measure
difference in lane-level variations between adjacent lanes. We
note that the calculations of C ;, , and p;, , include upstream
and downstream input samples at the same time to simplify
the online implementation of operating the inference rule,
traffic variable estimation, and shockwave estimation together
online, as shown in Fig. 2. Note that calculating input sample
differences at different times would require specific knowledge
on vehicle travel time and shockwave propagation time, which
are not known a priori. Thus

Clotrn=B| (Yapn =B Vi) (V=B [Y,))"] 1)

Sly,m — Slg,n
Pl = —n— Flon )

Slo,n

The method for deriving the inference rule is shown in Fig. 3,
which is based on a conventional overfit-and-simplify approach
[27]. The inference rule derivation takes as input a historical
data set that consists of interarrival times measured at upstream
and downstream measurement sites and an independent log
of traffic conditions and incident cases. An initial rule set is
derived, which consists of a set of conditions for inferring traffic
transition by assessing the values of Cy;, » and py, p, ie.,
{IF Ciy.1y,n > Cr and py, n, > pr, THEN free-flow at target
site; ELSE IF (), ;, » < Cr and Cy, 1, » > Crr, THEN con-
gested at target site;. . ..}, where C'7, Cyy, and p; are obtained
from historical data. As conditions of Cy, i, », and py, , asso-
ciated with a certain traffic transition may be overlapped with
another traffic transition, the next step is to remove redundant
and/or overlapping conditions. Each simplified version of the
rule set is validated with the log of traffic conditions and inci-
dent cases. This simplification is performed until the inference
error can no longer be reduced. The derived inference rule is
then used in Block IT in Fig. 2.

Free-flow and congested traffic transitions are primarily in-
ferred by assessing the value of Cy, ;, . The value of |C, 1, |
can be large, particularly under free-flow conditions because
there is a high probability of large durations between consecu-
tive arrivals of vehicles, and the arrivals of vehicles on one lane
can be more frequent than the arrivals on an adjacent lane. As
the number of vehicles increases toward congestion, interarrival
times on each lane are reduced and much more consistent with
adjacent lanes, which would subsequently reduce Cy, 1, n.

Nonrecurring circumstances associated with transient
anomalies and lane blockings can also be captured using
Ciy1y,n and py, , as the variations of interarrival time on
adjacent lane change [13]. Lane blockings are likely to increase
Ciy.1,,n and py, , as changes in interarrival time on adjacent
lanes are highly correlated at both upstream (e.g., vehicles
queue up) and downstream (e.g., vehicles discharge) sites.



THAJCHAYAPONG AND BARRIA: SPATIAL INFERENCE OF TRAFFIC TRANSITION USING TRAFFIC VARIABLES 857

Upstream and Downstream
Inter-arrival Times

Independent Record of l
Traffic Regime and Statistical
Incident Calculations
Microscopic statistics:
{Ci0.11,n P10}
v
Inference
Validation Rule
Inferred Derivation
Traffic
Regime
v

Yes

Simplification
Possible?

No
Inference Rule

Fig. 3. Derivation of inference rule to be used in Block II of the proposed
algorithm in Fig. 2.

On the other hand, transient anomalies associated with minor
disruptions (e.g., distractions on the shoulder [12], [13])
are less likely to cause significant differences between the
upstream and downstream interarrival times, which would
reduce the difference in the variation of interarrival times on
adjacent lane and subsequently reduce py,, .

C. Estimation of Traffic Variables

To capture the variability according to the change in traffic
variables over both time and space, the estimation model shown
in (3) is proposed, which incorporates the spatial and temporal
difference between the upstream and downstream measurement
sites. Thus

n
~ _ krig 1
Yzo,lo,n = Yug g T Qo E (Yzadom = Yz lo,m)

m=n—L
+ Brolon- (3)

In this model, the first term g};gl%on is the estimated value
at the target site xy on lane [y at time n obtained from
applying ordinary kriging [22] to interpolate data from the
measurement sites. As ordinary kriging does not incorporate
the spatial variability of the traffic variables among the mea-
surement sites themselves, the second term in (3) is incor-
porated to capture spatial variability under different traffic
conditions. The second term consists of ¥, 1,.m and Yu., 1o.m>
which are the traffic variables measured at the downstream
and upstream measurement sites on lane [y, respectively. We
note that the proposed model only uses temporal samples from
adjacent measurement sites from previous time steps n — L up
to n. Our approach is intended to work online; hence, future
samples (e.g., at n+ 1, n+2,...) would not be available
while operating at time step n. The weighting factor q,, ,, is
used to scale the upstream—downstream difference (Y, 10.n —
Yau.lon), Where the selection of a, ., is described in detail
in Section IV-D.

The third term 3, 4, . is used to incorporate seasonal and/or
cyclic patterns of individual traffic variables at particular times.
The aim is to enable the model to be applicable on road
segments, which undergoes particular seasonal and/or cyclic
patterns, e.g., recurring traffic congestion during morning rush
hours.

D. Selection of Weighting Factor ay, »,

Here, we introduce a method to select ay, ,, which is then
used in the estimation model (Block III in Fig. 2). Based
on the historical data set, a, , is selected according to the
inferred traffic transition from Block II in Fig. 2, the type of
traffic variables to be estimated, and the value of p; . The
selection of ay, ,, is based on the expected correlation between
the variations at measurement sites and at the target site, which
depends on the inferred traffic transition.

In addition, an upper bound should be determined for a;, »,
to prevent overestimation because the standard deviation dif-
ference py, ., itself can sometime be unusually high due to
transient behavior of individual vehicles (e.g., temporarily
excessive speed). This upper bound is dependent on traffic
characteristics of the road segment as well as the inferred traffic
transition and should be empirically determined based on the
historical data set.

E. Selection of Time Step

The selection of time step for forecasting and estimation is
very important as shorter time steps can exhibit higher vari-
ability, which can undermine the accuracy of forecasting and
estimation models. Although the 15-min interval is often rec-
ommended [6] to avoid strong fluctuation at shorter intervals,
using a step as low as a 5-min interval can provide more fine-
grained information. In this paper, the estimation is performed
in a step of 5-min interval, which is also the shortest forecasting
and estimation step used in practice [5]. We note that some
previous work such as [28] have used 2-min intervals.

F. Estimation of Shockwave Propagation Time

This section describes the shockwave estimation, which is
implemented in Block IV in Fig. 2. The aim is to find 7,;'*%,
which is the time lag that gives maximum cross-correlation
between upstream and downstream average speeds' at time step
n. Consecutive nonzeros 7,,'** would signify the occurrence of
a shockwave front as upstream and downstream average speeds
are correlated with time lags greater than zero (a shockwave
front cannot possibly have a zero propagation time between two
sites). Then, the shockwave propagation time is estimated as the
average of these consecutive nonzeros 7,;'%*.

Coifman and Wang [15] proposed a method to find 7,,'*%, by
calculating cross-correlation coefficients between time series
of average speed measured at downstream and upstream sites.

ISpeed refers to the motion of traffic as it travels downstream, and local speed
is the measurement at the location of a sensor. Velocity refers to the backward
motion of shockwave [15].
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Fig. 4. Shockwave propagation time estimation implemented in Block IV of
the proposed algorithm in Fig. 2.

However, using only cross-correlation coefficients may not
be able to capture complex, nonlinear, and/or nonstationary
relationships between local speed patterns at two different
locations. Such relationship may also vary at different times.
Therefore, an improved method is needed.

To find 77'**, we modify a local correlation tracking pre-
viously proposed in [29], which generalizes the linear cross-
correlation by comparing spectral decompositions of local
autocovariance matrices of two time series. To capture sim-
ilarity of local average speed patterns, LoCo score [29] with
time lag 7: 1+ {Su., 1o.ns Sza.lo.n ) 1S calculated as shown in (4),
where 7 denotes time lag. Sy, ;,.» and Sz, ;,.» denote vectors
of upstream and downstream average speeds measured on lane
lp at time step n, respectively. VSTx o denotes a transpose
of an autocovariance matrix Vs, , . and vg, , . denotes
the principle eigenvector of an autocovariance matrix Vs, ,
Thus

n

l'r {Szu,,lg,nv Szd,lo,n}

VS ig.m

n HVST

zg,lg,n

=3 (175 ) @

As shown in Fig. 4, for each time step n and a given sliding
window size L, lane-level upstream average speeds S, 1,,n =

[Swy.lon—Ls -« - s Sy lon—1s Swy.lo,n] and downstream average
speeds Sﬂ:d,lo”ﬂ = [Swd7l01n7L7 <oy 8wy lo,n—1, s$d,l07n] are ob-

tained from the sensors. For each value of 7, local
upstream and downstream autocovariance matrices Vs, , .,
Suyigm  QTE constructed, where VSzu,Lo,n:E[(Smu,lo,n*

mzuylo,n)(‘siu,lo,n - mzuylom)T]’ Vszd,lo,n = E[(Smd,lo,n -
mfcd,lg,n)(szd,lg,n - mmd,lo,n)T], and Mg, ,lo,n and Mgy,lo,n
are the means of S, 1,.n and Sy, 1, n, respectively. Then, the
principle eigenvectors vg, and vg, , ., of upstream and
downstream autocovariance matrices are obtained. A LoCo
score 1:{ Sz, 1o.ns Swa.lo,nt 18 then calculated using (4). The
process is repeated online for all values of 7 € [0, L] to find the
value of 7"** that gives maximum [-{Sz., 1y.n, Sza.i0,n }-
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Fig. 6. Video snapshot from a camera at the target site.

V. PERFORMANCE EVALUATION USING
REAL-WORLD DATA

A. Descriptions of the Data

In order to assess proposed algorithm, a real-world data set
was recorded by cameras mounted on an urban expressway
segment in Bangkok, Thailand. These cameras have been pre-
viously installed and are operated by the Bangkok Expressway
Public Company (BECL). As shown in Fig. 5, the upstream
and downstream cameras are approximately 0.52 and 1.72 km
from the camera mounted at the target site. Recurrent con-
gestion occurs during morning rush hours on weekdays when
commuters are traveling into the city. Traffic incidents are
recorded by BECL. A video snapshot from a camera at the
target site is shown in Fig. 6. The aim is to infer traffic
transitions and then estimate flow and occupancy at the target
site using traffic data from adjacent measurement sites, whereas
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traffic variables obtained by cameras at the target site itself
are used for validation. It is also important to note that at the
upstream measurement site, traffic from the main segment is
merged with traffic from a ramp; however, only traffic data from
the ramp are available, whereas traffic data on the main segment
are unknown.

Each camera is capable of detecting individual vehicles that
passed the expressway segment. On the image frame of each
camera, a virtual line was drawn on the location of interest [17].
For a vehicle 4, t™ was recorded, where ti“ is the time that the
vehicle crossed the virtual line. An interarrival time observed
by vehicle i to its leading vehicle i — 1 is calculated as " —

in_  For a given time period L, flow is set equal to the number

of vehicle arrivals to the virtual line. Occupancy is calculated
as (3.7, 0;/L) x 100, where o; is the duration that a vehicle
i was present on the virtual line. Furthermore, for evaluation
purposes, traffic conditions and incidents that took place are
independently and manually logged by a team of transportation
researchers, using video images from the camera at the target
site, and incident reports from BECL.

The real-world data set used in this paper was collected by
the cameras under different traffic conditions daily from 6 A.M.
to 6 P.M. for a one-month period in October 2009. The average
number of vehicles detected passing the freeway segment is
found to be approximately 50000 vehicles per day; hence,
there are approximately 1550000 records for the one-month
period of data collection. A cross-validation technique is used
to assess the proposed algorithm where the real-world data set
is separated into training and testing sets.

B. Derivation of Inference Rule Based on Real-World Data

Applying the methods in Section IV-B and D offline to
the training set consisting of one week of data, two cases of
transient anomalies, and two cases of lane blockings, we obtain
the following inference rule:

IF (Ciyym <0)V (Ciyiy,n > 0.5); Free-flow
IF(estimating time occupancy); a;,,, = 0;
IF(estimating traffic flow); a;.n = 1 — pig.ns

IF (0 < Ciy1y.n <0.5); Congested
IF(estimating time occupancy); a, », =min(pi, n,2.5);
IF(estimating traffic flow); a;, ,, = min(p,.n, 1);

IF  (Ciyiy.n > 5) A (pig,n, n > 2.5); Lane blocking
IF(estimating time occupancy); aj,.n = Plg,ns
IF(estimating traffic flow);

Alg,m = Plo,n lAyzU,n>Ayzl,n + (plo,n - 1) ’
IAylo,nSAyll,n;

IF  (piy,n,n < 2.5); Transient Anomaly
IF(estimating time occupancy); ag, , = min(pi, n,2);
IF(estimating traffic flow); a;, », = min(pi,.n, 1);

This inference rule is then applied to the testing set as if
it is being operated online, where each inference operation is
performed per time step n. The conditions for assessing the
values of Cj, ;, » and py, , in the inference rule may change
if the sensors’ locations are changed.

We note that for flow under lane blockings, the choice of
aj,,n primarily depends on whether traffic disruption is more
likely to occur on the current lane of interest in respect to
an adjacent lane. This likelihood of having an onset of traffic
disruption can be assessed by comparing the difference in
upstream and downstream traffic flows on the current lane
Ayloﬂl = (I/L) Z’:IL’L:’ILfL(yLEd;lOam - ywu,lo,m) with that of
an adjacent lane Ay, o (1/L)> 0 1 (Ysyts.m — Yo iym)-
Higher difference in upstream and downstream traffic flows
indicates higher probability that the traffic is disrupted on the
lane of interest and that the estimated traffic flow at the target
site should be proportionally set to py, p, i.€., aiy.n = Piy,n-
In contrast, if traffic disruption is more likely on an adjacent
lane, the estimated traffic flow at the target site should still be
proportional, but at a slower rate, to p;, , as it is more likely that
vehicles have more incentives to change to the current lane, that
is, QAly,n = Plo,n — 1.

C. Benchmark Algorithms for Comparisons

To assess the capabilities of the proposed algorithm to infer
traffic transitions, the dual-station algorithm [3] is employed as
benchmark. This algorithm is selected primarily because it is
similar to the framework of our proposed algorithm. First, its
rule-based approach is particularly designed to operate online
with a camera-based detector system. Second, its target is to
infer traffic transitions due to lane blocking using flow, speed,
and occupancy measured at upstream and downstream sites.
Third, this algorithm has been shown to perform well under
real-world scenarios on Singapore’s expressway [3].

For the estimation of traffic variables, the three-detector
algorithm based on Newell’s simplified kinematic wave model
is used as a benchmark [1], [2]. This algorithm is particularly
efficient for online estimation as Newell’s simplified model [2]
does not pose any particular requirement on segment length
and, subsequently, does not consume much computational re-
sources. Furthermore, it has been shown that this algorithm has
potential to improve the estimation accuracy of flow [1].

KF-based algorithms are also employed as benchmarks for
estimation of traffic variables. This type of algorithm has been
originally proposed in [30] and has also been recently assessed
in [4] and [8] in terms of its ability to improve accuracy in traffic
flow estimation at locations where traffic data cannot be directly
measured. Two KF-based estimation algorithms, i.e., KF-1
and KF-2, are employed as benchmarks. KF-1 operates where
local measurements are missing at the target site, whereas
KF-2 operates under an ideal scenario where it can use traffic
variables from both adjacent measurement and target sites to
adjust the estimation accuracy. The purpose of including KF-2
as a benchmark is to assess how well the proposed algorithm
performs with respect to an ideal scenario where data from the
target site can be used for estimation.

D. Results and Discussions on the Inference of
Traffic Transitions

We first note that the accuracy reported in this experiment is
generally lower than in previous studies due to the following



860 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

F C TA (a)
4 . :
3+ ! ~_ Transient Anomaly b
B 9:25am-9:45am
<2
O
1 L
et
0 R H/_’ L 1 1 1
6am 8am 10am 12pm 2pm 4pm 6pm
times
E (b)
-5 4000 i —Upstream Site  ---Downstream Site
2 3000 4 )
Transient Anomaly
g 2000 T 9:25am-9:45am
T 10002 | I Peevoasaas—ayes
.2 0 r 1 i LS| L1 L1 1 L1 1 1 1 1 1 1 1 1 11 1
= 6am 8am 10am 12pm 2pm 4pm 6pm
o -
= Times
Fig. 7. Inferring traffic transition on October 12, 2009 using (a) the proposed

algorithm and (b) the dual-station algorithm [3]: F, C, and TA denote free-flow,
congested, and transient anomaly, respectively.

reasons. First, the algorithms are assessed where traffic transi-
tions are usually not known in advance. Second, this is a lane-
level estimation, which is generally more prone to errors than
aggregated estimations [4]. Third, this experiment is conducted
on nonhomogenous road segments where input information
is only partially available. The temporal samples of upstream
measurements are used as input in the proposed algorithm,
as well as in benchmark algorithms. Therefore, the partial
availability of upstream data affect the accuracy of all the
algorithms.

As shown in Fig. 7(a), at approximately 6:15 A.M., free-
flow transition (point F and vertical dotted line) is first inferred.
Then, as traffic demand continues to increase toward morning
rush hour and exceeds the capacity of the expressway segment
at approximately 7:15 A.M., congested transition (point C and
vertical dotted line) is inferred by the proposed algorithm.
These traffic transitions inferred by the proposed algorithm
closely match those independently logged by transportation
researchers using video images from the camera at the target
site. On the other hand, as shown in Fig. 7(b), the dual station
misses these transitions.

Moreover, the proposed algorithm can infer transient
anomaly [point TA and vertical dotted line in Fig. 7(a)], which
was recorded at approximately 9:25-9:45 A.M. on October 12,
2009. This transient anomaly corresponds to a locally minor
disruption at the target site, which occurred while there are a
substantial number of vehicles on the expressway segment. The
dual-station algorithm can also infer this transient anomaly, as
shown in the dotted vertical lines in Fig. 7(b). This is primarily
because the dual-station algorithm is designed to operate under
moderate- and heavy-traffic flow.

The proposed algorithm and the dual-station algorithm are
further assessed under lane blocking, which was recorded at
approximately 2:30-3:00 P.M. on October 18, 2009, as shown
in Fig. 8. It can be seen that the proposed algorithm can infer
this lane blocking as shown Fig. 8(a), whereas the dual-station
algorithm misses this same lane blocking as shown Fig. 8(b).
This lane blocking is associated with a disabled vehicle that
caused most of the vehicles to avoid the shoulder lane and use
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Fig. 8. Inferring traffic transition on October 18, 2009 using (a) the proposed

algorithm and (b) the dual-station algorithm [3]: F, C, and LB denote free-flow,
congested, and lane blocking, respectively.

TABLE 1
MAPE FROM ESTIMATING TRAFFIC VARIABLES,
EVERY 5 mins, USING REAL-WORLD DATA

Proposed Algorithm MAPE on MAPE on
(no local measurements) Shoulder Lane Median Lane
Flow 0.213 0.139
Occupancy 0.441 0.221
Three-detector [1,2] MAPE on MAPE on
(no local measurements) Shoulder Lane Median Lane
Flow 0.544 0.187
KF-1 MAPE on MAPE on
(no local measurements) Shoulder Lane Median Lane
Flow 0.307 0.527
Occupancy 0.703 0.511
KF-2 MAPE on MAPE on
(with local measurements) Shoulder Lane Median Lane
Flow 0.122 0.075
Occupancy 0.239 0.157

the middle and right lanes. Consequently, flow measured on
the shoulder lane at the downstream site is not large enough
to trigger the dual-station algorithm.

E. Results and Discussions on Estimation of Traffic Variables

Here, we assess the proposed algorithm in terms of its
accuracy in estimating flow and occupancy using MAPE, which
is used to assess the relative size of the estimation errors as
shown in (5), where {4, .1,,» is the estimated traffic variable
at time n on lane [ at the target site xy. The traffic variable
Yzo,lo,n At time 1 on lane [y is obtained from the camera at the
target site xp, and M denotes the total number of estimated
points, i.e.,

M
1 gw lo,n — Yzo,lo,m
MAPE = — ) | Zrodon _Jrodon | ©)
Mn:1 yxo,l(,,n

Table I shows MAPE collectively calculated from using the
proposed algorithm, the three-detector algorithm, KF-1 and
KF-2 to estimate traffic variables every 5 mins, in the testing set
under different traffic conditions at different times of day. We
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Fig. 9. Estimation of 5 mins occupancy on the shoulder lane at the target site.
Transient anomaly was recorded at 9:25-9:45 A.M. on October 12, 2009.

note that as the three-detector algorithm is designed primarily
to estimate traffic flow, only the estimation results of traffic flow
are shown.

It can be seen from Table I that the proposed algorithm
achieves lower MAPEs than the three-detector algorithm and
KF-1. With respect to the three-detector algorithm, most es-
timation errors correspond to the periods when travel time
diverted from the expected wave propagation models (e.g.,
very light traffic or a lane blocking on the segment) and
caused large spatial variability between the target site and
upstream—downstream measurement sites. For example, a lane
blocking caused some vehicles to travel longer than anticipated
and, subsequently, the overestimation of flow at the target site.
Unlike the three-detector algorithm, the proposed algorithm
uses concurrent measurements of both upstream—downstream
variability [C}, i, in (1)] and lane-level variability [p;, , in
(2)], which can capture changes in spatial variability as de-
scribed in Section V-B.

Moreover, from Table I, we can see that the proposed al-
gorithm outperforms KF-1 on the median lane because the
median lane is usually a faster and a more dynamic lane on
the expressway segment analyzed. It is observed that on the
median lane, vehicles usually have more room to maneuver,
which subsequently increases the likelihood that the traffic
variables measured at the target site are significantly different
from measurement sites. The proposed algorithm incorporates
the variation between these upstream and downstream traffic
variables, which copes better with changes at the target site.

KF-2 has the least amount of error because it is evaluated
under an ideal scenario and, hence, is included as a benchmark
where data from the target site can be used for estimation.
Table I shows that the proposed algorithm performs very well
as its MAPESs are much closer to those of KF-2 than the MAPEs
of the three-detector and KF-1.

Figs. 9 and 10 show the online estimation capabilities of the
proposed algorithm. In Fig. 9, the online estimation responds
well to a temporary increase in occupancy due to transient
anomaly from approximately 9:25 A.M. to 9:45 A.M.. Further-
more, the proposed algorithm can estimate abrupt increase in
occupancy at the target site at approximately 2:30 P.M., as
shown in Fig. 10. This is followed by a sudden decrease at
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40r

Time Occupancy (%)
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Fig. 10. Estimation of 5 mins occupancy on the shoulder lane at the target
site. Lane blocking was recorded at 2:30 P.M. on October 18, 2009.

TABLE II
MAPE FROM ESTIMATING AGGREGATE FLOW

Experimental Periods

Proposed Algorithm

Three-detector Algorithm

Weekday 7:00-9:00AM
Weekend 7:00-9:00AM

0.119
0.307

0.368
0.796

3 P.M., an increase at 3:20 P.M., and another decrease at
4:00 p.M. of occupancy. Considering that local traffic variables
at the target site are not used at all, the trend of the estimated
values in Fig. 10 still shows the ability of the proposed algo-
rithm to respond to these changes. Furthermore, Figs. 9 and
10 show that incorporating spatial variability with weighting
factors [second term in (3)] significantly enhances the esti-
mation accuracy compared with using ordinary kriging alone.
Particularly, the weighted spatial variability plays an essential
role when there is a significant spatial difference due to a lane
blocking (after 2:30 P.M. in Fig. 10).

Table II shows experimental comparisons with the three-
detector algorithm for aggregate flow estimation between
7:00 A.M. and 9:00 A.M. where traffic is heavy during rush
hours on weekdays and light on weekends. It is found that the
two experimental periods have high spatial variability between
the target and upstream—downstream measurement sites. This
subsequently causes high MAPEs for the three-detector algo-
rithm as there is higher variability than anticipated in its wave
propagation models. In contrast, the proposed algorithm shows
lower MAPEs because the estimation model’s parameters can
be adjusted according to spatial variability between measure-
ment sites.

We also assess the proposed algorithm under different tem-
poral and spatial aggregations. Table III shows that MAPEs can
be reduced by using smaller time aggregation periods, whereas
Table IV compares MAPEs when the proposed algorithm is
used to estimate lane-level and aggregate traffic flow. It can be
seen that the proposed algorithm can be used for both aggregate
and lane-level estimation with similar accuracy.

We further evaluate the proposed algorithm on an NGSIM
US-101 data set [16]. Two virtual sensors are placed upstream
and downstream of the target segment to calculate input traffic
variables [31], and we assess the algorithm by placing a virtual
sensor at the middle of the segment (the target site). The
7:50-8:20 A.M.: Lanel data set (approximately two thirds of
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TABLE III
MAPE FROM ESTIMATING TRAFFIC VARIABLES UNDER
DIFFERENT TIME AGGREGATION PERIODS

Flow Estimation MAPE on MAPE on
(Time Aggregation Periods) Shoulder Lane Median Lane
S mins 0.230 0.148
2 mins 0.240 0.135
1 min 0.180 0.112
Occupancy Estimation MAPE on MAPE on
(Time Aggregation Periods) Shoulder Lane | Median Lane
5 mins 0.463 0.241
2 mins 0.464 0.238
1 min 0.423 0.210
TABLE IV

MAPE FROM ESTIMATING LANE-LEVEL
AND AGGREGATE TRAFFIC FLOW

Time Aggregation Periods Lane-level Aggregate
Periods MAPE MAPE
5 mins 0.230 0.262
2 mins 0.240 0.237
1 min 0.180 0.218
(a)
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Fig. 11. Assessing the proposed algorithm using NGSIM’s US-101:08:20—

08:35 A.M.: Lane 1. (a) Inference of traffic transition. (b) Estimation of 1 min
occupancy.

the data) is used for training and 8:20-8:35 A.M.: Lanel data
set (approximately one third of the data) is used for testing. The
obtained inference rule is similar to that shown in Section V-B;
however, due to high volume of vehicles, the upper bound of the
weighting factor for occupancy estimation under the congested
condition is reduced to a;, », = min(py, n,0.5).

As shown in Fig. 11(a), the spatial covariance (Cy, 1,,n) is
always lower than 0.5 (see Section V-B); hence, the proposed
algorithm rightly infers a congested condition. Fig. 11(b) shows
the capability of the proposed algorithm for online estimation
of 1 min occupancy at the target site. It can be seen that
the proposed algorithm, which incorporates spatial variability,
responds generally well to changes in occupancy compared
with using ordinary kriging alone. The only exceptions are at
8:27 A.M. and 8:28 A.M., where there is a delay in responding
to a sudden increase in occupancy. Nevertheless, the proposed
algorithm can again adjust to this change at 8:29 A.M.. This
delay can be reduced by incorporating a model to capture
patterns of occupancy drop into (3), which is worth further
investigating.
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Fig. 12. Trajectory plot of NGSIM US-101:07:50-08:05 A.M.: Lanel data
with shockwave fronts S1 — S7.

F. Results and Discussions on Shockwave Propagation
Time Estimation

For this test, we use NGSIM’s US-101 data set [16] to
estimate the shockwave propagation time. As shown in Fig. 12,
if vehicle trajectory information is available, propagation paths
of shockwave fronts S1 — S7 can be identified, and S1’s propa-
gation time can be simply estimated as ny — n,,. However, such
detailed information would require every vehicle to be equipped
with automatic vehicle location technologies or sensors with
coverage of the entire road segment, which may yet to be avail-
able on many roadways. Note that the proposed algorithm does
not require vehicle trajectory information as it uses only traffic
information from upstream and downstream measurement sites.

Once a congested condition is inferred, the proposed al-
gorithm can further estimate the shockwave propagation time
using 7:50-8:05 A.M.: Lanel data set as shown in Fig. 12. A
sliding window L of 5 mins is used where time series of 30-s
average local traffic speeds from the upstream and downstream
virtual sensors are used as inputs. In each sliding window, the
proposed algorithm assesses different time lags {7:0 < 7 <
600 s} by comparing their corresponding LoCo scores in (4).
Recall that the shockwave propagation is estimated as the time
lag that gives maximum LoCo scores.

Using the proposed algorithm, propagation times of S1 — S7
in Fig. 12 are estimated to be {90, 75, 45, 30, 105, 75, 150} s,
respectively. As the distance between sensors is known, these
propagation times are then used to calculate backward ve-
locities of shockwaves’ fronts. These propagation times give
an average shockwave velocity of approximately 18.27 km/h,
which is very close to the average velocity reported in previous
studies [23], [32], [33]. We note that unlike previously proposed
methods, the proposed algorithm can estimate shockwave prop-
agation time online.

VI. FINAL REMARKS

This paper proposes an online algorithm with three primary
objectives: 1) to spatially infer traffic transitions at the tar-
get site where local traffic measurements cannot be obtained
directly; 2) to estimate flow and occupancy at lane-level at
the same target site; and 3) to estimate lane-level shockwave
propagation times online.
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The performance evaluations are conducted using a real-
world data set measured from a road segment in Bangkok
and the NGSIM US-101 data set [16]. With respect to in-
ferring traffic transitions, the proposed algorithm outperforms
the previously proposed dual-station algorithm [3] under low-
flow conditions. When estimating traffic variables where local
measurements are missing, the proposed algorithm acheives
lower estimation errors than the three-detector and KF-based
algorithms [1], [4], [8]. Finally, the proposed algorithm can well
estimate lane-level shockwave propagation times online, which
can provide further information, e.g., monitoring evolution of
shockwave for online variable speed limit control [26].

The encouraging results obtained in this paper grant further
investigation to improve the estimation accuracy by incorpo-
rating more spatiotemporal characteristics. Combining con-
current spatial variability of the proposed algorithm with the
wave propagation models of the three-detector algorithm [1],
[2] should also significantly improve the estimation accuracy.
Moreover, incorporating algorithms in [12] and [13] that detect
and classify traffic anomalies at the sensors’ locations would
enhance the classification and positioning of traffic disruptions,
which can provide more information for traffic management
center personnel. Finally, the extension to segment with more
than two lanes is worth investigating. In this case, the spatial
covariance matrix should first be constructed from spatial co-
variances of each pair of adjacent lanes. As the system grows in
dimensionality, the largest eigenvalue of the covariance matrix
can be used instead of individual spatial covariances to infer
traffic transition. This approach should also be applicable to
other geometries of road segments as long as historical traffic
data are available for analysis and calibration.
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