145 research outputs found

    Numerical Modeling of High-Pressure Partial Oxidation of Natural Gas

    Get PDF
    High-Pressure Partial Oxidation (HP-POX) of natural gas is one of the techniques in the synthesis gas production by non-catalytic reforming. On the path to emissions reduction, all operating facilities must be optimized to satisfy environmental regulations. In a rapidly changing economic and political environment, technological development from lab-scale to demo-scale, and industrial-scale is no longer feasible. Therefore, new research and design methods must be applied. One of such methods commonly used in science and industry is numerical modeling, which utilizes Computational Fluid Dynamics (CFD), Reduce Order Models (ROMs), kinetic, and equilibrium models. The CFD models provide details about flow field, temperature distribution, and species conversion. However, the computational effort required to conduct such calculations is significant. The computationally expensive CFD models cannot be effectively used in the reactor optimization. Herewith, other modeling techniques utilizing kinetic and equilibrium models do not provide necessary details for process optimization and can only be used for adjustments of boundary conditions, investigation of specific processes occurring in the reactor, or development of sub-models for CFD. A numerical investigation was conducted to validate existing CFD models against benchmark experiments. The results reveled that the CFD model is sensitive to modeling parameters, when simulating complex flows where turbulence-chemistry interaction occurs. Moreover, it was shown that the results sensitivity increases along with the oxidizer/fuel inlet velocities ratio. Based on the conducted experiments, the CFD model validation resulted in definition of the modeling parameters suitable for modeling of HP-POX of natural gas. Based on the validated CFD model, a ROM for HP-POX of natural gas was developed. The model assumes that the reactor consists of several zones characterized by specific conversion processes. Moreover, the model considers inlet streams dissipation upon the injection, and includes several optimization stages that allows model adjustments for any reactor geometry and boundary conditions. It was shown that the developed ROM can reproduce global reactor characteristics at non-equilibrium conditions unlike other ROMs, kinetic, or equilibrium models. Moreover, the validation against CFD results showed that the ROM can correctly account for the \gls{rtd} in the reactors of different geometries and volumes without extensive additional optimization. Finally, new experiments were designed and conduced at semi-industrial HP-POX facility at TU Bergakademie Freiberg. The experiments aimed to study the influence of different oxidizer/fuel velocities ratios on the reactants mixing and process characteristics at high operating pressures. The high velocity difference between oxidizer and fuel was achieved by injection of High-Velocity Oxidizer (HVO). The experiments showed no significant influence of the HVO on the global reactor characteristics and overall species conversion process. However, the numerical analysis of the experimental results demonstrated that the oxidation zone is affected by the oxidizer inlet velocity, and becomes less efficient in the fuel conversion when the oxidizer/fuel inlet velocities ratio is increased. In summary, a sophisticated numerical model validation was conducted and sensitivity of the numerical results to the modeling parameters was carefully studied. The novel natural gas conversion technique was experimentally studied. Based on the conducted experiments and numerical evaluation a ROM was developed. The ROM is capable of producing high accuracy results and greatly decreases the computational effort and time needed for reactor development and optimization

    The effect of turbulence on the conversion of coal under blast furnace raceway conditions

    Get PDF
    dynamics (CFD) can be used to analyze the process virtually and thus improve its performance. Different reducing agents can be used to (partially) substitute the coke and consequently reduce overall emissions. To analyze different reducing agents effectively using CFD, their conversion process has to be modeled accurately. Under certain conditions, coal particles can cluster as the result of turbulence effects, which further reduces the mass transfer to the coal surface and consequently the conversion rate. We analyze the effect of turbulence under blast furnace raceway conditions on the conversion of coal particles and on the overall burnout. The model is applied in RANS to polydisperse particle systems and this is then compared to the simplified monodisperse assumption. Additionally, the model is extended by adding gasification reactions. Overall, we find that the turbulent effects on coal conversion are significant under blast furnace raceway conditions and should be considered in further simulations. Furthermore, we show that an a-priori assessment is difficult because the analysis via averaged quantities is impractical due to a strong variation of conditions in the furnace. Therefore, the effects of turbulence need to be correlated to the regions of conversion. © 2022 The Author(s)The effect of turbulence on the conversion of coal under blast furnace raceway conditionspublishedVersio

    Evolution of particle morphology during char conversion processes applied for the CFD modeling of an entrained-flow gasifier

    Get PDF
    The change in morphology of a char particle affects both its trajectory and carbon consumption rate, hence the performance and efficiency of an entrained-flow gasifier. Among key processes taking place in the gasifier, the char conversion process is a limiting step for the overall carbon conversion. For that reason, the Ph.D. thesis presents the evolution of morphology of char particles during the carbon conversion process using particle-resolved transient CFD calculations. Analyses of numerical data obtained from the transient CFD calculations were carried out. As a result, new sub models related to the drag coefficient and the fundamental parameters of char conversion model were emerged. The new sub models were applied for modeling a pressured entrained-flow gasifier at laboratory scale. The numerical results of the gasifier show a good agreement with experimental data and an improvement of the sub models applied

    Analysis of thermofluids in flameless (MILD) combustion: assessment, improvement and development of combustion models by CFD

    Get PDF
    241 p.Flameless combustion, also called MILD combustion (Moderate or Intense Low Oxygen Dilution), is a technology that reduces NOx emissions and improves combustion efficiency. It is based on the aerodynamic recirculation of flue gas inside the furnace diluting air and/or fuel streams. Therefore, appropriate turbulence-chemistry interaction models are needed to address this combustion regime via computational modelling.In this Thesis the applicability of two different turbulence-chemistry interaction models, the Eddy Dissipation Concept (EDC) and the Flamelet Generation Manifold (FGM) models, are studied and then some extensions of both models, The Generalized New Extended EDC model and the Dilued Air FGM, are developed and implemented in ANSYS Fluent for better predict flameless combustion.Models are validated comparing modelling results with experimental data of the Delft Lab Scale furnace (9kW) burning Natural Gas (T=446 K) and preheated air (T=886 K) injected via separate jets, at an overall equivalence ratio of 0.8.It could be concluded that both models improved modelling results respect the existing models. The Generalized New Extended EDC model provides better mean temperature results close to the burner and at the mid height of the furnace, and the Diluted Air FGM model shows better consistency with experimental data on the highest height of the furnace, where the dilution effect is more noticeable

    CFD Studies on Biomass Thermochemical Conversion

    Get PDF
    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field

    CFD Simulation of Biomass Gasification using Detailed Chemistry

    Get PDF
    The use of biomass as a CO2-neutral renewable fuel and the only carbon containing renewable energy source is becoming more important due to the decreasing resources of fossil fuels and their effect on global warming. The projections made for the Renewable Energy Road Map [1] suggested that in the EU, the use of biomass can be expected to double, to contribute around half of the total effort for reaching the 20 % renewable energy target in 2020 [2]. To achieve this goal, efficient processes to convert biomass are required. At the Karlsruhe Institute of Technology (KIT), Germany, a two-stage process called bioliq [3], for the conversion of biomass into synthetic fuel, is being developed. In this process, straw or other abundant lignocellulosic agricultural by-products are converted to syngas through fast pyrolysis and subsequent entrained flow gasification. After gas cleaning and conditioning, the syngas is converted into different chemicals via known processes such as direct methanol synthesis or Fischer-Tropsch synthesis. The prime goal of this thesis was the modeling and simulation of the gasification of biomass-based pyrolysis oil-char slurries in an entrained flow gasifier, which is an important step of the bioliq process. Computational Fluid Dynamics (CFD), as a powerful tool for modeling and simulation of fluid flow processes, was utilized in this thesis. A lab scale entrained flow gasifier, located at KIT, was simulated using the CFD code ANSYS FLUENT 12.0. Due to the turbulent nature of the flow, the realizable k-epsilon model was used to model the turbulence. The discrete phase model (DPM) was employed to describe the fluid phase, consisting of char particles suspended in ethylene glycol. Ethylene glycol served as non-toxic model fuel for pyrolysis oil, mainly because of its similar C/H/O-ratio and its similar physical properties to biomass derived liquid pyrolysis products. A detailed reaction mechanism for high temperature oxidation of ethylene glycol was implemented in the CFD code. The mechanism comprised of 43 chemical species and 629 elementary reactions. The use of detailed chemistry enables one to have a deeper insight into the gasification process. Turbulence-chemistry interactions were modeled with the eddy dissipation concept (EDC). The in-situ adaptive tabulation (ISAT) procedure was employed to dynamically tabulate the chemistry mappings and reduce computer time for the simulation. The effect of the thermal radiation was taken into account by using the discrete ordinates model (DOM). The radiative properties of the gas were described with the weighted sum of gray gases model (WSGGM). The simulation results were compared with the experimental measurements wherever possible, with good agreement. The simulations depicted the importance of the recirculation zone in entrained flow gasification. Furthermore, the main reaction path of ethylene glycol gasification could be observed and analyzed. In order to study the effect of boundary conditions on the gasification process, a series of simulations were done to perform sensitivity analysis. Four parameters were varied, namely: oxidizer and fuel inlet temperatures, the oxidizer composition, the air-fuel ratio and the operating pressure of the gasifier. Effects of the parameter variations on the gasification efficiency and the composition of the product gas were studied. Three different chemistry models (i.e. equilibrium chemistry, flamelet model and EDC) were studied in this thesis. Their relative advantages and disadvantages for the simulation of gasification processes were examined. The EDC model proved to be the better choice for entrained flow gasifiers with recirculation zones. The slurry gasification simulations were performed to study the effects of the mass fractions of the char particles on the process. With the aid of the detailed chemistry model, sub-processes could be analyzed and suggestions for the improvement could be made. The simulations performed in this work help to better understand the gasification process inside entrained flow gasifiers and considerably reduce the number of experiments needed to characterize the system. The simulations produced spatial and temporal profiles of different system variables that are sometimes impossible to measure or are accessible only by expensive experiments. However, more experimental measurements help to validate and optimize the CFD model. The sensitivity analyses performed in this study are considered as a basis to find optimized operating conditions and assist the successful scale-up of entrained flow gasifiers

    Optimization Of Flameless Cyclone Combustion Chamber For The Combustion Of Biomass Producer Gas

    Get PDF
    Due to its low heating component, producer gas (PG) combustion results in flame instability, a slow burning rate, and a decrease in power production. A possible combustion method for enhancing combustion performance is flameless combustion. Its use with PG is still far less widespread, though. This work uses the data gathered from the existing experiment and numerical analyzation to study the reaction of the PG in Premixed Flameless Combustion. The Flameless Combustion produced with dilution ratio, R dil > 0.6 of the reactant. Multiple combustor with different nozzle air inlet diameter and combustor were created using SOLIDWORK software. The value for the parameter (air inlet nozzle diameter & combustor height) are 30 mm, 40 mm, 50 mm and 500 mm, 600 mm, 700 mm respectively. The purposed was to study the effect of the combustor parameter which combination will produce most optimum and efficient based from the Nitrogen Oxide (NOx) emissions also presence of the complete combustion. The data gathered from the Computational Fluid Dynamic (CFD) simulation by utilizing ANSYS Fluent software. Then, for the optimization of the cyclone combustor parameter, Minitab software were used by using Design of Experiment (DOE) concept which Full Factorial concept. Full factorial optimization using two factors—nozzle diameter and combustor height—and three stages produced a total of 9 data sets to analyze in the DOE concept. Based on the optimization's results, the data sets that have the most optimum results will be achieved
    corecore