9 research outputs found

    Thematic issue on evolutionary algorithms in water resources

    Get PDF
    Special Issue on Evolutionary Algorithms.H.R. Maier, Z. Kapelan, J. Kasprzyk, L.S. Matot

    Assessment of water resources management strategy under different evolutionary optimization techniques

    Get PDF
    Competitive optimization techniques have been developed to address the complexity of integrated water resources management (IWRM) modelling; however, model adaptation due to changing environments is still a challenge. In this paper we employ multi-variable techniques to increase confidence in model-driven decision-making scenarios. Here, water reservoir management was assessed using two evolutionary algorithm (EA) techniques, the epsilon-dominance-driven self-adaptive evolutionary algorithm (∈-DSEA) and the Borg multi-objective evolutionary algorithm (MOEA). Many objective scenarios were evaluated to manage flood risk, hydropower generation, water supply, and release sequences over three decades. Computationally, the ∈-DSEA's results are generally reliable, robust, effective and efficient when compared directly with the Borg MOEA but both provide decision support model outputs of value

    A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate

    Get PDF
    Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Pump Scheduling for Optimised Energy Cost and Water Quality in Water Distribution Networks

    Get PDF
    Delivering water to customers in sufficient quantity and quality and at low cost is the main driver for many water utilities around the world. One way of working toward this goal is to optimize the operation of a water distribution system. This means scheduling the operation of pumps in a way that results in minimal cost of energy used. It is not an easy process due to nonlinearity of hydraulic system response to different schedules and complexity of water networks in general. This thesis reviewed over 250 papers about pump scheduling published in the last 5 decades. The review revealed that, despite a lot of good work done in the past, the existing pump scheduling methods have several drawbacks revolving mainly around the ability to find globally optimal pump schedules and in a computationally efficient manner whilst dealing with water quality and other complexities of large pipe networks. A new pump scheduling method, entitled iterative Extended Lexicographic Goal Programming (iELGP) method, is developed and presented in this thesis with aim to overcome above drawbacks. The pump scheduling problem is formulated and solved as an optimisation problem with objectives being the electricity cost and the water age (used as a surrogate for water quality). The developed pump scheduling method is general and can be applied to any water distribution network configuration. Moreover, the new method can optimize the operation of fixed and variable speed pumps. The new method was tested on three different case studies. Each case study has different topography, demand patterns, number of pumps and number of tanks. The objective in the first and second case studies is to minimise energy cost only, whereas in the third case study, energy cost and water age are minimized simultaneously. The results obtained by using the new method are compared with results obtained from other pump scheduling methods that were applied to the same case studies. The results obtained demonstrate that the iELGP method is capable of determining optimal, low cost pump schedules whilst trading-off energy costs and water quality. The optimal schedules can be generated in a computationally very efficient manner. Given this, the iELGP method has potential to be applied in real-time scheduling of pumps in larger water distribution networks and without the need to simplify the respective hydraulic models or replace these with surrogate models

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    Development and application of a framework for model structure evaluation in environmental modelling

    Get PDF
    In a fast developing world with an ever rising population, the pressures on our natural environment are continuously increasing, causing problems such as floods, water- and air pollution, droughts,... Insight in the driving mechanisms causing these threats is essential in order to properly mitigate these problems. During the last decades, mathematical models became an essential part of scientific research to better understand and predict natural phenomena. Notwithstanding the diversity of currently existing models and modelling frameworks, the identification of the most appropriate model structure for a given problem remains a research challenge. The latter is the main focus of this dissertation, which aims to improve current practices of model structure comparison and evaluation. This is done by making individual model decisions more transparent and explicitly testable. A diagnostic framework, focusing on a flexible and open model structure definition and specifying the requirements for future model developments, is described. Methods for model structure evaluation are documented, implemented, extended and applied on both respirometric and hydrological models. For the specific case of lumped hydrological models, the unity between apparently different models is illustrated. A schematic representation of these model structures provides a more transparent communication tool, while meeting the requirements of the diagnostic approach

    Real-time Control and Optimization of Water Supply and Distribution infrastructure

    Get PDF
    Across North America, water supply and distribution systems (WSDs) are controlled manually by operational staff - who place a heavy reliance on their experience and judgement when rendering operational decisions. These decisions range from scheduling the operation of pumps, valves and chemical dosing in the system. However, due to the uncertainty of demand, stringent water quality regulatory constraints, external forcing (cold/drought climates, fires, bursts) from the environment, and the non-stationarity of climate change, operators have the tendency to control their systems conservatively and reactively. WSDs that are operated in such fashion are said to be 'reactive' because: (i) the operators manually react to changes in the system behaviour, as measured by Supervisory Control and Data Acquisition (SCADA) systems; and (ii) are not always aware of any anomalies in the system until they are reported by consumers and authorities. The net result is that the overall operations of WSDs are suboptimal with respect to energy consumption, water losses, infrastructure damage and water quality. In this research, an intelligent platform, namely the Real-time Dynamically Dimensioned Scheduler (RT-DDS), is developed and quantitatively assessed for the proactive control and optimization of WSD operations. The RT-DDS platform was configured to solve a dynamic control problem at every timestep (hour) of the day. The control problem involved the minimization of energy costs (over the 24-hour period) by recommending 'near-optimal' pump schedules, while satisfying hydraulic reliability constraints. These constraints were predefined by operational staff and regulatory limits and define a tolerance band for pressure and storage levels across the WSD system. The RT-DDS platform includes three essential modules. The first module produces high-resolution forecasts of water demand via ensemble machine learning techniques. A water demand profile for the next 24-hours is predicted based on historical demand, ambient conditions (i.e. temperature, precipitation) and current calendar information. The predicted profile is then fed into the second module, which involves a simulation model of the WSD. The model is used to determine the hydraulic impacts of particular control settings. The results of the simulation model are used to guide the search strategy of the final module - a stochastic single solution optimization algorithm. The optimizer is parallelized for computational efficiency, such that the reporting frequency of the platform is within 15 minutes of execution time. The fidelity of the prediction engine of the RT-DDS platform was evaluated with an Advanced Metering Infrastructure (AMI) driven case study, whereby the short-term water consumption of the residential units in the city were predicted. A Multi-Layer Perceptron (MLP) model alongside ensemble-driven learning techniques (Random forests, Bagging trees and Boosted trees) were built, trained and validated as part of this research. A three-stage validation process was adopted to assess the replicative, predictive and structural validity of the models. Further, the models were assessed in their predictive capacity at two different spatial resolutions: at a single meter and at the city-level. While the models proved to have strong generalization capability, via good performance in the cross-validation testing, the models displayed slight biases when aiming to predict extreme peak events in the single meter dataset. It was concluded that the models performed far better with a lower spatial resolution (at the city or district level) whereby peak events are far more normalized. In general, the models demonstrated the capacity of using machine learning techniques in the context of short term water demand forecasting - particularly for real-time control and optimization. In determining the optimal representation of pump schedules for real-time optimization, multiple control variable formulations were assessed. These included binary control statuses and time-controlled triggers, whereby the pump schedule was represented as a sequence of on/off binary variables and active/idle discrete time periods, respectively. While the time controlled trigger representation systematically outperformed the binary representation in terms of computational efficiency, it was found that both formulations led to conditions whereby the system would violate the predefined maximum number of pump switches per calendar day. This occurred because at each timestep the control variable formulation was unaware of the previously elapsed pump switches in the subsequent hours. Violations in the maximum pump switch limits lead to transient instabilities and thus create hydraulically undesirable conditions. As such, a novel feedback architecture was proposed, such that at every timestep, the number of switches that had elapsed in the previous hours was explicitly encoded into the formulation. In this manner, the maximum number of switches per calendar day was never violated since the optimizer was aware of the current trajectory of the system. Using this novel formulation, daily energy cost savings of up to 25\% were achievable on an average day, leading to cost savings of over 2.3 million dollars over a ten-year period. Moreover, stable hydraulic conditions were produced in the system, thereby changing very little when compared to baseline operations in terms of quality of service and overall condition of assets
    corecore