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Summary

Mathematical modelling is an important activity in environmental science. Models

are used for understanding, prediction, design and optimization. A mathematical

model is always a simplified representation of the natural system it attempts to

describe. It represents the conceptual thinking about the system processes in a

mathematical formulation and translates this into programming code. Once a

suitable model has been identified, it becomes a powerful tool for both scientists

and engineers.

There is no such thing as the super-model, applicable to all situations. Nature

is a highly heterogeneous system, which requires a tailor-made description to be

effective. The appropriateness of a model structure needs to be sufficiently eval-

uated taking into account the modelling purpose and the available observational

data.

Determining a priori which model structure is most appropriate for a given model

application, is a challenging problem. This makes the identification of a suitable

model structure an iterative process. Each model structure represents a hypothesis

which can be confirmed or rejected by the available observations.

In contrast to this need for adaptation and flexibility, a culture of monolithic model

software applications with limited flexibility, is in place. The same legacy models

are used over and over again, which led to a vast ignorance among modellers with

regard to the appropriateness of the model structure as correct system represen-

tation. This resulted in a practice of model parameters fitting instead of model

structure identification.

Therefore, the aim of this dissertation is to propose and apply a framework for

improved model structure evaluation and identification. The proposed diagnostic

approach combines the flexibility to continuously adapt model structures with the

means to properly evaluate these alternative representations.

A wide range of existing software environments and frameworks already support

flexibility in the model development, but do not always support a rejection frame-

work. To support future research, a minimal set of requirements that needs to

be fulfilled is extracted from an analysis of existing tools: (1) the support to al-

xi



ternative representations of the considered processes, (2) the ability to construct

alternative configurations, (3) a clear separation between the mathematical and

computational model and (4) accessible and modular code implementations.

The model evaluation generalizes the idea of model calibration towards a combined

and iterative process of parameter and process (model structural) adaptation.

Practical identifiability, both in terms of parameters and model components, is the

guiding principle during the evaluation. This means that model structures should

contain influential parameters that are not cancelling each other out. In other

words, process descriptions should have a clear function that can be consistently

identified by the available observations.

The research objective of the modelling exercise needs to be clearly reflected in the

performance metrics on which the model structure is evaluated. The central role

these metrics have in any kind of model exercise is regularly ignored. The so-called

metric oriented approach accommodate the variety of modelling purposes and

provide a common denominator for many existing frameworks in literature.

The identification of parameters in complex models is supported by sensitivity

analysis. Different methods for sensitivity analysis are audited and implemented

as a modular and reusable set of functionalities to support the model evaluation

process. This provides a range of tools available to future modellers and initi-

ates tools that can be further developed by and for the environmental modelling

community.

In a first application, the identifiability and model calibration of a respirometric

model with an additional time-lag component is analysed using the generically

implemented tools. The analysis reveals that experimental data for which the

ratio between the added substrate and the biomass is high enough needs to be

available to properly identify the time-lag component. The appropriateness of the

model structure is confirmed and is in line with earlier studies, however subject to

the assumptions taken.

In the remainder of the dissertation, lumped hydrological models are studied,

describing the relationship between rainfall and runoff.

A first hydrological application studies an ensemble of hydrological model struc-

ture alternatives, representing different configurations of the already existing Ver-

algemeend Hydrologisch Model (VHM). Based on the observed runoff time series,

the differentiation of the model structures is not feasible using the chosen set of

performance metrics. A lack of parameter identifiability of the individual struc-

tures hampers the attribution of model performance to individual model decisions.

Hence, there is no added value of creating an ensemble of highly alike structures
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when the identifiability of the model structures is not guaranteed. The identifia-

bility of the individual model structures is a necessary condition to compare model

structural alternatives and evaluate the correctness of their system representation

(hypothesis) in terms of performance.

To enable the interpretation of the appropriateness of model structural decisions

when facing unidentifiability, a novel qualitative method for model component sen-

sitivity analysis is introduced. The method enables to make qualitative statements

about the relative influence of model structure components towards a chosen per-

formance metric. The application on the ensemble of model alternatives for the

case study of the Grote Nete indicated the need for more complexity in the model

structure when focusing on low flow conditions.

The last application seeks to diagnose structural errors in two existing lumped

hydrological models that are currently applied in operational water management

(PDM and NAM). To comply to the requirements of the diagnostic approach,

a conversion of both model structures is executed towards a system dynamics

representation. It enables the decoupling of the mathematical and computational

model and converts both models into a flexible entity supporting alternative model

structure configurations.

Besides the implementation in a flexible modelling environment, a standardised

matrix representation of lumped hydrological model structures is proposed. The

latter provides a common format to communicate about the applied model struc-

ture, supporting a reproducible scientific application of lumped hydrological mod-

els. The inspiration came from a related scientific field where this is commonly

applied and has proven extremely useful. This emphasises the multidisciplinary

nature of this work.

To identify the model deficiencies, the DYNamic Identifiability Approach (DYNIA)

is applied, a time-variant based method that screens the parameter identifiability

as a function of time. In general, similar model performances are observed. How-

ever, the model structures tend to behave differently in the course of time. Based

on the analyses performed, the probability based soil storage representation of the

PDM model outperformed the NAM structure.

In a concluding perspective, some suggestions for an improved development of

models and tools for model evaluation are given, based on the gained experiences.

In a personal visionary roadmap, the role that open science can have as the en-

gine for collaborative development in the environmental modelling community, is

stated.
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Samenvatting

Wiskundige modellering is een belangrijk onderdeel van de milieuwetenschappen.

Dergelijke modellen worden zowel gebruikt om inzicht te krijgen in een systeem,

om voorspellingen te maken en als ontwerp- en optimalisatietool. Een wiskundig

model is steeds een vereenvoudigde weergave van het natuurlijke systeem dat het

beschrijft. Het model is een conceptuele voorstelling van de systeemprocessen in

wiskundige vergelijkingen, die bovendien omgezet worden in programmeercode.

Eens een geschikt model opgesteld is, dan wordt het een krachtig hulpmiddel,

zowel voor wetenschappers als ingenieurs.

Er bestaat echter geen supermodel dat toepasbaar is in alle situaties. De natuur is

immers een uiterst heterogeen systeem, waardoor elke onderzoeksvraag nood heeft

aan een op maat gemaakte beschrijving. De geschiktheid van de gekozen model-

structuur moet voldoende geëvalueerd worden ten opzichte van het modelleerdoel

en de beschikbare geobserveerde data.

Het is een grote uitdaging om het meest geschikte model te vinden voor een gegeven

modelleringstoepassing. De identificatie van de geschikte modelstructuur is dan

ook een iteratief (aanpassings)proces. Elke mogelijke modelstructuur stelt slechts

één mogelijke hypothese voor en die kan door de beschikbare data bevestigd of

weerlegd worden.

Ondanks deze duidelijke nood aan flexibiliteit tijdens het opstellen van een model,

ontstond er een cultuur van monolithische softwaretoepassingen die slechts een

zeer beperkte flexibiliteit toelaten. Hierdoor worden steeds dezelfde welbekende

modellen gebruikt, zonder de geschiktheid van de modelstructuur als correcte sys-

teemvoorstelling te evalueren. Dit resulteert in een modelpraktijk van louter het

aanpassen van parameters in plaats van eerst de meest geschikte modelstructuur

te bepalen.

Het doel van dit proefschrift is dan ook om een raamwerk op te stellen voor een

verbeterde model evaluatie en identificatie. De voorgestelde diagnostische aanpak

combineert de flexibiliteit die toelaat om de modelstructuur continu aan te passen

en de technieken om de alternatieve modellen op een correcte manier te kunnen

evalueren.
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Hoewel flexibiliteit in de modelontwikkeling ondersteund wordt door een brede

waaier aan bestaande softwareomgevingen en raamwerken, wordt het zelden gekop-

peld aan de idee dat modelstructuren verworpen moeten kunnen worden op basis

van de beschikbare data. In de diagnostische aanpak worden de minimale vereisten

voor flexibele modelomgevingen beschreven: (1) het aanmoedigen van het gebruik

van alternatieve representaties, i.e. modelstructuren, van het systeem (2) de mo-

gelijkheid om nieuwe alternatieve representaties eenvoudig en transparant op te

stellen, (3) de aanwezigheid van een duidelijke scheiding tussen het wiskundige en

computationele model en (4) het gebruik van toegankelijke en modulaire imple-

mentaties.

De voorgestelde model evaluatie veralgemeent de idee van modelkalibratie (i.e. het

aanpassen van parameterwaarden) tot een gecombineerd en iteratief proces van

parameter én modelstructuur adaptatie. Praktische identificeerbaarheid, zowel

voor parameters als modelcomponenten, is de leidraad tijdens de evaluatie. Dit

betekent dat de modelstructuren parameters bevatten met een identificeerbaar

effect. Het effect van de parameters op de modeloutput mag elkaar immers niet

opheffen. Bovendien moet elke modelcomponent een duidelijk doel hebben dat

eenduidig vast te stellen is op basis van de beschikbare data en overeenkomstig de

conceptuele voorstelling.

De identificeerbaarheid van parameters in complexe modellen, wordt bepaald met

behulp van gevoeligheidsanalyse. In dit proefschrift worden verschillende metho-

des voor gevoeligheidsanalyse niet alleen uitvoerig en consistent beschreven, maar

ook gëımplementeerd als een modulaire en herbruikbare set aan functionaliteiten

om het modelevaluatieproces te ondersteunen. Om bruikbaar te zijn voor de ver-

scheidenheid aan modelleerdoelen, werd de implementatie zodanig ontworpen dat

de gebruiker op een eenvoudige en snelle wijze de verkozen evaluatiecriteria of

performantiecriteria kan opstellen. De implementatie stelt een waaier aan functi-

onaliteiten beschikbaar voor toekomstige modelleerders en kan verder ontwikkeld

worden voor én door de modelleergemeenschap van milieutoepassingen.

In een eerste toepassing van de aanpak, wordt de identificeerbaarheid en model-

kalibratie van een respirometermodel geanalyseerd met de beschikbare functiona-

liteiten. Het model bevat een vertragingscomponent om de vertraagde activiteit

van de biomassa te beschrijven. De analyse toont aan dat voor experimenten

waarbij de verhouding van het toegevoegde substraat tot de hoeveelheid biomassa

groot genoeg is, de identificatie van deze vertragingsfactor mogelijk maken. De

geschiktheid van de modelstructuur kan onder de genomen assumpties dus beves-

tigd worden.
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Verdere toepassingen in dit proefstuk zijn gericht op hydrologische modellen die

de ruimtelijke component niet in rekening brengen (geaggregeerd of lumped). Deze

modellen beschrijven het verband tussen enerzijds neerslag en anderzijds afstro-

ming (runoff).

Een eerste hydrologische toepassing bestudeert een reeks hydrologische model-

structuuralternatieven, gebaseerd op de verschillende configuraties van het reeds

bestaand Veralgemeend Hydrologisch Model (VHM). Op basis van de geobserveerde

runoff tijdsreeksen, is het onmogelijk een onderscheid te maken tussen de alter-

natieve modelstructuren op basis van de gekozen set van evaluatiecriteria. De

oorzaak van deze tekortkoming is waarschijnlijk het gebrek aan parameter iden-

tificeerbaarheid van de individuele modelstructuren, waardoor de performantie

van een modelstructuur niet eenduidig toegekend kan worden aan de individuele

modelcomponenten. Het heeft dus geen zin om een reeks aan zeer gelijkaardige

modelstructuren op te stellen als de identificeerbaarheid ervan niet gegarandeerd

wordt. Deze identificeerbaarheid blijkt een belangrijke voorwaarde om modelstruc-

tuuralternatieven op basis van hun performantie te kunnen onderscheiden.

Om ondanks identificeerbaarheidsproblemen, toch een uitspraak te kunnen doen

over de geschiktheid van modelcomponenten, wordt een kwalitatieve methode voor

sensitiviteitsanalyse voorgesteld, gericht op modelcomponenten. De vooropgestelde

methode maakt het mogelijk om de relatieve invloed van de verschillende model-

componenten op de verkozen evaluatiecrieteria weer te geven. De toepassing van

deze methode op de reeks aan modelstructuren van het VHM leidt tot concrete

voorstellen voor modelstructuuradaptatie, zoals de noodzaak tot een complexere

modelstructuur om condities waarin weinig water door de riviers stroomt goed te

kunnen modelleren.

In de laatste toepassing in dit proefwerk worden twee bestaande lumped hydro-

logische modellen (PDM en NAM), die in het huidige operationele waterbeheer

gebruikt worden, onderzocht met als doel structurele fouten op te sporen. Om

overeenkomstig de diagnostische aanpak te handelen, worden beide modelstruc-

turen omgezet in een systeemdynamische voorstelling. Deze aanpassing ontkoppelt

het wiskundige en computationele model en zorgt voor een flexibele implementatie

die het gebruik van alternatieve modelstructuren ondersteunt.

Vervolgens wordt een gestandaardiseerde matrixvoorstelling voor lumped hydro-

logische modellen voorgelegd en toegepast op ondermeer PDM en NAM. Deze

matrixvoorstelling zorgt voor een eenduidige voorstelling van in de literatuur

beschikbare modellen. Hierdoor wordt de communicatie rond modelstructuren

vereenvoudigd en wordt een belangrijke stap gezet in de richting van reproduceer-
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baarheid omtrent modelstudies uitgevoerd op basis van lumped hydrologische mo-

dellen.

Om vervolgens de modeltekortkomingen van NAM en PDM op te sporen, wordt de

DYNamic Identifiability Approach (DYNIA) toegepast. In deze methode wordt

de parameter identificeerbaarheid nagegaan op de verschillende tijdstippen van

de simulatie. In het algemeen, vertonen beide modellen een vergelijkbare perfor-

mantie. Toch blijkt uit de uitgevoerde analyses dat de modelstructuren zich anders

gedragen op verschillende tijdstippen. Er kan gesteld worden dat de op probabili-

teiten gebaseerde bodemopslagvoorstelling van het PDM model, het NAM model

overklast voor de specifieke toepassing.

In de afsluitende perspectieven worden vanuit de eigen ervaring rond de ontwikke-

ling van modellen en tools voor modelevaluatie, enkele suggesties gedaan ter ver-

betering. Een visie wordt geschetst van hoe open wetenschap de drijvende kracht

kan vormen voor een gezamenlijke ontwikkeling in de modelleringswereld.
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PART I
INTRODUCTION





CHAPTER 1
Problem statement, objectives

and outline

In a fast developing world with an ever rising population, the pressure on our

natural environment is continuously increasing. The growing world population as-

sociated with an expanding industrial activity, intensified agriculture and increased

competition for land and resources is causing multiple environmental issues.

The large variety in environmental issues resulted in a wide range of scientific

disciplines focussing on different components of the natural environment and en-

vironmental technologies. Notwithstanding the huge differences amongst the en-

vironmentally oriented research disciplines and their respective focus, modelling

has become an important activity in environmental science in general. Models are

used for understanding, prediction, design and optimization.

As one of the above mentioned environmental issues, our natural water resources

are under stress, leading to a poor water quality of streams, rivers, lakes and seas.

Besides, both water scarcity and floods threaten humans all over the planet. The

specific reasons and mechanisms causing these threats differ amongst different

spatial and temporal scales and as such, insight in the driving mechanisms is

essential in order to mitigate these problems. During the last decades, a model-

based approach has become an essential part of scientific research in continuous

interaction with the increased capabilities of measurement devices.

A (mathematical) model is understood as a simplified representation of the natu-

ral system it attempts to describe (Refsgaard, 2004; Gupta et al., 2008). As such,

it represents the conceptual thinking about the system functioning in a mathe-

matical formulation and translates this into programming code. In other words,
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the implemented model can be regarded as a set of hypotheses of the underlying

mechanisms, which can be either confirmed (or at least considered reliable) or

rather falsified based on the ability to correspond to real-world observations (i.e.

data).

The real-world is a highly diverse system that is studied at a huge range of both

temporal and spatial scales. Different research questions require an alternative

focus on a specific segment of the environmental system, leading to different mech-

anisms to conceptualize and describe. In this respect, the highly heterogeneous

environmental systems request for a tailor-made approach to be effective. In other

words, there is no such thing as the super-model or one-fits-all model. On the

contrary, considering the conceptual properties of a model, a set of potentially

suitable models for each problem at hand do exist and some of them will be fit for

purpose.

This leads to two main challenges. First, the capacity of building and imple-

menting different models that possibly are suitable and fit for purpose. Secondly,

the ability to test, compare and diagnose these implemented models in order to

evaluate the properties and performance of the individual model structures and

to come up with an appropriate model (and eventually, an ensemble of models)

supported by the available real-world observations. As one can expect, this will be

an iterative process, since failure of each of the proposed models will lead to new

proposals based on the learned shortcomings. To make this useful to practitioners,

this learning process needs to be transparent, fast and usable.

Progression has been made with respect to these two challenges. A plethora of

models and modelling frameworks to construct models exists in all sub-fields of en-

vironmental science. Moreover, a wide range of methodologies has been developed

to evaluate model performance. With an ever increasing computational capacity,

this leads to enormous opportunities. However, at the same time a huge conser-

vatism and default-settings practice does exist in the application of model-based

analysis in contradiction to the required tailor-made approach. When it comes to

practical applications, the same legacy models are used over and over again (1) ig-

noring their uselessness/usefulness, (2) using the same (rather minimalistic) model

evaluation criteria and (3) only reporting positively about the obtained modelling

results. This painfully demonstrates the gap between modelling community com-

mon practice and potential best practices. The lack of accessibility and portability,

the closed source nature of many modelling software platforms, the lack of pro-

gramming skills of environmental engineers, ignorance or sheer protectionism are

just some of the reasons preserving that gap, despite many well-intentioned initia-

tives.
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This dissertation is not claiming to overcome this gap, but rather explores the

possibilities on how to improve current model-based analysis. As such, it does

not provide a classical research hypothesis driven insight or an application driven

narrative, but rather a methodological exploration illustrated on specific applica-

tions. By accepting the method of multiple working hypotheses (Chamberlin, 1965;

Kavetski and Fenicia, 2011) and by applying model-based analysis as a learning

by failure approach (Beven et al., 2007), it is aimed to provide response to current

model parameter fitting practices commonly encountered. This approach requires

a flexible implementation of model structures and diagnostic techniques for model

structure evaluation. The dissertation aims to develop methodologies which should

pave the way to an improved model diagnostic approach and more reliable models,

within a more transparent and reproducible scientific practice.

1.1 Problem statement

An imbalance exists between the scientific research on the identification of an ap-

propriate model structure, compared to the applications of model analysis method-

ologies on an already predefined model structure. Figure 1.1 illustrates this imbal-

ance by showing the relative amount of papers in Web of Science resulting from

a search on the defined term as topic. Results were restricted to the research ar-

eas ‘Water resources’ and ‘Environmental sciences/Ecology’. Only around 11% of

the papers are handling one of the topics ‘model identification’, ‘model discrimi-

nation’, ‘model selection’ or ‘structure characterisation’, whereas 44% are about

‘sensitivity analysis’, 13% about ‘uncertainty analysis’ and 32% about the topic of

model calibration. The latter is an aggregation of the counts on the search term

‘model calibration’ itself and results provided by the search terms ‘parameter op-

timization’, ‘parameter estimation’ or ‘inverse modelling’.

Notwithstanding the diversity of currently existing models and modelling frame-

works, the identification of the most appropriate model structure for a

given problem remains an outstanding research challenge. Model struc-

ture evaluation based on aggregated performance measures do provide a general

assessment about the goodness of fit, but do not provide information about why a

particular model structure performs better or worse. Tools and sound procedures

to diagnose a model structure in order to identify deficiencies are clearly under-

represented in literature. Note that the state of development can be very different

in various fields. Exchange of methods and procedures between disciplines is also

relatively limited.
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Figure 1.1: Treemap visualisation of the relative amount of papers (repre-

sented by the area in the graph) enlisted by Web of Science when querying

for the specified search term as topic for the research paper within the re-

search areas ‘Water resources’and ‘Environmental sciences/Ecology’on the

entire historical database.

1.2 Research objectives

In view of the problem stated above, the general aim of the dissertation is to

improve current practice of model structure comparison and evaluation

by making individual model decisions explicitly testable. To achieve this,

the following sub-objectives were defined, thematically divided into 4 main themes

(the objectives are numbered and tagged according to the specific theme):

1. Definition of a diagnostic approach (D), supporting an improved model

structure evaluation
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� Objective D.1: Obtain insight in the current lack of coherence within

the field of environmental modelling, leading to conservative practices.

The rather limited research towards model structure identification in

contrast to the numerous work reporting the application and calibration

of existing model structures, is apparent. Instead of questioning the

model structure itself, the model is recycled to address new problems

by tuning the parameters only. The aim is to understand the driving

factors triggering this evolution.

� Objective D.2: Define the requirements of an improved diagnostic

approach for model-based analysis.

Based on the insight provided by Objective D.1, the aim is to propose an

alternative general diagnostic framework for model structure evaluation.

2. Improve current practice in terms of model evaluation tools (E)

� Objective E.1: Propose a metric oriented approach as a common de-

nominator for the current plethora of existing model evaluation tools.

A wide set of methodologies for model analysis does already exist and

numerous procedures are described in literature. Notwithstanding the

diversity of existing methods, the aim is to find the common building

blocks of these methods and illustrate how the chosen metric is the

central element in most of these methods.

� Objective E.2: Facilitate the application of sensitivity analysis for

model evaluation by providing an open and extensible implementation

Implementations for performing sensitivity analysis are scattered, not

provided together with publications, poorly documented and diverse in

the algorithmic choices. The aim is to provide an implementation of

some existing methods for sensitivity analysis that is open, extensible

and accommodated with documentation of the code.

3. Improve current practice in terms of model structure development (S)

� Objective S.1: Define a general set of requirements for model struc-

ture development that supports model structure evaluation

Providing alternative model structure configurations is supported by

modelling environments that provide flexible model development. Still,

this does not automatically mean they support the diagnostic approach

proposed in this dissertation. The aim is to define the minimal require-
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ments for (flexible) modelling environments to support the diagnostic

approach.

� Objective S.2: Development of an implementation independent and

standardised model structure description for hydrological models, ma-

king communication about hydrological model structures explicit and

transparent.

Lumped hydrological rainfall runoff models are a group of environmen-

tal models that are well-known, for both prediction (e.g. flood events)

as well as integrated modelling applications. In essence, this group of

models can be conceived as a set of ordinary differential equations, re-

presenting the mass balances of interlinked reservoirs. Whereas this

supports maximal flexibility, the reporting in literature is mostly speci-

fying one specific model configuration, represented by an acronym. The

latter does not support a clear and transparent communication of the

applied model structure, making comparison cumbersome. The aim is

to overcome this issue by providing a summarized matrix representation

of a lumped hydrological model.

4. Apply and extend (A) the current set of model evaluation tools to support

the evaluation of individual model decisions

� Objective A.1: Illustrate the metric oriented approach by performing

an identifiability analysis on a respirometric model.

To illustrate the idea of a metric oriented approach, a respirometric

model is used to check the identifiability of the parameters and perform

a calibration to real-world observations.

� Objective A.2: Assess the usefulness of parameter optimization to

differentiate model structure decisions within a flexible model environ-

ment.

When seeking an optimal model structure amongst an ensemble of mod-

els, the most straightforward option is to define a set of performance

metrics and compare the metrics among the members of the ensem-

ble, choosing the best performing one. The question now arises, if

this approach could be used to differentiate between the members of

a flexible model environment, where these members do have common

components. The aim is to check the difference in performance for an

ensemble of model structures derived from the Veralgemeend Hydrolo-

gisch Model (VHM), a lumped hydrological model.
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� Objective A.3: Extend current sensitivity analysis to reveal the effect

of changes in the model structure and evaluate specific model structure

decisions

A performance metric on itself does not directly provide information

about why a certain model structure is better or worse. In order to

gain insight in the reasons why a model structure is performing well

and link it to individual model processes (components), alternative in-

formation is sought. Sensitivity analysis is a well known technique to

link the influence of model parameters with the predicted output, but

it does not provide information about the influence of individual model

components. The aim is to extend the usage of sensitivity analysis to

the level of model components in order to derive information about the

usefulness of model components for a specified model objective.

� Objective A.4: Use a time-variant based evaluation of model struc-

tures to identify model structure deficiencies.

Within a model structure definition, model parameters are supposed to

have constant values (within some uncertain ranges). Parameter values

that should be changed in function of time to properly represent the

observations, indicate a missing aspect in the model formulation. Start-

ing from this idea, the aim is to identify model deficiencies by actively

allowing the parameters to vary in function of time.

1.3 A road-map through this dissertation

The dissertation consists of one introductory part (Part I), three main parts (Parts

II to IV) and a concluding Epilogue. The different parts are composed of several

chapters. This structure, as well as the interdependencies of the Parts and chapters

is visualized in Figure 1.2 and briefly discussed here.

Part I: The diagnostic framework

Chapter 2 provides a more elaborate insight into the central problem statement

of the dissertation, providing an answer to objective D.1 by identifying and

describing some main drivers leading to the conservative practice of model fitting

as parameter tuning instead of model structure identification.
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Figure 1.2: Roadmap of the dissertation, providing the interrelations in

between the different chapters.

Starting from these observations, an alternative general framework is proposed in

chapter 2 that provides the conditions to overcome this conservatism as defined

by objective D.2. In the last section of chapter 2, the necessary requirements for

flexible model environments to accommodate the diagnostic approach are discussed

as part of the diagnostic approach, answering objective S.1.

Part I provides a methodological background based on literature study and should

be regarded as the general setting in which the remainder of the dissertation is

embedded. Any type of reader is encouraged to read this part. For experienced

modellers, it provides a critical reflection on the current practice and how this

could be altered, whereas it can help newbie modellers in better understanding

the iterative cycle of a model based analysis.
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Part II: Model diagnostic tools

Part II consists of chapter 3, 4 and 5 and focuses on tools for model analysis and

evaluation. Chapter 3 starts from the observation that many methodologies exist

in parallel, but actually rely on a set of common building blocks due to the char-

acteristics of environmental models. Instead of focusing on specific algorithms,

the chapter deals with objective E.1 by putting the choice and construction of

the metric central. The chapter can be regarded as a general literature overview

of existing tools for model evaluation from the point of view of metric construc-

tion, without going into detail on specific algorithms. To illustrate the metric

oriented approach (objective A.1), a first case study on a respirometric model is

performed in chapter 4. The chapter illustrates how complementary information

can be extracted by using different aggregated (performance) metrics of the model

output.

Next, a detailed description on a subset of methods is provided in chapter 5, with

particular focus on sensitivity analysis. The latter enables to verify the influence

of input factors (e.g. parameters) with respect to the modelled output, which

is of particular interest to assess model structure behaviour. To overcome the

lack of code documentation and transparency of existing implementations, the

implemented methods were collected in a Python package, called pystran. This

facilitates the future application and extension of methods for sensitivity analysis,

as defined by objective E.2.

Chapter 5 provides the theoretical background and describes in detail the func-

tioning of the implementations of pystran. Some of the methods are used in the

subsequent parts of the dissertation, but readers familiar with these well-known

methods could safely skip this chapter. Readers who are using the Python imple-

mentation will value this chapter to get more insight in the theoretical background

of the implementations. For the source code documentation, the reader is referred

to the online documentation1.

Part III: Comparison of hydrological model structure alternatives

The abilities for model identification within a flexible modelling environment are

investigated for a particular hydrological model, called VHM. In chapter 6, a lim-

ited set of alternative representations of VHM is presented by adapting the origi-

nal model structure. The resulting model structures are considered as alternative

1http://stijnvanhoey.github.io/pystran/

http://stijnvanhoey.github.io/pystran/
http://stijnvanhoey.github.io/pystran/
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system representations of the study catchment and this set of model structures

provide the experimental conditions for chapter 7 and chapter 8.

Chapter 7 compares these model structures in terms of their performance, hereby

addressing objective A.2. Furthermore, to extract information about model

structure decisions within the ensemble independent from an optimized parameter

set, chapter 8 aims to extend the classical usage of sensitivity analysis. Instead of

evaluating the effect of parameters on the model output, the effect of individual

model structural decisions is assessed to meet objective A.3.

Overall, the lack of identifiability of the individual model structures, the related

impossibility to distinguish the model structures and the difficulty to properly

distinguish the mathematical and computational model for the set of model alter-

natives provided by VHM, lead to the objectives dealt with in the last part of the

dissertation.

Part IV: Diagnosing structural errors in lumped hydrological
models

Chapter 9, addresses objective S.2, striving to provide an implementation inde-

pendent way to communicate about model structures that fulfil the requirements

as defined by objective S.1. The matrix representation proposed is inspired by

its use in other scientific fields and adopted to enable the description of a wide

range of lumped hydrological models.

The identification of model deficiencies is an essential step to propose model adap-

tations. Chapter 10 focuses on two specific lumped hydrological models that are

commonly used in operational water management in Flanders. It seeks to meet ob-

jective A.4, a time-variant model structure evaluation. The evaluation is based

on a time variant investigation of the model structures and screens the parameter

sensitivity and identifiability as a function of time.

Epilogue: Conclusions and perspectives

In a closing Epilogue, the main conclusions of this dissertation are provided in

chapter 11. Some personal reflections and perspectives are summarised in chap-

ter 12, framing the necessary further steps in terms of model development and

diagnostic tools in the context of reproducible and open research.



CHAPTER 2
Towards a diagnostic approach

in environmental modelling

2.1 Introduction

When explaining processes and phenomena of nature, scientists make observa-

tions or collect experimental data, after which patterns and regularities are sought,

mostly supported by statistical analysis. However, statistical correlations on their

own do not constitute understanding, neither causality (this does not mean that a

correlative diagnostic cannot provide system understanding (Gupta et al., 2008)).

When underlying principles can be identified from which an explanation of the

observed patterns and regularities can be derived, this leads to the formulation of

a scientific theory capable of making predictions (Shou et al., 2015).

A (mathematical) model structure is in essence one way of formulating such a

scientific theory, which can be adapted, extended or falsified by new observations.

In essence, all environmental models represent simplified representations of the

real world, so proper evaluation and testing is essential (Kavetski and Fenicia,

2011).

Environmental modelling embrace a wide range of scientific fields, which is also

reflected in the range of existing model types, going from pure data-based models

(essentially linear regression is a data-based model) to detailed models describing

complex systems with all its interactions.
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In this chapter, first, the type of model representation applied in this dissertation

is introduced along with some essential concepts of modelling literature to set the

stage. Subsequently, current pitfalls of environmental modelling are identified and

discussed. They provide the motivation to the proposal of a diagnostic framework,

which is explained in the last section of this chapter.

The aim of this chapter is also to provide some clarification in the wide diversity

of nomenclature and terminology used in environmental modelling. It does not

have the ambition to provide a full overview, but assists in understanding and

contextualizing some central issues to support future modellers.

2.2 Mathematical model representation

Any model representation starts with the delineation of a system together with

the system boundaries for which the model applies. The term system can be

interpreted widely (Meadows, 2009). It is any entity in which variables of different

kinds interact and produce observable signals. The defined domain of the system is

a direct function of the research question. It can represent a lab-controlled system

(e.g. bio-reactor), a specific element of the environment (e.g. soil compartment,

river stretch), an environmental entity (e.g. catchment, habitat). . .

In environmental science, continuous (in both space and time) aspects of sys-

tems are usually studied, and for complex systems traditional, equation-based

approaches are typically most convenient (Claeys, 2008). Hence, focus of this

dissertation is specifically on continuous dynamical systems described by deter-

ministic models in the form of a set of (possibly mixed) differential and algebraic

equations, using the following notations (Donckels, 2009):

dx(t)

dt
= f(x(t),yt,in(t),θ, t); x(t0) = x0 (2.1)

ŷ = g(x(t),yt,in(t),θ, t) (2.2)

with x representing a vector of time-dependent (internal) state variables, θ the

vector of k model parameters, yt,in a set of forcing variables (in system dynamics

regularly expressed as forcing u) and ŷ represents a vector of observed response

variables that are function of the state variables x. The algebraic part of the model

can be interpreted as a set of derived variables as well as any kind of aggregation

function applied on the model state variables, both referred to as the variables of
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interest. Hence, g can also simply act as a selector, selecting those (internal) state

variables that are actually observed (section 3.3).

All the variables are functions of time t. The system boundaries for which the

model is developed are chosen in function of the research objective while taking

into account that the fluxes through the boundaries of the defined system, i.e.

forcing variables yt,in, can be easily quantified (as far as possible).

A model simulation is the act of solving the model for a given set of model param-

eters, initial values x0 and specified forcing variables. In many cases, solving the

mathematical model is not feasible analytically and the application of numerical

techniques (solvers) is required (Donckels, 2009).

Since environmental systems are poorly defined, the investigator is ignorant of the

‘real’ structure and the (non-linear) relationships in between the system variables

are unknown (model structural uncertainty). Moreover, available observations are

always corrupted to some perspective (data uncertainty) and in many cases insuffi-

cient to identify the required model structure (i.e. set of equations) unambiguously.

Considering these uncertainties, the task of developing a proper model structure

is challenging and of vital importance. In essence, all environmental models rep-

resent simplified hypotheses of the real world functioning and these hypotheses

require rigorous construction, implementation, evaluation and testing.

2.3 Model structure identification

The task of defining a proper model structure for the problem at hand has been

referred to as a challenging problem in the previous section. Different sources in

literature provide guidelines and suggestions about the process of model building

(Dochain and Vanrolleghem, 2001; Sivapalan et al., 2003; Refsgaard, 2004; Gupta

et al., 2008; Fenicia, 2008; Gupta et al., 2012).

There is no agreement on an existing general framework for model building and

there is no consensus on the steps to undertake. However, three important stages

(levels) can be identified. A first stage is the translation of the real system to an

abstract representation of how the system is interpreted, referred to as the con-

ceptual model:

Definition 2.1. A conceptual model is the abstract representation of a real sys-

tem as a set of interacting processes by the ideas on its constituents and functional

relationships
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Some authors make a further distinction in between perceptual and conceptual

models (Beven, 2000; Fenicia, 2008), but this merely obscures the terminology

(Gupta et al., 2012).

Hence, in contrast to purely data-based approaches, the model development is

imposed by prior knowledge (or hypotheses) about the system studied. A second

important stage is the translation of the conceptual model into a mathematical

model, as represented by Equation 2.1 and defined as (after Kavetski and Clark

(2011)):

Definition 2.2. A mathematical model defines the set of initial and boundary

conditions of the system, the forcing and response variables, the parameters and

the equations to represent the processes defined by the conceptual model

It is important to discriminate the mathematical model from a third stage which

is the computational model, defined as follows:

Definition 2.3. A computational model is the computational implementation

of the mathematical model, specifying the numerical or analytical formulation used

to solve the governing model equations.

The three stages above do not directly link to a consecutive set of actions or

unilateral workflow, but are part of a continuous iterative process of adap-

tation (Carstensen et al., 1997; Dochain and Vanrolleghem, 2001). Any kind of

model evaluation can drive this iterative process towards an adapted (improved)

representation (i.e. hypotheses). Hence, model evaluation can be regarded as a

comprehensive term for modelling techniques that provide insight about the model

and its performance.

The included model parameters are generally not directly known and need to be

adapted to improve the alignment of the model and the observations. Hence,

model calibration is an essential part of the evaluation process and is defined as

follows:

Definition 2.4. Model calibration is the adjustment of parameter values that

lead to an improved agreement of model results with observed data in which the

agreement is expressed in any kind of qualitative and/or quantative metric.

The ultimate aim of the iterative learning cycle is to identify a model structure

that can be successfully applied, so the overall process is also referred to as model

identification (Dochain and Vanrolleghem, 2001):
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Definition 2.5. The goal of model identification is to find and calibrate a model

for the system under investigation that is adequate for the intended purpose

This definition takes also into account the selection in between different model

structures. Model selection (Dochain and Vanrolleghem (2001) also call this struc-

ture characterisation) follows from the situation in which it is very difficult or

even impossible to further discriminate among a set of model structures using

the available observations (hydrologists like to refer to equifinality (Beven, 2006)).

Techniques to design new experiments to facilitate this discrimination are referred

to as Optimal Experimental Design (OED) for model discrimination (Donckels,

2009; Asprey and Macchietto, 2000). However, as many environmental systems

cannot be controlled, this is not always feasible and one has to work with the

available observations. Furthermore, system identification is the term that has

been used in the control community, which can be more regarded as a purely data

driven approach where focus is on the fit itself (independent from how it has been

achieved).

2.3.1 Top-down versus bottom-up

The model development approach of this dissertation is made by explicitly con-

sidering a conceptual representation (hypothesis of the system), which is not used

in a data driven (machine learning) approach.

The distinction is not always so clear and provokes lots of discussion (Sivapalan

et al., 2003; Kavetski and Fenicia, 2011; Beven, 2002; Fenicia, 2008; Sivakumar,

2004; Refsgaard, 2004). The underlying methodology for model construction is

also divided in between a deductive approach (also referred as upward, bottom-up

or reductionist approach, theoretical, mechanistic, white box) and an inductive

approach (or top-down, downward, data-driven, empirical, black box).

However, most models in environmental science (ecological, water quality, hydro-

logical. . . ) are a mixture of empirical and physical descriptions describing different

subphenomena (i.e. process descriptions). As such, most (if not all) models are

grey-box models, representing different processes and their interconnections. Em-

pirical relationships (miniature data-driven models) for individual processes have

always been used and are (deeply) nested into a wide range of ‘physically based’

environmental models (Sivapalan et al., 2003). By accepting this as common, the

communication would be less scattered and obscure.

The conceptual representation of the system is represented by a set of interacting

processes (see Definition 2.1). First of all, there is no reason to make statements
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about physically based or empirical on a model structure level, only on the process

level. Secondly, throughout time, the process description can be altered from an

empirical relation towards a physical representation when more information (data

and/or knowledge) is available. The latter consists of a set of process descrip-

tions, making it a hierarchical set of empirical and physical processes. Therefore,

the term (hierarchical) process based approach is used to define this type of

modelling. It distinguishes itself from a pure data-driven approach by the explicit

consideration of interacting processes (hypothesis), without making statements

about ‘physical’ or ‘empirical’ of the individual process descriptions.

2.3.2 Model validation

Both in terms of model calibration and model identification, the issue of sufficiency

and adequacy arises. In other words, when is a model calibrated?, respectively,

when is the model appropriate? At a certain point, the proposed model is validated,

either leading to the conclusion that the provided model is fit for the purpose and

accepted as such, or improvement is needed. However, this is not different from

the model identification process itself. Model validation is however different as it

is mostly linked with the evaluation of the model to an independent (new) set

of observations, not used in the identification process.

The most well-known practice is a split-sample approach, dividing the observa-

tion in a set for model identification and a set for validation. When the model

performance declines profoundly when moving to the validation set, an indication

is given about the malfunctioning of the model structure. The predictive capa-

bility of a model must be evaluated against independent data (Refsgaard, 2004).

Still, a model rejection definition is needed with respect to the independent set

of observations. Actually, the question when is the model appropriate? is only

passed on. The decision is generally based on expert-judgement, i.e. subjective

(giving rise to typical statements like: in general, the model fits the data well).

Formal definitions are not widespread in literature. Abbaspour (2005) defines a

combined parameter-estimation and uncertainty definition for adequate calibra-

tion. However, both are very dependent on the used methodology and its related

assumptions (Cierkens et al., 2012), making it subjective as well.

Model validation is subject to discussion as well (Dochain and Vanrolleghem, 2001;

Oreskes et al., 1994; Konikow and Bredehoeft, 1992; Refsgaard, 2004). The main

argument defines that a hypothesis (in this case a model representation as hypo-

thesis) can never be proven to be generally valid, but may in contrary be falsified

by just one example (Oreskes et al., 1994). For example, regardless of how often
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we see a white swan, we cannot conclude that all swans are white. However, a

single observation of a blue swan would lead to the rejection of this hypothesis,

i.e. it can be falsified (Wagener et al. (2001b) according to Magee (1973)). This

directly refers to statistical testing and the falsification idea of Popper (1959)(sec-

tion 2.5.1).

Models are indeed only representations, useful for guiding further study but not

susceptible to proof. Still, one can evaluate whether it is appropriate for its in-

tended purpose (engineering approach) (Kuczera et al., 2010). This means a model

needs to be tested for tasks it is specifically intended for and should only be used

with respect to outputs that have been explicitly validated (Refsgaard, 2004).

Therefore, transparency in the evaluation process is essential.

Finally, validation is sometimes also called verification. However, the latter gen-

erally refers to checking the implementation of the model and necessary numerics,

i.e. the computational model (Refsgaard, 2004).

2.3.3 Identifiability

Within the process of model identification, a main indicator for model deficiency

is the inability to find a unique parameter combination that is able to describe

the data most appropriately. A lack of identifiability can be related to the model

structure itself (structural identifiability) or to the quantity and quality of the

experimental data (practical identifiability) (Vanrolleghem et al., 1995):

� Structural identifiability of a model structure is examined under the as-

sumption that perfect or error-free measurements are available for the re-

sponse variables and is purely based on the mathematical model itself.

� Practical identifiability determines whether the available data is suffi-

ciently informative to identify the model parameters. It investigates if the

available observations are informative enough to give the parameters unique

and accurate values.

A parameter that is practically identifiable is also structurally identifiable but not

vice versa. For linear models, the derivation of structural identifiability is well-

developed and a variety of methods do exist. However, for non-linear models, the

application is less straightforward and requires direct manipulation of the mathe-

matical model by symbolic software, which is not so feasible in many environmental

applications (section 2.4.4) (Dochain and Vanrolleghem, 2001).
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Hence, the determination of the practical identifiability is essential. The iden-

tifiability can be quantified in different ways, but measures generally consist of

an evaluation of the sensitivity of the output to the parameter and on the

dependency of the parameter on other parameters, i.e. interaction (De Pauw

et al., 2008). A model parameter that is highly influential towards the model

output and which effect is not cancelled out by the effect of changes of other

parameters can be regarded as identifiable.

At the same time, it clarifies the need for sufficient data because data provides

the dynamic conditions for the simulation on which the identifiability analysis is

performed. Data availability when parameters are not influential does not provide

any added value. In other words, adding complexity to a model structure without

the data to identify the parameters does not make sense. From this, the applica-

tion of OED originates, proposing new experiments to increase the identifiability

(Donckels, 2009).

2.4 Conservatism in environmental modelling

Modelling is a multi-disciplinary field, confronting the knowledge of environmen-

tal processes with sub-domains of mathematics and computer science. However,

environmental scientists are mostly not trained in computational or mathematical

science and have typically an environmental domain specific background. Hence,

the adaptation of modelling concepts is sometimes very fragmented and ad-hoc.

Specific modelling methodologies are favoured within scientific fields, mainly be-

cause of being most appropriate, but regularly just pure out of conservatism,

tradition and ad hoc training.

Notwithstanding the in general common mathematical blueprint (Equation 2.1), a

sprawl of modelling environments, technologies and practices are communicated,

giving rise to a lack of coherence in the scientific modelling field. In addition,

terminology amongst disciplines is different, causing barriers for interdisciplinary

exchange. This hampers researchers in the selection of the methodologies and is

obscuring the interpretation of the individual methodologies (Carstensen et al.,

1997; Montanari, 2007; Refsgaard, 2004). However, when focusing on the litera-

ture, a lot of similarities can be identified amongst them (section 3.2).

Furthermore, notwithstanding the continuous progression that is made in all of

the scientific fields, the adaptation towards new technologies is hampered. Prac-

titioners are not able to easily employ new technologies, leading to conservative

practices.
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In this section, some major issues of conservatism within the environmental field

are identified and discussed to gain more understanding. This will enable the pro-

posal of an alternative approach that can support the transition towards more in-

tegrated and adaptive modelling practices amongst different scientific fields.

2.4.1 Incoherent terminology

As illustrated in section 2.3 (a sigh of desperation while reading that set of def-

initions and terminology, is completely acceptable), the usage of the same mod-

elling terminology is not agreed upon between communities and even not within

model communities. Different authors highlight the lack of coherency and clarity

in modelling terminology (Montanari, 2007; Carstensen et al., 1997; Refsgaard,

2004; Gupta et al., 2012; Sivakumar, 2008). This hampers the communication and

leads to misunderstanding which can result in wrong expectations and undermines

the confidence of stakeholders. Too strict modelling guidelines can lead to a lim-

itation of the scientific progress, but it is important for practitioners to transfer

scientific good practices.

Montanari (2007) also refers to this lack of a systematic approach, limiting the sci-

entific transfer. However, as stated by Refsgaard (2004), the confusion on termino-

logy and the lack of common terminology itself is one of the reasons hampering the

establishment of generally acceptable modelling guidelines. Model calibration, an

essential step in model development (section 2.3), is a well understandable exam-

ple. Amongst different communities, the adjustment of parameter values in order

to improve the model fit using a specific data set, is known. However, depend-

ing on the specific research field, this is referred as model optimization, parameter

calibration, model calibration, inverse modelling, parameterization or parameter

estimation.

An extensive glossary of modelling terminology was provided by Carstensen et al.

(1997) within the water quality community and a comprehensive terminology for

model credibility was presented by Schlesinger et al. (1979) as a report to the gen-

eral membership of the Society for Modeling & Simulation International. However,

these are just two of the many societies active in modelling (cfr. International Wa-

ter Association (IWA), European Geoscience Union (EGU) amongst others). The

coverage and comparison of model adequacy testing among the groundwater, un-

saturated zone, terrestrial hydrometeorology, and surface water communities is

seldom seen (Gupta et al., 2012). A good glossary of modelling terminology is

provided by Carstensen et al. (1997) and later published in Dochain and Vanrol-

leghem (2001).
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Claeys (2008) distinguishes in between sub-domains of environmental science that

can be considered as mature, accepting a set of methodologies and standardized

models and sub-domains that lack this consistency and lingua france, having a long

way towards consolidation of ideas and procedures. In this respect water quality

management is considered mature, accepting standards (cfr. the Activated Sludge

Model (ASM) series and River Water Quality Model (RWQM) (Claeys, 2008))

and providing good modelling practice manuals as an outcome of IWA community

specialist groups. On the other hand, the hydrological domain does have some

widely used models, but no general accepted guidelines or procedures. However,

it can be doubted if this is only a growing process towards maturity or rather the

inherent characteristics on the so-called uniqueness of place (Beven, 2000), (section

2.4.6). Moreover, the usage of benchmarks to assess the added value is also known

in hydrological forecasting (Pappenberger et al., 2015) and land models describing

biophysical processes (exchanges of water and energy) and biogeochemical cycles

of carbon, nitrogen, and trace gases (Luo et al., 2012). Recently, a vocabulary

to communicate in a standardised way about hydrological modelling observations

has been proposed (Horsburgh et al., 2014).

It is evident that unclear terminology limits the transparency and reproducibility

of the scientific process, which is an essential condition for scientific progress.

This becomes even more considerable in a multidisciplinary field as environmental

modelling, where a wide range of expertises is needed to push knowledge forward.

Openness and transparency on every level are essential to really define what can

be considered as added value.

2.4.2 Quest for a detailed and complex description

In section 2.3.1 insight is given in the bottom-up model construction approach

focusing on process understanding by continuously adding more detail and com-

plexity to model descriptions. The central problem with the increased detail is not

the creation and implementation of these descriptions, but the infeasibility of the

application when data availability is insufficient. The latter makes it impossible

to calibrate the increasing number of parameters (Sivakumar, 2004; Beven, 2002;

Sivakumar, 2008). Kirchner (2006) argues as follows:

I argue that scientific progress will mostly be achieved through the col-

lision of theory and data, rather than through increasingly elaborate

and parameter-rich models that may succeed as mathematical mari-

onettes, dancing to match the calibration data even if their underlying

premises are unrealistic.
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In other words, the models do have sufficient degrees of freedom (parameters) to

provide acceptable simulation results, certainly when acceptable is not too tightly

defined (Beven, 2000).

This gives rise to a paradox for model selection: the more complexity is added,

the easier one would expect it is to make a distinction between model structures.

However, the increased degrees of freedom makes it more difficult to discriminate

models structures, since they each have more options (parameter combinations)

to provide acceptable results. The latter makes it harder to define which model

provides the right answers for the right reasons (Kirchner, 2006). This discussion

is of course always conditioned on the number and quality of available observa-

tions. More complex models need more data, both in terms of forcing variables

and observations to evaluate the performance (Sivapalan et al., 2003). Bottom

line is that the available observations delimit the detail that can be represented

and if someone aspires a more detailed description, proper observations should be

collected (Figure 2.1).

Figure 2.1: Illustration of the balance between the available data and the

model complexity. Too much detail of the process description leads to iden-

tifiability issues when insufficient data is available (adapted from Argent

et al. (2008)).

This is not an advocacy against detailed spatial process descriptions. In depth

knowledge of a specific (typically small scale occurring) process needs detailed de-

scriptions. Also for larger scales, the incorporation of a more detailed description

of a specific process can overcome a wrong or oversimplified conceptualisation. A

good example is discussed by Arnaldos Orts et al. (2015), where the definition

of the affinity parameter in the description of biochemical model kinetics is ques-

tioned (bacterial consumption of substrate, section 4.2). A central problem is the
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conceptualisation of the mixing when using a lumped spatial domain, assuming it

to be represented by the affinity parameter. A detailed hydrodynamic description

explicitly describes the local conditions and mixing pattern by which the affinity

parameter represents the specific function it is intended for in the model, i.e. the

affinity of the bacteria towards the substrate. In fluid dynamics (air, water and

soil) a detailed description is getting more feasible for larger model domains due

to the increased computational power. Still, differences do exist between different

media, with a soil matrix being much more heterogeneous than air.

In essence, the central message is that the modelling approach and the level of

detail is a direct outcome of the available data, the objectives of the research

and the characteristics of the modelled system. There is no reason to overkill

the complexity of the model or assume a predefined structure, just because it is

(technically) possible. The ability to easily experiment with different levels of

complexity is of more importance than the quest for a universal model.

2.4.3 Protectionism towards the own creation

Quoting Andréassian et al. (2009) clarifies the point of protectionism with respect

to hydrological modelling, but relevant in general:

. . . it sometimes seems as difficult for a hydrologist to publically admit

the limitations of his creation as it is for an alcoholic to acknowledge

his addiction.

This is put in a wider scientific setting by Chamberlin (1965), who warns about the

parental affection towards the ruling theory causing to make facts fitting the theory

and a tendency to find facts supporting the proposed theory. More recently, Nuzzo

(2015) called this hypothesis myopia, making the researcher fixate on collecting

evidence to support the hypothesis, while neglecting to look for evidence against

it. Other explanations are not considered. This has, in most cases, nothing to do

with fraud, but is caused by a cognitive bias that needs to be tackled.

One can easily see the analogy with the model developer searching for applica-

tions fitting the model representation and interpreting the simulations as good fits

(whatever good may mean). As pointed out by Gupta et al. (2008) a lot of time

and energy is still spent on attempts at model validation, in an attempt to defend

the existing model, often without reference to any alternative model, hypothe-

sis or theory. Beven et al. (2007) emphasize that by adopting existing calibrated

models to only make good predictions it will be hard to learn about structural

limitations.
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Moreover, when model structure descriptions only point out the potential benefits

of the model and do not clearly state the unavoidable assumptions, the choice of

the most appropriate structure for any specific task is hampered (Todini, 2007).

As a consequence, it is difficult for another user to judge the model suitability for

another case study. If the assumptions and related weaknesses would be clearly

communicated, it would give more guidance in the applicability and in possible

improvements.

The lack in transparency in model descriptions from the model developer side is

one thing, but the model user also bears the responsibility of making a proper

selection of model structure. This selection is also driven by the availability of

the code, easiness of use, the institutional settings and the experience of the user

(Fenicia, 2008; Kavetski and Fenicia, 2011). Beven (2012) declared this as the

natural tendency during model selection, to give a prior weight of one to his or her

model and a prior weight of zero to all other models. This leads to applications of

predefined model structures for specific systems that are questionable (Jakeman

et al., 2006). Restricting yourself to a single model structure option is guiding

the modelling study towards a too narrow direction, with the risk that there is no

turning back. However, it is common practice to use already available, predefined

one-size-fits-all model structures (Fenicia, 2008).

A good example of this model-on-the-shelf approach is illustrated by Herron et al.

(2002). They state in their paper that the choice of models was governed by

the clients’ familiarity which increased the acceptability of the results. One could

easily comment on this practice, however it provides at least an explanation for the

decision of the specific models. In many other applications the same issue arises,

but is just not reported. As mentioned by Buytaert et al. (2008), the success of the

Soil and Water Assessment Tool (SWAT) model is partly due to the fact that it is

freely available and not because it is in all these cases the most appropriate option.

Taking into account the time-limited era in which research and consultancy need

to be executed, this is perfectly understandable. However, it would be ignorant to

not at least counter this with an improved scientific approach.

To be clear, this does not mean that these researchers are not considering the

selection. In many cases, the decided model structure will be based on an expert-

knowledge optimization, pragmatic modelling decisions and thoughtful evaluation

of alternatives. However, questioning the structure of a model is something mostly

performed in the initial stages of model development and considered as part of the

research itself, and modellers thus rarely write about it. As such, approaches to

questioning the structure of a model are more difficult to find and model failures

are rarely fully reported in the peer-reviewed literature (Andréassian et al., 2012;
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Kavetski and Fenicia, 2011; Sin et al., 2006). However, as stated by Beven et al.

(2007), failures are also not reported due to the strong incentives to be positive and

affirmative about the model, even if this results in predictions with models that

not actually provided very good simulations. Moreover, when multiple alternatives

may be considered when a model is developed, it is typical that only one approach

is implemented and tested (Kavetski and Fenicia, 2011).

2.4.4 Monolithic and closed source implementations

In the past, comprehensive modelling systems have been constructed as large com-

plex computer programmes (Beven et al., 2007; Buahin and Horsburgh, 2015).

This is one of the reasons of the earlier described common practice of being re-

strictive to available predefined model structures. The monolithic implementation

makes it difficult to adapt an existing model implementation, since it requires sig-

nificant programming skills and time to revise the original source code, to under-

stand the implementation and to adapt the algorithms for the required application

(Buytaert et al., 2008).

Moreover, a lot of the source code used in environmental science is hidden behind

license restrictions and commercial software applications. The latter is under-

standable, since this is one way of getting valorisation out of the scientific work

and it is a useful way of bringing scientific outcome to a larger community of

practitioners. However, when source code is not accessible, this inhibits the repro-

ducibility of the results for the scientific community. The accessibility to model

implementations has been pointed out earlier as a condition for reproducibility

(Buytaert et al., 2008; Fenicia, 2008; Wilson et al., 2014).

Even when the implementation is available, modelling projects still can be difficult

to audit and without a considerable effort, it is hardly possible to reconstruct,

repeat and reproduce the modelling process and its results (Buytaert et al., 2008;

Refsgaard, 2004). Fenicia (2008) rightly remarks that authors emphasizing the

need for a flexible and modular approach (Beven, 2000), remain ignorant towards

the application of fixed and monolithic structures, developed by their own (Beven

and Kirkby, 1979).

The accessibility issue does not only appear to be relevant towards the model

implementations itself, but also to the implementation of methods for model eval-

uation and analysis. Multiple methodologies for sensitivity analysis, uncertainty

analysis and optimization are described in literature. These mathematical meth-

ods are often so complex that a full re-implementation of the computer code is
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beyond the resources available to an environmental scientist (Buytaert et al., 2008).

Besides, methodologies developed to optimise or estimate the predictive power of

models are in many cases only reporting on a small set of applications, making it

hard to evaluate the usability.

Even more important, the monolithic characteristic of model implementations lim-

its the applicability of model comparison, since it obstructs the ability to attribute

inter-model differences to specific processes and hypotheses.

Consider the following example first. When one would like to compare the quality

of two types of tires for biking, it would not make any sense to put these two

types on completely different bikes, cycled by two different cyclists on completely

different types of roads. If then one tire deflates considerably more than the other,

it could just as well be caused by any of the other circumstances and it would be

wrong to attribute the increased amount of punctures to the quality of the tires.

Putting both tires on the same bike (and regularly interchange them) or on two

completely similar bikes (riding them under similar conditions) would be a far

more effective strategy. Simply said, keep all the rest the same and only change

the specific element targeting for.

The latter is however not possible with the monolithic model implementations

that are regularly dealt with in environmental science. Model comparison studies

to date have provided limited insight into the causes of differences in model be-

haviour, due to the impossibility of addressing the differences in modelled outcome

to specific elements of each model (Clark et al., 2015b). When comparing models,

there are often too many structural and implementation differences among them to

meaningfully attribute the difference between any two models to specific individual

components (Kavetski and Fenicia, 2011). In other words, when the performance

of two monolithic (closed source) model structure implementations are compared,

it is hard to know what exactly is causing a difference in performance. In that con-

text, model comparison can only provide information about better performance,

but systematic identification of model shortcomings is impossible.

2.4.5 Business as usual in model evaluation

The evaluation of the model structure is a continuous learning about the appro-

priateness of that model structure. Model calibration is an essential part of the

evaluation (section 2.3). The inevitable mismatch between the researched sys-

tem observations and the applied model output is partly compensated during the

model calibration, making it a central element.
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However, in many cases the evaluation is condensed to an optimization prob-

lem, instead of the exploration of the model performance from different points of

view. Moreover, the optimization is performed using a single aggregated metric to

quantify the difference between the model output and the observations. As such,

optimization algorithms are applied to find the parameter set that minimizes the

aggregated metric, ignoring the eventual lack of identifiability of the parameters.

Some ‘optimal’ parameter set is determined by the optimization algorithm, but

often the reliability of the estimate is not checked for.

In the validation step, i.e. the evaluation of the model output to an independent

set of data, model performance is regularly reported in a very rough and simplified

way (Gupta et al., 2008; Kavetski and Fenicia, 2011). Examples are the expression

of model performance by statistics such as the Nash-Sutcliffe Efficiency (NSE) or a

correlation coefficient, which does not directly test any individual hypothesis about

the overall model (Uhlenbrook et al., 1999). It is recognized that such measures

of average model output versus observations similarity lack the power to provide

a meaningful comparative evaluation. The NSE summarizes model performance

relative to the observed mean output, which is a very weak benchmark (Schaefli

and Gupta, 2007). Nevertheless, the application is still frequently observed in

literature.

The lack of information in the observations to discriminate between increasingly

complex models leads to the acceptance of equifinality between models (Beven,

2006), meaning they are able to approximate the observations with equal perfor-

mance. In some cases this will indeed be the conclusion based on the available

observations. However, as pointed out by Gupta et al. (2008), if we have not

properly tested the limits of agreement (or lack thereof) between our models and

the data, this seems a lazy approach to science.

2.4.6 Intrinsic characteristics of environmental systems

Environmental systems are heterogeneous, open systems and modelling studies

include a wide range of scales, as a conceptualisation of the processes involved. In

a lab-environment some degree of control can be carried out, but once going to

natural environments (e.g. catchments) it is very hard to control the experimen-

tal conditions and to identify clear system boundaries. Moreover, environmental

systems are unique in their characteristics shaped by a specific geological activity,

exposed to different climatological drivers and exposed to varying anthropological

influences.
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This uniqueness of place (Beven, 2012) of environmental systems is sub-field de-

pendent and gets a lot of attention in hydrological applications where a catchment

approach is predominant, but is equally relevant in water quality and ecological

applications.

When compared to more controlled environments, such as in industrial chemical

engineering, this uniqueness of place is less prevailing. The systems studied are

according to a predefined design, active in controlled and closed reactors and easier

to standardise. Hence, it is more convenient to propose a set of standard practices

and guidelines among the scientific community. Models are still case dependent,

but are mostly different configurations of defined system units that are reusable.

The latter is done in flow sheet model software (GPROMS, 2015), which are noth-

ing more than integrated software environments to couple different model units

in order to mimic the case specific configuration studied. The development of the

WEST platform for Waste Water Treatment Plant (WWTP) modelling (Claeys,

2008) is an example of the translation of the system units towards environmental

science.

One could question to what extent this translation is possible to environmen-

tal systems, where the distinction between unit processes (e.g. hydrology versus

hydraulics or sediment versus runoff) and the demarcation of each system bound-

ary is far less clear. Hence, the uniqueness makes it much harder to come up

with predefined system units that can be reused, which hampers collaborative

progress.

The openness of environmental systems was already mentioned in section 2.3.2,

where it was used as an argument against the possibility of validation. Any model

will be falsified if we investigate it in sufficient detail and specify very high per-

formance criteria. Even if a site-specific model is eventually accepted as valid for

specific conditions, this still does not prove that the model is true (Refsgaard,

2004; Beven, 2012; Fenicia, 2008). This widely recognized problem of uniqueness

of place, clearly illustrates that a modelling application should be site specific,

being a function of the catchment characteristics, the data availability, and the

modelling purposes. This highly contradicts the dominance of a few model struc-

tures in scientific literature and the monolithic implementations described earlier

(Buytaert et al., 2008).

Dealing with an open, uncontrollable environment also induces limitations on the

model evaluation. In disciplines such as physics, where the experimental condi-

tions can be carefully controlled, it is often possible to rigorously apply concepts of

statistical significance. In many environmental disciplines, events of interest may

be infrequent or non repeatable, and the uncertainty in the observations is seldom
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fully characterized (Kavetski and Fenicia, 2011). Moreover, experiments cannot be

repeated under exactly the same boundary and initial conditions (Beven, 2000).

For some environmental systems one has the luxury of optimal experimental design

where inputs (such as to a bioreactor) can be manipulated to enhance the identi-

fiability of a model. For most systems, however, we must at any given time accept

the data that are available (Jakeman et al., 2006). Finally, models representing

natural systems consist of multiple interacting components, making traditional

(in a pure statistical manner) hypothesis testing less suitable and hindering the

testing of individual modelling decisions (Bennett et al., 2013).

2.5 Overcoming conservatism:
A model diagnostic approach

In the previous section some bottlenecks hampering the progress in environmental

modelling were identified and listed based on existing literature. There are dif-

ferent initiatives already existing that aim to cure these conservative aspects of

environmental modelling. Most of these comments are not new, but probably as

old as the modelling practices itself and the scientific community is not ignorant

towards the above mentioned pitfalls.

One could argue about the interconnection between the different bottlenecks raised

in the previous section. The quest for a detailed all-in-one model description arose

from the increased scientific insight. The growing technological possibilities lead

to the creation of monolithic all-in-one model structures. Furthermore, the cre-

ation of monolithic models supports at the same time their usage by practitioners

(people get trained to work with that specific model structure). However, that

practice of model building brought emphasise on the model capabilities (a wealth

of functionalities what the model could do rather than evaluation) giving rise to

the curse of parental feeling towards the creation. The latter pushes attention to

reusing the same model structure for new applications, leading to inferior prac-

tices of model structure evaluation and increased focus on model calibration (as

in fitting parameters).

Independent from the accuracy of this statement (more an opinion than a hypo-

thesis), it is clear that an alternative approach should be looked for.

Different authors have proposed an alternative model analysis to deal with the

above. However, they differ in terminology, reasoning and historical framing.

Based on the discussion in the previous section, overcoming the unidirectional
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(pick model - fit to data - report -ready) usage of monolithic model structures,

leading to the impossibility of testing individual modelling decisions, needs to be

executed at three levels:

� Accepting the idea of working hypotheses and considering model structure

building as an iterative learning process based on failures

� Making this model structure building practical and technically possible, with

emphasis on flexibility in model development in an open and transparent

manner, being a necessary condition

� Extending the scrutiny of model structure evaluation as being essential,

moving beyond current model calibration practices

Furthermore, the different levels should be supported by a clear modelling termi-

nology. In this section, the above three levels will be further clarified. The com-

bination of these three elements will be referred in this dissertation as a model

diagnostic approach, which provides a workable method and the conditions to

counter the diagnostic problem definition provided by Gupta et al. (2008):

Definition 2.6. Given a computational model of a system, together with a simu-

lation of the systems behaviour which conflicts with the way the system is observed

(or supposed) to behave, the diagnostic problem is to determine those components

of the model, which when assumed to be functioning properly, will explain the

discrepancy between the computed and observed system behaviour (adapted from

Reiter, 1987).

In other words, Gupta et al. (2008) considers the diagnostic problem as the search

for deficiencies in a model structure. However, this definition of a diagnostic ap-

proach is too narrow, since it does not include the learning process and confines

it to a single model structure. In this dissertation, the model diagnostic approach

is defined in a broader sense, considering the necessity of flexibility in the model

structure definition. The definition goes beyond the borders of the different com-

munities within environmental modelling and supports a more common approach

typically not encountered in literature.

2.5.1 Tier 1 of the model diagnostic approach:
Multiple working hypotheses

As earlier described, the parental affection towards the own creation can lead to

protective actioning. To guard against this, Chamberlin (1965) (which is actually
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a reprint of the original article of 1890) urged for the method of multiple working

hypotheses:

The effort is to bring up into view every rational explanation of new

phenomena, and to develop every tenable hypothesis respecting their

cause and history. The investigator thus becomes the parent of a family

of hypotheses: and, by his parental relation to all, he is forbidden to

fasten his affections unduly upon any one.

The explicit consideration of alternative hypotheses within a transparent (i.e. re-

producible) context is proposed in literature to guard against the cognitive bias

towards scientific results (Nuzzo, 2015; Kavetski and Fenicia, 2011; Fenicia et al.,

2014; Abramowitz, 2010; Beven, 2012). As stated by Beven (2012), this means

that any model that predicts the variable of interest is a potentially useful predic-

tor, until there is evidence to reject it. At the same time, this links the concept to

the recognition of the principle of falsification of testable hypotheses well known

in statistical testing (Popper, 1959; Kavetski and Fenicia, 2011). The latter basi-

cally means that one cannot accept a model, but that it can only be falsified and

refuted. As such, it provides a response to the impossibility of model validation

(section 2.3.2).

By accepting it, it places model development in a rejectionist framework, to

detect what remains wrong about our conceptions of the model (Gupta et al.,

2008; Beven, 2000, 2012). Or in other words, we can learn the most from model

failures. Model deficiencies provide guidance about the potential improvements

(Andréassian et al., 2012; Gupta et al., 2008). Andréassian et al. (2010) advocated

that giving greater attention to the analysis of failures would be more beneficial for

the advance of hydrological sciences (Court of Miracles of Hydrology workshop).

The latter is actually relevant in all environmental sciences. Making this iterative

learning curve explicit in the model development cycle, enables to communicate

about these model failures in literature. Beven et al. (2007) refers the learning

framework as a way to gear model structures to the specific conditions of each

place (section 2.4.6). As such, the rejection of hypotheses for individual cases

provides insight in the uniqueness of the place and the characteristics, referred to

as learning of places.

Hence, we need to define some level of suitability, guided by the available observa-

tions (with observations in its broadest sense). When observations are incompat-

ible with the model predictions, this suggests that the model can be rejected as a

hypothesis of how the system works (Gupta et al., 2008). However, the rejectionist

framework holds the possibility of accepting a poor model when it should be re-

jected (false positive or Type I error) or rejecting a good model when it should be
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accepted (false negative or Type II error), as it is in statistical hypothesis testing.

However, in contrary to statistical testing, the lack of replications of the observa-

tions in most environmental modelling cases, limits the applicability of statistical

tests (Beven, 2012).

When observations are scarce and rejection of structure lacking, differentiation

about the suitability needs to be made based on the observations at hand. A lack

of differentiation leads to Type I errors. The testability of a model structure will

increase in cases where an increasing number of output variables exists that can be

compared to observations. As a consequence of the different uncertainties involved

in modelling, any model can be rejected when sufficiently tested, leading to errors

of Type II. The latter would be worse in a model diagnostic approach, since ex-

cluding good models would be a loss of information. Type I errors could hopefully

be eliminated in the analysis by further evaluation (e.g. new data source) (Beven,

2012). For example, the notions of a flat or spherical earth were indistinguishable

until new evidence was obtained by Magellan and others (Silberstein, 2006).

However, in many practical applications, no distinction can be made between the

proposed set of model structures, due to an imbalance between the available obser-

vations and the model complexity. As such, this lack of differentiation, where none

of the proposed model structures can be falsified with the available information

(which can be interpreted both for different parameter sets of a single model struc-

ture as well as model structures), is also referred in literature as non-uniqueness,

ill-defined, or, by philosophers, as underdetermination. Furthermore, within the

hydrological community this is also referred to as equifinality as a generalisa-

tion of a lack of identifiability (Beven and Binley, 1992; Beven, 2000; Beven and

Freer, 2001; Beven, 2006, 2008b, 2012). Notwithstanding the different contexts

and interpretations, it refers to the same inability to differentiate (cfr. also distin-

guishability (Petersen, 2000)). In many cases, this problem of non-uniqueness is

caused by a lack of identifiability of each of the individual model structures (sec-

tion 2.3.3). As pointed out, the notion of identifiability is related to the possibility

to give a unique value to each of the model parameters (Donckels, 2009), and

the counterpart is also referred as overparameterisation. Hence, the influence and

the interaction of the parameters is the key of the evaluation of model structures

(focus of section 5.2).

The lack of identifiability leading to non-uniqueness, leads also to the principle

of parsimony and parsimonious modelling (Wagener and Wheater, 2002; Obled

et al., 2009; Young, 2003; Taylor et al., 2007; Willems, 2014) as a reaction on the

quest for detailed model structures (section 2.4.2). The principle of parsimony, also

stated as Occam’s razor, is a problem-solving principle stating that among com-
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peting hypotheses that predict equally well, the one with the fewest assumptions

should be selected. It is in relation to falsifiability mentioned earlier, since simpler

theories are better testable (Popper, 1959). In modelling terms, when choosing

among models with equal explanatory power the simplest model is more likely

to be correct. More degrees of freedom (i.e. parameters) makes the behaviour

less dependent on the model structure itself (Kirchner, 2006). Hence, the latter

increases the possibility of making Type I errors. On the other hand, a model

structure that is too simple in terms of the number of processes represented can

be unreliable outside the range of conditions on which it was calibrated (Wagener

et al., 2001b). Overly simple models underestimate the prediction uncertainty

when used to forecast outside the domain of the model identification (Reichert

and Omlin, 1997). Combining the results of multiple models, each weighted by

their respective likelihood, provides a practical solution to estimate the prediction

uncertainty.

When aiming for parsimony, model structures should have the simplest parame-

terization that can be used to represent the observations (Wagener et al., 2001b;

Sivapalan et al., 2003). The principle is also mentioned as the dominant pro-

cesses approach, providing model structures that capture the key response modes

of the system (Sivakumar, 2004, 2008). However, this principle of parsimony and

the related terminology is embedded in the idea of identifiability analysis and di-

rectly follows the definition of practical identifiability analysis. If parameters are

practically not identifiable, they do not comply with the idea of parsimony. So,

identifiability is the preferred terminology, since it provides better the link with

mathematical oriented literature dealing with this problem.

One could command that this learning process of multiple hypotheses does not fit

within an engineering oriented modelling approach (section 2.3.2). The continuous

rejection of model structures is in conflict with the necessity to create useful models

for practical application. However, an engineering approach focusing on making

predictions using a process-oriented model based on a conceptual representation

(instead of a pure data-based model), is inherently making a hypotheses of the

process descriptions. The difference is in the defined acceptance for suitability,

which is a direct result of the proposed modelling objective. Whereas in a scientific

oriented approach the aim is understanding and the search for model deficiencies

is central, leading to a high level of rejection, the engineering approach is defining

suitability purely in the purpose of providing reliable predictions. Both approaches

rely on a case specific approach and learning curve, the difference is in the scrutiny

of evaluation. Nevertheless, both need to have a sufficient set of tools to perform
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the required model evaluation in which the identifiability of the parameters is

crucial to evaluate the competing hypotheses.

2.5.2 Tier 2 of the model diagnostic approach:
Flexible model development

An essential consequence of the model application of monolithic model structures

is the impossibility to properly compare different model structures and to address

model failure to specific modelling decisions (Kavetski and Fenicia, 2011) (sec-

tion 2.4.4). The key purpose is to isolate and evaluate individual processes and

modelling decisions as much as possible. When the number of differences between

alternative model structures is kept to a minimum, it is possible to attribute

the differences towards the individual modelling decisions. Under these condi-

tions, the previously described multiple hypotheses approach becomes meaningful

(Clark et al., 2015b).

The aim is to enable a controlled and systematic evaluation both on overall model

structure as well as on individual components. By focusing on the level of model

subcomponents representing individual processes, it becomes possible to select the

best components from different models and as such, to avoid the need of rejecting

entire models. Hence, individual modelling decisions are actually nested together

into modelling decisions on a higher level (i.e. hierarchical level). As an example,

the decision to take into account the degradation of a specific chemical component

by bacteria is one hierarchical level higher to the decision of the specific kinetic

(e.g. Monod) this process is described by. As such, this hierarchy is an important

characteristic in the structure development. By scaling to coarser levels, this

approach directly fits into an integrated modelling framework, where interchanging

of model components is possible on the different hierarchical levels.

Besides the ability to attribute modelling decisions, the highly heterogeneous prop-

erties of environmental systems require a very tailored and specific approach to

the representation of a system. Model applications are always case specific. They

are a function of the system characteristics (e.g. the boundaries to demarcate

the system), the specific modelling purpose and the available data (Fenicia, 2008).

From this, flexibility appears to be a logical design criterion for modelling to suit

local conditions (Beven, 2008b). In a recent review focusing on hydrological mod-

elling in urbanized catchments, Salvadore et al. (2015) regard flexibility in terms

of spatial and temporal discretization, model components and input requirements

as the key characteristics to handle the huge diversity of situations.
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However, instead of flexibility, the modeller is regularly faced by a choice between

existing model software, each providing limited flexibility, i.e. only permitting

the adjustment of parameter values. As mentioned by Leavesley et al. (2002),

model development should shift from the question which is the most appropriate

model structure? towards what combination of process conceptualisations is most

appropriate?. Making this process selection transparent is key for proper revision

of the suitability of the selected structure and a first step towards supporting

practitioners of doing so.

Not all flexible modelling environments support the requirements to enable the

model development approach as presented. In their publication about pursuing

the method of multiple working hypotheses and focusing on hydrological modelling,

Kavetski and Fenicia (2011) proposed the following key requirements for flexible

modelling frameworks:

1. Support multiple alternative decisions regarding process selection

and representation, which means that the framework should provide mul-

tiple options for describing individual processes, e.g. the representation of

different kinetics to describe conversions or the representation of interception

by vegetation.

2. Accommodate different options for the model architecture, represen-

ting the connectivity between different model components. Here the focus

is both on variation in which processes to combine, as well as on the spatial

configurations.

3. The ability to separate the hypothesized model equations from their so-

lutions, especially if the latter require numerical approximations. In other

words, the mathematical and computational model should be clearly

defined and separately identifiable. This is particularly relevant for hy-

drological modelling, where the division between the model equations and

the numerical implementation is often lacking and not communicated (Clark

and Kavetski, 2010).

As pointed out by Buytaert et al. (2008), a central point is that model codes

should be fully accessible, modular and portable. In order to adapt individ-

ual model elements on all hierarchical levels, the possibility to change source code

is a necessary condition. Hence, the requirement of accessibility of the source

code on the process level is an important requirement not stated by Kavetski and

Fenicia (2011). Providing readable source code and proper documentation are im-

portant as well, although not a necessary condition to test individual modelling

decisions and rather general good scientific practice.
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Flexible modelling environments

It is understandable from a historical perspective that the development of model

implementations was done as a monolithic unity. However, frameworks have al-

ways been developed to provide the ability of building alternative model repre-

sentations, with varying level of granularity. In essence, any modelling framework

that enables experimenting with different ways of representing the system, sup-

ports the multiple hypotheses approach (Kavetski and Fenicia, 2011). Hence, the

antidote for monolithic modelling can be referred as component-based modelling,

modular modelling or loose model coupling (Buahin and Horsburgh, 2015; Claeys,

2008). It involves decomposing a complex system into smaller functional units

called components that have specified interfaces, which allows them to be coupled

together to represent a larger and more complex system. The set of components

can be coupled in a hierarchical manner to form complex systems, also referred to

as hierarchical system modelling (Filippi and Bisgambiglia, 2004).

Within the scope of integrated environmental modelling, the creation of modular

frameworks is well-established (Argent et al., 2006; Filippi and Bisgambiglia, 2004;

Krause et al., 2005; Bach et al., 2014; Laniak et al., 2013; David et al., 2013).

Modular modelling approaches allow creating environmental models from basic

components (Argent, 2004, 2005), which makes composing model structures less

time-intensive and which can be applied within the scope of a webservice based

technology (Vitolo et al., 2015). Recent developments are capable of dealing with

both spatial and temporal misalignment in between the coupled components, i.e.

the individual components operate on different spatial resolutions and time steps

(Schmitz et al., 2014).

Many of these integrated modelling environments are in essence generally applica-

ble and independent of the scientific application. Still, most of them are case

and discipline dependent (Argent, 2005). Hence, a huge set of environments,

software and standards do exist: focused on hydrological/hydraulic modelling

(Leavesley et al., 2002; Clark et al., 2008; Wagener et al., 2001a; Bach et al.,

2014; Welsh et al., 2013), ecosystem and ecological modelling (Voinov et al., 2004;

Villa, 2001), water quality and waste water simulation (Reichert, 1994; Vanhooren

et al., 2003; Claeys, 2008), chemical and industrial applications (flowsheet simu-

lators) (GPROMS, 2015), earth systems modelling (Peckham, 2008; David et al.,

2013) and general spatial models (Argent, 2005; Wesseling et al., 1996). The

construction of these models can be done with an explicit coupling framework

connecting components in a user interface (Vanhooren et al., 2003) or by a pro-

vided coupling standard such as the open-MI standard (Gregersen et al., 2007),

which increases user accessibility and prevents new implementation. It is also done
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by a model language approach (Wesseling et al., 1996; Kraft et al., 2010), where

functions and building blocks are represented by coded definitions. The latter ap-

proach of using scripting tools got the advantage of being easily extended and at

the same time it can be used as a ‘glue’ to external models or components (Kraft

et al., 2010).

Spatially distributed models are taking advantage of spatially distributed forcing

and process descriptions to describe the system (Tang et al., 2007a). Spatial de-

velopment of flexible model structures needs a computational system that couples

and coordinates modules in a simulation together with a Geographic Information

System (GIS) to perform the spatial analysis within the simulation environment.

Both user interface (Pullar, 2004; Changming et al., 2008; Maxwell and Costanza,

1997) and model language approaches (Fall and Fall, 2001; Wesseling et al., 1996)

do exist. Wesseling et al. (1996) developed the dynamical modelling language

PCRaster, which can be used to construct spatio-temporal models and can be

called from the Python programming language.

However, many of these modelling frameworks provide flexibility on a coarse grain

granularity, which does not allow to isolate and investigate individual modelling

decisions (Clark et al., 2015b). Moreover, coupling of model structures can cause

the models to interact badly (Abramowitz, 2010; Voinov and Shugart, 2013). To

maximize the possibility for hypothesis testing, modular modelling frameworks

should be accessible on a finer granularity (Clark et al., 2011a).

A more in depth literature study of all existing frameworks and confronting them

with the requirements presented above is out of scope of this dissertation since

it should be regarded from a software development point of view as well. More-

over, the lack of transparency in many of them would hinder such an analysis.

Still, it can be summarized that many of these modelling frameworks do rely on

Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs)

as the underlying mathematical structure, i.e. a continuous dynamical process

description. Components are mostly entities defined for a specific domain (and

its boundaries) for which a balance is defined (mass, momentum, energy) and

for which processes need to be assumed that define the incoming, outgoing and

conversion terms.

As such, for convenience this dissertation will focus on fine grain level variations

that are directly enabled by the implementation of ODE models represented by

Equation 2.1. This directly complies with the requirements since it enables com-

plete flexibility in the process representation and architecture. Moreover, the

source code (python programming language) is directly available, since it is not

dependent on any existing software environment enlisted earlier. Moreover, some
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of the existing software supporting flexible modelling, such as Aquasim (Reichert,

1994) and West (Claeys, 2008) (amongst many others), support direct implemen-

tion of a set of ODEs.

2.5.3 Tier 3 of the model diagnostic approach:
Extended model evaluation

It is clear that a single performance metric will not provide a sufficient basis for

characterizing all relevant aspects of model performance, let alone the possibility

to differentiate the suitability of different model structures or identify deficiencies

on the process level (section 2.4.5). Aggregated metrics of model performance

lack the ability to distinguish between individual modelling decisions because of

the interaction between model components (Kavetski and Fenicia, 2011). Finding

model failures is in practice not always straight-forward and requires a more in

depth evaluation by using extra data sources (Anderton et al., 2002), a combination

of multiple metrics (Gupta et al., 2012) or model evaluation tools (Bennett et al.,

2013). As such, the recognition of multiple working hypotheses must be combined

with the development and application of stringent model diagnostics that challenge

both individual constituent hypotheses and the overall model structure (Kavetski

and Fenicia, 2011).

For practical application, this can be achieved by the ability to get as much out

of the available observations as possible, i.e. maximize the amount of information

that can be extracted from observations. On the other hand, it comes down to

the ability to check model behaviour in as many different ways as possible. One

can look into the model itself or in confrontation with observations. Uncertainties

arising from both the model structure and the observations are inherently present.

They will limit the ability of the analysis and a proper attribution of the involved

uncertainties is essential. In other words, the observational data provide (imper-

fect) evidence regarding the true state of the system (Bennett et al., 2013).

Model evaluation is directly linked with model calibration, since the adjustment

of model parameters is steered by the performance of the model to observations,

aiming to maximize performance. However, in the diagnostic approach aimed for,

the focus moves from model calibration as a parameter adjustment exercise towards

model structure evaluation as a combined process of component and parameter

adjustment, giving them equal importance. The latter is also supported by the

(sometimes) subjective and imprecise distinction between the model structure (the

model equations) and the model parameters (the adjustable coefficients in the

model equations) (Kavetski and Fenicia, 2011). As a straightforward example to



40 2.6 CONCLUSION

clarify this, take the sameness of the structurally different equations y = k · xα

and y = k · x when the parameter α = 1. More general, algebraic expressions and

different systems of differential equations can behave functionally very similarly

depending on the range of application and parameter values.

The ability of translating the process of model evaluation into a fixed recipe style

workflow is probably close to non-existing (Fenicia (2008) refers to the art of

modelling). However, to support an appropriate diagnosis of a model structure, it

is essential to develop a set of tools that can be applied and combined in as many

ways as possible. Just as a medical doctor examines a patient using different

technologies (from stethoscope to X-rays) to identify failures, a modeller needs

to have a range of tools to identify model deficiencies, going from quick visual

exploration to computer intensive algorithms.

2.6 Conclusion

This chapter provided an introduction to some general concepts of modelling and

some clarification on the incoherent terminology encountered in the scientific lit-

erature. Besides the problem of terminology, other bottlenecks are identified that

are currently hampering the development of improved modelling practices and lead

to conservative practices. These factors are relevant for different environmental

modelling disciplines, making it useful for a wide audience.

From the identification of these bottlenecks, a diagnostic approach with three main

tiers is defined, which tries to counteract these bottlenecks in a structured way. To

fulfil the aim of a generic framework, these tiers are providing general boundary

conditions and requirements: the acceptance of multiple working hypotheses, the

necessity of flexibility in the model development inherently linked with the minimal

requirements on the technical implementation and the necessity of a shift from

current parameter adjustment practices towards the evaluation of individual model

decisions. The necessity of an open and transparent implementation of models is

generally ignored in literature, but appears to be an essential condition to overcome

the existing conservatism.
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CHAPTER 3

Model structure diagnostic tools

3.1 Introduction

The uniqueness of place, the available data and the research questions involved

within the scope of each individual environmental model study require a tailor-

made approach in model construction. Similar to the necessary flexibility in model

construction, the model structure evaluation as well needs to be adaptive towards

this intrinsic variability in modelling studies. Strategies to diagnose model struc-

tures in terms of performance, uncertainty, identifiability and complexity are nec-

essary.

The lack of parameter identifiability is an important indicator to diagnose model

structures (see chapter 2). A lack of parameter identification results in the inca-

pability of finding an identifiable set of parameters for a specific model structure

as well as the incapability of finding a model structure outperforming other model

structures. Hence, methods to evaluate parameter sensitivity and identifiability

are an essential element of model structure evaluation.

However, many scientific papers start from a predefined theoretical (statistical,

possibilistic. . . ) framework and its underlying assumptions, although it is not al-

ways clear (and mostly not even discussed) if the chosen framework is the most

suitable one for the application at hand. Hence, a similar problem of being pre-

conditioned about the used methodology occurs as is the case for model structure

selection, leading to business as usual in model evaluation (section 2.4.5). How-

ever, classical fitting methods lack the power to detect and pinpoint deficiencies in

the model structure. These methods assume that the residuals (i.e. the difference
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between the observations and the model output) behave statistically similar as

the error of the observations (uncorrelated, with zero mean and uncorrelated) and

assumes that the model structure is correct, which is in many cases not justifiable

(Vrugt and Sadegh, 2013).

From a model structure selection point of view, the main idea is to get insight in

the model structure characteristics and behaviour in order to assess its suitability.

A rigid theoretical framework can be useful, but not before sufficient insight is

gained about the model structure properties. Just as it is essential in statistical

data analysis to first perform a data exploration under scrutiny before applying

any statistical model, one should first diagnose the model structure with respect

to the provided data and specific research objective in as many ways as possible.

In a next phase, a more theoretical framework can be applied.

Consider the following simplified real-world case to illustrate this: modeller X is

interested in predicting the transgression of the ammonia concentration limits de-

fined by the regulation in a river segment. Too often, current sensitivity analysis

applied for these models assesses parameter sensitivity on the average of the simu-

lated concentrations in time. However, the research question focuses on exceeding

a concentration limit, so the user should be able to easily check parameter sensi-

tivity towards maximum concentration values, concentrations above the threshold

and the effect on false positive or negative trespassing of the regulation value.

Moreover, in function of model calibration, these same metrics will be useful to

evaluate model performance. Understanding, availability and easy of development

and application of these metrics is therefore essential to enable the analysis.

Other research questions will ask for alternative metrics. As such, the ability

to easily apply a variety of these metrics in combination with a wide range of

(existing) model evaluation methods is the focus of this chapter. By doing so, the

aim is to overcome the conservatism in model evaluation as denounced by Gupta

et al. (2008) and Kavetski and Fenicia (2011) which can be achieved by empowering

both scientists and practitioners in the exploration of model structures. This

exploration is mainly driven by the research question and needs to be supported

by a wide set of tools that are easily applicable. In a later stage, this can converge

to a decision about a theoretical framework (e.g. least square estimation, formal

likelihood definition. . . ).

This chapter provides a broad overview of existing methodologies, from the point

of view of defining a proper set of performance metrics. As such, it attempts to

provides a pragmatic and practical answer towards the development of a more

robust method of model evaluation proposed by Gupta et al. (2008). Their diag-

nostic approach describes the usage of signature behaviours and patterns observed
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in the input-output data to illuminate to what degree a representation of the real

world has been adequately achieved and how the model should be improved for

the purpose of learning and scientific discovery. Furthermore, it anticipates to the

request of Bennett et al. (2013) for a more generalised repository of evaluation

approaches across the spectrum of environmental modelling communities. In con-

trast with earlier work of Moriasi et al. (2007), the aim is not to provide a fixed

step by step scheme for model evaluation.

The chapter is structured as follows. First, the central position that metrics have

in model evaluation algorithms, will be discussed. Next, the construction of ag-

gregated and performance metrics will be described. Due to the dependence of

many algorithms on numerical approximation by sampling techniques, the chap-

ter finishes with a general introduction on sampling techniques, as used by a large

number of existing methodologies.

3.2 A plethora of frameworks

Similar to the monolithic characteristic of model structure implementations (sec-

tion 2.4.4), an excessive focus goes to the usage and communication of (apparently)

different model evaluation methodologies, each provided with a unique acronym

(DREAM, IBUNE, BATEA, NSGA, Parasol. . . ). This leads to an overflow of po-

tential options on the one hand, but to a general conservatism in the application

on the other hand (section 2.4.5). Powerful algorithms are being developed, ca-

pable of handling high-dimensional parameter spaces of non-linear models (Vrugt,

2015). However, methodologies for environmental model evaluation look more like

a bunch of tricks, due to a lack of integration, rather than a consistent scientific

discipline. Environmental modellers face the existence of a wide range of use-

ful, but highly repetitive, non interoperable model evaluation techniques (Matott

et al., 2009).

The overview of software based tools (65 different model evaluation tools) enlisted

by Matott et al. (2009) illustrates the wide variety of existing methods and options.

However, many of these methodologies are using the same building blocks and

Matott et al. (2009) detected a considerable amount of overlapping functionality

in the assembled list of tools. Methods with different names or developed for

different applications are sometimes more similar than they at first sight appear

to be (Bennett et al., 2013). By dismantling existing methods and pulling apart

the algorithm from the supporting modules, many similarities can be identified

and as such, reused when implemented in a more modular design.
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3.2.1 Features of evaluation methodologies

A complete unravelling of all the existing theoretical methods as well as their

implementations would be infeasible, due to the huge variety in described methods

in literature. However, some typical characteristics of environmental modelling

results in a regularly seen pattern.

The monolithic and closed source properties of model implementations (section 2)

gave rise to evaluation methods that can communicate independently of the model

structure itself. This explains for example the limited usage of structural identifia-

bility methods such as the Laplace transform method or the Taylor series method

which require direct interaction with the model equations (Dochain and Vanrol-

leghem, 2001).

In commonly used methods, communication is performed by simulating the model

with different model inputs (e.g. initial conditions, parameters. . . ) and extracting

information from the available model output state variables without direct hand-

ling of the differential equations itself. Moreover, the non-linear behaviour of the

underlying mathematical equations leads to the impossibility of finding an analyt-

ical solution when working with most of these (probabilistic) methods, explaining

the popularity of Monte Carlo (MC) and other numerical approaches. The non-

linear properties of environmental models also steered the development towards

global methods, i.e. inspecting the whole parameter space instead of the direct

neighbourhood of a single parameter combination. Model non-linearities induce

more complicated shapes of the objective parameter response surface with multi-

ple optima. Global methods reduce the risk of getting trapped into local optima

of the parameter space (Nopens, 2010).

Extensive work has been performed earlier on local methods (Dochain and Van-

rolleghem, 2001; Reichert and Vanrolleghem, 2001) and the capabilities of an iter-

ative application of local methods (also referred as robust approach) is essential to

mention here (Rodriguez-Fernandez et al., 2006; Donckels, 2009; De Pauw, 2005).

Development of robust methods is ongoing parallel to this dissertation, with the

application of new methodologies (Van Daele et al., 2015a) for which the imple-

mentations are made available (Van Daele et al., 2015c).

As such, the focus in this chapter (and dissertation) will be on methods that work

independently from the model implementation, that can be approximated

numerically and that are screening the entire parameter space.
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3.2.2 A metric oriented approach

Let us first assume that we would have an infinite number of model simulations

available for a specific model application. By doing so, the discussion about sam-

pling strategies and the curse of dimensionality can be ignored at this point (the

necessity of numerical approaches will be explained later). The advantage of this

(non-realistic) assumption is that it supports the idea of an exploratory model

structure handling. It removes the obscurity caused by the current focus on sam-

pling strategies. Moreover, it avoids at the same time the blended discussion with

optimization algorithms to find an optimum. The most optimal set (no matter on

how this is defined) is already a subset of the entire set of available simulations.

The optimization boils down to the idea of deriving the min or max of a specified

model output derived metric (e.g. Sum of Squared Errors (SSE)). As such, an un-

derstandable and easy workflow pipeline can be constructed amongst many of the

regularly used methods in literature (Figure 3.1). Similar to Gupta et al. (2008),

it puts the focus on the calculation of output-derived aggregation metrics

and performance metrics. Although this is a rather trivial consideration, the

necessity to emphasise on this aspect is augmented by the conservatism in cur-

rent model evaluations, neglecting or simply ignoring the selection of evaluation

metrics and, for simplicity, just running the plethora of methods with default and

predefined settings (Gupta et al., 2008).

As such, a model structure evaluation starts with the translation of the research

purpose into a set of model evaluation metrics (section 3.3 and section 3.4). Based

on the selected metrics, different techniques can be selected to visualize and in-

terpret the model structure characteristics. In our utopian case of an infinite

availability of simulations, possibilities are countless and can be easily translated

into well-known modelling concepts:

� Finding the optimal (lowest/highest) value for a wide range of metrics: single

and multi-objective optimization

� Assessing and visualising the effect of changing parameter values on model

outputs to discriminate parameters with large impact from minor influencing

parameters: sensitivity analysis

� Evaluating the sensitivity of the output to the parameters in combination

with the parameter interaction: identifiability analysis (cfr. section 2.3.3)

� Exploring the posterior distribution conditioned by a set of observations:

parameter uncertainty estimation
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Most of these operations are a matter of correctly selecting a subset of simula-

tions to provide a visual or quantitative summarizing evaluation of the analysis.

As mentioned earlier, optimization is a min or max operation, sensitivity analysis

can start from the scatter plot of the aggregated model simulations in function of

the parameter values and sensitivity indices (such as Sobol) can be derived from

this. Based on a scatter matrix plot of the parameter values with a colormap ad-

dressing the performance metrics, insight in parameter interactions and posterior

parameter distributions can be derived graphically. Hence, for lower dimensional

applications where current computational power is able to mimic the situation of

unlimited model simulations, these graphical methods should be addressed within

a first exploratory analysis, equivalent to the descriptive part of a statistical data

analysis.

When we take the reality of environmental models into account, i.e. working

with high-dimensional parameter spaces and non-linear equations, a more efficient

parameter space exploration is needed and the results of these exploratory eval-
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Figure 3.1: Simplified representation of the main model evaluation method-

ologies, neglecting theoretical assumptions and assuming an infinite ability

to run simulations. A multi-variate parameter (input) space is sampled to

generate a large set of simulation outputs which can be recalculated to de-

rive aggregated metric values, compared to observations in any performance

metric or any combination of these two. These metrics can be used by a

variety of methods for sensitivity analysis, uncertainty analysis, identifibia-

bility analysis and optimization.
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uations should be treated carefully. For example, the aim of optimization is to

find the optimal value as fast as possible by iterating through the shortest path.

The development of Markov Chain Monte Carlo (MCMC) approaches to sample

the posterior probability density function of the parameters is another well-known

example. However, from this perspective, the MCMC is not the purpose on it-

self, but a sampling method to increase the efficiency in approximating a posterior

density function (section 3.5).

From this range of model evaluation techniques, the application of sensitivity ana-

lysis is of particular interest for model structure evaluation (Wagener and Kollat,

2007). It also provides support in the prioritization of important parameters,

insight in the model structure characteristics and identifiability by revealing pa-

rameter interactions (introduced in section 2.3.3). Hence, these methods are of

major interest and will be explained in more detail in chapter 5.

A clear communication about the difference in elements focusing on environmental

model behaviour (domain-specific metrics) and elements aiming for an increased

efficiency (general) is crucial. The latter is a problem exceeding the borders of

the environmental modelling community, which is something that should be taken

advantage of by trusting available libraries and packages from other disciplines that

provide these functionalities. In practice, the availability of a callable function

that calculates the metric as function of the model inputs (in many cases the

parameters) is an essential step to enable the coupling with a wide range of existing

libraries and packages.

Separation of the sampling (dimensionality) problem (section 4.1), the construc-

tion of the required performance metrics (section 3.4) and the analysis itself is

crucial and should be reflected in the implementation architecture as well. To

ensure the building blocks for each part are reusable to the at most extent, modu-

larity is a key element to anticipate for this. For the environmental modeller, the

ability to easily create and use different metrics when applying a model evaluation

methodology, is essential as it provides the link between the research question and

the set of available algorithms. The creation of these metrics will be further dealt

within the following sections.
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3.3 The construction of aggregated
model output metrics

The computation and checking of aggregated model output metrics practically

boils down to handling observed and modelled time series of all kind. However,

the lack of standardisation, the huge variability in output formats and data type

descriptions and the regular absence of proper meta data hampers this stage of the

work, partly resulting into the conservatism in model evaluation application (cfr.

section 2.4.5). Still, this time-intensive part of the research is generally ignored in

scientific communication.

Nevertheless, environmental scientists are dealing with observation records fre-

quently. Reading in time series, transforming them and extracting specific periods

for visualisation and analysis are part of the daily work. The derivation of aggre-

gated metrics for model evaluation is just another type of time series manipula-

tion.

It is noteworthy that these aggregation metrics can be seen as part of the general

model definition provided in Equation 2.1. The algebraic part of the model defi-

nition defines a set of functions g(x(t),yt,in(t),θ, t) that maps the time dependent

state variables x of the model into the variables of interest ŷ. This can be just a

selection function (subset of state variables), but it also can be a wide range of ag-

gregation functions. Hence, the aggregation functions applied can be interpreted

as part of the model itself and communicated as such. At the same time, it should

be noted that performance metrics are not part of the model definition, since they

require some kind of observations to compare with.

To support the community of environmental engineers, the development of easy

to use tools to perform this kind of aggregations in a documented and automated

way, are essential. In order to link the calculation of the aggregation with the range

of existing algorithms, it needs to be callable as a function by these algorithms.

Spreadsheet software is still regularly used to calculate aggregated metrics, but

does not easily support an automated operation as callable function. The lack of

automation and inherent documentation of the calculation steps results in repeti-

tive work when dealing with large amounts of data (Markowetz, 2015). Scripting

languages like R (R Core Development Team, 2008) and Python (Rossum, 1995)

on the other hand, provide flexibility, enable automation and reproducibility and

increase efficiency.
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The necessity of tools to facilitate this kind of aggregations is generally not dis-

cussed in literature, but the execution can require a substantial amount of time.

Therefore, the availability of tools that automate these aggregations can support

practitioners in extending model evaluation. Within the scope of this dissertation,

the hydropy Python Package 1 has been created, relying on the power of Pandas

(McKinney, 2010), a powerful environment for data analysis. The added value

of the hydropy Python Package 1 is a set of implemented functionalities to select

specific parts of a hydrograph.

Python Package 1 (hydropy).

The hydropy package supports the fast handling and selection of time

series records, with a domain specificity towards hydrological appli-

cations. The package originated from making the routines performed

in this dissertation reproducible and from making the functionalities

available, created within the scope of the project performed by Van

Hoey et al. (2014a).

The package adds a layer of domain-specific functionalities on top of

the existing Python Pandas package (McKinney, 2010). As such, the

power of Pandas is enabled, while focusing on a domain specific set of

functionalities (Van Hoey et al., 2015a).

(https://stijnvanhoey.github.io/hydropy/)

3.4 Construction of performance metrics

Quantitative performance metrics compute the difference between model output

and observations and are essential to evaluate model performance. These metrics

are used to translate a model calibration into an optimization problem as well

as to provide quantitative information about model performance. Here, we will

use the term performance metric as a generic name for any quantitative metric

or function used to evaluate model performance (also referred to as objective

functions) or to condition parameter values (e.g. likelihood functions). It depends

on the chosen metric and the related assumptions to what theoretical framework

one is subjected, Ordinary Least Squares (OLS) is probably the most known. The

assumptions linked to OLS do restrict the user, but at the same time OLS provides

additional features. For example, the usage of a least squares approach provides

a convenient derivation and communication about parameter confidence intervals.

https://stijnvanhoey.github.io/hydropy/
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Still, similar to any theoretical framework, these assumptions need to be verified

for their validity.

Hence, existing theoretical methodologies proposed in literature can also be in-

terpreted as alternative expressions of the search for diagnostic measures, i.e.

performance metrics (Gupta et al., 1998). However, in terms of a model diag-

nostic approach (which goes beyond finding an optimal parameter set), a single

aggregated performance metric is mostly not sufficient in evaluating the perfor-

mance, since it lumps time-dependent information. Hence, within the learning

process of model evaluation, flexibility in the usage of different metrics is essential

and the applicability of this range of metrics for sensitivity analysis, uncertainty

analysis and optimization algorithms is crucial. This is commonly ignored in lit-

erature, resulting in a limited set of performance metrics reused over and over

again. The performance metric construction will be further elaborated on in this

section.

3.4.1 Classification of performance metrics

Some performance metrics are frequently used in literature and are either applied

during the model calibration or as post processing evaluation of the estimated

model fit. Many alternatives can be applied and existing papers provide an ex-

tended set of performance metrics (Gupta et al., 1998; Legates and McCabe Jr,

1999; Moriasi et al., 2007; Dawson et al., 2007; Gupta et al., 2009; Hauduc et al.,

2015; Pfannerstill et al., 2014).

Central in the construction of performance metrics are the residuals, which is

the difference between the modelled output values ŷ and the observed values y.

The modelled values can be any aggregated metric from a variable of interest

(section 3.3), as long as there is a corresponding observed value (either by di-

rect measurement or by using an aggregation function on the measurements as

well).

Hauduc et al. (2015) classify performance metrics in following main classes:

� Event statistics: When the accuracy of specific events is required, such

as storm flows or toxic peaks, the performance during these specific events

needs to be evaluated. Examples are the peak difference (Gupta et al., 1998)

or the difference in timing of the peak values.

� Absolute criteria from residuals: The absolute criteria are based on the

sum of the residuals (which can be raised to a power), generally averaged by

the number of observations available. Low values suggest good agreement.
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Examples are the Root Mean Square Error (RMSE), and the Mean Absolute

Error (MAE):

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 ; MAE =
1

N

N∑
i=1

|ŷi − yi| (3.1)

� Criteria evaluating event dynamics: These metrics penalize noisy time

series and model outputs with a timing error, such as the timing of a peak

value. As an example, the Mean Squared Derivative Error (MSDE) is the

square of the differences of predicted and observed variations between two

time steps:

MSDE =
1

N − 1

N∑
i=2

((ŷi − ŷi-1)− (yi − yi-1))
2

(3.2)

� Residuals normalized with observed values: For these metrics, the

residuals of each individual measurement are divided by the observed values

itself, balancing the effect of large errors related to large values of the vari-

able. Low values suggest good agreement. An example is the Mean Square

Relative Error (MSRE):

MSRE =
1

N

N∑
i=1

(
ŷi − yi

yi

)2

(3.3)

� Sum of residuals normalized with sum of observed values: Instead

of dividing the individual residuals by their corresponding observations, the

division is performed on the entire set of observations, such as with the

Percent Bias (PB):

PB = 100 ·
∑N
i=1(ŷi − yi)∑N
i=1(yi)

(3.4)

� Comparison of residuals with reference values and with other mod-

els: These performance metrics compare the residuals with residuals ob-

tained with any reference model, for which the mean value (ȳi) is most

well-known as defined by the regularly used NSE metric:

NSE = 1−
∑N
i=1(ŷi − yi)

2∑N
i=1(ȳi − yi)2

(3.5)

Other classifications do exist to classify existing metrics (Dawson et al., 2007).

The difference between the focus on low and high flow can be compensated by
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the transformation of the observations and modelled values with a Box-Cox or

logarithmic transformation (Thiemann et al., 2001; Willems, 2009) (section 6.3.3).

Furthermore, the transformation can be useful to support the homoscedasticity of

the residuals, enabling the applicability of a theoretical (probabilistic) framework

as applied in Dams et al. (2014).

The classification provides a first guideline to the combination of performance

metrics, as combining metrics of different classes will be more effective as compared

to using multiple metrics within one class.

3.4.2 Metrics as estimators

In the previous section, the difference between the modelled output and observed

variable was described as any kind of performance metric quantitatively. However,

many of these performance metrics can be seen as special cases of Maximum

Likelihood (ML) estimators under specific assumptions. Some important concepts

will be introduced here according to the approach of Dochain and Vanrolleghem

(2001). Further excellent reading material is also provided by Reichert (2003) and

MacKay (2002).

Maximum likelihood Estimation

The ML approach is a fundamental part of a frequentistic statistical approach

for defining statistical estimators. It enables the estimation of the parameters of

a statistical model given a set of observations. Considering the potential values

the parameters of the model structure can have, it is intuitive to think that some

values are more likely than others. More likely values will correspond to a smaller

difference between the modelled output and the observed values.

A classical frequentistic approach starts from the idea that the available observed

values are a sample of the universe of observations (i.e. considered as random

variables Y ). These frequencies can be expressed as a density function f(y,θ)

(statistical model), which depends on a set of parameters θ. The Probability

Density Function (PDF) f(y,θ) within a process based model approach, describes

both the deterministic model (environmental model structure) and a stochastic

part (Omlin and Reichert, 1999). In that case, the statistical model describes the

(measurement) error term around the values of the deterministic process based

model, assuming the model structure to be correct.



CHAPTER 3 DIAGNOSTIC TOOLS FOR MODEL STRUCTURE EVALUATION 55

The available observations are considered as realisations of the random variables Y .

The estimator θ̂ is function of these random variables and is therefore a random

variable itself, in contrast to the (real, but unknown) model parameters θ. Further

discussion about the properties of estimators is out of scope here, but it is impor-

tant to understand that the maximum likelihood approach is a general method to

find such an estimator θ̂.

The PDF f(y,θ) gives the probability density for observing the values y given the

parameters θ. The probability distribution of the observations given the param-

eters is expressed as P (y | θ). So, the ML approach identifies the setting of the

parameter vector θ̂ that maximizes this probability P (y | θ) for the available set

of observations, leading to an optimization problem. By combining (multiplying)

the individual probabilities, a likelihood function can be constructed for a given

application. Notice the mixed usage of probability and likelihood. Actually, the

likelihood is defined as the probability of the observations as a function of θ.

Ordinary Least Squares Estimation

OLS is a special case of ML estimation. When the assumption is made that the

model is represented by independent (uncorrelated) errors originating from normal

distributions, the likelihood function is provided by the product of the individual

normal distributions:

L(y | θ) =

N∏
i=1

1√
2πσ2

i

exp

[
−1

2

(
yi − ŷi

σi

)2
]

(3.6)

with ŷ the model variables which are a function of θ (in this case all part of the

process based model), y the set of observations and σi is the (estimated) standard

deviation of the observations. The ML estimates θ̂ of the parameters are the values

that maximize Equation 3.6, which is equivalent to the minimum of the following

function:

J(θ) =

N∑
i=1

1

σi

(ŷi − yi)
2 (3.7)

as the other terms are constant values. This optimization problem (minimization)

is well-known as weighted least squares. When the σi cannot be estimated, they

can also be assigned by engineering judgement based on the experimental condi-

tions. This enables the modeller to express the reliability about the measurements

in the optimization problem (Dochain and Vanrolleghem, 2001).
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In case the standard deviations σi are assumed constant (homoscedastic), Equa-

tion 3.7 further simplifies to the well known SSE performance metric:

J(θ) =

N∑
i=1

(ŷi − yi)
2 (3.8)

Still, it is important that the usage of SSE within the theoretical framework of least

square estimation is only valid if the assumptions of homoscedastic, independent

and Gaussian errors are satisfied. The latter is however generally not true for

environmental models (Schoups and Vrugt, 2010).

Bayesian Estimation

Whereas the ML estimation assumes the (real) parameters to be constant values

and observations are considered as random variables Y , in a Bayesian approach

the parameters itself are considered as random variables as well. The Bayesian ap-

proach updates the prior knowledge (distribution) of the parameters by condition-

ing it by experimental evidence supporting a continuous learning process.

The parameter prior knowledge is described by the probability P (θ), whereas the

information looked for is the knowledge of the parameters conditioned by our

available data P (θ | y), called the posterior parameter distribution. Furthermore,

the probability (likelihood) P (y | θ) has been defined in the previous section and

can be interpreted similarly. The relation in between those terms is provided by

the Bayes Theorem:

P (θ | y) =
P (y | θ)P (θ)

P (y)
(3.9)

with P (y) the probability density of measured data, which in practice corresponds

to a normalization term (VanderPlas, 2014). Hence, Equation 3.9 can be written

as:

P (θ | y) ∝ P (y | θ)P (θ) (3.10)

Direct analytical computation of the posterior parameter distribution P (θ | y)

is mostly infeasible. Therefore, the posterior distribution can be approximated

numerically by a MCMC sampling scheme, for which different algorithms do exist

(section 3.5).

More in-depth knowledge about the theory and application of Bayesian inference is

provided by some excellent books on Bayesian statistics, for which MacKay (2002)

and Gelman et al. (2013) are of particular interest. For practical application, the
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online series of Jupyter notebooks, called Probabilistic Programming and Bayesian

Methods for Hackers (Davidson-Pilon, 2015) is of great value, since it is completely

interactive and reproducible in terms of implementation.

Both frequentistic and Bayesian approaches have their value and the appropri-

ateness of either using a ML (frequentistic) approach or a Bayesian approach is

an ongoing debate, which goes beyond the boundaries of environmental science

(not to be confused with the discussion of using informal and formal likelihoods

in the hydrological community (Beven, 2008a)). However, it is sometimes ignored

that under specific conditions, the results are comparable (VanderPlas, 2014). It

is important to understand that both are using likelihood functions that repre-

sent the assumed model error and can provide complementary information (cfr.

section 4.5). For a more extended comparison, the reader is invited to check the

online material provided by VanderPlas, which has been published in VanderPlas

(2014).

More elaborate likelihood functions intended for environmental modelling are pro-

posed in literature (Kuczera et al., 2006; Schoups and Vrugt, 2010; Renard et al.,

2011; Smith et al., 2015). However, the usage of a more elaborate likelihood de-

scription goes beyond the (classical) idea of describing the measurement error in

the stochastic term. The error model then acts as an additional part of the model

structure (Romanowicz et al., 1994). Basically, this extends the entire model de-

scription (process model and error model) with a set of extra parameters that

need to be inferred as well. Apart from the practical difficulties to estimate an

additional set of parameters, adding complexity to the error description could po-

tentially obscure the model structural deficiencies by treating them as stochastic

variables in some error term (Gupta et al., 1998). As such, within a diagnostic

approach, the focus is given to testability of a wide range of performance metrics

(both likelihood functions and other types of metric) rather than the quest for a

generally applicable likelihood description.

3.4.3 Including data uncertainty

Besides the limitation present in any model structure, observations are uncertain

as well and often do not comply with the assumptions of Gaussian errors. The un-

certainty of the observations should be included when this information is available

(both in terms of forcing/input data as well as any observations used to perform

model evaluation).

http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/
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A straightforward option, which directly follows from the derivation of the weighted

least-squares estimation (section 3.4.2), is using the error information (covariance

matrix of the observations) to define the weights of the Weighted Sum of Squared

Errors (WSSE) performance metric. In general, lower measurement accuracy of

the measurement equipment will be expressed as smaller weights, making them

less pronounced in the performance metric. When multiple variables are included,

the weights can be used to attribute the reliability of the measurements of the

different variables. For example, when the measurement device for a variable is

considerably more reliable than the other sensors, higher weights are given. Al-

ternatively, manipulation of the weights of each observation independently is also

possible. Ternbach (2005) proposes a function in order to have the standard devia-

tions σi of Equation 3.7 (inverse of the weights) proportional to the value of yi but

increasing when the latter approaches the detection limit or the lower accuracy

bound of the observed state variable. The pyideas Python Package 2 supports

these type of manipulations when defining the measurements (Van Daele et al.,

2015c).

Elaborate work is also done in the definition of the error term (likelihood func-

tion) within a Bayesian approach. Schoups and Vrugt (2010) propose a likelihood

function to cope with correlated, heteroscedastic, and non Gaussian errors taking

indirectly the measurement errors into account. This is done at the cost of extra

parameters that need to be estimated in the inference process. Smith et al. (2015)

define some alternatives with different assumptions leading to different likelihood

descriptions. A complementary approach is also the augmentation of the likelihood

function by introducing latent variables interacting with the forcing data. When

computational resources are available to deal with the extra parameters that need

to be inferred, these approaches provide a promising handling of, mostly uncer-

tain, rainfall forcing data (Kavetski et al., 2006a; Renard et al., 2011). Another

approach to account for data uncertainty is called limits of acceptability (Beven,

2006, 2008b). The proposal came within the scope of the Generalized Likelihood

Uncertainty Estimation (GLUE) framework, but it actually can be regarded as an

alternative way of constructing performance metrics that can be used in the va-

riety of existing algorithms. Moreover, it is largely similar to the set-membership

approach as performed by Vanrolleghem and Keesman (1996), using symmetric

bounds around the observations without assuming any statistical properties of the

errors.

The limits of acceptability approach starts with defining (or assuming) any kind of

function that describes the uncertainty of each observation independently. Existing

applications used a triangular (Westerberg et al., 2011b; Liu et al., 2009b) or a
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trapezoidal (Pappenberger et al., 2006) function. However, it can be a binary

function as well, providing 1 within a predefined (uncertainty) region around the

observation and 0 outside this region.

Based on the assumed function, the performance of a model simulation is cal-

culated by comparing the individual observations with the corresponding model

outputs. For each observation, the equivalent model output is compared and the

function defines the performance (i.e. score) of the model simulation for that par-

ticular point. In the case of a binary function, it would result in a value 0 or 1

for each of the observations. Combining the scores provides a way to create an

aggregated performance metric. The aggregation of these individual scores can

be done by summing them up, or alternatively, by expressing it as the number of

observations that are approached above a chosen score value.

The approach of limits of acceptability provides a large set of options to con-

struct case-specific performance metrics, taking into account prior knowledge of

observational uncertainty. It has been applied mainly in the context of rating

curve analysis (Pappenberger et al., 2006; Blazkova and Beven, 2009; Westerberg

et al., 2011b), but as well in waste-water treatment modelling (Vanrolleghem and

Keesman, 1996). The versatility of this approach makes it appealing within the

diagnostic approach.

3.4.4 Combining performance metrics

As mentioned earlier, the application of a single aggregation metric is mostly insuf-

ficient to properly characterise model deficiencies (Gupta et al., 1998). However,

using multiple performance metrics imposes the question on how to combine the

information of the individual performance metrics. The assessment of the individ-

ual metrics next to each other is always an option. In function of optimization,

assessment of parameter identification and sensitivity analysis, different kinds of

combinations are possible as well.

A straightforward approach is to create a single overall metric by combining dif-

ferent metrics into an overall performance metric, e.g. summing them up (or any

other aggregation function). When doing so, it is important to keep in mind

the magnitude of the individual metrics and whenever possible, to make them

relatively comparable. Gupta et al. (2009) proposed the Kling Gupta efficiency

(KGE), which computes the Euclidian distance between three important compo-

nents for model evaluation: correlation, variability error and bias error. Since all

of them are dimensionless numbers, the combination by the Euclidian distance
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is appropriate. By doing so, the performance metric represents a multi-objective

perspective for evaluation.

A similar approach is also executed by Madsen (2000) and van Griensven and

Bauwens (2003). By changing the weighting coefficients of individual components,

one can obtain alternative solutions. Hence, the applied weights are a subjective

choice with direct influence on the end-result and appropriate weighting is therefore

essential (Efstratiadis and Koutsoyiannis, 2010). The approach of van Griensven

and Bauwens (2003) was later reformulated within a probabilistic approach, which

boils down to the multiplication of the individual terms, assuming independent

probabilities (van Griensven and Meixner, 2007).

Another approach is to interpret the problem as a multi-objective problem by ap-

plying a multi-objective optimization algorithm. This means the characterisation

of the pareto front that collects all the optimal combinations of the included per-

formance metrics. Different multi-objective algorithms do exist and are enlisted

by Efstratiadis and Koutsoyiannis (2010). Within the metric-oriented approach,

existing algorithms such as provided by Fortin et al. (2012), can be coupled by

providing the preferred metric functions as input functions to optimize.

When applying a filtering approach, i.e. labelling simulations as behavioural when

satisfying a predefined minimal performance (threshold) and considering the others

as not behavioural, combining multiple metrics is rather straightforward. New

thresholds will diminish the set of behavioural simulations until at some point

none of them will satisfy all defined requirements.

A recently proposed technique called Approximate Bayesian Computing (ABC)

provides a promising framework to unify the application of multiple performance

metrics within a Bayesian approach as a likelihood-free version of parameter in-

ference. Hence, instead of using explicit likelihood functions that are subject to

assumptions about the error term, the application of any kind of performance met-

ric could be used to derive information about the posterior parameter distributions.

It basically provides the ability to estimate the P (θ | y) of Equation 3.10 based

on a set of simulations that applies to a predefined threshold and at the same time

provides the ability to use more efficient sampling schemes such as MCMC (Sadegh

and Vrugt, 2014). In other words, it provides an efficient approach to the limits of

acceptibility approach as proposed by Beven (2006) and it is a rigorous framework

to handle multiple performance metrics (Vrugt and Sadegh, 2013). This is directly

in line with the diagnostic approach presented in this dissertation.
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3.5 Sampling strategies

Sampling strategies are a problem of dimensionality and efficiency, needed in envi-

ronmental modelling due to the impossibility of analytical approaches. However,

the necessity of an improved sampling strategy blurs sometimes the communica-

tion about the algorithm itself. As considered earlier, when an (almost) infinite

availability of model runs would be feasible, a random sampler available in most

software environments and (high-level) programming languages would be sufficient

in these model applications. However, the dimensionality of the problems typi-

cally at hand does require a set of improved sampling strategies, making them

indispensable. Hence, current algorithms applied in environmental modelling to

perform a sensitivity analysis, uncertainty analysis or optimization typically rely

on the application of taking samples from a random variable X described by a

PDF fX in a manner that is mostly directly linked with the methodology.

Sampling strategies are a notable part of statistical research. However, within

environmental sciences, practitioners are only aware of a rather limited portion of

it. This sometimes leads to a confusion of tongue when talking about the different

aspects of random sampling, e.g. mixing up the sampling strategy (how a repeated

set of samples is taken) and the used PDFs. In literature and application studies

the choice for so-called uninformative uniform distributions is commonly seen.

This leads to the impression of a common - good - practice of doing so. For some

applications the decided distribution sampled is indeed less important than the

range of the values sampled (Nossent, 2012). However, when more information is

available, the sampling of other distributions, which can be multivariate as well,

should be supported too.

Besides, in practical environmental applications, the limitation of conservative

random sampling based methodologies are too often undervalued and the necessity

of a sufficient amount of samples is regularly ignored. So, next to the ability

of sampling all kinds of (multivariate) distributions, the usage of more efficient

sampling methods and the verification of convergence are essential (Nossent et al.,

2013; Vanrolleghem et al., 2015). A complete overview on the matter is outside

the scope of this dissertation, but both issues will be shortly discussed and some

practical consequences will be illustrated. This provides the reader with sufficient

background to understand the applications in chapter 4, chapter 8 and chapter 10.

For an adequate insight on the matter, the reader is referred to Devroye (1986)

and MacKay (2002). Both provide a good balance between theoretical background

and practical applicability without an environmental specific application.
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3.5.1 Sampling non-uniform distributions

Different methods do exist to support sampling from a wide range of distributions,

mostly starting with the sampling of a random variable with a PDF from which

samples can easily be drawn (e.g. uniform distribution). The inverse method uses

the inverse of the Cumulative Density Function (CDF) FX to translate a uniformly

sampled value within the interval [0, 1] to a sample of the random variable X, if

the inverse F−1
X can be calculated (Figure 3.2). When not, approximated meth-

ods do exist as well. As such, this approach can be used for most distributions

and implementations of this conversion is common practice in existing statistical

packages (e.g. Python Module 1).
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Figure 3.2: Illustration of the sampling of a custom PDF, performed for

three samples. By taking the sample in the interval [0, 1] and using the

inverse CDF, realisations x of the custom PDF are randomly sampled.

Python Module 1 (scipy.stats).

This module contains a large number of probability distributions, both

continuous and discrete. The inverse of the CDF can be calculated by

the percent point function (ppf) and as such, a randomly sampled value

from a uniform distribution in the interval [0, 1] can be translated in a

random sample of the chosen distribution function.

An alternative method is the acceptance-rejection sampling, which is less efficient

as the inverse method, but can be used in the case that the inverse CDF is not

known. The rejection method is worthwhile mentioning due to its link with the
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increased application of MCMC to sample posterior distributions. It samples from

a known distribution that encloses the required distribution until a sample is found

for which the acceptance criterion is fulfilled. For a general introduction to non-

uniform sampling procedures the reader is referred to Devroye (1986).

3.5.2 Sampling strategy

The first step is knowing how to take a single sample from any PDF, based on the

sampling from a uniform (the range [0, 1]) or other easy to sample distribution.

The next step is the strategy to approximate the distribution reliably by sampling

the entire range as efficiently as possible (e.g. equal samples of all numbers between

0 and 1). The most straightforward way is the random sampling. However, due

to the discrete nature of computers, true randomness cannot be implemented and

these methods are referred to as pseudo random sampling such as the Mersenne

twister developed by Matsumoto and Nishimura (1998) and used in Python numpy

(van der Walt et al., 2011) and Matlab®. Another straightforward approach is

to sample following a predefined grid with equal density, which will be perfectly

fine for lower dimensional problems, but quickly run into limitations due to the

curse of dimensionality when facing higher-order situations (Bergstra and Bengio,

2012).

To overcome the very slow convergence of these pseudo random samplers and the

limitations of a grid based approach for more dimensional problems, alternative

sampling schemes were developed to improve the coverage. Latin-Hypercube sam-

pling (McKay et al., 1979), where the range is divided in N intervals of equal

density 1/N and a (pseudo)-random sample is taken in each interval, is particu-

larly popular due to the ease of implementation. Orthogonal Array-Based Latin-

Hypercube sampling (Tang, 1993) provides an improved approach to construct

Latin Hypercubes for numerical integration. Quasi-pseudo random sampling ap-

proaches actively avoid clustering by taking successive samples away from earlier

sampled points, resulting in deterministic sequences that strive for optimal cover-

age (Nossent, 2012). Of particular interest are Sobol quasi random sampling se-

quences which are commonly used within the scope of sensitivity analysis (Sobol,

1967; Sobol and Kucherenko, 2005). Moreover, some modelling techniques use a

specialized sampling strategy, such as the Morris trajectories within a screening

approach for sensitivity analysis (Campolongo et al., 2007) (section 5.3).

The last years, the usage of MCMC sampling is increasingly popular, due to its spe-

cific capacity to sample ill-normalized (or otherwise hard to sample) PDFs. MCMC

represents a set of methods that are based on sampling values from an approximate
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distribution and then correcting those draws iteratively to better approximate the

target distribution until convergence is reached (Devroye, 1986). These meth-

ods typically use an acceptance-rejection sampler, such as Metropolis-Hastings

(Metropolis et al., 1953), to draw new samples from the target distribution (Patil

et al., 2010). The Bayesian Total Error Analysis (BATEA) (Kuczera et al., 2006;

Kavetski et al., 2006a) and DiffeRential Evolution Adaptive Metropolis (DREAM)

(Vrugt et al., 2008a; McMillan and Clark, 2009; Schoups and Vrugt, 2010; Vrugt,

2015) methodologies both rely on an MCMC scheme and are of particular interest

in the hydrological community, but both contain one specific implementation of an

MCMC approach focusing on high-dimensional problems as it is targeted by other

implementations as well (Foreman-Mackey et al., 2013; Patil et al., 2010). Despite

the advantages provided by both BATEA and DREAM, the lack of modularity in

extracting the sampling scheme itself is a missed opportunity.

Actually, for one or two dimensional problems, a grid based approach would be ap-

plicable as well to approximate the posterior distribution. For a detailed overview

of the historical development, the theoretical background and the currently exist-

ing methodologies for MCMC, the reader is referred to Gelman et al. (2013).

The main advantage, apart from the theoretical considerations, is the efficiency

of sampling with a preferential sampling strategy, as the MCMC provides when

searching for preferential (optimal) regions in the parameter space. If one would

attempt performing a brute force technique by visiting all points in the space and

would divide each dimension in 50 equally spaced points, than for a 2-dimensional

space it would require 502 = 2500 simulations, but for 10 dimensions this would

be 5010 = 97656250000000000 simulations, which is a horrible amount. Hence, the

benefit of improved sampling strategies and optimization algorithms should not

be underestimated. However, the aim of environmental studies should not be the

application of MCMC in itself, but MCMC should be regarded as an efficient tool

to sample a distribution.

To summarize, the necessary sampling strategy is dependent on the dimension of

the problem, the chosen distribution and the modelling technique itself. In any

kind of sampling approach, a proper convergence assessment is essential in order

to derive reliable results (Gelman et al., 2013; Nossent et al., 2013; Vanrolleghem

et al., 2015). It is noteworthy that approaches for direct multivariate sampling

of a known distribution are not explicitly considered here, but should be applied

when the information is known. Techniques do exist when the correlation between

parameters is known (Iman and Conover, 2007). It is similar to an inverse CDF

approach, in the case that the multivariate distribution is described as a copula

function, by sampling uniformly in the [0, 1] interval (Vandenberghe, 2012).
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3.5.3 Numerical optimization: picking the fast lane

Numerical optimization algorithms are not regularly dealt with at the same time

as sampling methods. Mathematically, the purpose is indeed completely different.

However, it is considered here as a general way of finding the shortest path from

the input (parameter) space to a smaller target space based on the minimization

of a defined performance metric, independent of how this metric is constructed.

The optimization method to choose depends on the response surface characteristics

(resulting from the performance metric selected, the model structure and the data),

which can be ranging from a well-known SSE leading to a non-linear least square

estimation to a more extended likelihood function leading to maximum likelihood

estimation (section 3.4.2) or any metric the modeller can construct to support the

model evaluation. However, the optimization itself can be achieved by a variety of

existing algorithms and the mathematical properties of the optimization problem

are essential to pick a proper optimization algorithm. For a general overview

of numerical optimization methods and their respective properties, the reader is

referred to Nocedal and Wright (2006).

Similar to sampling methods, optimization problems are of interest to a large area

of scientific research. The rather limited set of optimization algorithms applied in

environmental research is surprising. Consider for example the popularity of Shuf-

fled Complex Evolution (SCE-UA) as an optimization method regularly encoun-

tered in scientific literature of hydrological studies (Duan et al., 1994; Xu et al.,

2013; Maier et al., 2015; Willems et al., 2014; Wolfs et al., 2015). The popularity is

understandable, since it provides a model structure independent (derivative free),

global search algorithm with good convergence properties (Duan et al., 1992).

However, the limited number of applications outside this community suggests that

many other algorithms could be used as well.

Performance metrics, when implemented as a function, can easily be used as an

input argument in existing optimization algorithms such as those provided by the

Python Module 2. Within the scope of this dissertation, two specific algorithms

are applied to solve different optimization problems, namely gradient based local

methods as they are provided by the scipy.optimize.minimize Python Module 2

(Jones et al., 2001) and the implemented SCE-UA Python Module 3.
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Python Module 2 (scipy.optimize.minimize).

Minimization of a function of one or more variables, for optimization

problems of the form minimizef(x). Optionally, the lower and upper

bounds for each element in x can also be specified using the bounds

argument. The function provides algorithms for constrained and uncon-

strained optimization. Both gradient based (Nopens, 2010) as well as

gradient free algorithms such as Nelder-Mead (Nelder and Mead, 1965)

are available. A good introduction to the different considerations that

need to be taken into account (convexity, smoothness and constraints)

is given in the scipy lecture notes, continuously updated.

(http://docs.scipy.org/doc/scipy-0.16.1/reference/optimize.html)

Local methods are appropriate when the response surface, i.e. the performance

metric in function of the individual elements, is smooth or when working with con-

vex problems. However, the non-linear characteristics of environmental models and

the numerical approximations used are causing discontinuities, long ridges and sec-

ondary optima, hampering the optimization process (Kavetski and Kuczera, 2007;

Schoups et al., 2010). In general, the lack of identifiability of the parameters in

a model structure will hamper the success of optimization algorithms for environ-

mental modelling (Andréassian et al., 2012). Multiple combinations of parameter

values can provide a similar performance towards a specified metric (Beven, 2002,

2008b).

Python Module 3 (Optimization SCE).

The SCE-UA algorithm is a global optimization algorithm to find the

optimal combination of an input vector x to minimize a function f(x)

(Duan et al., 1992). It combines the properties of a controlled random

search, the Nelder-Mead method (Nelder and Mead, 1965) and compe-

titive evolution (Nossent, 2012). By the simultaneous and independent

evolving of different complexes and by regular shuffling in between the

complexes, the global minimum is searched for. A detailed description

is given in Duan et al. (1992) and Van Hoey (2008).

(https://github.com/stijnvanhoey/Optimization SCE)

http://www.scipylectures.org/advanced/mathematical_optimization/index.html
http://docs.scipy.org/doc/scipy-0.16.1/reference/optimize.html
https://github.com/stijnvanhoey/Optimization_SCE
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3.6 Conclusion

Many environments and methodologies for model calibration, sensitivity analysis

and uncertainty analysis are available in literature. However, the central posi-

tion of the used metric and the direct link of the metric with the research ob-

jective is regularly ignored, leading to the usage of typical metrics over and over

again.

By explaining the central role metrics have in any kind of model evaluation al-

gorithm, the chapter provides a common denominator for many of the existing

methodologies. Making a clear division in between the analysis itself (e.g. identifi-

ability, uncertainty, sensitivity analysis) and the necessity of a sampling technique

is crucial, but regularly ignored.

The chosen metric is the link between the algorithm and the research question and

should be of major concern in the first place. Based on the metric definition, the

necessity of a formal framework or any kind of algorithms for numerical approxi-

mation follows, not the other way around. By making this clear to future modellers

and practitioners, the chapter aims to support the objective of improving current

practices in model evaluation.





CHAPTER 4
Case study: respirometric model

with time-lag

Parts redrafted and compiled from

Cierkens, K., Van Hoey, S., De Baets, B., Seuntjens, P., and Nopens, I. (2012). Influence of un-

certainty analysis methods and subjective choices on prediction uncertainty for a respirometric

case. In Seppelt, R., Voinov, A. A., Lange, S., and Bankamp, D., editors, International Environ-

mental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental

Modelling and Software. Managing Resources of a Limited Planet: Pathways and Visions under

Uncertainty, Sixth Biennial Meeting, Leipzig, Germany. International Environmental Modelling

and Software Society (iEMSs)

Decubber, S. (2014). Linking the carbon biokinetics of activated sludge to the operational waste

water treatment conditions. Msc thesis, Ghent University

4.1 Introduction

Different diagnostic tools can be used to evaluate model structures and collect

information to support the model calibration. The previous chapter provided

a more general background and introduced the concept of the metric oriented

approach, putting the choice of metrics first. In this chapter, an ODE-based

model focusing on respirometry will be used to provide a practical application of

the suggestions made in the preceding chapter.

The aim of the modelling exercise at hand is defined as ‘to evaluate the identi-

fiability and applicability of a chosen respirometric model structure for aerobic
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degradation of acetate based on ASM No. 1’(Henze et al., 1983; Gernaey et al.,

2002). Vanrolleghem et al. (1995) and Dochain et al. (1995) studied the identifi-

ability of a similar model structure, without the addition of a time-lag function

representing the retardation of the biomass activity. The analysis in this chap-

ter aims to check the correspondence with the earlier work and to evaluate if the

addition of the transient term can be justified as a model structure decision.

Three different approaches will be used to perform the analysis:

� The influence of the experimental conditions on the parameter identifiabi-

lity is questioned. As previous research stated that the initial amount of

acetate should be appropriate to satisfy the assumptions of the model struc-

ture (Grady et al., 1996), the effect of the ratio substrate to biomass will be

evaluated. As we are specifically interested in the influence of the time-lag

function, the parameter influence as a function of time is assessed. While

choosing each individual time step as a metric, a local parameter sensi-

tivity analysis is applied to check the relative sensitivity and interaction

of the parameters under the two experimental conditions.

� To have a more general understanding of the influence of the parameters

relative to the initial acetate concentration, a Sobol global parameter

sensitivity analysis is applied. Instead of focusing on a particular point

in the parameter space, the influence and interactions are checked for the

entire range of the different factors (parameters and initial concentration).

Different aggregation metrics are used to compare the influence of the input

factors and check the identifiability.

� A normal distribution is assumed for the residuals, leading to a performance

metric defined by the SSE. These assumptions enable to use a metric as

an estimator in a formal framework (cfr. section 3.4.2). This performance

metric is used to calibrate the respirometric model by using an ML approach

and by sampling the posterior of the proposed likelihood function with an

MCMC sampler. The parameter interactions are evaluated under the given

assumptions.

To not overload the dissertation itself with redundant code, the execution was

performed in a set of Jupyter notebooks 1. These notebooks provide an interactive

environment to reproduce the implementations executed in this chapter.

The chapter is organised as follows. First, the concept of respirometry is briefly

introduced for the unfamiliar reader, along with the available observations and the

chosen model structure. Next, the three aforementioned analyses are be performed

1https://github.com/stijnvanhoey/phd ipynb respiro showcases

https://github.com/stijnvanhoey/phd_ipynb_respiro_showcases
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and explained. Finally, the conclusions about the suitability of the model struc-

ture are collected based on the combined results. At the same time, the chapter

illustrates how model evaluation can be based on the local sensitivity as a func-

tion of time, based on aggregated metrics or based on metrics enabling a formal

approach.

4.2 Respirometry

Respirometric experiments are typically used to characterise aerobic degradation

by the active microorganisms in activated sludge (Gernaey et al., 2002). During a

respirometric experiment, an amount of biodegradable substrate, e.g. acetate, is

added to a batch reactor containing activated sludge. By monitoring the amount

of oxygen per unit of volume and time that is consumed by the microorganisms,

the respiration rate of the activated sludge can be assessed. It can be applied for

carbon source degradation processes, but also for nitrification, i.e. the oxidation of

ammonium to nitrate, as well. In model studies of waste water treatment plants,

respirometry is applied to estimate biokinetic parameters describing the activated

sludge characteristics. As such, the number of parameters to calibrate in the (over-

parameterized) ASMs used in full-scale modelling studies can be reduced (Spanjers

and Vanrolleghem, 1995; Vanrolleghem et al., 1999). Besides, respirometry is also

applied to quantify the different Biological Oxygen Demand (BOD) fractions in

waste water and to evaluate toxicity of waste water. The focus is on the charac-

terisation of biokinetic parameters by evaluating simplified ASM models based on

the observed experimental data.

The parameter identification of models used within the scope of respirometry has

been studied and described extensively in the past (Dochain et al., 1995; Vanrol-

leghem et al., 1995; Spanjers and Vanrolleghem, 1995; Grady et al., 1996; Vanrol-

leghem et al., 1999; Petersen et al., 2001; Gernaey et al., 2002; De Pauw, 2005).

Most of the strategies to overcome the lack of identifiability are in line with the

idea of extracting additional information out of observations to support parameter

identification, both by measuring specific parameters individually (Vanrolleghem

et al., 1999) or by extracting information from additional data sources, e.g. titri-

metric data (Gernaey et al., 2002). Sensitivity analysis is in many cases an essential

element in the assessment of the parameter identifiability.

It is important to understand that on the basis of the oxygen uptake rate or

the measured dissolved oxygen levels alone only a subset of parameters are struc-

turally identifiable (Dochain et al., 1995). Moreover, practical identifiability issues
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are reported as well. For example, Vanrolleghem et al. (1995) describe the inter-

action between the maximum growth rate µmax and the half saturation coëfficient

KS when other parameters and initial conditions are assumed known leading to

ill-conditioned parameter estimates. Figure 4.1, taken from Vanrolleghem et al.

(1995), illustrates this specific interaction effect. As such, the respirometry appli-

cation provides a well known case study to showcase different model evaluation

strategies and to explore the parameter sensitivity/identifiability tools.

Figure 4.1: Resulting figure of a practical identifiability analysis performed

by Vanrolleghem et al. (1995), showing parameter interaction between pa-

rameters µmax and KS, the latter named Km1 in the original paper. (figure

reproduced from Vanrolleghem et al. (1995))

4.2.1 Respirometric data collection

A first set of experiments used in this work is described in Cierkens et al. (2012).

The flowing gas-static liquid respirometer consists of a reactor with a volume

of 2 l filled with sludge, taken from the aerobic tanks of the municipal WWTP

of Ossemeersen (Gent, Belgium). The sludge was aerated overnight to ensure

endogenous state. Temperature is controlled at 20 ◦C (± 0.05) and pH at 7.5 (±
0.1). Dissolved oxygen and pH are recorded every second with an LDO sensor

(Mettler Toledo, Inpro 6870i) and a pH-sensor (Mettler Toledo HA 405-DXK-

S8/225). An acetate pulse of 60 mg l−1 was added according to Gernaey et al.

(2002). Exogenous oxygen uptake rate (OURex) profiles are calculated similar to

Petersen (2000). Figure 4.2 visualizes the observed dissolved oxygen concentration

SO and the calculated OURex of a single experiment. Hence OURex is a derived

metric instead of a direct observed value.
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Figure 4.2: Observations from a single respirometric experiment as per-

formed by Cierkens et al. (2012). The top graph represents the measured

oxygen concentration SO (mg l−1) and the lower graph represents the ex-

ogenous oxygen uptake rate: OURex (mg l−1 min−1)

Additional experiments were performed by Decubber (2014) with a similar exper-

imental setup with sludge taken from a full-scale A/B-installation of Nieuwveer

(Breda, Netherlands). Instead of a single acetate pulse of 60 mg l−1, individ-

ual experiments consisted of dosing consecutive substrate spikes, each time when

the OUR had dropped back to endogenous levels with changing levels of acetate

dosage. A detailed description of the experiments and the experimental setup is

provided in Decubber (2014). Figure 4.3 provides the outcome of a single ex-

periment (reference number 0508A), showing the acetate spikes and the resulting

drops in dissolved oxygen SO caused by the microorganisms activity.

4.2.2 Respirometric model

A simple respirometric model for aerobic degradation (Equations 4.1 till 4.4) of ac-

etate SA without storage is used (Gernaey et al., 2002), based on ASM No. 1 (Henze

et al., 1983). It predicts the exogenous oxygen uptake rate OURex (mg l−1 min−1),

caused by the substrate (in this case acetate) consumption by the active biomass

XB to grow following Monod kinetics. Endogenous respiration of the biomass,

i.e. the basal metabolism of the biomass is also described. The OURex is derived

using an algebraic equation, based on the dissolved oxygen state variable SO. A

' L 
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Figure 4.3: Observations from a single respirometric experiment (ref. id

0508A) as performed by Decubber (2014). The top graph represents the

added acetate SA (mg l−1) and the lower graph represents the measured

oxygen concentration SO (mg l−1). This experiment consisted of five con-

secutive acetate spikes.

model representation is also provided in Table 4.1 as a Gujer matrix, providing

a standardised model representation, common for ASM model descriptions. The

matrix representation is equivalent to Equations 4.1 till 4.4. A more detailed ex-

planation of this matrix model representation is provided in section 9.4. Table

4.2 provides an overview of the different state variables, parameters and initial

conditions.

dSA

dt
= −(1− e− t

τ )
1

Y
µmax

SA

KS + SA

XB (4.1)

dXB

dt
= (1− e− t

τ )
1

Y
µmax

SA

KS + SA

XB − bXB (4.2)

dSO

dt
= −(1− e− t

τ )
1− Y
Y

µmax
SA

KS + SA

XB − bXB + kLa(S
*

O − SO) (4.3)

OURex = (1− e− t
τ )µmax

1− Y
Y

SA

KS + SA

X (4.4)

A typical observation in short-term batch experiments such as a respirometer,

is that the respiration signal exhibits a transient response before attaining its

maximum value (Vanrolleghem et al., 2004). This time lag is typically of the order

' L 
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Table 4.1: Representation of the respirometry model as a Gujer matrix

consisting of state variables to represent aerobic degradation of acetate SA

by biomass XB consuming oxygen SO. Units of the state variables are

expressed as m(COD)l
−1 to explain the stochiometric correspondance, which

is equivalent to mg l−1 using the molar mass of each substance.

process stoichiometry reaction rate

XB SA SO

heterotrophic growth
with SA as substrate

1 − 1
Y − 1−Y

Y (1− e− t
τ )µmax

SA

KS+SA
XB

endogenous respiration -1 -1 b XB

aeration 1 kLa(S
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stochiometric

parameters:

Y

b
io

m
a
ss

(m
(
C
O

D
)
l−

1
)

su
b

st
ra

te
(m

(
C
O

D
)
l−

1
)

ox
y
ge

n
(m

(
-C

O
D

)
l−

1
)

kinetic

parameters:

µmax,KS, τ

kLa, S
*
O, b

of minutes and therefore only observed when the frequency of SO measurement is of

the order of seconds. Vanrolleghem et al. (2004) suggested that the time lag, which

is of the order of minutes, can only partially be accounted for by the dynamics of

the oxygen sensor and by improper mixing. Neither can it be explained by diffusion

limitation of oxygen into the sludge flocs, since similar time lags have been observed

in experiments with dispersed single species cultures. They suggested that the time

lag can be further explained by intracellular phenomena such as delays in substrate

metabolism and concluded that it can be described by a first-order model of the

growth rate with following term: (1 − e− t
τ ). τ is the time coefficient that needs

to be determined in order to correctly describe the retardation of the biomass

activity.

Dochain et al. (1995) studied the structural identifiability of the considered model

focusing on the Monod kinetics, i.e. without the transient time lag function,

oxygen transfer and ignoring the biomass decay. Hence, from the five remaining

parameters µmax, KS, Y and S0
A (they considered the initial concentration as a

parameter for the analysis), only the following three combinations were identifiable:

µmaxXB(1−Y )/Y , (1−Y )S0
A and (1−Y )KS. By assuming XB, Y and S0

A known a
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priori, estimation of only µmax and KS remained in their subsequent paper focusing

on practical identifiability (Vanrolleghem et al., 1995).

Table 4.2: Overview of the parameters and states in the used respirometric

model

Variable Description Units

SA acetate concentration mg l−1

SO dissolved oxygen concentration mg l−1

XB biomass concentration mg l−1

OURex oxygen uptake rate mg l−1 min−1

Parameter

µmax maximum growth rate d−1

KS half-saturation Monod constant mg l−1

τ retardation of biomass activity

time coëfficient

d

Y yield of the biomass -

kLa volumetric gas/liquid mass

transfer coefficient for oxygen

min−1

b biomass decay rate d−1

S*
O saturated oxygen concentrationa mg l−1

Initial condition

S0
O initial oxygen concentrationa mg l−1

S0
A initial acetate concentration mg l−1

X0
B initial biomass concentration mg l−1

a since the reactor is saturated with oxygen at the start of each experiment, S*
O

is assumed to be equivalent to S0
O

As suggested by Grady et al. (1996), the experimental conditions within the work

of Decubber (2014) are according to S0
A/X

0
B ratios that are not altering the com-

munity structure (below 0.025). In the oxygen mass balance, the theoretical satu-

ration concentration S*
O was replaced by the measured equilibrium concentration

in order to express the mass balance in terms of the exogenous oxygen uptake rate

OURex (Decubber, 2014). By saturating the reactor with oxygen till equilibrium

is reached prior to the acetate addition, the measured equilibrium concentration

is equivalent to the initial concentration S0
O of the simulation. In other words,

the measured oxygen concentration at equilibrium S0
O is used as saturated oxygen

concentration S*
O and assumed known.
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Initial concentrations of acetate S0
A are controlled as an experimental condition.

The initial biomass concentration X0
B derivation depends on the model and exper-

imental application. Structural identifiability analysis clarified the impossibility of

estimating µmax and X0
B separately (Dochain et al., 1995). Cierkens et al. (2012)

also illustrated that defining one or the other is needed. As such, to define the

biomass, the volatile suspended solids were measured and the assumption is made

that X0
B is half of this concentration (Decubber, 2014).

Furthermore, the parameters Y , kLa and b were experimentally defined or derived

from earlier optimizations and the assumed values are enlisted in Table 4.3 (De-

cubber, 2014; Cierkens et al., 2012). Hence, focus is on the estimation of µmax

and KS in correspondence to Vanrolleghem et al. (1995), but extended with the

parameter τ .

Table 4.3: Overview of the parameter values described in respectively

Cierkens et al. (2012) and (Decubber, 2014) and here assumed as known

values

Parameter Cierkens et al. (2012) Decubber (2014) Unit

Y 0.78 0.70 -

kLa 0.26 0.42 min−1

b 0.62 0.24 d−1

S*
O 8.40 8.94 mg l−1

The respirometric model was implemented in the Python programming language

by using the Python Package pyIDEAS 2 developed to support the creation of any

kind of ODE based model represented by Equation 2.1.

Python Package 2 (pyideas).

This pyideas model environment is an object oriented python imple-

mentation for model building and analysis, focussing on identifiability

analysis and optimal experimental design. It provides a simplified syn-

tax to define general models for ODE models used in this dissertation.

(https://github.ugent.be/pages/biomath/biointense/

Figure 4.4 provides the outcome of a respirometric model simulation. The acetate

dosed is consumed by the biomass according to the Monod kinetics, causing the

dissolved oxygen concentration to drop and biomass to grow. When the acetate

is consumed, the biomass concentration decreases due to biomass decay according

https://github.ugent.be/pages/biomath/biointense/
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Figure 4.4: Output from a single respirometric model simulation, using

µmax = 4 d−1, KS = 0.4 mg l−1, τ = 2.25 × 10−4 d, Y = 0.78, b = 0.62 d−1,

kLa = 0.26 min−1, S0
O = S*

O = 8.4 mg l−1, S0
A = 58.48 mg l−1 and X0

B =

675 mg l−1. The model calculates the dissolved oxygen SO (mg l−1), the

concentration of acetate SA (mg l−1), the biomass concentration XB (mg l−1)

and the exogenous oxygen uptake rate OURex (mg l−1 min−1). Acetate is

consumed by the biomass, whereafter the biomass returns to endogenous

activity and the oxygen level increases again.

to the biomass decay rate b and oxygen levels increase again. In the next sections,

the model will be used as an example case to illustrate the application of both a

local and a global sensitivity analysis.
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4.3 Comparing experimental conditions

Introduction to local sensitivity analysis

Sensitivity analysis provides an estimate on the influence input factors have on

the model output. A local sensitivity analysis is based on the partial derivatives

from a response variable of interest ŷi to an input factor θj:

∂ŷi(θ, t)

∂θj
(4.5)

taking into account the notation of Equation 2.1. When direct operation on the

differential equations are possible, the local sensitivity analysis can be derived ana-

lytically, as introduced by Vanrolleghem et al. (1995); Dochain and Vanrolleghem

(2001); Donckels (2009). More recently Van Daele et al. (2015c) implemented

this based on the symbolic computation provided by SymPy Development Team

(2014).

The analytical derivation can become very complicated for complex models and

many environmental models do not allow direct operations on the model equations.

In these cases, Equation 4.5 has to be approximated using numerical techniques.

An overview of the existing methods is given by De Pauw and Vanrolleghem (2006)

and a more in depth evaluation is provided by De Pauw (2005). The most straight-

forward approach is the finite difference approximation, where the sensitivity of

the variable ŷi to parameter θj is approximated as

∂ŷi(θ, t)

∂θj
= lim

∆θj→0

ŷi(θ + ∆θj, t)− ŷi(θ, t)

∆θj
(4.6)

with ŷi(θ + ∆θj, t) the value of ŷi at time step t when ∆θj is added to the value

of parameter θj. A sufficiently small value for ∆θj should be used to make sure

Equation 4.6 is valid. When ∆θj is chosen too large, the non-linearities of the

model will influence the parameter sensitivity calculation and the finite difference

approximation will not be valid. However, the numerical accuracy of the model

solver restricts the accuracy of the approximation by defining a lower limit. More-

over, when environmental models are used that communicate with input/output

text-files, the used floating point number representation needs to be taken into ac-

count. Hence, a balance in between the numerical approximation and the practical

feasibility has to be found (De Pauw, 2005).
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Equation 4.5 provides the calculation of the absolute sensitivity since it is depen-

dent on the absolute values of both the parameter and the variable. This limits the

possibility of comparing different sensitivity functions with one another. This can

be tackled by calculating the relative sensitivity towards the variable, parameter

or both, called relative sensitivity, parameter relative sensitivity and total relative

sensitivity respectively:

� relative sensitivity (RS)
∂ŷi(θ, t)

∂θj
· 1

ŷi(θ, t)

� parameter relative sensitivity (PRS)

∂ŷi(θ, t)

∂θj
· θj

� total relative sensitivity (TRS)

∂ŷi(θ, t)

∂θj
· θj

ŷi(θ, t)

By plotting the sensitivities as a function of time, periods of high sensitivity can

be identified. Hence, these can be used to improve the confidence of the para-

meter estimation. By this property, the local sensitivity is the central element in

the proposal of new experiments within an optimal experimental design context

(Donckels, 2009; De Pauw, 2005). Comparison of multiple parameter sensitivities

in time provides insight into potential interactions when similar individual effects

(same or inverse patterns) are observed. As such, the parameter identification is

supported during periods of high sensitivity when changes due to a change of a

single parameter is not cancelled out by the others. The latter can be quantified

by a collinearity analysis providing information about the linear dependencies be-

tween model parameters for a specific point in the parameter space (Brun et al.,

2001; De Pauw et al., 2008).

Application of the local sensitivity analysis

The aim of the local Sensitivity Analysis (SA) is to examine parameter identifia-

bility and the impact of changes in the parameters µmax, KS and τ on the model

output. To investigate how the application of different substrate additions influ-

ences the model behaviour, focus is given on two respirograms with a substrate

to biomass ratio S0
A/X

0
B of 1/100 and 1/40, respectively (second last and last ad-

dition on Figure 4.3). These two respirograms will be further referred to as the
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low (1/100) and high (1/40) S0
A/X

0
B cases. The implementation of Van Daele et al.

(2015c) has been used to perform the local sensitivity analysis.

The point in parameter space used for the sensitivity analysis is determined by a

preliminary parameter estimation performed on the individual respirograms (De-

cubber, 2014). For the high S0
A/X

0
B ratio, the resulting parameter values were

µmax = 3.78 d−1, KS = 1.6 mg l−1, τ = 9× 10−4 d. For the low S0
A/X

0
B ratio,

the resulting optimal parameter values were µmax = 7.44 d−1, KS = 3.17 mg l−1,

τ = 18× 10−4 d. The other values were assumed fixed and identical in both cases

and enlisted in Table 4.3. The completely different optimal parameter values of

both respirograms illustrate the identifiability problem. Since both respirograms

are coming from the same experiment and are carried out with the same activated

sludge, the kinetic characteristics (parameters) should be the same.

The central total relative sensitivity (TRS) functions for both were evaluated (sec-

tion 4.3), to enable comparison amongst different parameters (and variables). A

perturbation factor of 10−4 was used. Figure 4.5 shows the model output of the

dissolved oxygen SO together with the obtained sensitivity functions for the pa-

rameters when a high S0
A/X

0
B ratio is applied experimentally. Figure 4.6 shows a

comparable output when a low S0
A/X

0
B ratio is used.

During the declining and constant SO phase, the sensitivity function for µmax

is negative. Indeed, a higher growth rate will correspond to a higher maximum

OURex which in turn will cause the SO curve to reach lower oxygen concentra-

tions (i.e., lower model output). The opposite is true for KS: according to the

Monod kinetics, a higher value for KS means a lower OURex at the same substrate

concentration.

In the rising SO region, the sensitivity functions for µmax and KS switch signs. In

this phase, the sensitivity towards an increase in µmax is positive. A higher max-

imum growth rate for the same substrate concentration means that the substrate

will be depleted faster. Therefore, the SO will rise earlier in time compared to an

experiment with lower µmax, or in other words, during the rising SO phase the

oxygen concentration will be already higher at the same time instant for a higher

µmax. Following the same logic, the sensitivity function for KS is explained, except

for the fact that an increase in KS has the exact opposite effect on model output

as an increase in µmax.

The model shows a positive sensitivity for the time lag τ during the declining

and constant phase. For larger values of τ , the OURex response will be slower.

This means that for larger values of τ , the OURex will be lower at the same time

instant (rises more slowly) resulting in a higher SO concentration, which explains
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Figure 4.5: Total relative sensitivity functions of the parameters µmax, KS

and τ for the dissolved oxygen concentration SO with a high S0
A/X

0
B ratio.

The top figure represents the modelled output of SO and the other plots

respectively the relative sensitivity functions of µmax, KS and τ . The grey

highlighted regions are for each parameter the periods with the highest

sensitivities, i.e. sensitivities exceeding the 90 % interval of the absolute

values. The first highlighted section of ∂SO/∂τ is distinct from the other

parameter uncertainties, supporting the identification of the τ parameter

value.

the positive sensitivity. During the rising SO phase the sensitivity function for

τ becomes negative. Indeed, for higher values of τ , SO will start rising later in

time.

In both cases, the sensitivity of µmax is dominant during the simulation. The se-

quence of the declining, constant and the rising phases occur in both respirograms,

and the explanation for the behaviour of the sensitivity functions is the same for

both cases. However, the timing and duration of these characteristic phases is

different between the two respirograms. Because of this, in the high S0
A/X

0
B case

the declining and the rising SO phase are separated in time whereas in the low

case the second phase immediately follows the first one.
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Figure 4.6: Total relative sensitivity functions of the parameters µmax, KS

and τ for the dissolved oxygen concentration SO with a low S0
A/X

0
B ratio.

The top figure represents the modelled output of SO and the other plots

respectively the relative sensitivity functions of µmax, KS and τ . The grey

highlighted regions are for each parameter the periods with the highest

sensitivities, i.e. sensitivities exceeding the 90 % interval of the absolute

values. Highlighted sections are during similar time periods for all three

parameters, suggesting identifiability issues.

These differences in respirometric curve shape resulting from alternative experi-

mental conditions have some important implications for the sensitivity functions

(and related identifiability (Grady et al., 1996)). Both in Figure 4.5 and Fig-

ure 4.6, the periods of the largest values (in absolute value) of the sensitivities are

marked with grey. In the low S0
A/X

0
B case the sensitivity peaks of the individual

parameters do overlap, leading to interaction and compensation. In other words,

decreasing the identifiability of the parameters during these periods. However, in

the high S0
A/X

0
B case (Figure 4.5) the first peak sensitivity for τ is separated in

time from the peak sensitivities of the other parameters. Notwithstanding that the

sensitivity for µmax is still reaching to much larger values, the separation supports

the identification of parameter τ .
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Hence, the experimental condition does support the identification (and the confi-

dence of estimation) of the model parameters for the selected model structure. At

the same time, the analysis provides information about the proposal of new (op-

timal) experiments as the high S0
A/X

0
B case is preferred. The latter is the central

theme of OED. The proposal of new experiments is not discussed in this disserta-

tion, considering the available set of observations as the information to work with.

However, research focusing on OED has been done by Donckels (2009), De Pauw

(2005) and is ongoing (Van Daele et al., 2015b,c).

4.4 Global sensitivity analysis

When interest is on the entire parameter space in combination with other input

factors, the application of a global SA is preferred. Since the simulation time to run

the respirometry model is short and a quantitative statement about the sensitivity

is aimed for, the application of a Sobol sensitivity analysis is chosen.

For readers who are not familiar with the Sobol sensitivity analysis, an in depth

explanation is provided in section 5.6. However, for the moment it is important

to understand that the Sobol method provides an estimate of the influence of the

input factors on the defined model output metric, based on a large set of sampled

parameter combinations. Two sensitivity metrics are provided by the analysis: the

first order sensitivity index and the total sensitivity index for each of the input

factors. The former provides an estimate of the influence of the individual factor

on the output, whereas the latter provides an estimate of the influence of each

factor together with the interactions this factor has with other factors.

As seen during the local sensitivity analysis, the experimentally chosen substrate

addition is important on the resulting output and will have an effect on the iden-

tification of the parameters. Accounting for it in the sensitivity analysis provides

the possibility of assessing the relative importance of the chosen substrate addition

compared to the sensitivity of the individual parameters.

Hence, the value of S0
A will be included in the performance of the Sobol sensitivity

analysis, ending up with a total of four input factors: µmax, KS, τ and S0
A. The

experimental conditions and the assumed parameter distributions (i.e. uniform

ranges) are taken from Cierkens et al. (2012) except for the τ value. The range of τ

was expanded in order to agree with the range of τ values enlisted in Vanrolleghem

et al. (2004).
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By taking N = 3000 base runs will result in a total of N(k+ 2) = 3000 · (4 + 2) =

18000 model simulations that need to be performed.

To evaluate the sensitivity of the model output regarding the four input factors,

a decision needs to be made about the used aggregation metric. The variable

to check the sensitivity for will be the oxygen concentration SO. Still, different

options do exist to aggregate the variable.

Importance of chosen aggregation metric

To illustrate the importance of the chosen aggregation metric, Figure 4.7 shows

the difference between the influence of the input factors when considering two

straightforward options: (1) the reached minimum of SO (Figure 4.7a) and (2)

the average of SO (Figure 4.8). The first and total indices when using the reached

minimum as metric are provided in respectively Figure 4.7a and Figure 4.7b.

KS
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0.4

0.8

Si
0.888

0.094

< 0.001 < 0.001

(a) First-order sensitivity index

KS

0.25

0.50

0.75

STi
0.890

0.115

< 0.001 < 0.001

(b) Total-order sensitivity index

Figure 4.7: Overview of the sensitivity when choosing the minimum values

reached during the simulation as the aggregated metric, considering the four

input factors µmax, KS, τ and S0
A, for which µmax is most sensitive, mainly

by its direct effect on the minimum value.

The calculation of the first and total sensitivity indices using the average value of

each simulation are provided in respectively Figure 4.8a and Figure 4.8b.

The importance of µmax when focusing on the minimum value is understandable

since it defines the maximum rate at which the active biomass is degrading the

substrate, influencing the related oxygen levels (and the uptake rate). Since the

amount of substrate added influences the length and the entire shape of the oxy-

gen concentration profile, the sensitivity is largest when focusing on the average

value.
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Figure 4.8: Overview of the sensitivity when choosing the average values of

the simulations as the aggregated metric, considering the four input factors

µmax, KS, τ and S0
A, for which S0

A is most sensitive, due to the overall

effect on the entire SO profile. The values of Si and STi should be both

regarded as 1. The difference is caused by the numerical approximation of

the sensitivity indices.

Notwithstanding the rather trivial results, it is clear that the chosen aggregation

metric has a direct effect on the result. Hence, there is not such a thing as the

sensitivity analysis of model A, since it embraces a huge variety of options, each

for specific purposes. Hence, a SA should not be the purpose in itself, but rather

a tool to answer research questions or to support model structure understanding

and evaluation. The latter is regularly ignored in literature.

Check for convergence of indices

It is generally known that variance-based methods for sensitivity analysis require

a large set of simulations to let the metrics converge to a proper estimate. Ex-

treme values in the calculated metric values will complicate the convergence of

the sensitivity indices (Nossent and Bauwens, 2012a,b). Therefore, checking the

convergence is essential for any type of sensitivity method. This can be done

graphically by plotting the estimated indices for the first and total variance pro-

gressively in function of the performed set of base runs, as provided in Figure 4.9

for the mean value first order sensitivity indices Si.

After each reconsideration of the used aggregation (or performance) metric the

convergence for both the first and total order sensitivity indices can be recalculated

and visualised directly. In this specific case, the user could decide to put the

number of base runs to 1500 and still provide quantitatively meaningful results.

T 



CHAPTER 4 CASE STUDY: RESPIROMETRIC MODEL WITH TIME LAG 87

-1e−5

0

1e−5
K
S

0

-2e−4

0

4e−4

0 500 1000 1500 2000 2500

1

0

1

Figure 4.9: Progressive evolution of the estimated first order indices as

function of the amount of base runs executed for the result provided in

Figure 4.8a. For a small set of simulations, the estimated values are very

mutable. For 3000 base runs (equivalent to 18000 simulations), the results

have converged towards values which provide quantative information.

When the convergence is very slow, normalization of the metric values can improve

the convergence of the sensitivity indices (Nossent and Bauwens, 2012a).

Extracting additional information

In order to properly investigate the differences or the similarities with the local

sensitivity analysis, the derivation of the indices in function of time would be

interesting as well. Without switching to another method, the available simulation

outputs can also be reconsidered for alternative aggregation metrics. In order to

make a comparison with the local sensitivity, the sensitivity of the average output

of each minute of the simulation individually was calculated.

The model is providing the output in seconds, so the most convenient approach

is to recalculate the output towards average minutes. Similar to the previous
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section, the recalculated outputs can be used to derive the sensitivity indices,

but the default plots would not be sufficient, so the output is summarized in the

custom made Figure 4.10 for the first order effect and Figure 4.11 for the total

order effect. For the total order effect, the sum is added to the plot as well. Values

above 1 for the total order effect indicate more interaction effects in between the

input factors.

In this case, only the first ten minutes are taken into account, since the direct

application of later periods is influenced by the set of simulations for which the

substrate is already consumed entirely. Adapting the possible parameter combi-

nations would be an option to prevent this.
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Figure 4.10: First order effects Si of the average output for each simulated

minute of the dissolved oxygen concentrations SO

The relative importance of the substrate addition S0
A is large, both by its direct

effect as well as in interaction with the parameters. This corresponds to previous

literature mentioning the importance of the initial substrate on the ability to

identify parameters (Grady et al., 1996). It seems rather counter-intuitive that

the effect of an initial condition is mainly affecting the simulation in a later stage

(after approximately 3 minutes). However, since each experiment starts from a
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Figure 4.11: Total order effects STj of the average output for each simulated

minute of the dissolved oxygen concentrations SO

similar initial condition of oxygen S0
O, the substrate amount only affects the later

stage. The added S0
A is more important after the first phase, since it defines the

length of the period during which the biomass is fully active.

In general, the importance of KS is very low, making it an option for parameter

fixing when it would be part of a larger set of parameters (Figure 4.10 and Fig-

ure 4.11). The relative importance of parameter µmax is lower in comparison to

the initial substrate, but still more important than the other parameters, which

is in line with the local sensitivity analysis. Interaction between the parameters

increases after a few minutes as shown by the sum of the total sensitivity indices

of Figure 4.11, as the combined effect of the parameters and initial substrate is

affecting the model output. Overall, the interaction effects are limited and the

identification of the parameters should be feasible with this set of parameters con-

sidered. This is in line with the conclusions of the structural identifiability analysis

of Dochain et al. (1995) for a model without a lag-time, listing three identifiable

combinations: µmaxXB(1 − Y )/Y , (1 − Y )S0
A and (1 − Y )KS. Given that, in this
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case the yield Y and the biomass XB are assumed known, the identification of the

parameters µmax, KS , τ and the initial substrate S0
A should be feasible.

The main influencing factor in the first minute is parameter τ . Hence, the global

sensitivity analysis suggests that overall, the experimental condition has a major

influence on the output and the parameter τ should be able to be estimated well

over a larger range of different experimental conditions. Together with the in-

formation from the local sensitivity method, experimental conditions with a high

S0
A/X

0
B ratio are preferred. Still, too large acetate concentrations could alter the

physiological state of the biomass during the experiment, which should be avoided

(Grady et al., 1996).

4.5 Model calibration

The focus is on the estimation of the parameters µmax, KS and τ , using the derived

OURex values of the single respirogram of Figure 4.2.

Different performance metrics can be used to compare the modelled output with

the observations, some of which can be translated into an existing theoretical

framework (section 3.4.2). In later chapters of the dissertation the focus is on in-

formative performance metrics supporting the exploration of the model behaviour

rather than using a specific theoretical framework. This section aims to illustrate

the application of a specified likelihood function as performance metric in theoret-

ical frameworks such as Maximum likelihood estimation and Bayesian approaches.

The example is a translation of the work presented by VanderPlas (2014) and

Foreman-Mackey et al. (2013) towards an ODE based model.

Consider the response surface plot in Figure 4.1, suggesting the interaction be-

tween the parameter µmax and KS . It represents the response surface of the SSE

as a function of the parameter combinations. We can represent the SSE as a prob-

ability function as well, since it assumes a normal distribution for the residuals

(i = 1, . . . , N), i.e. independent and with zero mean. The likelihood function is

constructed by taking the product of their normal distributions, similar to Equa-

tion 3.6:

P (y | µmax,KS , τ) =

N∏
i=1

1√
2πσ2

exp

[
−1

2

(
yi − ŷi

σ

)2
]

(4.7)

The standard deviation σ is considered constant (homoscedastic) and is estimated

as the standard deviation of the set of observations. ŷ represents the set of mod-
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elled and y the set of observed oxygen uptake rates OURex. For the implemen-

tation, the log-likelihood will be used, since likelihoods can be summed, whereas

products of the probabilities of many data points tend to be very small.

To use a Bayesian approach, recall that the theorem of Bayes (Equation 3.10)

states

P (µmax,KS , τ | y) ∝ P (y | µmax,KS , τ)P (µmax,KS , τ) (4.8)

of which we already defined the likelihood function P (y | µmax,KS , τ). Hence,

in order to calculate the posterior function P (µmax,KS , τ | y) the prior function

P (µmax,KS , τ) need to be decided on as well. Since no specific information is avail-

able (and to make the connection with the maximum likelihood estimation later

on), uniform (so-called uninformative) priors will be used, with similar boundaries

as those used in the global sensitivity analysis case (section 4.4).

Approximating the posterior by brute force would be largely inefficient, so the

usage of an MCMC sampling method is appropriate. The emcee Python Pack-

age 3 Foreman-Mackey et al. (2013) is a lightweight pure-Python package which

implements the Affine Invariant Ensemble MCMC method. The method provides

improved convergence compared to classic MCMC sampling methods, mainly in

the case of skewed distributions (Goodman and Weare, 2010).

Python Package 3 (emcee).

emcee is an MIT licensed pure-Python implementation of Goodman &

Weare’s Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble

sampler with a well written manual. emcee is being actively developed

on GitHub.

(http://dan.iel.fm/emcee/current/)

The sequence of samples is shown in Figure 4.12 for each of the parameters sep-

arately. After a period of burning-in, the samples provided by the Markov chain

are exploring the posterior distribution and the samples after the burning in pe-

riod can be used to construct one and two dimensional projection (histograms)

of the posterior probability distributions of the involved parameters. The result

is shown in Figure 4.13, which demonstrates all of the interactions (covariances)

between the parameters and the marginalized distribution for each parameter in-

dependently. The density plot was made using the corner plot Python Module 4

(Foreman-Mackey et al., 2014).

http://dan.iel.fm/emcee/current/


92 4.5 MODEL CALIBRATION

3.8

3.9

4.0

4.1

µ
m
a
x

0.1

0.4

0.7

K
S

0 100 200 300 400 500

0.0000

0.0002

0.0004

τ

Figure 4.12: Progression of the MCMC sampler showing the individually

taken samples while sampling the posterior parameter distributions after

application of a Gaussian likelihood function and conditioned by the obser-

vations of Figure 4.2.

The limited amount of interactions observed in the global sensitivity analysis is also

for this subset of parameters recognized in the resulting two-dimensional density

plots. The optimization is performed on another data set as the local sensitivity

analysis (section 4.3), but the modelled experiment of Cierkens et al. (2012) can

be considered as a high S0
A/X

0
B ratio situation, for which the identification of

parameter τ is represented here as well.

Notice the equivalence with the response surface information shown in Figure 4.1,

focusing on parameters µmax and KS . However, that figure provides the informa-

tion about the response surface (using SSE) of the parameters, whereas in the case

of Figure 4.13 the graph represents the density of the posterior parameter distribu-

tions by the defined likelihood. Still, the equivalence between the result concerning

the interaction effect between µmax and KS is important to notice.

This is further illustrated by expressing the same likelihood function of Equa-

tion 4.7 as an optimization problem, estimating the maximum likelihood. Since

it is a pure optimization problem, the application of the scipy optimize Python

Module 2 is appropriate. The fact that the scipy optimize function searches for a



CHAPTER 4 CASE STUDY: RESPIROMETRIC MODEL WITH TIME LAG 93

0.2

0.4

0.6

0.8

K
S

3.9
0

3.9
6

4.0
2

µmax

1.6
 10
−42.4

 10
−43.2

 10
−44.0

 10
−4

τ

0.2 0.4 0.6 0.8

KS

1.6
 10
−4

2.4
 10
−4

3.2
 10
−4

4.0
 10
−4

τ

Figure 4.13: Corner plot of the samples constructing the posterior para-

meter distributions after application of a Gaussian likelihood function and

conditioned by the observations of Figure 4.2.

minimum, while we want to maximize the likelihood can be solved by minimizing

the negative log-likelihood. The application of the optimization gives: µmax = 3.93

d−1, KS = 0.45 mg l−1 and τ = 2.1× 10−4 d which agrees to the highest densities

of the distributions found by the MCMC approach (see Figure 4.13). Hence, under

the assumption of uniform priors, the Bayesian probability is maximized at pre-

cisely the same value as the ML result (MacKay, 2002; VanderPlas, 2014).
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Python Module 4 (corner/triangle).

Module to make an illustrative representation of one- and two-

dimensional projections of samples in high dimensional spaces.

The module is built by Dan Foreman-Mackey and collaborators (see

triangle. contributors for the most up to date list). Licensed under

the 2-clause BSD license.

(https://zenodo.org/record/11020)

4.6 Conclusion

The example case study in this chapter uses different approaches investigate the

characteristics of a respirometric model making use of a set of experimental data.

The properties of the model structure as well as the identification of the parameters

under different experimental conditions are examined.

A local sensitivity analysis emphasises the importance of the experimental condi-

tions to support the identification of the model parameters. It indicates that the

addition of the time-lag in the model structure needs to be supported by experi-

mental data for which the S0
A/X

0
B ratio is sufficiently high. A high ratio provides

the ability to estimate the parameter τ of the time-lag model component.

The entire parameter space is taken into account by using a global sensitivity ana-

lysis. The relative importance of the added substrate on the total model output

variability compared to the effect of the parameters is assessed. The importance of

the chosen initial substrate concentration on the assessment of the model structure

should be taken into account when performing lab experiments. Moreover, the de-

gree of interaction between the considered parameters is relatively low, confirming

the ability to identify the parameters µmax, KS and τ and the suitability of the

proposed model structure.

Finally, the model parameters are estimated for the case of a high S0
A/X

0
B ratio.

As expected from both the local and global sensitivity analysis, under these con-

ditions the interaction effects are limited, leading to an identifiable region for the

considered parameters.

These results are in line with earlier work focusing on the identifiability of the

parameters µmax and KS for a more simplified respirometric model (Dochain et al.,

https://zenodo.org/record/11020
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1995; Vanrolleghem et al., 1995). Moreover, it is shown that the addition of a time-

lag component to capture the retardation of the biomass activity can be justified

and parameter the time-lag parameter τ is practically identifiable as well under

the used assumptions, when using a proper S0
A/X

0
B ratio.

At the same time, the analysis illustrates the central position the metric selec-

tion takes. By applying the same likelihood function within the scope of an ML

estimation (optimization) and a Bayesian approach (sampling), it illustrates how

the decision of a metric and its involved assumptions are not bound to a single

method, but can be reused by different algorithms. Both aggregated as time de-

pendent metrics can be used to derive sensitivity indices, always in function of the

research objective.





CHAPTER 5

Sensitivity Analysis methods

Parts redrafted and compiled from

Van Hoey, S., Seuntjens, P., van der Kwast, J., de Kok, J.-L., Engelen, G., and Nopens, I.

(2011). Flexible framework for diagnosing alternative model structures through sensitivity and

uncertainty analysis. In Chan, F., Marinova, D., and Anderssen, R. S., editors, MODSIM2011,

19th International Congress on Modelling and Simulation. Modelling and Simulation Society

of Australia and New Zealand, pages 3924–3930. Modelling and Simulation Society of Australia

and New Zealand (MSSANZ)

5.1 Introduction

In general, SA focuses on the response of a model output to changes of model

input factors. The aim is to get insight in how the changes of the output can

be attributed to the variations of the inputs. Inputs are not limited to model

parameters alone, but can be any input factor that drives variation of the model

output (Saltelli et al., 2008). Similarly, model output can be a state variable

itself on any given time step, but also any aggregated or performance metric. The

choice of the input factor and output metric should always be directly linked to

the research question.

Methods for SA play a central role in the evaluation of model structures and

support the model diagnostic process (Wagener and Kollat, 2007). Different tech-

niques are available in literature and the applicability depends on the model char-

acteristics, the dimensionality of the problem and the available computational time
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(Tang et al., 2007b; Yang, 2011). The application is not always straightforward

in the case of non-linear and high-dimensional models as faced in environmental

modelling. This leads to a sprawl of available methods, characterized by different

assumptions, changing conditions of application and various code implementa-

tions.

Whereas the application of SA is well-recognised in the environmental modelling

community, the execution and reporting of sensitivity analysis is sometimes ham-

pered due to the lack of well-documented implementations. Tools are needed to

facilitate the usage of SA techniques also by non-specialist users, as well as to

provide guidelines on GSA application (Pianosi et al., 2015). Moreover, code doc-

umentation is regularly ignored, driven by the perception that the code is not

written for others to use Petre and Wilson (2014).

To overcome the lack of code documentation, facilitate re-use and provide trans-

parency of existing implementations, the methods implemented within the scope

of this dissertation were collected in a dedicated Python package, called pystran.

The provided code is mainly to provide transparency in the implementation and

is not a finished software product.

For the source code documentation, the reader is referred to the online documenta-

tion1. The aim of this chapter is to provide the theoretical background on the SA

methods as they were implemented and used within the scope of this dissertation.

Next to a description of the individual methods, a flowchart to provide guidance

to the modeller in the selection of a specific SA method is proposed in the last

section.

Python Package 4 (pystran).

The pystran package collects a set of methods for to perform sensitivity

analysis with a specific focus on model evaluation. Following the metric

oriented approach described in section 3.2.2, the pystran package sup-

ports the easy linkage with a set of model performance metrics. The

package provides an open and extensible implementation, written in the

python programming language. Several plot functions are built-in to

facilitate the execution and interpretation of the implemented methods.

The open source licence of the pystran package provides the ability for

other users to further develop and improve the implementation.

(https://github.com/stijnvanhoey/pystran)

1http://stijnvanhoey.github.io/pystran/

http://stijnvanhoey.github.io/pystran/
http://stijnvanhoey.github.io/pystran/
http://stijnvanhoey.github.io/pystran/
https://github.com/stijnvanhoey/pystran
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Readers who are familiar with these SA techniques can safely skip this chapter,

as it is mainly a reference on the theoretical background and guidance on the

interpretation of the methods. A subset of the methods is used in the other

chapters, for which the reader can always return later when more background

information is required on a particular method.

5.2 Sensitivity analysis: general remarks

A complete overview of existing methods for sensitivity analysis is not the purpose

of this chapter. In the remainder of this chapter focus is given to those methods

that are either implemented or applied in the other chapters. In-depth reading

material is provided by Saltelli et al. (2008), giving a more complete overview

of existing methods. Moreover, additional reviews and comparative studies can

be found in literature (Frey and Patil, 2002; Tang et al., 2007b; Lilburne and

Tarantola, 2009; Mishra, 2009; Gan et al., 2014; Vanrolleghem et al., 2015).

Different rationales to perform a sensitivity analysis do exist, which depend on the

field of interest and the application.

� The identification of the most influential factors can support uncertainty

analysis. The factors with the most influence should be focussed on to in-

crease robustness, since their uncertainty will have a major influence on the

model uncertainty if their uncertainty is large. Notwithstanding the direct

link between sensitivity analysis and uncertainty analysis, it is important to

understand that sensitivity analysis only tells something about the potential

influence on the uncertainty and does not provide any predictive statement

about the uncertainty itself.

� To facilitate model calibration, i.e. by identifying critical regions in the

parameter space. Hence, focus is given to the model parameters with most

influence, which is also referred to as factor prioritization (Saltelli et al.,

2008).

� Opposite to factor prioritization, the identification and fixing of non-influential

parameters (factor fixing) reduces the dimensionality of the problem. Fur-

thermore, the removal of redundant parts leads to simplification of the model.

� Sensitivity analysis is of major importance for model evaluation (section 2.3.3).

Input interactions can be assessed and the identifiability of individual inputs

can be checked.
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A general division between local and global methods for SA can be made. Whereas

local methods (see section 4.3) focus on a specific location in the parameter space,

the global methods consider the whole variation range of the factors. In the case

of global sensitivity analysis, most methods are based on a sampling strategy

of an assumed parameter distribution (see section 3.5). However, many global

sensitivity methods use a specialised sampling strategy in order to better support

their analysis. As such, these sampling schemes are usually introduced together

with the method itself, but basically extend the possible set of sampling schemes.

They could be used as sampling procedures for other applications as well.

It is noteworthy that the methods described in the next sections use input factors

as the input of the sensitivity analysis. Model parameters are only a subset of the

total set of possible factors used in an SA method. Hence, θ (and X in the case

of Variance based methods) represents the input factor, which can be a parameter

as well as another input.

In line with chapter 3, all of the methods do act on a chosen aggregated or perfor-

mance metric. Besides the sensitivity towards an aggregation metric (variable of

interest), also the sensitivity towards performance metrics can be assessed or both

can be used as variable of interest. The decision of a metric does not restrict the

modeller to a single method, since the methods described in the next sections are

generally not restricted by theoretical considerations on the chosen metric.

Before explaining the methods themselves, some information about the accompa-

nying schemes (Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.8) is given. For each

of the methods, a representative scheme is provided, summarizing the method

schematically in four sub-figures. A similar concept will be used for each of the

methods to provide a step-wise overview of the different methods, which illustrate

also their similarities. For each of the visualisations, sub-figure (a) focuses on the

sampling strategy linked to the methodology. For some methods, this is a direct

sampling of the input factor space, whereas for other methods this is a trajectory

sampling. The small axis inside sub-figure (a) represents a random sample from

an input factor distribution, for which a uniform distributions with range [0 − 1]

is shown. It should be noted that this can also be a sample from any non-uniform

distribution, as discussed earlier in section 3.5.

Sub-figures (b) and (c) illustrate the translation of the model outcome into the

sensitivity indices used for that particular technique. In the last sub-figure (d),

a summarizing representation of the results of the analysis is given on which the

interpretation of the analysis is typically based. It is important to understand

that the model output metric ŷi in the figures can be any kind of aggregation or

performance metric (e.g. a single time step of the model output, an average value of
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the output, a performance metric taking into account available measurements. . . ).

In the visualisations, ŷ refers to the model output as a function of time, whereas

ŷi can be any metric of interest, but for some models or when focusing on single

time steps both are actually the same.

5.3 Morris Elementary Effects (EE)
screening approach

Screening methods can be used to isolate that set of factors that has the strongest

effect on the output variability with relatively few model evaluations. This makes

it an appealing technique for computationally expensive models investigated for a

large set of input factors (Saltelli et al., 2008; Morris, 1991). It also makes them

appropriate as an initial stage preliminary tool (to reduce the dimensionality of

the problem), before a more detailed analysis is performed (Campolongo et al.,

2011). Hence, it mainly provides a qualitative assessment to rank the input factors

in their order of importance and to make statements about being more and less

sensitive. The Morris method is particularly well-suited when the number of input

factors is high and/or the model is expensive to compute, providing a very good

compromise between accuracy and efficiency (Campolongo et al., 2007). As a

screening tool, it is able to screen the most and least influential parameters for

a highly parameterized watershed model with 300 times fewer model evaluations

than variance based methods (Herman et al., 2013a). Still, Nossent et al. (2013)

and Vanrolleghem et al. (2015) illustrate the importance of a proper convergence

assessment to prevent the incorrect elimination of influential factors.

5.3.1 Elementary Effects (EE) based sensitivity metric

The Elementary Effect (EE) global screening method by Morris (1991) is a One

factor At a Time (OAT) based method that is based on the calculation of so-called

Elementary Effects (EEs). These EEs are similar in nature to the local SA finite

difference approximation as defined in a local sensitivity analysis (Equation 4.6).

Assume an application on a set of k different factors θ of a model defined by

Equation 2.1. The EE of factor θj towards a variable of interest ŷi (any kind of

aggregation on the model output) is defined as follows:

EEθj =
ŷi([θ1, . . . , θj−1, θj + ∆EE , . . . , θk])− ŷi(θ)

∆EE
(5.1)
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with ŷi([θ1, . . . , θj−1, θj + ∆EE , . . . , θk]) the value of ŷi when ∆EE is added to the

value of factor θj and could be rewritten as ŷi(θ + ∆EE) similar to Equation 4.6.

The difference with the local procedure is the usage of ∆EE , which is a prede-

termined multiple of 1/(p − 1) where p is the number of levels of the design. p

corresponds to the number of levels the regular k-dimensional grid of factors is

discretized in. Hence, the EE can be calculated for any θj between 0 and 1−∆EE

where θj ∈ {0, 1/(p− 1), 2/(p− 1), . . . , 1}. When other distributions are assumed

for θj , the values sampled in the interval [0− 1], should be converted by using the

inverse method (section 3.5.1) and used as such by the model. The influence of θj

is then evaluated by computing several EEs and assess the effect.

The evaluation of the sensitivity is done based on the originally proposed sensitivity

measures (Morris, 1991), namely the mean µj and the standard deviation σj of

the calculated EEs and also on the mean of the absolute values of the EE, µ∗j , as

recommended by Campolongo et al. (2007). The latter prevents that EEs with

different signs are cancelling each other out. In most applications, the combined

analysis of the three indices is recommended to extract the maximum amount of

information (Saltelli et al., 2008).

Furthermore, µ∗j provides a good proxy to the Sobol total sensitivity index ST

(Saltelli et al., 2008; Yang, 2011) due to its effective screening capability. The

total effect STj of factor θj, corresponds to the effect of the individual factor in

combination with all the interactions of this factor with the other factor. The

relative variance it represents when all factors but the jth factor are fixed, is used

to check for potential factor fixing of factors. The latter action means that one

sets certain factors to fixed values when they have an STj = 0, i.e. they do not

influence the output variability of the (aggregated) variable at all.

It is important to understand that Morris provides a screening of the input factor

space, which results in qualitative results rather than quantitative estimates of the

factor influence. This provides interpretations in terms of less and more influential

factors (ranking). To summarize the important aspects of the interpretation of the

sensitivity indices:

� A low value for µ∗j indicates that the factor has a limited influence on the

(variance of the) response variable

� A high value for σj highlights the interaction between different factors and/or

the non-linearity of the model

� Comparison of µj with µ∗j provides information on the sign of the influence

of the effect of the factor
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5.3.2 Sampling strategy

To compute r different EEs for each of the k factors, a total of 2rk model simula-

tions would be needed, with a random sampling step for each of the r EEs for which

the methods in section 3.5 can be applied. Morris (1991) used a sampling strategy

that belongs to the class of OAT (one factor at a time) designs, but designed it

efficiently by making use of r trajectories of (k+ 1) points in the input space, each

providing k elementary effects, hence with a total of only r(k+1) simulations. For

each trajectory, the input space dimensions are one by one traversed starting from

a randomly sampled base point θ∗ (for which the sampling techniques described

in section 3.5 can be used). A detailed description of the sampling strategy is

provided in Morris (1991) and well-explained by Saltelli et al. (2008).

b.

c. d.

a.

Fr
eq

ue
nc
y

0

1

0 1

0

1

0 1

0

1

0 1

Figure 5.1: Overview of the Morris method based on the derivation of

EEs. For each trajectory, a random sample of the input factor space is

taken, after which the different dimensions are traversed, each by a step

∆EE (a). Based on a combination of two consecutive runs, an EE can be

calculated for a single input factor (b). By running multiple trajectories,

the summarizing sensitivity indices µj , µ
∗
j and σj can be calculated (c) and

graphically expressed in a (µ∗
j , σj)-plane (d).
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Figure 5.1 summarizes the concept of the Morris method applied to a set of input

factors θ. Figure 5.1a illustrates the sampling of a single trajectory over a three

dimensional input space. A trajectory starts with the sampling of a base point θ∗

in one of the p levels for each of the factors (represented by the small axis for factor

θ1). Starting from this base point, a consecutive set of parameter sets is sampled,

each time changing a single factor with a value ∆EE . For a three dimensional set of

input factors, the model needs to be simulated with the parameter sets θ(1), θ(2),

θ3 and θ(4). The resulting model outputs for the two runs θ(1) and θ(2) are shown

in Figure 5.1b (for this example as a function of time, but this can be any metric).

These two outputs can be used to calculate an EE for factor θ1 (EEθ1). Hence,

a single EE for each input factor is calculated by running a single trajectory. In

order to get a global sensitivity metric, a set of r trajectories is used to calculate

r EEs, represented in Figure 5.1c. The set of EEs is summarized in the set of

sensitivity indices µj , µ
∗
j and σj (in the figure only shown for factor θ1). The

graphical representation of the (µ∗j , σj)-plane provides insight about the factor

importance (µ∗j ) and the interaction effects (σj), which is shown in Figure 5.1d.

This is the result of the analysis that can be used for evaluation.

A further improvement of the sampling strategy has been proposed by Campo-

longo et al. (2007). It aims to improve the scanning of the input domain without

increasing the number of model evaluations. The method selects a subset of trajec-

tories with the highest spread, out of an initially large set of generated trajectories,

by maximizing the distance between the pairs of trajectories (Campolongo et al.,

2007; Saltelli et al., 2008). The distance between a pair of trajectories m and l,

dml, is defined as is the sum of the geometric distances between all the couples of

points of the two fixed trajectories (Euclidean distance):

dml =


k+1∑
i=1

k+1∑
j=1

√
k∑
z=1

[
θ

(m)
i (z)− θ(l)

j (z)
]2

m 6= l

0 otherwise

(5.2)

where θ
(m)
i (z) indicates the zth coordinate of the ith point of the mth trajectory

and θ
(l)
j (z) indicates the zth coordinate of the jth point of the lth trajectory. Each

trajectory is composed of k factors and the base point θ∗. Hence, the Euclidean

distance needs to be summed for all combinations of k + 1 points. The best r

trajectories out of M are selected by maximising the distance dml among them

using any optimization scheme. In the pystran Python Package 4, a brute force

approach is chosen by comparing all possible combinations. The usage of the

preliminary optimization procedure will cancel out the advantages of an improved
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sampling approach (see next section) of the base point x∗ (Campolongo et al.,

2007).

5.3.3 Working with groups

The EE method can also be applied to work with groups of input factors instead

of single factor values, which is most useful in the case of very large dimensional

problems. It allows for the reduction of the number of simulations, at the cost

of not obtaining information about the relative strength of the inputs that are

merged in a group (Campolongo et al., 2007; Saltelli et al., 2008).

The usage of µj is not possible in the case of grouped input factors, since two

factors within a single group could have opposite influence on the response variable.

Hence, the interpretation will be based on µ∗j instead. The sampling scheme needs

to be adapted as well, as described by Campolongo et al. (2007).

The technique of groups is not applied in the remainder of this dissertation apart

from the flow chart proposed in section 5.10. However, it was implemented and

tested within the scope of the pystran Python Package 4. Hence, for further

information about the functionalities and their handling, the reader is referred to

the documentation of Python Package 4.

5.4 Global OAT sensitivity analysis

An alternative method of the well-known Morris screening method has been pro-

posed by van Griensven et al. (2006), aiming to combine the robustness of an

improved sampling scheme with the functionality of an OAT approach. They pro-

vide a direct translation of the local SA methodology towards a global technique,

taking r Latin Hypercube (LH) samples in the parameter space, and then varying

each sampled point k times by changing each of the k factors one at a time, as

is done in the OAT design. In short, the method executes a local SA in r differ-

ent points in the parameter space, resulting in a trajectory in each point (called

loops in van Griensven et al. (2006)). Within each of the trajectories, the so-called

partial effect PEθj (similar to the EE of Morris method) of a factor θj towards a

variable of interest ŷi (any kind of aggregation or performance metric) is calculated

as:
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PEθj =

∣∣∣∣∣∣
100 ·

(
ŷi([θ1,...,θj−1,θj ·(1+fj),...,θk])−ŷi(θ)
ŷi([θ1,...,θj−1,θj ·(1+fj),...,θk])+ŷi(θ)

)
fj

∣∣∣∣∣∣ (5.3)

with fj the fraction by which factor θj is changed (a predefined constant) and

with ŷi([θ1, . . . , θj−1, θj(1 + fj), . . . , θk]) the value of ŷi when (1 + fj) is multiplied

with the value of factor θj. Hence, it could be rewritten as ŷi(θ · (1 + fj)) as well

(Equation 4.6). Similar to the Morris approach, the influence of a factor θj is

calculated by averaging these partial effects of each loop for r trajectories, also

leading to r(k + 1) required simulations. Since the aim is to provide qualitative

information about influence of the factors, mostly the rank of each factor will be

communicated.

The procedure of the global OAT approach is summarized in Figure 5.2. The

visualisation is very similar to Figure 5.1. Figure 5.2a represents a single trajectory

and starts from the random sampling of a base point for each of the factors (see

small axis for θ1). In contrast to Figure 5.1, the sampling is not based on a fixed set

of levels, but can be any sampled value in the factor space. Furthermore, the step

between two parameter combinations is defined by the relative factor fj instead of

∆. The two simulations θ(1) and θ(2) are used to calculate the partial effect PE of

input factor θ1, similar to the Morris approach (Figure 5.2b). Hence, a PE for each

input factor is calculated by running a single trajectory. Figure 5.2c represents the

usage of r trajectories and the influence of the factor is estimated by the average of

the individual partial effects. The average values ¯PEθi are represented by sorting

their values and checking the relative importance of each of the factors, as shown in

Figure 5.2d. Alternatively, when used for multiple metrics, a table representation

is used as well, listing the ranks for each of the outputs.

Within the scope of the pystran implementation, a decoupling of the basic elements

enabled a further generalisation in the implementation compared to van Griensven

et al. (2006):

� Sampling of the input factor distributions can be performed by the methods

described in section 3.5, for which LH is just one option. Hence, the method

is here referenced as global OAT.

� The fraction by which factor θj is changed within each step of a trajectory, is

the same as the finite difference approximation of a local sensitivity analysis

(section 4.3)

� Apart from the partial effect defined by Equation 5.3, also the absolute

and total relative sensitivity from the local sensitivity method described in

section 4.3 can be evaluated within each trajectory.



CHAPTER 5 SENSITIVITY ANALYSIS METHODS 107
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Figure 5.2: Overview of the Global OAT method, which is very similar to

the Morris approach of Figure 5.1. For each trajectory, a random sample is

taken from the factor distributions which is used as a starting point from

which k other simulations are performed with a stepsize fjθj(a). For each

couple of consecutive simulations, the partial effect of an input factor θj can

be evaluated for the variable of interest ŷi (b). By performing a sufficient

set of r trajectories (c), the partial effects can be summarized by their mean

value to provide information about the sensitivity of the individual input

factors θj (d).

The method will not be applied in the remainder of the dissertation as it was only

used as a reference towards the original Morris screening approach. More infor-

mation is provided in the online manual of the pystran Python Package 4.

5.5 Standardised Regression Coefficients

A sensitivity metric of a response variable can be obtained using an emulator

(also known as metamodel or surrogate model), which is any (more simple) ma-

thematical function that approximates the relation between the considered input

parameters and the response variable. The usage of emulator models is a separate
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scientific discipline by applying any kind of machine learning (data based) tech-

niques available to mimic the process based model one is working with (Saltelli

et al., 2008). The application of machine learning techniques is not considered in

this dissertation, the aim is to derive information about the process model itself.

However, the most straightforward approach, i.e. the usage of a multiple linear

regression model for which the regression coefficients provide an estimate of the

sensitivity, is supported by the pystran Python Package 4 and will be shortly in-

troduced. The method is well-known in the waste water modelling community

(Vanrolleghem et al., 2015).

The regression is based on a set of N simulations by sampling from the assumed

parameter distributions using any sampling strategy favoured (section 3.5). The

linear regression model will use these samples to approximate the response variable

yi with i = 1, . . . , N (y is any aggregated metric of the process model, as it was

defined ŷi in Equation 2.1, but now considered as the available ‘data’ for the

regression model) by the set of input parameters θ as follows:

yi = β0 +

k∑
j=1

βjθij + εi (5.4)

where βj are regression coefficients to be determined and εi is the error between the

process based model and the regression model due to the approximation. Under

the assumption of Gaussian errors (i.e. the difference between the process based

model and the regression model), the regression coefficients can be computed using

the OLS approach, as it was implemented in the pystran Python Package 4.

The regression coefficients βj with j = 1, . . . , k, define the linear relationship be-

tween the parameters and the response variable. The sign of βj defines the relation

between the parameter θj and the response variable to be proportional (positive

coefficient) or inverse (negative coefficient). The coefficients are dependent on the

units in which θ and yi are expressed. Hence, the sensitivity metric (Si) used for

comparison is the standardized regression coefficient (SRC):

SRC = βj

ŝθj
ŝy

where

ŝθj =

[
N∑
i=1

(θij − θ̄j)2

N − 1

]1/2

ŝy =

[
N∑
i=1

(yi − ȳ)2

N − 1

]1/2

For the practical implementation, the parameter values and variables are nor-

malized to mean zero and standard deviation one before applying regression, by
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which the resulting regression coefficients are standardized. The regression based

approach is summarized in Figure 5.3 for a set of θj input factors. Figure 5.3a

illustrates the sampling procedure leading to a set of N model simulations. In

contrast to the previous methods, the sampling strategy is not based on a tra-

jectory, but can be directly performed by sampling N parameter sets from the

input factor distributions. Each dot in Figure 5.3b represent the variable of inter-

est ŷi resulting from a simulation. A regression model (visualised as a grey plane

in the figure) is estimated and the standardised regression coefficients represent

the influence of the input factors. The latter is illustrated in Figure 5.3c as well,

illustrating the partial effect of two factors on the chosen metric. Visualisation is

mostly done in a bar chart such as in Figure 5.3d, sorting the values and making

a clear distinction between positive and negative effects.
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Figure 5.3: Overview of a regression based SA as implemented in the pys-

tran Python Package 4. Similar to other methods, a sampling srategy is

used to perform a number of simulations which are translated into an ag-

gregated response variable ŷi (a). A multivariate linear regression model is

fitted (b) and the SRC coefficients define the influence of the corresponding

input factor on the response variable selected (c). The results of a regression

based approach is commonly done in a bar chart (d).
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The applicability of the linear regression approximation needs to be evaluated,

since the resulting SRC sensitivity metrics are only as good as the regression

model is performing. Often, the coefficient of determination, R2, associated with

the linear regression is used to evaluate the appropriateness of the regression coef-

ficients (Saltelli and Bolado, 1998). A value of 0.7 is generally used for acceptance

of the linear model (Benedetti et al., 2012). Furthermore, the Variance Inflation

Factor (VIF) can be used to check for collinearity. Large values (a threshold of

10) denote multicollinearity problems (Neter et al., 1996).

When the approximation of a linear model is not appropriate, the usage of a rank

transformation can still be used for non-linear but monotone relations (Sieber

and Uhlenbrook, 2005). Instead of the absolute values, the respective ranks are

used to perform the regression and the resulting coefficients are called standard-

ized rank regression coefficients (SRRCs). However, since the rank transformation

modifies the model under analysis, the resulting coefficients can only be inter-

preted qualitatively (Saltelli and Bolado, 1998; Sieber and Uhlenbrook, 2005).

The pystran Python Package 4 automatically provides both the SRC and SRRC

coefficients.

Finally, a prerequisite for using SRCs as a sensitivity metric is the absence of

parameter interactions. Otherwise, the resulting sensitivity will be dependent

on interaction effects as well. In those cases, the usage of partial correlation

coefficients (PCC) is more appropriate (Helton et al., 2006), but the latter is not

implemented in the pystran Python Package 4.

It is clear that the usability of a regressed SA is rather limited due to the non-

linear nature of most environmental models. Moreover, the lack of identifiability

that is a central point within the evaluation of model structures is not compatible

with the regression-based approach, which makes it unused in the remainder of

the dissertation. However, since it is based on any set of MC simulations, it

comes without any extra computational cost during the application of other SA

methods. Hence, the application can be used in the exploration phase and supports

the modeller in the learning process.
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5.6 Variance based Sensitivity Analysis

5.6.1 Variance based methods

The main idea of the variance-based methods for SA is to quantify the amount of

variance that each input factor θj contributes to the unconditional variance V (ŷi)

of the variable of interest ŷi. To align with the common notation of variance based

SA (and probabilistic random variables), for the remainder of this section, Y will

be used as the output response variable of interest ŷi and X as the vector of input

factors (in other sections defined as θ). In a similar fashion the unconditional

variance of the output is V (Y ).

Hence, the aim is to rank the input factors according to the remaining variance

taken over X∼j when factor Xj would be fixed to its true value x*
j . The resulting

conditional variance of Y is expressed as V (Y |Xi = x*
j ) and is obtained by taking

the variance over all factors except of Xj.

Normally, we do not know the true value x*
j for each of the input factors Xj.

Hence, instead of the real value, the average of the conditional variance for all

possible values of Xj is used. This expectation value over the whole distribution

of input Xj is defined as E[V (Y |Xj)]. Based on the unconditional variance of

the output, V (Y ), the defined average and by using the following property of the

variance:

V (Y ) = V (E[Y |Xj]) + E[V (Y |Xj)] (5.5)

the variance of the conditional expectation Vj = V (E[Y |Xj]) is obtained. This

measure is also called the main effect, which is used as a sensitivity metric of the

importance of an input factor Xj on the variance of Y . By normalizing the main

effect by the unconditional variance of the output V (Y ) the first-order sensitivity

index Sj is obtained:

Sj =
V (E[Y |Xj])

V (Y )
(5.6)

The first-order sensitivity index Sj is mainly useful to identify the most important

input factors (factor prioritization) and is a scaled value between 0 and 1. When

dealing with additive models without interaction effects, the first-order indices of

all input factors will explain the variance of the output. However, in the case

of interaction effects, the sum of the first-order indices will be lower than 1 and
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the remaining variance needs to be described by higher order interaction effects

between different input factors.

The interaction effect in between two orthogonal (i.e. the attribution of the vari-

ance of each factor independently is possible) input factors Xj and Xl on the output

Y can be expressed in terms of conditional variances as follows:

Vjl = V (E[Y |Xj, Xl])− V (E[Y |Xj])− V (E[Y |Xl]) (5.7)

where V (E[Y |Xj, Xl]) measures the joint effect of the pair Xj and Xl. The joint

effect of them minus the first order effects of the same factors, Vjl is called the

second-order effect. Similar, higher-order effects can be computed. So, the variance

of the third-order effect between the three orthogonal factors Xj, Xl and Xm would

be:

Vjlm = V (E[Y |Xj, Xl, Xm])− Vjl − Vlm − Vjm − Vj − Vl − Vm (5.8)

For non-linear models the sum of all first order indices can be very low. Since non-

linear models are common in environmental studies, the combined contribution

from the first-order index in combination with all higher order interaction effects

enables to assess the total effect of an input factor on the response variable. This

sum of all the order effects that a factor accounts for is called the total-order effect

and the total sensitivity index STj is the sum of all indices relating to input factor

Xj. The total sensitivity index can support the identification of input factors with

limited overall influence on the output variance. A very low value of STj indicates

a minor effect of input factor Xj. Hence, their value can be fixed (factor fixing) or

provide an indication for model reduction.

Figure 5.4 provides a visual overview of the variance based approach, where again

a large set of simulations based on the random sampling of the input factor space

and the associated model simulations are the start of the analysis, as shown in Fig-

ure 5.4a. Typically, a quasi-random sampling approach is used, which is based on a

sampling of the input factor distributions. Similar to Figure 5.3, each black dot in

Figure 5.4b represents the output of the variable of interest ŷi. The dots are verti-

cally divided in narrow bands, and within each band the conditional mean E[Y |Xj]

is represented by a single grey dot. The variance of the grey dots, V (E[Y |Xj]) is

used to estimate the first order sensitivity index of the factor. A higher number

of bands and individual samples will improve the estimate of the sensitivity in-

dices. Figure 5.4c illustrates how the influence of each individual factor and the

interaction effects contribute to the total variance on the output V (Y ). The first

order effect Sj is the variance by the factor itself, whereas the total sensitivity

index STj combines the variance provided by a factor and all the interactions of

this factor with the other factors (different black arrows). The representation of
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both Sj and STj is typically done by bar charts or as tabular values, as illustrated

in Figure 5.4d.
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Figure 5.4: Overview of a variance based SA method, considering a set of

simulations by random sampling the input space similar (a). The derivation

of the variance Vj is done by calculating the variance of the conditional mean,

which is the mean for a fixed value of Xj, represented by a narrow range

(b). The first order Sj and total order STj sensitivity index are describing

that part of the variance respectively provoked directly by the input factor

or in combination with other input factors (c). Communication can be done

by using bar-charts (d) or as tabular values. Note the usage of Xj here to

define input factors instead of θj and Y to define the metric of interest to

agree with the common notation of variance based methods in literature.

The computation of all order-effects to calculate the STj for each of the input

factors Xj by brute force would result in the necessity of evaluating 2k−1 different

terms. Consider Figure 5.4b, which focuses on the derivation of a single term

Vj = V (E[Y |Xj]). Assume 1000 simulations with a fixed value of Xj would be

performed to get an estimate of the conditional mean E[Y |Xj] (single grey dot

within each narrow band) and this procedure would be performed for 1000 different

values of Xj (thousand narrow bands with each a grey dot), the required set of
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simulations for this single term would be 106. This makes the brute force approach

infeasible for higher-dimensional models.

Different MC based methods exist to overcome this dimensionality problem and

provide an approximation of the first, total and higher order sensitivity indices of

k input factors. Homma and Saltelli (1996) illustrated how the total number of

terms that need to be evaluated to have a good representation can be reduced to

2k. Different approximating methods have been developed, such as the Fourier

Amplitude Sensitivity Test (FAST) and Extended Fourier Amplitude Sensitivity

Test (EFAST) as well as the Sobol method which are well introduced and explained

in Saltelli et al. (2008). Saltelli et al. (2010) provides more information about best

practices in the calculation of the first and total sensitivity indices. In the next

section, the sampling approach of Saltelli et al. (2008) will be introduced as it

corresponds to the implementation of the pystran Python Package 4.

5.6.2 Sobol approach for deriving Sj and STj

Following the general method described in Saltelli et al. (2008) the calculation

of the first and total order indices can be accelerated by the following approach,

which uses the quasi-random sampling approach explained in section 3.5. First,

perform following parameter sampling and simulations:

� (N, 2k) matrix of random numbers xi
j using sequences of quasi-random num-

bers (Sobol, 1967) is generated and divided in two equal matrices A and B

each containing half of the sample, respectively represented by Equation 5.9

and Equation 5.10.

A =


x(1)

1 x(1)
2 . . . x(1)

j . . . x(1)

k

x(2)
1 x(2)

2 . . . x(2)
j . . . x(2)

k

. . . . . . . . . . . . . . . . . .

x(N-1)
1 x(N-1)

2 . . . x(N-1)
j . . . x(N-1)

k

x(N)
1 x(N)

2 . . . x(N)
j . . . x(N)

k

 (5.9)

B =


x(1)

k+1 x(1)

k+2 . . . x(1)

k+j . . . x(1)

2k

x(2)

k+1 x(2)

k+2 . . . x(2)

k+j . . . x(2)

2k

. . . . . . . . . . . . . . . . . .

x(N-1)

k+1 x(N-1)

k+2 . . . x(N-1)

k+j . . . x(N-1)

2k

x(N)

k+1 x(N)

k+2 . . . x(N)

k+j . . . x(N)

2k

 (5.10)
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� Define a new matrix Cj, constructed by all columns of B except the jth

column, which is taken from A, as follows:

Cj =


x(1)

k+1 x(1)

k+2 . . . x(1)
j . . . x(1)

2k

x(2)

k+1 x(2)

k+2 . . . x(2)
j . . . x(2)

2k

. . . . . . . . . . . . . . . . . .

x(N-1)

k+1 x(N-1)

k+2 . . . x(N-1)
j . . . x(N-1)

2k

x(N)

k+1 x(N)

k+2 . . . x(N)
j . . . x(N)

2k

 (5.11)

� Based on the resulting simulations performed by all factor combinations in

the matricesA,B andCj (every row defines a parameter set to run the model

with), three N × 1 vectors are obtained containing the resulting variables of

interest. These matrices are defined as yA, yB and yCj .

Based on the resulting set of vectors, both the first- and total-effect indices can

be calculated with a total cost of N(k + 2) simulations, which is considerably

lower than the N2 simulations when using the brute force approach. According

to Saltelli et al. (2008), the recommended method for estimating the first order

sensitivity index Sj is:

Sj =
V (E[Y |Xj])]

V (Y )
=
yA · yCj − f2

0

yA · yA − f2
0

(5.12)

with the symbol (·) defining the scalar product and where f2
0 is defined as fol-

lows:

f2
0 =

(
1

N

N∑
i=1

yA(i)

)2

(5.13)

Similarly, the total order sensitivity index STj is estimated by:

STj = 1− V (E[Y |X∼j ])]

V (Y )
= 1−

yB · yCj − f2
0

yA · yA − f2
0

(5.14)

A more in depth discussion about these and other estimators for the first- and

total order sensitivity indices is provided by Saltelli et al. (2008) and Saltelli et al.

(2010). The practical functionalities for checking the convergence of the indices

and visualisation are further described in the pystran Python package 4 documen-

tation.

5.7 Regional Sensitivity Analysis

The Regional Sensitivity Analysis (RSA) is also known as generalized sensitivity

analysis or Hornberger-Spear-Young method (Hornberger and Spear, 1981; Spear
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and Hornberger, 1980) and is directly related to the Monte Carlo Filtering (MCF)

approach (Reichert and Omlin, 1997). Terminology is diverse in this matter, but

all of the descriptions basically refer to the same protocol to estimate sensitivity

based on any set of simulations resulting from a random sampling procedure (cfr.

section 3.5) by dividing the simulations into different groups based on a chosen

performance metric. Hence, it is a perfect tool for exploration of the factor space

additional to the visualisation of the response surface (Hornberger and Spear,

1981). The method is mainly used in literature for deriving insight into the para-

meter space (a subset of the possible input factors) towards a performance metric.

However, it could as well be used to screen the effect towards any aggregation met-

ric by any input factor, still considering a preferred behaviour to split the factor

sets in groups.

Figure 5.5 provides a schematic representation of the individual steps of the RSA

method. Similar to all the previous methods, sampling of the input factor space

is the starting point of the analysis and for each sampled parameter combination,

a simulation needs to be performed. This is illustrated in Figure 5.5a (with the

sampling for the input factor θj in the small axis). Due to the typical usage

of performance metrics, the observations are added as well. The metric values

for the simulations are represented by dots in Figure 5.5b. The simulations are

divided into a group called behavioural (grey dots) and a group non-behavioural

(black dots) by putting a threshold (horizontal line) on the chosen (performance)

metric V (ŷ). In Figure 5.5b, the the marginal representation for factor θ1 of the

k-dimensional space is shown.

To derive information about the influence of the factors, the empirical cumulative

distribution functions are calculated for both groups of factors, represented in

Figure 5.5c. A higher number of behavioural parameter values for a range of the

input factor will invoke a steeper section in the corresponding range of the CDF.

By interpreting the distance between both empirical CDFs, an assessment of the

influence of the factor θ1 can be made. Hence, the distance can be interpreted

as a sensitivity index S1 and a similar figure can be made for every input factor.

Figure 5.5d visualises an alternative version with a larger set of groups and showing

a smooth version of the empirical CDFs. More details about these alternative

representations are explained below.

In the initial contributions by Spear and Hornberger (1980) and Hornberger and

Spear (1981), the parameter sets used for the model runs are split into two groups

according to their simulation performance: parameter sets which describe the

system behaviour sufficiently (behavioural parameter sets) and sets which simulate

the system insufficiently (non-behavioural parameter sets). The frequencies of
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Figure 5.5: Visual illustration of the RSA methodology, which provides

mainly a graphical tool to explore parameter sensitivity, by exploring a

set of simulations created by a random sampling of the parameter space

(a). The simulations are divided in two groups based on a decided level

of performance (b). Graphical representation can be done by comparing

the empirical CDFs of both groups (c) or by focusing on the empirical

CDFs of 10 different subgroups according to their performance (d). In Freer

et al. (1996), these ten groups are all coming from the behavioural group,

whereas in the version of Wagener and Kollat (2007) the entire range of the

performance is taken into account.

occurrence of the parameter values are accumulated for both groups of parameter

sets separately. In other words, the empirical marginal CDFs of both groups are

plotted and compared (Figure 5.5c). The distance between the two empirical CDFs

can be used as a sensitivity metric. If the two clearly differ, the parameter will be

considered influential towards the response variable. Furthermore, the significance

of the separation can be estimated using statistical tests such as the Kolmogorov

Smirnov (KS) two-sample test and the parameter sensitivity can be ranked using

the actual values of the KS measure (Spear and Hornberger, 1980; Saltelli et al.,

2008). However, the lack of separation between the CDFs is only a necessary, and

not a sufficient condition for non-influence of the parameter. The lack of influence

A 

y 
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can also be caused by strong interactions with other parameters (Wagener and

Kollat, 2007; Saltelli et al., 2008).

Freer et al. (1996) adapted the initial approach by dividing the group of be-

havioural parameter sets into 10 equally sized groups based on a sorted model

performance metric and comparing the empirical CDFs of these ten sampled sub-

ranges. To interpret the qualitative sensitivity of the parameter to a specific

performance measure, the degree of dispersion of the ten CDFs represents the

influence of the parameter. Wagener and Kollat (2007) used the same idea, but

divided the whole range of derived performance metrics into 10 bins and plotted

the empirical CDFs with a changing color scheme. These alternatives are repre-

sented by Figure 5.5d.

The method mainly provides a graphical support for model structure evaluation.

Similar to the regression based SA methodology of section 5.5, it comes free of

additional simulation work when a set of simulations is already available, which

makes it a helpful additional set of functionalities to have available in the explo-

ration and diagnosis toolset available to a modeller. Furthermore, it provides the

basis of the approaches discussed in the next sections.

5.8 DYNamic Identifiability Analysis (DYNIA)

5.8.1 Background of DYNIA

The DYNamic Identifiability Analysis (DYNIA) approach (Wagener et al., 2003)

is essentially a dynamic extension of the RSA approach described in the previous

section. It can be regarded as the iterative execution of an RSA, where for each

iteration the aggregated metric used is a performance metric applied on a small

time window. The approach improves the amount of information that is obtained

through the use of a moving window (focus on a small subset of the simulation

period) instead of an aggregation over the entire simulation.

Similar to the previously described approaches, it uses a large set of simulations

based on the sampling of the input factor space, as represented by Figure 5.6a.

A major difference with the previous methods is the usage of a pre-defined time-

window on which the (performance) metric is aggregated and the split of the input

factor sets is done for each individual time-slice, i.e. a moving window before and

after each time step. These time slices are visualised in Figure 5.6a and the window

around time steps tc, tn and tr are marked in grey.



CHAPTER 5 SENSITIVITY ANALYSIS METHODS 119

Fr
eq

ue
nc
y

a. b.

c. d.

Modelled
Measured

Figure 5.6: Visual summary of the DYNIA approach, starting again from a

set of simulations by sampling the input factor space (a). For the evaluation,

a moving window is used and the filtering principle of the RSA approach is

applied on each subset, represented by the time step central of the window

(e.g. tn and tr) (b). The empirical PDF corresponding to each time window

is translated into a color intensity corresponding to the density (c) after

which these are combined in a 2D plot in function of time (d).

Analogous to the RSA approach, DYNIA extracts the empirical PDF of the best

performing input factor sets. Any performance metric (for which the calculated

results can be ranked) can be used to split the behavioural from the non-behavioural

factor values. The main difference with RSA is the explicit usage of a time window.

Within each time window, only the best performing factor sets according to a

chosen performance metric (e.g. the top 10%) are selected and the empirical PDF

is computed based on the metric values. Figure 5.6b illustrates this for the time

windows around time steps tr and tn. Whereas the RSA is based on the frequency

of behavioural factors, the DYNIA approach uses the normalised value of the

metric as a weight to derive the marginal PDF.

Looking at the example of Figure 5.6b, the optimal (for the example maximal)

values of factor θ1 are concentrated in a specific region of the parameter space

on time step tr. On the other hand, the optimal values for the window around
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time step tn are not well-defined. This behaviour is reflected in the empirical

PDFs shown in Figure 5.6b. Factors that are highly influential for the current

time window will be conditioned by the performance metric and deviate from the

initial assumed input factor distribution. Darker grey values correspond to higher

densities and a steeper gradient of the empirical CDF. The latter is considered as

an indicator of the identifiability of the input factor (i.e. parameter) (Wagener

et al., 2003).

The results are visualised in a 2D plot of factor values in function of time, where

the probability density of the factor is represented by a grey scale, in which a

darker grey represents higher identifiability of the input factor for the given time

window. Figure 5.6c focuses on the empirical PDF for the time steps tc, tn and

tr. The color code is applied to the different bins, with darker shades used for

higher densities, as was the outcome of Figure 5.6b. Hence, the input factor θ1 is

more influential (and easier to identify) in the period around time step tc as it is

in the period around tn. The final representation in Figure 5.6d is based on the

color code that represents the factor density. Again, the time steps tc, tn and tr

are shown, using the colors of Figure 5.6c. After application of the selection on a

time window around each of the time steps and adding these bins to the figure,

the resulting graph can be interpreted (see next section 5.8.2).

Furthermore, the 5% and 95% confidence limits of the input factor density function

can be calculated and the range is a measure for the ability of the data to discrim-

inate the factor values. Wagener et al. (2003) expressed this in an Information

Content (IC) measure as follows:

ICj(t) = 1− p5% − p95%

∆θj
(5.15)

with p5% and p95% respectively the lower and upper confidence interval of the

obtained marginal input factor distribution and ∆θj the initial input factor range

sampled from. The information criterion ranges between 0 and 1, with high values

indicating a small confidence interval expressing high identifiability.

As mentioned, the analysis aggregates the simulations within a specified time

window. Hence, for every time step and with a time window of n time steps, the

absolute values of scores of the individual time steps between t − n and t + n are

aggregated (e.g. summed). The selected time window of the different input factors

does not only depend on the influential period of the factor (response time), but

also on the quality of the data (Wagener et al., 2003). When the window size

is too narrow, the influence of data errors could become too influential, whereas

too wide window sizes can result in aggregation of different periods of information
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(Wagener et al., 2003). As a rule of thumb, the window size should correspond

with the dynamics of the described process. For example, input factors describing

fast kinetic reactions will require a smaller window than factors used to describe

slow groundwater dynamics. Depending on the window size, the time steps at the

beginning and the end of the time series that are distorted need to be excluded

from the interpretation (Wagener et al., 2003).

5.8.2 Interpretation of DYNIA

The DYNIA approach originates from the idea that it is needed to evaluate the

model during different response modes (Wagener et al., 2001a). Response modes

are for example periods of high or low concentration, periods of high or low flow,

seasonal periods. . . However, these periods of interest are not always clearly de-

fined. As such, the DYNIA can be used to identify these different response periods

by screening the entire simulation period by a moving window (Wagener et al.,

2003, 2004).

A schematic representation of the DYNIA approach plots can be interpreted is

shown in Figure 5.7. It provides the representation of the factor influence (be-

havioural/optimal parameters) in time for the factors θ1 and θ2 in combination

with the response variable ŷi. The shade of gray represents the density of the

factor distribution. When the information content is high, the factor distribu-

tions are conditioned within a narrow range with high density (dark grey color).

During these periods, the influence of the factor is high and the identification of

the factor is potentially possible. In the simplified example of Figure 5.7, these

periods seem to align with high values of the variable ŷi, so both factors are im-

portant to correctly simulate the behaviour during high values of the variable (e.g.

concentrations, flow. . . ).

The light grey areas indicate that equally good parameter values are widely dis-

tributed over the feasible input factor range, which corresponds to low sensitivity

of the factor and conditions where it will be very difficult to identify unique factor

values.

Hence, a first important learning element provided by DYNIA is the identification

of periods of high information content for each input factor, taking into account

the global input factor range. Hence, comparable to the output of a local SA,

sensitive periods can be identified, which supports the process of model calibration

and the selection of proper performance metrics, i.e. aggregation towards a set of
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periods supporting the model evaluation (cfr. noncommensurable metrics defined

by Gupta et al. (1998)).

Figure 5.7: Illustration of an idealised outcome of the DYNIA approach,

showing the output of 2 factor distributions in function of time for the same

period. Darker shades of gray correspond to higher densities. Apparently,

both factors are conditioned the most during periods of high values of the

variable (sensitive). However, whereas input factor θ1 is consistently con-

verging to similar optimal values in time, factor θ2 has other interactions,

leading to different regions for optimal parameter values which need further

investigation. (Figure is adapted version of the Fig. 4.7 in Wagener et al.

(2004))

For input factor θ1, the region of optimal factor values during these periods is

consistent throughout time. In other words, during periods of high values for the

variable, the factor θ1 (part of a model component) has a major influence in a con-

sistent manner. By linking this to the model structure representation, the function

of that factor is well identifiable, in line with a parsimonious representation that is

looked for. In other words, identifiability can also be interpreted as the property

that each factor does have its specific function within the entire model structure

and this function can be identified as such. Functions that cannot be identified by

the available data should not be included in the model structure.

In the case of factor θ2, the region of optimal factor values changes in function

of time, suggesting interaction with other components during these periods which

need to be investigated. In some cases, this can be explained by an interaction

with a factor that is part of the same model component, in other applications it

is the result of a higher order interaction. Hence, DYNIA indicates a potential

inadequacy (interaction effect) of the model that needs to be taken into account
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during model calibration or it indicates those model structural elements with room

for improvement.

These learning properties make the application of the DYNIA approach well-suited

to diagnose model structures, since it relates the deficiencies of the model structure

to the adaptation of the input factor values to compensate for this deficiency. This

concept will be the central concept in the application of DYNIA in chapter 10,

where it is used in combination with other pystran elements.

5.9 Generalised likelihood Uncertainty
Estimation (GLUE)

5.9.1 GLUE as model evaluation methodology

The GLUE method (Beven and Binley, 1992; Beven and Freer, 2001) is extending

the lack of identifiability of a parameter set of a model structure to the principle of

equifinality, which states that multiple input factor combinations of different model

structures can give similar (good) model results. The methodology basically selects

behavioural simulations similar to RSA based on any kind of performance metric

and uses the output of these simulations to assess the model output variability

(uncertainty).

GLUE is a methodology developed to estimate uncertainty of a model output

(Beven and Binley, 1992). However, the applicability of the GLUE method to

estimate the prediction uncertainty of a model is prone to debate in literature

(Mantovan et al., 2007; Stedinger et al., 2008; Li et al., 2010; Vrugt et al., 2008b;

Beven, 2008a; Vrugt et al., 2009). The discussion between formal and informal

likelihood functions to estimate the prediction uncertainty (Vrugt et al., 2008b,

2009; Beven, 2008a), is directly linked to the applicability of the GLUE approach.

From a metric oriented approach, these are alternative descriptions to quantify

model performance. Whereas formal likelihood functions enable also the applica-

tion of ML and Bayesian methods, informal likelihood functions cannot be used in

such rigid theoretical frameworks and the validity of the outcome to estimate the

uncertainty when using these informal likelihood functions is questioned (Vrugt

et al., 2008b, 2009). Uncertainty analysis refers to some form of quantification, i.e.

an estimate of the uncertainty of the model output, which is for GLUE a direct

effect of the subjective decision about the threshold for sufficiency (Mantovan and

Todini, 2006).
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The GLUE method provides an intuitive approach in the evaluation of the effect

uncertain inputs have on the variability of the output, conditioned by available

data. The fact that the method can be rephrased within a Bayesian context

(Sadegh and Vrugt, 2013), a possibilistic context (Jacquin and Shamseldin, 2007)

or an approximate Bayesian computation (ABC) context (Nott et al., 2012) illus-

trates the generic aspect of the idea. Moreover, the fact that the method can be

applied to basically any performance metric (or combinations of them, section 3.4)

emphasizes its value within a model learning process (Beven and Binley, 1992,

2014). Moreover, it only requires a set of simulations originating from randomly

taken samples and is easy to implement. Finally, the method does not make any

distinction between realisations coming from different model structures, making

it applicable to both input factors (mostly parameters) as well as a set of model

structures. As such, it perfectly fits within the diagnostic approach discussed in

this dissertation.

Presenting the GLUE approach along with other methods for SA as done here,

could be questioned. However, within the context of this dissertation, uncertainty

estimation (or error propagation) is not the main objective and GLUE is still

useful to gain insight in the model behaviour, similar to the other methods in this

chapter.

It should be noted that, in contrast to the presented SA methods, it does not

provide information about the individual effect of each input factor, which does

not make it a sensitivity analysis according to the definition of Saltelli et al. (2004):

Definition 5.1. Sensitivity analysis is the study of how the uncertainty in the

output of a model (numerical or otherwise) can be apportioned to different sources

of uncertainty in the model input.

However, GLUE still provides a straightforward way of propagating the empirical

PDF of behavioural input factors through a model structure and evaluate the effect

of the choices made (performance metric, threshold used, parameter prior distri-

butions. . . ) on the variability of the output. In other words, the GLUE method is

able to assess the effect of input factor variability towards the output variability,

conditioned by the available observations. Hence, it does have a contribution to

determine the influence of model parameters.

When used in the scope of uncertainty analysis, these assumptions should be cho-

sen carefully. The applicability of the GLUE method in the sense of model evalua-

tion is less restricted as it is to apply the method for uncertainty estimation. When

testing with different threshold values and performance metrics, the derived uncer-

tainty estimates do still have value in a comparative context, by linking decisions
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and uncertain elements to the resulting contribution on the output variability. In

this sense, the method is useful to gain insight in the model behaviour without

calling it an uncertainty analysis per se.

In contrast to a formal Bayesian approach where the user decides about a specific

error function to work with, the flexibility of exploring any performance metric is

a major advantage in model structure exploration and diagnosis. In this respect,

the further integration with the recently proposed approximate Bayesian compu-

tation method is very promising (Sadegh and Vrugt, 2013, 2014). It integrates

the flexibility of working with basically any performance metric with the rigorous

theoretical framework of Bayesian statistics.

In the context of this dissertation (model learning, testing with different settings),

the GLUE method is used in the following sense: provide insight in model be-

haviour and guidance in the model learning process by model rejection. However,

the derived uncertainty bounds should not be interpreted as an estimate of the

model prediction uncertainty.

5.9.2 The GLUE approach explained

The major steps when performing a GLUE approach are explained in this sec-

tion and visualised in Figure 5.8. Similar to the other sampling based methods,

the selected input factors to consider as uncertain inputs are randomly sampled

with any sampling strategy and from an assumed distribution, as represented by

Figure 5.8a. For each of the sampled input factor sets, the selected performance

metric needs to be calculated. Each dot in Figure 5.8b represents the resulting

metric associated with a simulation. This scatter plot of the performance metric

in function of the parameter value is regularly referred to as a dotty plot (Beven,

2006).

Subsequently, the user needs to decide about a rejection threshold (or thresholds)

to identify non-behavioural model outputs, as visualised in Figure 5.8b. Ideally,

the rejection criterion should be chosen before starting the simulations based on the

possible observation errors (Pappenberger and Beven, 2006), but in practice the

definition of this criterion is mainly a learning process during the analysis itself.

When defining the limits of acceptability based on the observation uncertainty

(section 3.4.3), the threshold is indirectly defined (Blazkova and Beven, 2009), but

relaxation is still considered (Liu et al., 2009b).

The parameter sets with insufficient behaviour (performance values below the

agreed threshold) are considered non-behavioural and excluded from the subse-
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Figure 5.8: Visual illustration of the GLUE approach, starting again from a

set of simulations by sampling the input space (a). Similar to the RSA ap-

proach, the simulations are divided into two groups and only the behavioural

simulations are used to derive the uncertainty intervals (b). For each time

step, the empirical CDF is constructed with the normalised perfomance

metrics as weights (c). By taking the preferred quantiles for each time step,

the uncertainty interval can be constructed (d).

quent analysis by attributing them a zero weight value in the consecutive steps.

Applying this threshold is a crucial step in the analysis, since it is directly related

to the final prediction uncertainty. In the utopian situation of exactly one single

global optimal parameter set, defining the threshold very strict would result in a

brute-force optimization scheme, having left only a single parameter set.

Next, the obtained performance metric values of the behavioural model outputs

are normalised. To determine model prediction uncertainty, the model outputs

are ranked at every time step and the normalised values are used to construct the

cumulative distribution for the output variable, by using the normalised values as

weight factors in the empirical CDF. The latter is illustrated in Figure 5.8c for

a single time step tn. The contribution of simulation ŷ1 and ŷ2 is annotated on

both Figure 5.5b and Figure 5.5c. Simulation ŷ2 has a metric value just above

the threshold value, whereas simulation ŷ1 has a larger metric value (higher per-

A. 

y 

A. 

y 
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formance). This results in a larger contribution of simulation ŷ1 to the CDF

(simulation ŷ1 is more likely) in Figure 5.5c.

Prediction uncertainty is subsequently determined by selecting the appropriate

percentiles (e.g. 5% and 95%) from the empirical CDF at every individual time

step to construct the uncertainty bounds (Figure 5.8d). The term likelihood is not

used here, since likelihoods are just one option of the possible performance metrics

applied (Romanowicz and Beven, 2006).

5.9.3 Monte Carlo propagation

Another approach for propagating the parameter variability towards the model

output is referred as Monte Carlo uncertainty propagation (Saltelli et al., 2008).

This is a propagation of the assumed factor distributions by means of a MC ap-

proach, resulting in the empirical PDF and CDF of the output variable. So, it

is actually a reduced version of the GLUE approach, leaving out the condition-

ing step of the priori assumed factor distributions by the observations (the factor

distributions are assumed to be known).

Similar to the GLUE methodology, the MC propagation approach is a method for

uncertainty estimation in the first place. When the probability of the uncertain

inputs is known, it provides a straightforward method to derive output uncer-

tainty estimates. In the ultimate version of a completely known description of

all the uncertainty input factors by a ‘correctly’ defined multivariate probability

function, a MC propagation approach results in an uncertainty estimation frame-

work. Montanari and Koutsoyiannis (2012) consider this idea as the blue-print for

uncertainty estimation, but - personal opinion - which I consider a utopian version

of a probabilistic uncertainty approach.

An often seen approach in the application of direct propagation is the usage of a

predefined (uniform) variability around the default parameter value with 5%, 25%

and 50%, according to the expected variability (Reichert and Vanrolleghem, 2001).

It is easy to understand and also illustrated by Benedetti et al. (2008) that the

determined prediction uncertainty when sampling from an expert-based parameter

space is directly linked to the choice of these parameter ranges.

In the specific case of using arbitrary ranges, the propagation provides a method

to evaluate how the output variability changes when the variability in the input

parameters is altered. When using arbitrary ranges for each of the input factors

without taking into account the interactions, unrealistic parameter combinations

will be propagated as well. The usage of a conditioning step as it is provided



128 5.10 FLOWCHART FOR SENSITIVITY ANALYSIS

by the GLUE approach will inherently take into account interaction effects by

which some parameter combinations are excluded as they do not provide a proper

representation of the observations (Cierkens et al., 2012). Direct propagation of

arbitrary input ranges does not account for this. It does provide an idea about how

the variability of the model output is triggered by the assumed parameter variabil-

ity, comparable to the GLUE method. In other words, it provides a technique to

assess the effect of a hypothetical uncertainty, exploring potential impact.

Still, the method will be useful to characterize research questions such as: What

could eventually be the consequence on the output when a model parameter would be

in reality deviating in a range within 50% of its current estimated value. When the

eventual effect would be very high, then it provides the modeller useful information

about the necessity of estimating the particular parameter well. This is similar to

factor prioritization as described in other methods for SA. Moreover, for estimating

potential risk for basically any what if? scenario, the method can be effectively

used. But we should be sceptical when communicating about how uncertain one

is about a model prediction based on a direct propagation of ‘expert knowledge’

(arbitrary defined) uniform and uncorrelated factor uncertainties.

5.10 Flowchart for sensitivity analysis

In the previous sections, different methods available to the modeller were ex-

plained. These were implemented in the pystran Python Package 4 and some of

them will be applied throughout the next chapters. The similarities are apparent

and in many cases a combination of different techniques is feasible, certainly for

low-dimensional problems. Some guidance as to why a specific method should be

selected in a certain situation is helpful.

Still, the flowchart will not keep the modeller from performing the SA method

inappropriately, also referred as Type III errors (Saltelli et al., 2008): The usage

of adequate factor (parameter) ranges should always be ensured and the unknown

effects of those factors that were not taken into account should be considered. Fur-

thermore, it is important to understand that the sensitivity is always the sensitivity

as defined by the model structure and not by the natural system modelled.
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5.10.1 Selection of a sensitivity analysis method

A flowchart is introduced (Figure 5.9) which can be useful as a practical guidance

for applying SA methods. It is not a community-wide agreed flowchart or best

practice, but purely a guidance proposed as a starting point. The building blocks

were explained in the preceding sections.

However, by making it publicly accessible2 and adaptable (CC license), it can be

further adapted when new methods are developed or other considerations appear.

The styling and idea is directly taken from the version originally created by An-

dreas Mueller in function of the scikit-learn machine learning package (Pedregosa

et al., 2011).
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Figure 5.9: Overview and proposal of a decision tree with regard to the

methods discussed in section 5.2, providing the basic train of thought to

select a specific method of SA. Each of the green boxes corresponds to a

well-recognised methodology.

First, the division between local and global methods is made. The former is really

easy to apply to any kind of model and can provide already useful information

(section 4.2). Collinearity is an extra point of information that comes without

extra computational cost.

2https://github.com/stijnvanhoey/flowchart for sensitivity analysis

https://creativecommons.org/
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When the entire parameter space is targeted, the first question is if there are

already good reasons to decide about a specific aggregation over time (will aggre-

gating over the entire simulation period be sufficient? ). When not, the DYNIA

approach provides an ideal method to get more insight in the parameter behaviour,

whereas a pure MC propagation approach will provide information as to how the

variability in the output changes as a function of time, considering the assumed

parameter distributions. It is noteworthy that other methods can be applied on

a time window basis as well and interpreted as such, for example a time-varying

variance based method was used to investigate a model structure by Herman et al.

(2013b).

When knowledge about useful aggregation functions (which can be performance

metrics as well) is already available, it depends on the aim of the SA on what meth-

ods to pick. When ranking of the parameters is aimed for, screening methods will

suffice. The application of the Morris screening approach using Elementary Effects

would be the first pick. For high-dimensional parameter spaces, the application

of the Morris method using groups of parameters will be more suitable, however

at the cost that parameters within a specific group cannot be ranked. When the

Morris method does not provide useful outcomes, a global approach of OAT can

be considered as second option. Note that the initial samples of each trajectory

can be reused between both methods, but not the whole trajectories.

When (higher order) interaction effects are of interest as well, screening methods

will not provide the required answers and other methods need to be considered. In

case a linear assumption of the model output in function of the parameters turns

out to be reliable, the SRC can be used. Furthermore, ranking the parameter

values and simulations can help for non-linear, but monotonic models by comparing

the SRRC. However, only qualitative results should be considered when using

SRRC.

For many environmental models, non-linearity is common, making a linear regres-

sion approach insufficient, leading the modeller to the usage of a variance based

approach, which main drawback is the numerous set of simulations needed. When

the focus is on checking the effect of parameters on performance metrics, the ap-

plication of a Regional Sensitivity Approach can provide graphical insight into

the response surface to check the effect of individual parameters. When the effect

of the conditioning on the model output is aimed for, rather than the parameter

characteristics, the GLUE approach is the tool to use.

To emphasise the commonly considered difference between sensitivity and uncer-

tainty analysis, the MC propagation and GLUE approach are put partly outside

the area of methods for sensitivity analysis.
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5.10.2 Recycling simulations between methods

Instead of the selection of a single method, real benefit would be achieved by in-

tegrating these methods in a common workflow, minimizing the total amount of

simulations needed to retrieve both the graphical output and the indices of all

considered methods. The similar dependence on the sampling of the parameter

distributions suggests the potential. For model structures with a limited com-

putational effort and a low-dimensional set of parameters, this is actually rather

straightforward (cfr. the assumption in section 3.2), but gets quickly infeasible if

the number of dimensions is above 3 or 4.

Hence, the integration brings new methodological and theoretical opportunities.

The blending of the Morris screening approach and the variance based approach

(Campolongo et al., 2011) and the extraction of a search grid as a byproduct of

a sensitivity analysis (Verwaeren et al., 2015) both illustrate that an improved

integration is achievable.

Apart from these theoretical efforts, the implementations should be designed to

cope with it as well. Hence, the integration of methods and the recycling of

simulations among them should be the further development perspective of the

pystran and similar environments. The current object-oriented approach of the

pystran Python Package 4 is more oriented to the application of a specific method

according to the flowchart of Figure 5.9. The modularity of the implementation

is mainly supporting the recycling of the code and the coupling with external

methods for computing aggregated metrics. As such, it was not fully designed to

recycle the simulations amongst different methods. It should be reconsidered in

this direction in combination with other packages with similar purposes.

Since the characterisation of the model performance is considered as an iterative

process itself (Bennett et al., 2013), we should strive to improve the integration

of existing methodologies. The latter is not possible when different algorithms

are implemented as standalone executable tools, using various input-output (I/O)

file formats and consisting of incompatible (or closed) source codes (Matott et al.,

2009). This integration of the pystran functionalities with similar packages is

therefore an essential next step. A package such as SALib (Usher et al., 2015), is

of specific interest, due to the similar design perspectives as the pystran Python

Package 4 and the increasing group of developers.
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5.11 Conclusions

This chapter describes the theoretical information of a set of widely used methods

for sensitivity analysis which aims to provide future users a sufficient background

on the matter to effectively apply these methods. The combination of this detailed

description with the online release of the implementation as the pystran Python

Package 4, this chapter tries to overcome the typical lack of documentation and

transparency regularly encountered Petre and Wilson (2014). The chapter also

serves as a reference for the methodologies applied in the other chapters of the

dissertation.

At the same time, the necessity of a continuous development to increase the inte-

gration of existing and newly developed methods, becomes apparent. This inte-

gration should be in terms of the theoretical development as well as in terms of

implementation and related documentation of the source code. Alternative imple-

mentations are currently available (Ekstrom, 2005; Soetaert and Petzoldt, 2010a;

Pianosi et al., 2015; Usher et al., 2015), but a more collective investment of re-

sources should be a next step forward to a community wide library for sensitivity

analysis methods. Such an environment could also support the incorporation of

newly developed methods such as Mara et al. (2015), while overcoming the overlap

between existing frameworks. The proposed flowchart provides a decision tree that

gives guidance to novice users in the selection of a method out of the set of methods

presented in this work. When adopted by other users, it provides implementation-

independent guideline for the application of sensitivity analysis.
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CHAPTER 6
Lumped hydrological model

structure VHM

6.1 Introduction

Hydrological models are used to study the potential impacts of future climate

change on catchment runoff, to forecast future water levels and as part of in-

tegrated modelling studies. These modelling results might be used as a basis

for decision making about management of water resources with important conse-

quences for sectors such as agriculture, land planning and water supply. Certainly

the adequate prediction of high flows in order to mitigate the risk of flooding and

of low flows to assess the impact of droughts is of interest. However, a myriad of

hydrological models exists with different levels of complexities and only little in-

formation is known about the impact of these differences between the hydrological

models on the actual predictions.

Despite the large variety in complexity in hydrological models, an important set of

hydrological model structures applied in current research are lumped hydrological

models, with a fixed structure based on a certain understanding of the dominant

processes in the system (Wagener et al., 2001a). These conceptual models com-

monly consist of a number of soil water reservoirs and routing routines representing

various runoff processes. The Sacramento Soil Moisture Accounting (SAC-SMA)

model (Burnash et al., 1973), Stanford Watershed Model (Crawford and Lins-

ley, 1966), HYMOD/Probability Distributed Model (PDM) (Moore, 1985), Dan-

ish Nedbør Afstrømnings Model (NAM) model (DHI, 2008), IHACRES (Jakeman
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et al., 1990) and HBV (Lindström et al., 1997) are some well-known lumped model

structures regularly seen in literature.

At the same time, these lumped hydrological models are known for their identi-

fiability problems (Beven, 2006, 2008b). Parameter values can hardly be related

to physical or measurable properties and observations are essential to inversely

identify these parameter values. However, the number of parameters generally

limits the practical identifiability of the models, leading to unreliable parameter

estimates. As such, the structural property of being an interconnected set of reser-

voirs with alternative joints and the known issues for identifiability makes this type

of hydrological models an ideal case study for model structure identification and

evaluation.

The VHM approach (Willems, 2014) used as a starting point in this part of the

dissertation is a special case of these lumped hydrological models. It consists of

the typical storage and routing blocks like the other models. However, the buil-

ding process uses another rationale to set up the model structure. It consists of a

stepwise approach with a combined model structure and model parameter charac-

terisation. The rationale of the approach is in line with the diagnostic approach

of this dissertation, treating model structures as a flexible entity and combining

the effort of model structure identification and model calibration (section 2.5).

The flexibility makes the VHM modelling approach a good starting case for model

structure evaluation. In this part of the dissertation, the flexible model options

of VHM will be used to define, implement and evaluate a set of model structural

decisions.

The aim of this chapter is to provide the experimental layout on which the fol-

lowing two chapters in this part are based. The study catchment will be shortly

introduced, providing information about the natural system studied, i.e. the Nete

catchment, together with the available data sets. Next, four different model struc-

ture decisions to alter the VHM model will be introduced, resulting in an ensemble

of possible model structures. For each of the four model decisions, an assessment

of the suitability is aimed for. Finally, the constructed metrics to evaluate the

model performance and to assess the model behaviour are explained in more de-

tail. Due to the specific interest of operational water management towards high

flows (floods) and low flow (droughts), the constructed metrics are chosen to sup-

port these objectives.
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6.2 Case study

Study catchment

The Grote Nete catchment, located in the northeast of Belgium with an area of 362

km2 served as study area as shown in Figure 6.1. It has a temperate climate with an

average annual precipitation of 790.3 mm. Rainfall occurs throughout the entire

year with more intensive and shorter storms in summer (June till August) and

more frequent, generally less intensive, storms in winter (December till February)

(Rouhani et al., 2007). The two main tributaries, the Grote Nete and the Grote

Laak merge before the Geel-Zammel outlet station. The soils are predominantly

composed of sand with around 64% of the area consisting of sandy soils with high

hydraulic conductivity (Rouhani et al., 2007). In the southern and valley areas,

loamy sand and sandy loam soils are predominant, with minor sections of clay loam

and sandy clay loam (Rubarenzya et al., 2007). The topology is rather flat with

an average slope of 0.3 % and a maximum one of 5 %, and has a shallow phreatic

surface with a water table rising close to the surface in winter. Water resources

of the Grote Nete catchment have been profoundly influenced by anthropogenic

activities.

Figure 6.1: Location of the Grote Nete catchment in Belgium and plan view

of the river network and gauging stations
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Model application observation data preprocessing

Hourly data of rainfall and evapotranspiration are available from different clima-

tology stations in the Flemish area. Lumped hydrological models need a spatially

averaged input. Hourly rainfall data was derived by the spatial average of the six

neighbouring rainfall gauges shown in Figure 6.1. Evapotranspiration data was

measured at the Ukkel climatic station. Daily potential evapotranspiration data

were assumed to be representative for the Grote Nete catchment. An empirical

relationship to transpose the data to an hourly time step was used (Vansteenkiste

et al., 2011) and the resulting time series is shown in Figure 6.3. Hourly flow data

of the basin outlet were used to compare the observed and predicted values of the

different model structures (Figure 6.2). Based on the availability and quality of the

data and in order to span a representative time series, a calibration period from

2002 until 2005 and a validation period from 2006 until 2008 was applied.
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Figure 6.2: Spatial average of rainfall and observed flow at the Geel-Zammel

gauging station from 2002 till 2008 as used in the case study

6.3 VHM lumped hydrological model

6.3.1 VHM approach

The VHM approach (Willems, 2014) is a lumped hydrological rainfall-runoff model

construction approach. Flexibility is possible, while the possible structural vari-
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Figure 6.3: Potential evapotranspiration with hourly timestep, derived from

the daily time serie available at Ukkel between 2002 and 2008 as used in

the case study

ations are kept limited within a specific set of possibilities. The main principle

behind all the VHM structure options is the separation of the rainfall into differ-

ent fractions contributing to the different sub flows by a time-variable distributing

valve. The lay-out of the VHM model is shown in Figure 6.4 and a detailed

description about the modelling approach can be found in Willems (2014).

The entities of the model are the soil storage defining the dynamics of the soil water

storage compartment combined with a number of (linear) reservoirs defining the

routing part of the model, comparable with other lumped hydrological models

with a soil storage section and a routing section as main entities (Kokkonen and

Jakeman, 2001). The balance of the soil storage is given by

du

dt
= pt,in − q(u)− e(u) (6.1)

with u (mm) the soil moisture storage, pt,in (mm s−1) the rate of rainfall (intensity),

q (mm s−1) the runoff rate generation and e (mm s−1) the actual evapotranspira-

tion rate. The outgoing fluxes e and q are both function of the soil moisture

storage. The transformation from potential evapotranspiration to actual evapo-

transpiration is assumed to be linearly related to the soil moisture storage for all

models in this study, but can be varied for other applications. The runoff rate

generation q is split into different sub flows. Flows are calculated based on the

attributed fractions from the rainfall with q(u) = f(u)·pt,in resulting in the flow qof

for overland flow, qif for inter flow and qbf for base flow. Overland flow is the direct

runoff, the inter flow conceptually represents the subsurface flow which influences
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Figure 6.4: VHM model structure, representing the main building blocks

of the model and fluxes calculated by the model

the runoff characteristics of the catchment as well and the base flow describes the

groundwater contribution of the flow.

The function f(u) computes the fractions and can be adapted in function of the

representation and process description. The function descriptions will be intro-

duced in section 6.3.3, for example Equation 6.2 and Equation 6.3. Mass balances

are closed at all times by verifying that the sum of the fractions equals 1 at all

times.

6.3.2 Implementation of the VHM model structure

Python implementation

The flexible nature of the model structure identification described in Willems

(2014) is the basis for the defined model structure alternatives.

The original implementation of the model is not open and is programmed in Excel

with Visual Basic. The latter prohibits the access of the code and the handling of

the model in connection with other components. As such, the implementation of

the flexible approach of the VHM was done in the scripting language Python, to

increase the flexibility and extendibility of the model. The model is available as a

single Python function, see Python Module 5.
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Python Module 5 (VHM flexible).

Flexible and straightforward application of the VHM modelling approach

as proposed by Willems (2014). More information about the imple-

mentation is provided together with the code at https://github.com/

stijnvanhoey/flexible_vhm_implementation

Model output showcase

An introduction of the model is provided for a single model structure output to

show the different outputs that the model implementation provides. The discharge

of the gauge Geel Zammel in the Nete catchment is used and the modelled dis-

charge is shown together with the observations in Figure 6.5. The parameter set

is retrieved from the original workflow described in Willems (2014) and performed

by Vansteenkiste et al. (2011). Overestimation of the lower flows during summer

months and underestimation of the winter peaks in 2004, are major deficiencies

noticed for this calibration.
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Figure 6.5: VHM modelled flow example in comparison with an observed

time series of the catchment

As noticed in Figure 6.4, the model assumes three subflows that contribute to the

total flow. Hence, sub flow filtering techniques can be applied to the observed time

series to estimate the proportional part of each of these subflows (Willems, 2009).

Figure 6.6 compares both the modelled and filtered observed subflows. Except for

the underestimated base flow in winter months, the model output captures the

dynamics in the different subflows well using the parameter set of Vansteenkiste

et al. (2011) (also provided in Table 7.3). Combination of Figure 6.5 and Figure 6.6

learns that the overestimation in the summer months is mainly caused by the

https://github.com/stijnvanhoey/flexible_vhm_implementation
https://github.com/stijnvanhoey/flexible_vhm_implementation
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mismatch of the inter- and overland flow. Still, the subflow filtering on itself is

also uncertain and dependent on the chosen filter and settings.
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Figure 6.6: VHM subflow modelling example in comparison with a sub-

flow separation result of the flow time series, done with a numerical filter

described in Willems (2014)

The VHM approach essentially performs a rainfall fractionation determining the

redirection of the incoming rainfall towards the different components. In this sense,

the model is different in comparison to other lumped hydrological models (Moore,

1985), since these typically do not directly pass on a fraction of the rainfall towards

the base flow component. Still, the fraction of the rainfall contributing to the soil

moisture depends on the state of the soil moisture at each time step, which is

provided in Figure 6.7.
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Figure 6.7: VHM output of the soil moisture storage in function of time,

representing the moisture state of the Nete catchment.
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Figure 6.8 and Figure 6.9 provide both an overview of the fractionation in function

of time, respectively with and without taking into account the description of infil-

tration excess expressed as a function of the antecedent rainfall at each moment.

In contrast to saturation excess, which is conceptually represented by the filling

of the soil moisture storage, the infiltration excess describes the runoff initiated

when the rainfall capacity is larger than the soil infiltration capacity.

As a first check, the sum of the fractions should be unity, which is correct for

the entire simulation period as illustrated by the constant value for the sum of

the fractions in Figure 6.8. The other fractions in Figure 6.8 are not smooth

and shows a spiky behaviour which seems hardly realistic. The latter is due to

the conceptualisation of the infiltration excess by using antecedent rainfall in the

product for both overland flow and inter flow, leading to these sudden drops in

the fractions of overland flow and inter flow. When there is no antecedent rain

during the chosen time period, the overland flow and inter flow fractions instantly

drop to zero, leading to a sudden decrease. When rain starts again, the fractions

immediately increase again as the term in the product is no longer zero (see also

Equation 6.5 in the next section). Since the base flow is implemented as a rest

fraction of the other fractions, it increases at the same time.
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Figure 6.8: VHM output of the different fractions contributing to the sub-

flows, when the antecedent rain concept representing the process of infiltra-

tion excess is included in the model structure.

6.3.3 Implemented model component adaptations

Different types of model structural changes can be applied to the VHM model

structure. Within the scope of this application, the focus is not to generate an
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Figure 6.9: VHM output of the different fractions contributing to the sub-

flows, when the antecedent rain concept representing the process of infiltra-

tion excess is excluded from the model structure.

extensive number of model structures, but rather to discriminate between a small

number of rival model structures that can be interpreted as equivalent represen-

tations of the system. Four types of model adjustment were identified and chosen

for the further analysis. Each of the four adjustments are linked to a specific

model structure decision and represent each a different type of model structure

manipulation. In this section, the four selected adjustments will be discussed in

more detail, each linked to a type of structure manipulation.

We define a model component as a conceptual description of a (sub)process of the

entire model. This can either be the mathematical description of a specific flux

(e.g. percolation, evapotranspiration. . . ) or an entity in the model represented by

a mass balance (e.g. upper soil layer).

� Change component mathematical structure: The mathematical for-

mulation can be altered, by which the relationship between the variables is

changed. As such, the parameter values are different, but can retain their

referred (physical) representation. This can be combined with an increased

number of parameters, but is not necessarily the case.

Implemented for this case (Figure 6.10a) is the transformation from a linear

relationship between the soil storage flux fraction and the soil storage

fu,1(t) = s1 − s2
u(t)

umax

(6.2)
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(a) Linearity of the soil

moisture storage

(b) Necessity of the inter

flow process

(c) Incorporation of the antecedent

rain concept to incorporate infiltra-

tion excess

(d) Representation of the

routing components

Figure 6.10: Application of the different model variation on the VHM model

structure, with the structure adaptations marked in color

towards a non-linear equation using an exponential dependency and addition

of an extra parameter:

fu,2(t) = s1 − es2(
u(t)
umax

)
s3

(6.3)

The concepts behind parameters s1 and s2 are similar, with s1 defining the

maximum fraction (dry soil) and s2 the gradient of the function, defining the

minimum fraction (saturated soil). Parameter s3 defines the curvature of the

function in the non-linear case. As such, the higher complexity defining the

non-linear relationship defines more degrees of freedom to mimic the ‘real’

soil storage infiltration function.

� Delete model component process: Deleting a specific model component

is a direct way of model structure reduction. Nevertheless, it does not always

mean that the process is not occurring, but it is assumed to be of minor

relevance for the specific purpose. The reverse action, adding a component,

is similar, but the reasoning is opposite. The central issue is whether the

added component can be parametrically identified. In general, this type of

model structure comparison will be the case if model reduction is intended.

To represent this reduction, leaving out the inter flow component was pro-

posed as a possible model reduction (Figure 6.10b). Since the inter flow
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conceptually represents the subsurface flow, it is assumed that the effect of

the subsurface flow has no major impact on the runoff characteristics of the

catchment.

� Increase component variable dependency: A specific process is depen-

dent on certain variables, but the dependency structure can be changed by

extending the equation with an extra variable. By doing so, the described

process is assumed to be influenced by the added variable whereas it was not

in the original structure.

As an example, the fraction contributing to overland flow and inter flow

are described in two distinct ways (Figure 6.10c). In a first variation, the

dependency is only based on the characteristics of the current soil water

storage.

fof,1(t) = o1e
o2

u(t)
umax (6.4)

As an alternative, s(t), i.e. the antecedent rainfall volume, is introduced as

an extra variable to express the dependency of overland flow on the total

rainfall budget of the no previous time steps.

fof,2(t) = o1e
o2

u(t)
umax s(t)o3 (6.5)

The parameter no defines the number of time steps used to compute the

cumulative rainfall for, resulting in s(t). This represents the wetness of the

soil surface and can be seen as the addition of an infiltration excess term in

the equation, whereas the other part represents the saturation excess process.

Parameter o3 is added as an extra parameter, giving two extra parameters

in total for the overland flow. A similar substitution was considered for the

inter flow model equations.

� Extend component parameterisation or variables: Sometimes the dif-

ference between model structure variation and changing parameterisation is

not evident and depends on the implementation. As a straightforward ex-

ample to clarify this, the routing concept in lumped hydrological models is

explained in more detail.

A linear reservoir is used regularly to describe the routing of water and to

simulate the retention process of water moving to the outlet. A single reser-

voir is characterised by the retention parameter K (storage factor) and the

equation can be solved analytically. However, this concept is generalised in
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the so-called Nash cascade of linear reservoirs, each having the same storage

factor. As such, the resulting mathematical structure can be solved analyt-

ically and the resulting unit hydrograph is comparable to a two parameter

Gamma distribution, defined by a storage factor K and a number of reser-

voirs n (no longer limited to integer values). As such, the Nash-cascade

based routing model structure can be defined as one component, defined

by two parameters (K and n). Nevertheless, when solved numerically, the

number of reservoirs (n) defines the number of mass-balances in the model

component to describe routing. This means that the model is extended with

extra state variables when more reservoirs are included.

In this case, we will consider the increase of the number of reservoirs as

adding extra variables to the model, since it defines the most general way of

model extension. Each reservoir defines a separate mass balance and can be

defined by a unique storage factor Ki and can be described both in a linear

or non-linear way. A Nash cascade of linear reservoirs is just a special case,

where all reservoirs are selected to be linear with the same storage factor.

As an example, both the overland flow and base flow were varied between one

or two linear reservoirs, each having a separate storage factor, represented

in Figure 6.10d.

In summary, based on the former classification of model structures, twenty four

(24) rival models were constructed for the study by making the combination of

these model structure options.

Figure 6.11 represents the four different conceptual model decisions and how the

combination leads to the studied ensemble of model structures: (1) the relationship

of the soil storage component can either be defined as linear or exponential; (2)

inclusion or exclusion of an inter flow component to represent drain flow and

runoff from the vadose zone; (3) the surface runoff submodel was extended with

an infiltration excess submodel or not; (4) the configuration of routing reservoirs

of the base flow and overland flow routing by extending one or the other with an

extra reservoir. For each of these model decisions, the model options are listed in

Figure 6.11, together with a label in italic to make identification of each individual

model structure possible. For example, the model structure exp ni na no defines

a model structure with an exponential storage compartment, without interflow,

without infiltration access and without additional routing reservoirs taken into

account. Combination of these options results in the 24 model structures used in

the ensemble to evaluate, which is represented by the lines in between the model

options.
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The model parameters are listed in Table 6.1 with for each parameter a minimum

and maximum value acting as the boundaries of the parameter space. Moreover,

the model component of which the parameter is part of is given, together with a

label for each of the components. The labels of the components will be used later

in chapter 8.

All model structures have a single soil moisture storage component and a linear

transformation of potential evapotranspiration to actual evapotranspiration. As

such, the effect of the four model options can be tested by a comparison of 12

model configurations for option (1) to (3) and for six configurations for option (4),

since the latter is split to three options.

Figure 6.11: Overview of the created ensemble of model structures based

on the variation provided by the four selected model structure adaptations

to the VHM model. A label is assigned and added in italic to each model

structure option to enable the identification of each model structure combi-

nation by combining the labels. The lines represent the different combina-

tions of model options to construct a model structure. The combination of

the different model decisions results in an ensemble of 24 model structures.

6.4 Performance metrics

Chapter 3 discusses the importance of selecting appropriate performance metrics to

support the research question. Three different performance metrics were defined to

evaluate the model performance for this application, each representing a different

model objective. A reliable prediction of high and low flows are of specific interest
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Table 6.1: Overview of model parameters, the ranges of variation and the

related component. Common parameters are present in all the 24 model

structures. The last column provides the label of the component, used in

the graphical representation in chapter 8.

Parameter Minimum Maximum Component Label

umax 200.0 500.0 Storage S

s1 1.0 3.0 Storage S

s2 0.1 2.0 Storage S

s3 0.1 2.5 Storage S

uevap 90.0 250.0 Evap E

o1 -6.0 -3.0 Overland O

o2 1.0 6.0 Overland O

o3 0.2 2.0 Overland O

no 3.0 48.0 Overland O

Ko1 10.0 120.0 Overland O

Ko2 10.0 120.0 Overland O

i1 -6.0 -3.0 Inter flow I

i2 1.0 6.0 Inter flow I

i3 0.2 2.0 Inter flow I

ni 3.0 48.0 Inter flow I

Ki 90.0 150.0 Inter flow I

Kg1 1500.0 2500.0 Base flow B

Kg2 1500.0 2500.0 Base flow B

for operational management, as both are linked with potential threads, respectively

floods and droughts.

As a first metric, the frequently applied NSE (Nash and Sutcliffe, 1970) was used,

mainly as a well known reference. NSE tends to overestimate the deviation between

modelled and measured values of high flow peaks. To draw attention towards

lower flow values, adapted versions of the Nash-Sutcliffe criterion can be used in

order to less heavily penalize large differences (Schaefli and Gupta, 2007). For

the analysis presented here, two alternative performance criteria to emphasize

respectively low and high flow conditions are designed. For the design, the aim is

to have metrics that are not based on the comparison of individual time steps, as

a small shift in time in between the observed and modelled time series can result

in bad performance, whereas the dynamics could be well captured (Dawson et al.,

2007). At the same time, specialisation towards either low or high flows should be

supported as well.

The designed metrics are based on the Flow Duration Curve (FDC) derived from

the modelled and measured time series. Instead of constructing the metric based

on the residuals as a function of time, the evaluation is done by comparing the

FDC of both the observed and modelled time series. Residuals are calculated by
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subtracting corresponding values of the observed and modelled FDC, which makes

the evaluation time-step independent.

Similar metrics were applied by Westerberg et al. (2011b); Blazkova and Beven

(2009); Refsgaard and Knudsen (1996), who compare the FDC of the simulated

flow and the observed flow in discrete points along the FDC. In this work, this

concept has been further extended to support the specialisation towards either low

or high flows. By choosing the evaluation points along the FDC at the lower or

higher quantiles of the flow duration curve, emphasis is given respectively towards

high (called HighFlow) or low (called LowFlow) flow values. The transformation

for both the modelled output and the observed data from the original time series

towards the evaluation points can be regarded as an aggregation function to derive

the metric. The translation towards a performance metric is done by comparing

the resulting evaluation points of both for which a choice can be made of a specific

category of metrics as listed in section 3.4.1, which is done here comparable to the

definition of the NSE (comparison of residuals with the residuals of the mean as

reference model).

Figure 6.12 shows the evaluation points of the flow duration curves for the LowFlow

and HighFlow metrics. The choice of the range to spread the evaluation points

in both criteria, is made based on the analysis of the hydrograph of the study

catchment and should be verified when used for other catchments. For the low

flow performance criteria discrete evaluation points (EP) are taken between the

30% and 100% quantiles focusing on the base flow values and for the high flow

performance criterion between the 0% and 70% quantiles to emphasize peak flows

and the recession after a rain event. By choosing this division, both criteria are in-

teracting for around 70% of the time steps of the total observed time series.

To ensure that the discrete points capture the curve of the flow duration, the

evaluation points were evenly distributed between the minimum and maximum

measured flow value of the selected quantiles. By doing so more emphasis is going

to strongly changing parts of the flow duration curve (evaluation points are closer

to each other in Figure 6.12). Using an equidistant distribution of evaluation

points between the minimum and maximum quantile values would result in only

few evaluation points in the steeper parts of the curve, whereas these are of most

interest.

Finally, this set is extended with a combination of NSE on the one hand and the

LowFlow and HighFlow on the other hand, both equally weighted and further

respectively called NSE-FDClow and NSE-FDChigh, available as well in the set

of performance metrics in the pystran Python Package 4:
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Figure 6.12: Illustration of the Evaluation Points (EP) used to derive the

FDC based performance metrics for respectively low flow (left) and high

flow (right). To calculate a metric, the FDCs of both the modelled and

observed time series are derived and the residuals are calculated for each

of the flow values that corresponds to an evaluation point. When focusing

on low flow values (LowFlow), the range is 30-100%, whereas for high flow

values (HighFlow), the range is 0-70%.

NSE-FDClow = w1

∑N
i=1(ŷi − yi)

2∑N
i=1(ȳi − yi)2

+ w2

∑M
l=1(ÊPl − EPl)

2∑N
l=1(ĒPl − EPl)2

(6.6)

with M the amount of evaluation points (EP) chosen on the FDC in between

the 30% and 100% quantiles. The calculation of the NSE-FDChigh only differs

in the chosen evaluation points on the FDC. w1 and w2 are the weights that can

be attributed to each of the terms with a default value of 1. In total, 5 different

performance metrics are defined, i.e. NSE, LowFlow, HighFlow, NSE-FDClow and

NSE-FDChigh.

To illustrate the alternative focus of the LowFlow, HighFlow and NSE metrics, a

scatter diagram of the calculated metric values for a set of simulations resulting

from a randomly drawn set of parameters is shown in Figure 6.13. In this figure, the

NSE is adapted to make sure lower values are representing a higher performance (1-

NSE of only the strict positive values) to make all the evaluation criteria similar in

interpretation. Clear correlations of the clouds would have revealed redundancy

of the different performance functions. Hence, the drafted LowFlow, HighFlow

and the NSE criteria are focusing on different aspects of the hydrograph. The

importance of providing performance criteria with strong discriminatory power is

addressed by Kavetski et al. (2011) and Gupta et al. (1998). The Transformed
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Root Mean Square Error (TRMSE) (Wagener et al., 2009) is also included in the

figure. Low flow observations are higher weighted in the TRMSE evaluation, so

having a similar focus as the LowFlow metric defined earlier. The similar focus is

represented in the graph by the high correlation between the FDC-based LowFlow

metric and the TRMSE. A trade-off between low and high flow criteria support the

idea that the performance metrics are able to discriminate through their specific

characteristics.

TRMSE
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Figure 6.13: Example performance criteria scatter plots showing the cor-

relation and the trade-off between the LowFlow, HighFlow and NSE per-

formance metrics (lower values represent a better fit for all criteria). Each

subplot represents the scatter plot between two of the evaluation criteria

used (TRMSE is added to check the similarity with the FDC LowFlow

criterion) for the simulations.

6.5 Conclusion

The elements introduced in this chapter are the building blocks for the remainder

of this part of the dissertation, in which the implemented flexibility of the VHM

approach is investigated and evaluated. The chosen model decision to assess are

constructed and the performance metrics to support either low flow or high flow

as research objective are defined.

The structures that are part of the ensemble resulting from these four model

structure decisions are considered to be equivalent representations of the system

and will be evaluated in chapter 7 and chapter 8 by using the defined performance

metrics.
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In chapter 7, the focus is on the performance of the individual model structures

that are part of the ensemble and the ability to distinguish the model structure

based in terms of model performance. In chapter 8, the shift in the sensitivity of

the parameters when introducing model alternatives is used to derive information

about the model structure behaviour and the suitability of the individual model

decisions.





CHAPTER 7
Ensemble evaluation of lumped

hydrological model structures

Redrafted from

Van Hoey, S., Vansteenkiste, T., Pereira, F., Nopens, I., Seuntjens, P., Willems, P., and Mostaert,

F. (2012). Effect of climate change on the hydrological regime of navigable water courses in

Belgium: Subreport 4 Flexible model structures and ensemble evaluation. Technical report,

Waterbouwkundig Laboratorium, Antwerpen, België

7.1 Introduction

In this chapter, it is questioned whether the provided set of model structures within

the ensemble created in the previous chapter can be distinguished using the defined

set of performance metrics and based on an optimization approach. Furthermore,

the lack of parameter identifiability and the dependence of the resulting calibrated

parameter set on the decided performance metric is illustrated.

First, the effect of the used performance metric on the resulting calibrated pa-

rameter set is tested by calibrating a single model structure towards different

performance metrics. Subsequently, the optimization is used to calibrate the 24

different versions of the VHM model structure defined in the previous chapter

and compare the performance of the individual structures. The aim is to check

if specific model decisions lead to better performance and can be distinguished as

such.
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MODEL CALIBRATION

7.2 Effect of performance metric on
model calibration

To compare the parameter sets resulting from model calibration performed

with different performance metrics, the VHM structure configuration used

in Vansteenkiste et al. (2011) was selected, i.e. the exp i a no (see Figure 6.11

for the component option labels). The structure has a non-linear storage compo-

nent, both interflow and antecedent rain included, but no extra routing complex-

ity.

The purpose is to find the optimal parameter sets when using the selected per-

formance metrics. Hence, this is an optimization problem for which the SCE-UA

optimization method will be used. SCE-UA was introduced in chapter 3 and is

available as Python Module 3. It is a global optimization algorithm proven to

be effective and efficient in locating the globally optimal model parameters of a

hydrologic model (Duan et al., 1992). Using the same model structure as the one

used in Vansteenkiste et al. (2011) provides the possibility to compare the result-

ing parameter sets with the manual calibration results derived in that study. To

do so, the same split sample approach and corresponding periods were used as

in Vansteenkiste et al. (2011), i.e. the dataset starting from August 2002 until

the end of 2005 for calibration, covering a wide range of climatic and hydrological

conditions.

The performance metrics provided in chapter 6 are separately used as single crite-

rion to calibrate the model. So, in total, the automated optimization is performed

using five different performance metrics (NSE, LowFlow, HighFlow, NSE-FDClow

and NSE-FDChigh), resulting in five separate optimization problems.

In Tables 7.1 and 7.2 the performance metrics that were used in Vansteenkiste

et al. (2011) to evaluate the hydrological model simulations, are used to compare

the results of the different optimizations in terms of general performance as defined

by other metrics. Vansteenkiste et al. (2011) expressed the performance by the

coefficient of determination (R2), the mean absolute error (MAE) and the root

mean squared error (RMSE) (for which a description was given in section 3.4).

The equivalence of the metrics using the NSE and the minor overall performance

of the LowFlow and HighFlow metrics is noticed (lower NSE and R2, higher MAE

and RMSE). However, the relative decrease in performance in between the calibra-

tion and validation set is less prevalent for the LowFlow and HighFlow metrics,

indicating their robustness and the potential exaggeration in the fitting of the

other metrics.
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The validation is done to evaluate the usefulness and predictive power of the

optimized parameter combinations outside the calibration period. A comparison

of the observed and modelled discharges over the 3-year calibration period and

subsequent 3-year validation period downstream the catchment for respectively

NSE, HighFlow and LowFlow is shown in Figure 7.1.

Figure 7.1: Observed (green) and simulated (blue) runoff discharges down-

stream the catchment based on the automated calibration for both the

calibration (left) and validation (right) period. The first line shows the best

performing simulation using the NSE performance metric, the second line

the best performing simulation using the HighFlow performance metric and

the third line using the LowFlow performance metric.

Figure 7.1 demonstrates that the runoff predictions for each of the models depends

on the performance metric used during calibration. This is quantified by the

performance metrics presented in Tables 7.1 and 7.2. From Figure 7.1 it can be seen

that the use of the FDC-derived performance metrics (LowFlow and HighFlow)

results in model realisations that are less suitable to grasp the overall dynamics

of the streamflow. Especially the LowFlow metric is underestimating the peaks

and overestimating the recession periods from January to June, which translates

to lower NSE and R2 values and a higher mean absolute error (MAE).
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Table 7.1: Performance values for the calibration period (2003-2005) af-

ter calibration with regard to different metrics: Nash-Sutcliffe coefficient

(NSE), the regression coefficient (R2), mean absolute error (MAE) and the

root mean squared error (RMSE)

NSE LowFlow HighFlow NSE-FDClow NSE-FDChigh

NSE 0.85 0.57 0.75 0.85 0.84

R2 0.92 0.76 0.88 0.92 0.92

MAE 0.57 0.94 0.7 0.57 0.58

RMSE 0.8 1.35 1.03 0.81 0.82

Table 7.2: Performance values for the validation period (2006-2008) af-

ter calibration with regard to different metrics: Nash-Sutcliffe coefficient

(NSE), the regression coefficient (R2), mean absolute error (MAE) and the

root mean squared error (RMSE)

NSE LowFlow HighFlow NSE-FDClow NSE-FDChigh

NSE 0.7 0.51 0.61 0.69 0.67

R2 0.88 0.71 0.81 0.88 0.87

MAE 0.62 0.8 0.71 0.62 0.64

RMSE 0.79 1.02 0.91 0.81 0.84

Similar conclusions can be drawn when the HighFlow metric is used. Still, the

use of these criteria could be of particular interest when the observed data is

very scarce or uncertain, because the seasonal variation is still captured and their

application is not dependent on a time step based comparison. Moreover, using

time step based performance criteria could induce errors due to overfitting to-

wards uncertain observations. However, for further analysis an improved general

agreement is intended. So, the LowFlow and HighFlow metrics are left out and

the combined criteria NSE-FDClow and NSE-FDChigh are used to evaluate the

model results.

The performance metrics obtained from calibrations based on NSE only or its

combined use (NSE-FDClow and NSE-FDChigh) are very similar. By imposing

different weights to both parts of the combined criteria, more differentiation among

the results can be obtained. Nevertheless, when comparing the resulting optimal

parameter sets (Table 7.3), it can be seen that the similar performance stems

from quite different parameter combinations. This indicates the problem of ill-

identified parameters and confirms the identifiability issue, stating that different
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parameter combinations can result in very similar model performance. At the same

time, it indicates that optimizing towards these criteria alone is not sufficient

to differentiate and identify the suitable parameter sets. A combined objective

method leads to a more balanced model with respect to the calibration method

used.

To study the model performance in more detail, Figure 7.2 shows the hydro-

logical responses of the models with respect to the observed discharges and the

results from the manual calibration performed by Vansteenkiste et al. (2011) for

respectively three winter periods (winter 2003-2004, winter 2004-2005 and winter

2006-2007) and three summer periods (summer 2003, summer 2004 and summer

2006). The results of the NSE-FDChigh metric is shown for the summer period

and the NSE-FDClow for the winter months, since emphasis lies respectively on

high flows in summer and low flows in winter.

Figure 7.2: Observed, simulated by automated optimization and simulated

by manual calibration of runoff discharges for winter events (left) and sum-

mer events (right) downstream the catchment based on the combined per-

formance criteria. Selected winter and summer periods of the top two rows

are within the calibration period (2003-2005) and of the last row within the

validation period (2006-2008).
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Table 7.3: Comparison of VHM calibrated parameters using the perfor-

mance metrics NSE, NSE-FDClow and NSE-FDChigh. Notice that only a

subset of the parameters presented in Table 6.1 is presented here, since it

concerns only one structural option.

Parameters NSE NSE - FDClow NSE - FDChigh Manual cal

umax 200 346 418 220

uevap 123 140 148 90

s1 2.1 2.19 1.93 1.97

s2 0.56 0.84 1.2 0.99

s3 0.65 0.60 1.2 1.7

o1 -3.97 -4.25 -3.84 -4.2

o2 1.82 3.25 3.62 2.5

i1 -3.23 -3.17 -3.49 -4.1

i2 2.03 3.34 4.58 2.8

Kg1 2487 2500 2500 2100

Ki 150 150 150 120

Ko1 17 22 10 17

Ko2 41 30 78 17

As can be seen from Figure 7.2, the general evolution of the observed winter

hydrographs is in good agreement with the simulated ones and in general very

comparable with the results from the manual calibration. The recession limb of

the simulated hydrographs matches the recession limb of the observed hydrographs,

with more accuracy at the end of the winter by the automated calibration. Peak

discharges seem to be well simulated by all models during the winter events. For

the winters of 2003-2004 and 2004-2005 underestimations of the base flow are

observed at the beginning of the winter periods, both by the automated and the

manual calibrated models. Also during the validation period, as shown for the

winter 2007-2008, the results are comparable.

For the summer discharges, more differences can be observed between the results

coming from the automated and the manual calibration. The results from the

automated calibration capture the recession limbs relatively better in the summers

of 2004 and 2005, but overestimate the flows in 2006 (validation).

From the detailed graphical inspection of the discharges during some summers

and winters it can be stated that the hydrographs simulated based on both ca-

libration strategies show a satisfactory agreement with observed ones for winter

as well as for summer periods. Both reproduce the small summer events as well
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as complex-shape and long-lasting outflow regimes during and after winter events

with acceptable matching capabilities.

It can be concluded that the chosen performance metric has a direct effect on

the resulting optimal model realisation. The optimal realisation can be derived

by optimizing a predefined metric or based on expert knowledge with a man-

ual calibration. The results of the automated calibration procedure demonstrate

the potential of applying automated calibration strategies as complementary pro-

cedure besides manual calibration. The validation results in Table 7.2 show that

automatically derived parameter sets are also capable to reproduce the hydrograph

outside the calibrated domain and that they are comparable to the validation re-

sults shown in Vansteenkiste et al. (2011). Accounting for the fact that these

different regions in the parameter space are capable of reproducing the observed

hydrographs, indicates the needed awareness for identifiability problems caused by

overparameterization.

The time required to perform a manual calibration together with the inherent

subjectivity hinder the reproducibility of a manual execution. Automatic calibra-

tion can be automated, reproduced and improved based on objective statements,

making it a more robust scientific approach. Still, when using an automatic ca-

libration, the choice of the parameter space should be well considered. Ranges

should represent interpretable boundaries as much as possible. To combine the

information from more performance metrics in the optimization of the model, the

usage of a multi-objective calibration strategy could be chosen, searching for the

optimal Pareto front instead of looking for one optimal combination (cfr. sec-

tion 3.4.4).

7.3 Ensemble model calibration

In order to assess the relationship between the different model structures and

different performance criteria, an optimization of the 24 rival model structures

is performed to find the best performing parameter sets for each. Since manual

calibration would be too time consuming and considering the subjectivity, the

automated calibration procedure of the previous section was applied for each of

the 24 rival models constructed in section 6.3.3.

Each model is calibrated for the NSE, NSE-FDClow and the NSE-FDChigh metrics

separately over the calibration period with an initialisation period of 7 months to

ensure that the results are independent of the initial conditions of the different

reservoirs used. The model results of the warming-up period are ignored in the
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computation of the different performance metrics. A maximum of 15000 model

evaluations for each optimization was selected to limit the computational time,

but convergence of the parameters was verified graphically when this limit was

exceeded. The iteration towards convergence and the final converged values of

the parameter sets are different between model structures, due to the different

parameter interactions.

The aim of the comparison between model structures is to investigate how distinc-

tive these performance criteria are towards the differentiation of the rival model

structures and to evaluate the differences in parameterization obtained for the

different model structures. To fully evaluate this effect, ranges of the parameter

bounds were taken the same for all optimizations and similar for all model struc-

tures, provided in Table 6.1. Furthermore, the flow routing parameters are also

calibrated, although it would be possible to derive these from the subflow filtering.

By doing so, the discharge observation itself is the only used source of data.

Figure 7.3 shows the optimal values for the common parameters (i.e. parameters

present in all model structures) for two different performance criteria for all 24

model structures. The parameter values are normalised based on the possible ini-

tial range given to the different parameters. As can be observed, most parameters

vary in the entire range depending both on the performance criterion used as well

as on the model structure.

It is noteworthy that all common parameters are included in all of the 24 model

structures and representing similar ‘physical’ catchment properties in the differ-

ent structures, except for the Ko value, which physical interpretation depends on

the presence of an inter flow component in the model. Parameters coming from

the linear and non-linear soil moisture storage component are expected to be dif-

ferent because of the different equations they are in, but based on the common

conceptualization in the relation between water uptake and soil water content,

both are considered in the analysis. As the task (conceptual representation) of

these parameters is the same in the different model structures of the ensemble

when optimized to a given performance metric, a similar value would be expected.

However, the variation of the parameters amongst the individual model structures

is striking. The different model structure combinations end up with alternative

parameter combinations in order to optimize the performance criterion, driven by

the optimisation algorithm.

The dependency on the performance metric has been reported earlier by Gupta

et al. (1998) and Boyle et al. (2000), observing a similar effect when optimizing a

single model structure on different time periods of the hydrograph.
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Figure 7.3: Overview of the derived optimal parameter values for the com-

mon parameters. The parameter sets of the 24 structures after optimizing

towards the NSE-FDChigh(full line) and NSE-FDClow (dashed line) crite-

rion are normalized towards their initially selected boundaries.

Differences in the resulting parameter values in a set of model structures when

optimized to a common metric has less attention in the literature, partly due to

the lack of flexible modelling environments available to do so (cfr. section 2.4.4).

Similar studies focusing on model structures with common components and pa-

rameters such as Bai et al. (2009), Lee et al. (2005) and Clark et al. (2008) restrict

their evaluation on the calculated performance metrics. Vaché and McDonnell

(2006) compared the optimal parameter values of 4 model structures with com-

mon components. The resulting optimal parameter values were comparable for

the most simple model structures with 3 or 4 parameters. However, similar to the

results here, more complex model structures (in terms of number of parameters)

resulted in less identifiable parameter values and more differences in the resulting

optimal values.

Looking to specific events in Figure 7.4, it can be concluded that most of the time

the ensemble is capturing the variations, but the models in this ensemble have a

very similar representation. Hence, all of them are overestimating or underesti-

mating the flow dynamics simultaneously and the effect of the individual model

structure decisions is not resulting in distinct behaviour after the optimization

towards a common performance metric. In other words, the structures are too

interdependent to really represent completely different situations.

Confronting the similarity of the model output with Figure 7.3 leads to the conclu-

sion that a high variety of parameter combinations realize a very similar behaviour

amongst the individual members of the ensemble. Moreover, the manual calibra-

tion of structure exp i a no, added to Figure 7.4, is more distinct then the members

of the model structures. Hence, the degrees of freedom (parameters) of the model
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(a) Winter of 2004 (b) Summer of 2004

(c) Winter of 2005 (d) Summer of 2005

Figure 7.4: Resulting predicted flow downstream the catchment of the op-

timal model realisations for the winter (left) and summer (right) of two

consecutive years of the calibration period. The results of the ensemble of

24 model structures after optimization are added as black lines. The opti-

mal realisation of the manual calibration of structure exp i a no (red) line is

more distinct as the realisations by the individual members of the ensemble.

structures are more dominant to change the model behaviour as the model struc-

ture variations. This indicates a lack of identifiability of the model structure itself,

which hampers the identification of better model structural decisions. Hence, tak-

ing into account more differentiation in the model structural hypotheses and the

identifiability of the individual model structures is crucial to be able to identify

the suitable model structural options based on optimization.

Since, based on the analysis, no specific model structure outperforms the other

structures it could be questioned how to use these results. One possibility is to

combine the output of the different structures. The most straightforward approach

is to take the mean of the individual structures assuming they are equally reliable,

but more elaborated methods for multi model ensemble analysis exist and could

be applied, e.g. Bayesian Model Averaging (BMA) (Vrugt and Robinson, 2007)

or probabilistic analysis of the individual structures towards specific signatures

(Georgakakos et al., 2004). These methods are out of scope for this dissertation,

but they provide a working solution for ensembles of models.

Taking into account the mean of the ensemble, as said a rather conservative work-

ing solution, the performance can be evaluated using the known performance met-
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rics. Looking at Table 7.4, the performance metrics of the ensemble average is com-

parable to the measures obtained by the manual and automated calibration.

Table 7.4: Performance values for the calibration period (2003-2005) when

using the mean of the ensemble of 24 structures

Mean of ensemble performance on calibration period

NSE 0.86

R2 0.93

MAE 0.56

RMSE 0.77

7.4 Conclusions

In this chapter, the evaluation of the model structure decisions defined in chapter 6

is attempted by optimizing the ensemble of model structures. The aim is to identify

which model decision can outperform the others.

In the first part of this chapter the relationship between the used performance

metric and the calibrated parameter values for one specific model structure is

tested. Based on a set of performance metrics with a specific focus on low and

high flow, optimal parameters were derived for each and the outcome of the auto-

matic calibration was found comparable to the manual calibration (Vansteenkiste

et al., 2011), in terms of performance as well as for modelling specific summer and

winter events. However, different parameterizations are obtained when optimizing

towards different performance criteria (NSE and separate criteria focusing on high

and low flows), indicating a lack of identifiability of the model structure. These

results are in line with the work presented by other authors when evaluating a

single model structure (Gupta et al., 1998; Beven, 2008b).

This confirms that using this type of (non identifiable) lumped hydrological model

structures, which is common practice in both operational and scientific applica-

tion, the decision of the performance metric should be in direct correspondence

with the model purpose. The direct relation with the performance metric means

that the model is only valid for the specific purpose inherited in the constructed

performance metric. This limits the predictive applicability of the model and this

limitation should be clearly communicated.
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In the second part, the optimization is extended to the ensemble of model struc-

tures defined in chapter 6 and based on 4 model decisions. In contrast to the

evaluation of a single model structure, an evaluation of the model parameters

that are shared by an ensemble of model structures is rather exceptional in liter-

ature.

For the model ensemble and the optimization applied in this study, it could be

concluded that the performance of the individual model structures in the ensemble

is comparable. For the defined VHM alternatives, no model structure outperforms

the other model structures and the representation is highly similar. The conceptual

differences provided by the alternative model decisions could not be distinguished

in the optimal realisations of model structures.

Furthermore, the contributing parameter values have a striking variation amongst

the model structures, nevertheless their common function in the model structure.

The conceptual function of the common model parameters within the ensemble is

expected to be the same when optimized to the same performance metric. Appar-

ently, the degrees of freedom (parameters) of the individual structures are more

decisive than the structural differences in order to differentiate them from each

other. This is probably due to parameter interactions leading to multiple combi-

nations that are able to provide a similar performance, i.e. a lack of parameter

identifiability.

In summary, the results of this chapter indicate the lack of identifiability (each

individual) and a lack of differentiation (comparing them) amongst the different

structures of the used ensemble. These results are based for the defined set of

model alternatives of VHM and further studies are needed in order to generalize

these statements.

Further analysis would also benefit from more distinctive model structural hy-

potheses. At the same time, when aiming for a process-based model structural

comparison, where systematically single components are interchanged and com-

pared, a limited ability to distinguish model structures is expected. Hence, the

impossibility to distinguish will probably hamper a optimization based strategy.

The latter is the starting point for the next chapter, where a new model structural

comparison technique is developed focusing on the comparison of model structures

with a major number of corresponding components but without being dependent

on the model performance itself.
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structure sensitivity analysis method to support model selection. Journal of Hydrology, 519:3426–

3435

8.1 Introduction

A flexible approach of model construction, as it was implemented for the VHM

model in chapter 6, enables an increased ability to compare and test different

model structures, each representing a different set of assumptions. In the previous

chapter 7, each of the model structures was calibrated for both low and high

flow performance metrics. The result confirms the lack of identifiability in the

parameter sets as well as the dependency of the retrieved optimal parameter values

on the used performance metric (Gupta et al., 1998). However, the identifiability

problem is not tackled by the optimization itself. Moreover, due to the high

similarity of the different model structures, optimization towards the used model

structures is not sufficient to distinguish them. The latter makes it insufficient to

guide us in the model identification process.

In this chapter, instead of comparing the different model structures with respect

to their performance, sensitivity analysis is used to guide the model selection
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within the set of model structures. Assessing parameter sensitivity is used regu-

larly to identify non-influential model parameters towards a chosen (aggregated)

model output. We explore the applicability of using a sensitivity analysis on model

structures rather than model parameters. In chapter 3 different methods for global

sensitivity analysis were presented and implemented. In analogy with parameter

sensitivity analysis, evaluating the effect of certain model structure components

could reveal the added value of the component towards specific performance met-

rics and as such, assist in model selection.

To do so, we have to assume that the effect of a model component can be evaluated

based on the change in parameter influences. In short, a change in a specific com-

ponent results in changing parameter influences towards the performance metric,

the adaptation leading to this change in sensitivity is considered to give the model

configuration added value (i.e. predictive performance). This chapter introduces

a component-sensitivity concept in a qualitative (graph-based) manner.

The component-based sensitivity analysis is first introduced and the results are

discussed in this chapter. The methodology is presented for the set of model

variations of the VHM structures implemented in chapter 6. By comparing the

effect of changes in model structure for different model objectives, model selection

can be better evaluated.

8.2 Extending parameter sensitivity towards
model component based sensitivity analysis

The presented methodology is a direct extension of the Morris screening approach

from chapter 3, applied on multiple model structures with partly similar compo-

nents. The following steps need to be taken:

1. Decide about model parameter distribution for all parameters of all model

components taken into account :

As in all global sensitivity analysis methods, the distribution of all the pa-

rameter values needs to be chosen in order to evaluate the effect of the pa-

rameters for different parameter sets. As clarified in section 3.5, it basically

comes down to sampling uniform in the [0− 1] range and using a proper in-

verse CDF fucntion. Similar to other sensitivity methodologies, the decided

parameter ranges will influence the results and must be chosen carefully.
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2. Perform Morris screening for each model structure:

� Derive the optimal parameter trajectories, according to Campolongo

et al. (2007)

� Run the model r(k + 1) times for each parameter set of the different

trajectories, with r the number of optimal trajectories and k the number

of parameters

� Calculate the µ∗ value for each objective function or output variable

considered

3. Visualize the change of parameter influence for each model decision:

� Split the set of µ∗ values in 2 groups, according to the two different

model structure variations

� Make a scatter plot of the µ∗ values and add the 1:1 line (bisector) to

create the evaluation chart (Figure 8.1)

As such, the structural alternative of the OAT method is derived. Every plot

compares the outputs of the variation in one specific model component, while

other components are in both cases equal. In other words, the deviation from

the 1:1 line is due to the change of that component. However, different deviations

(i.e. changing the same component starting from different model setups) are plotted

together to check for recurrent sensitivity effects caused by the difference in the

specific model component. This is similar to an OAT approach, where the effect of

a parameter is evaluated by combining the output from different runs, each with

a different initial starting point in the parameter space.

The obtained evaluation chart, as shown in Figure 8.1, can be interpreted based on

two criteria: (d1) The distance from the origin relates to the relative importance of

the parameter and (d2) the perpendicular distance from the bisector indicates the

parameter influence deviation introduced by the model adaptation. To assist in

the interpretation of these type of figures, 4 different zones are indicated, termed

X1 to X4:

� type X1: Parameters used in one model option and not in the other appear

with their influence on the x- or y-axis. The distance to the origin is related

to the influence of the parameters. High values mean that these parameters

have a major influence on the output variable and as such, influence the

output variable considerably.

� type X2: Parameters present in both model options, but with no major

change in parameter influence. This means the change in model compo-
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OPTION 1
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T
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Figure 8.1: Illustration of the model structure sensitivity evaluation chart,

defining the four different zones that characterise the parameter influence

X1 to X4 and the two major criteria d1 and d2 are defined. Mainly pa-

rameters corresponding to zone X3 do indicate impact on the structural

sensitivity.

nent has no influence on the way the parameter influences the output vari-

able (probably coming from another component). Mainly for larger µ∗ val-

ues, these parameters indicate large influence and no interaction with either

model options (conditions for identifiable parameters).

� type X3: The combination of a large bisector deviation and a large µ∗ value

(dark gray) is typical for parameters mainly influenced by the model option.

If the parameter belongs to both model components, the option with the

highest µ∗ leads to increased influences towards the output. For parameters

not belonging to the model option components, the degree of parameter

interaction is related to a shift in the influence of that parameter.

� type X4: Low µ∗ values in both model options are related to non-influencing

parameters towards the (performance) metric considered, suggesting poten-

tial overparameterization and room for model reduction.
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The method assumes that the shift in parameter influence indicates the effect of

the model component it represents. However, parameter interactions are present

in most models and parameters are affecting other components behaviour. In

the evaluation chart, this effect is visualised by parameter shifts along the x or

y axis of parameters not included in one of the two model options. As such, the

methodology uses an implicit way of evaluating parameter interactions for those

parameters.

The assumption that the parameters are representative for the behaviour of the

model component they are part of, is used for their representation in the evaluation

chart. All parameters are given a component identifier, based on the equation

that the parameter is part and the model structure component that the equation

is part of. Five model components are identified for the model structures of the

VHM model: (1) the storage component, S, which refers to the linear or non-

linear storage component; (2) evapotranspiration, E, which is the same for all

model structures in the ensemble, i.e. linear relationship with the model storage;

(3) overland flow component, O; (4) interflow component, I and (5) the baseflow

component, B. These identifiers are also added as a column in Table 6.1 and plotted

as such in the evaluation graph (see further).

8.3 Results

8.3.1 Parametric sensitivity analysis

The proposed methodology includes the execution of a Morris screening for each

model structure. For each of the applications, a subset of 20 trajectories was se-

lected out of an initial sample of 500 trajectories, maximizing the distance between

the pair of trajectories (Campolongo et al., 2007; Saltelli et al., 2008). Further-

more, a visual control of the histograms was done to ensure the frequency of the

different levels was comparable. A uniform distribution for all parameters was

assumed and discretized in p = 4 levels as suggested by Morris (1991), the ranges

of sampling are given in Table 6.1.

The sensitivities based on the Morris screening are shown in Figure 8.2 for one

specific model structure, i.e. the exp ia no (see Figure 6.11 for the component

option labels), estimated for the performance metrics NSE, NSE-FDClow and

NSE-FDChigh. The structure has a non-linear storage, both interflow and an-

tecedent rain included, but no extra routing complexity. For every parameter,
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sensitivity indicators µ∗, µ and σ are computed and the combination yields infor-

mation on the relative importance of the parameters and the amount of interaction

between different parameters. Background on how these sensitivity indices can be

interpreted is given in section 5.3.

Figure 8.2 indicates a different parameter sensitivity behaviour when using differ-

ent metrics. Similar absolute values for both µ∗ (mean of the absolute values of

the EEs) and µ (mean of the EEs) in combination with an opposite sign as in Fig-

ure 8.2b and Figure 8.2c for parameter Ko1 means that the parameter inversely

influences the chosen metric. In other words, smaller values for parameter Ko1

will increase the performance metric (improved performance). This corresponds

to the result of the optimized parameter set in Table 7.3, where Ko1 is 22 and 10

when using respectively the NSE-FDClow and NSE-FDChigh metric. The defined

range for Ko1 is 10 till 120 (Table 6.1). When µ is low and µ∗ high, the parameter

has a large effect on the chosen metric. However, the high σ values are a clear

indication of the interdependence between the parameters, making it difficult to

directly link parameter influence on the chosen metric. The main reason for the

interaction is the translation of the conceptual model (all flows are fractions of

the incoming rainfall) to the mathematical model. When fractions are calculated

for a single time step, the sum of individually calculated fractions can be larger

than 1. Hence, the fractions need to be rescaled before the corresponding flux is

calculated in order to keep conservation of mass.

The relative differences in the parameter influences towards varying performance

metrics are caused by either their influence towards the different aspects of the

hydrograph or a change in interactions between the parameters towards these

performance metrics. For all three criteria tested, the soil storage parameter s1 is

of major importance. When focusing on NSE or specifically on low flow, the inter

flow parameters i1, i2 and Ki have increased influence indicating the importance

of the inter flow compartment to allow describing the low flow variability. When

focusing only on high flows, the variability in the peak flows is mainly explained by

the storage parameter s1 and the routing of the overland compartment Ko1.

8.3.2 Component sensitivity analysis

The evaluation graphs of all model combinations are shown in Figures 8.3, 8.4

and 8.5 for the NSE, NSE-FDClow and NSE-FDChigh, respectively as introduced

in section 6.4.
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Figure 8.2: Morris sensitivity screening method evaluation of the structure

with non-linear storage component, interflow and excess infiltration (exp ia

no) for the three different objectives: NSE (a), NSE-FDClow (b) and NSE-

FDChigh (c). Three indices are plotted for each parameter: µ∗ in dark grey,

µ in black and σ in light grey.

The values are the µ∗ values, giving information about the relative importance of

the parameters as it represents a good proxy for the total variance. The labels of

the parameters are given the first character of the component they belong to, as

shown in Table 6.1. This enables to quickly see which components are contribut-

ing the most towards the variation in the output and how these sensitivities are

changing when adapting the model structure.

Each graph consists of a number of points equal to the number of parameters k

multiplied with the number of compared model structures. The latter is equal to 12

in the case of a the linear storage, inter flow and infiltration excess structural deci-

sion (1 on 1). In the case of the routing decision, the added complexity is combined

in a single plot, resulting in twice the comparisons between 8 structures.

Since the Elementary Effects provide qualitative information, only the relative

values of the µ∗ are interpretable and the differences in absolute values among

the figures are irrelevant to compare. The adaptation of the font-size is mainly to

improve readability of the component labels.

When using the NSE, shown in Figure 8.3, the parameters of the storage compo-

nent (S) present in the non-linear storage component are most influential to the

NSE performance metric. When changing the storage component from a non-linear

to a linear component, these highly influential parameters are no longer included

in the model (type X1). However, this model structure change gives rise to an

increased influence of mainly the overland flow parameters (type X3). In other
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Figure 8.3: Effect of the selected model structure on the sensitivity of

the NSE efficiency. Each subplot compares the variation of one structural

component while keeping the other components fixed. The characters are

the µ∗ value, representing the model component the parameter belongs

to (O = Overland flow, S=Soil storage, I=Interflow, B=Baseflow and E=

Evaporation parameters).

words, the hydrograph is mainly fitted by the overland parameters in the linear

case, whereas in the non-linear case they are fitted by these non-linear storage

parameters. Considering the fact that the linear model has less degrees of free-

dom (parameters) and an increased sensitivity, the non-linear parameterization

potentially leads to overfitting.

In general, inter flow parameters are not very influential to the NSE metric, as

evidenced by the low µ∗ values. Excluding the inter flow component results in

a slightly higher influence of the overland and storage parameters, but the effect

is less pronounced compared to the case including the storage component (type

X2). The inter flow component could potentially be excluded as a model reduction

step. Adding complexity with an excess infiltration component gives comparable

results and excluding the extra routing reservoirs results in a major increase of

the influence of the included model parameters (type X3), suggesting the model
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Figure 8.4: Effect of the selected model structure on the sensitivity of the

high flow criterion. Each subplot compares the variation of one structural

component while keeping the other components fixed. The letters are the

µ∗ value, representing the model component the parameter belongs to (O

= Overland flow, S=Soil storage, I=Interflow, B=Baseflow and E= Evapo-

ration parameters).

can be simplified to reproduce the hydrograph based on the NSE performance

metric.

Adding a routing component affects also the influence of non-routing parameters,

visualising the effect of parameter interactions in the model. Furthermore, base

flow and evapotranspiration parameters are in general not very influential towards

the NSE performance metric.

Focusing only on high flow, as in Figure 8.4, gives very similar effects, but the dom-

inant effect of the storage parameters is less apparent compared to the NSE case.

Again, a shift from influential overland flow parameters towards storage parame-

ters when going from a linear to a non-linear component is visible. Interestingly,

the non-linear storage parameters of Figure 8.3 are yet not very influential (low

values of type X1). Instead, the shift occurs in the common storage parameters.

As such, the selection of the linear or non-linear component is a decision between
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Figure 8.5: Effect of the selected model structure on the sensitivity of the

low flow criterion. Each subplot compares the variation of one structural

component while keeping the other components fixed. The letters are the

µ∗ value, representing the model component the parameter belongs to (O

= Overland flow, S=Soil storage, I=Interflow, B=Baseflow and E= Evapo-

ration parameters).

giving the influence to the storage parameters (changing internal catchment state)

or the overland parameters (changing lag times). Since in general, the aim is to

find parsimonious model structures with identifiable parameters, an increased in-

fluence of the model component itself is preferred. As such, the non-linear case is

recommended in this case. Again, the addition of extra routing reservoirs is only

decreasing the influence of the parameters of both overland and storage.

The similar observed effects of the sensitivity shifts between Figures 8.3 and 8.4

can be explained by the focus both metrics are giving to high flow periods. This

proves at the same time the stability of the sensitivity measures, indicating that

sufficient sample trajectories have been used.

The influence of the parameters towards the low flow criterion is given in Figure

8.5. The storage and overland flow parameters are dominating the variation in the
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output. Concerning the soil storage component, a similar behaviour as the high

flow objective function is observed, with parameters of type X3.

The major difference with the previous objective functions is the shifts for both

inter flow and excess infiltration. The addition or removal of the inter flow com-

ponent has a much larger effect on the influence of the different parameters for the

low flow oriented metric compared to the other metrics. This confirms the relation

between model structure properties and performance criteria used. Although one

could expect the incorporation of an inter flow component would result in high

sensitivities for this low flow criterion, it is not the case. The large shift in sensiti-

vity between both options (type X3) does confirm the relative importance of the

model component, the more simplified model (no inter flow component) results in

more influential parameters for overland and storage parameters probably due to

parameter interactions.

For excess infiltration, adding extra complexity does result in higher influence

for the parameters. This could potentially be linked with the effect of a sudden

rain event during a dry period. The excess infiltration adds the possibility of

generating overland flow, giving the model a quick response time. Without this

component, the soil storage needs to be filled before runoff takes place. Further

performance checks during different phases of the hydrograph could confirm or

reject this hypothesis. Evaluating the model performance during selected storm

events characterised by intense rainfall intensities after a dry period would be a

good starting point to do so.

8.4 Discussion

Based on the presented application of the component sensitivity analysis method-

ology on the used flexible model structure under study, several suggestions can

be made with regard to model selection: (1) A non-linear storage component is

recommended, since it ensures more influential (identifiable) parameters for this

component and less parameter interaction; (2) Interflow is mainly important for

the low flow criteria; (3) Excess infiltration process is most influencing when fo-

cussing on the lower flows; (4) A more simple routing component is advisable; (5)

Baseflow parameters have in general low influence, except for the low flow criteria.

Furthermore, based on the comparison of the used objective functions, it can be

stated that a more simple model is able to reproduce the hydrograph when the

focus is on high flows. When the goal is to take into account the low flows as well,

a more elaborate model description is required.
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These advices can be derived for the used case study without executing any model

optimization algorithm, but merely by screening the parameter space with a global

sensitivity analysis. The methodology depends on a set of Morris screening out-

puts. The results are brought together in an evaluation chart giving a qualitative

assessment of the model structure decisions. The number of model runs depends

on the selected set of trajectories (here 20 was used) and the number of parameters

in each model structure (between 8 and 16), giving a total of 180 and 340 runs for

each model.

However, some assumptions are taken when performing the analysis. It is assumed

that the shift in parameter influence is an indicator for model component impor-

tance. This is however limited to the specific aggregated or performance metric

used and cannot be extrapolated towards other metrics as the example analysis

has shown. Parameter dependencies are treated implicitly, when parameter shifts

(i.e. change in sensitivity of the parameter when switching the model option) are

occurring for parameters of components that are not in either of the two model

options. The sensitivity of these parameters (not part of any of the two model

options to compare) changes due to the interaction effects they have with other

parameters. That is the reason why the output of the σ values are not included

in the evaluation graphs.

The evaluation of the shift in sensitivity when changing model components gives

added value to a traditional sensitivity analysis of a single model structure, mainly

in comparing multiple model structural options in a flexible environment.

By comparing the differences in sensitivities between structures, those compo-

nents with the most potential for improvement can be identified. Hence, these

model components are characterized by parameters with low influence, meaning

that alternative configurations for these components may give rise to the largest

differences.

The dependence of the outcome of the method on the performance metric used,

confirms again the importance of selecting the appropriate metric in order to

converge to a suitable model structure. With the current availability of frameworks

for flexible model development, both in hydrology (Clark et al., 2008; Fenicia et al.,

2011) and other fields (Wesseling et al., 1996), methods for model evaluation and

comparison as the one presented in this chapter are essential to really benefit from

the flexibility in model building.
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8.5 Conclusions

The use of a flexible model structure provides a useful way of testing and com-

paring different model structure hypotheses but requires dedicated methods for

model selection and comparison. A straightforward method is presented to sup-

port this process of model evaluation when different rival models with overlapping

components are available.

The method directly builds on an existing global sensitivity analysis technique

(i.e. Morris screening). Applying it to multiple models simultaneously and bring-

ing together the information in a single evaluation chart, allows performing a

qualitative evaluation of the different model options tested based on the shifts in

sensitivity.

The used performance metric can be selected in function of the specific application

and is not limited to the ones presented in this chapter, making it fit with the

metric-oriented approach described earlier. As illustrated by the application on a

set of 24 model structures, the information extracted is useful for model selection

in relation to the used performance metric. The proposed evaluation method is

generic and can also be applied to models in other scientific fields than hydrological

modelling.





PART IV
DIAGNOSING STRUCTURAL

ERRORS IN LUMPED
HYDROLOGICAL MODELS





CHAPTER 9
Communicating lumped

hydrological model structures: a
Gujer matrix analog

9.1 Introduction

The focus of lumped hydrological models is to represent the dominant processes

of water within a catchment by representing the catchment as a set of connected

reservoirs, excluding spatial heterogeneity. These models are both used in oper-

ational settings (forecasting, integrated modelling) as well as a research tool to

understand and get more insight in the system functioning, since they provide de-

scriptions at a low computational cost (Clark and Kavetski, 2010; Wagener et al.,

2001b).

A wide range of model codes and alternative implementations are available to

develop lumped hydrological models, developed during several decades (for a his-

torical background of these reservoir type hydrological model structures, the reader

is referred to Beven (2012), p36). Some of them are highly popular and applied

frequently in literature, whereas the reasoning to select a specific model structure

is not always clear (apart from its availability reason) and the implementation

not always available. The abbreviations of some well-known models are com-

monly used terminology within the hydrological modelling community (BHV ,

SAC-SMA, PDM, NAM, HYMOD, GR4J, TOPMODEL, VIC. . . ), but some lim-

itations can be identified which are not in line with the requirements as defined in

section 2.5.2:
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� Flexibility is limited for these model structure definitions. The user

mostly has to choose the model as such or choose another model. How-

ever, the uniqueness of each model study could require a mixture of ex-

isting model concepts. The model structure sensitivity analysis approach

explained in chapter 8 would not be feasible on a wide range of model struc-

tures, since the possible adaptations of individual model process components

are restricted. To be able to test different process descriptions and change

processes one at a time, the model architecture needs to be flexible.

� The mathematical and computational model of these structures are

regularly not separable. The ability to define the mathematical and com-

putational model independently is defined as a central requirement in sec-

tion 2.5.2 to support model evaluation. Although the numerical solution is

recognized as a critical step in the model building process (Beven, 2001),

numerical time stepping schemes for hydrological models have received sur-

prisingly little attention in the hydrological modelling literature.

� The specified acronym cannot always be linked to one specific implementa-

tion of the model due to a lack of transparency of the source code.

This hampers the comparison of different model outputs as these differences

can originate from the model structure conceptualisation, but as well from

the implementation itself.

Recent research provides a more general description of lumped hydrological mod-

els, enabling the definition of different model conceptualizations within a generic

flexible framework (Clark et al., 2008; Fenicia et al., 2011; Kavetski and Fenicia,

2011). In practice, these flexible modelling environments actually boil down to the

definition of these models as a set of ODEs. Indeed, lumped hydrological reservoir

models do not differ from the general mathematical formulation of Equation 2.1

(section 2.2) and can be formulated as a set of ODEs by defining the appropriate

mass balances.

This chapter starts from the interpretation of lumped hydrological models as a

set of ODEs to overcome the limitations enlisted above. The aim is to propose a

way to easily communicate about lumped hydrological models independently from

the implementation (source code) itself while supporting maximal flexibility in the

chosen model structure configuration.

To accomplish this, a method to communicate about these lumped hydrological

model structures in a standardised way is proposed, i.e. by summarizing the model

structure in a single matrix representation. It is inspired by similar representations

used in (bio)chemical research, commonly seen in a wastewater treatment mod-
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elling context (Gujer and Larsen, 1995) and adapted for pharmaceutical processes

as well (Sin et al., 2008). This representation enables to communicate about model

structures in a standardised and transparent way, supporting more transparent and

reproducible scientific reporting.

The remainder of the chapter is structured as follows. First, a short introduction

about existing flexible frameworks for lumped hydrological modelling is given,

illustrating that maximal flexibility is provided by defining a set of ODEs. Next,

the motivation to propose a standardised representation rather than yet another

implementation is discussed. The original Gujer matrix representation is shortly

introduced, after which the hydrological variant is explained in detail. In the last

part, the representation is applied on a number of existing lumped hydrological

models.

9.2 Flexibility of lumped hydrological
model structures

Flexible environments do exist for hydrological modelling. Kralisch et al. (2005)

illustrates how general purpose flexible model environments can be used to develop

and apply hydrological models, which practically means that one has to implement

new components in scripting language. The latter is similar to the usage of a

domain specific programming language for catchment modelling as it has been

developed for distributed modelling (Kraft et al., 2011; Kraft, 2012; Schmitz et al.,

2013). The scripting based approach provides ultimate flexibility, but the model

structures that can be implemented in flexible model environments like in Wagener

et al. (2001a); Clark et al. (2008) and Fenicia et al. (2011) are focusing specifically

on hydrology. They can be summarized by the combination of a soil moisture

accounting module and a routing module, where different options can be selected

for both parts. Similarly, the Hydromad package in R, developed by Andrews

et al. (2011) and inspired by the PRMT package of Wagener et al. (2001a), also

provides multiple options of existing models for both a soil moisture module and

a routing module. Bai et al. (2009) uses a modular modelling structure of three

modules: Soil moisture accounting, actual evapotranspiration and routing, with

different options for the three components.

All of these model environments act as a container to interchange existing models

and keeping the comparison on a rather coarse granularity for interchange (sec-

tion 2.5.2). They do not provide direct interchanges on process level and lack a

unified framework. In this respect, the flexible approach formulated by Fenicia
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et al. (2011) and Kavetski and Fenicia (2011) break down the hydrological struc-

tures in reservoir, lag and junction elements that can be recombined to build new

model structures and supporting flexibility on a fine granularity which enables the

evaluation of individual model components.

Similarly, the concept of Framework for Understanding Structural Errors (FUSE)

(Clark et al., 2008) is of interest, since it combines individual modelling options

from well-known hydrological models to construct new equally plausible model

structures, where the model components can be evaluated separately. To accom-

plish this, the framework translated existing models as a set of ODEs. Indeed,

despite the impression of large distinctions made by different naming and descrip-

tions, most of these models share a similar underlying framework of connected

reservoirs and are all based on ODEs, convertible to the general model layout

given in Equation 2.1.

The work of Clark et al. (2008) and Fenicia et al. (2011) illustrates that existing

lumped hydrological model structures can be expressed as a set of ODEs. Hence,

when looking from a system dynamics approach, the required flexibility is achieved

when direct insight is given into the equations itself. When doing so, individual

components (equations, processes, fluxes. . . ) can be adapted whilst keeping the

other elements fixed to enable model comparison on a process level.

Moreover, the definition of a model structure by a set of ODEs enables a separate

definition of the mathematical and computational model. Using continuous time

for the model formulation and approximating it in discrete time to solve the model

numerically provides the flexibility in changing the model step size and choose the

most appropriate numerical solver (Clark and Kavetski, 2010; Kavetski and Clark,

2011).

9.3 Standardisation of model structures

Developments such as the FUSE environment (Clark et al., 2008) and SUPER-

FLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011) make a system dynamics

approach of existing lumped hydrological modelling possible. Although the FUSE

implementation compiles a great set of existing model structures, the possibilities

are still rather limited from a hypothesis testing point of view, being limited to a

two-layer configuration. The flexible approach proposed by Fenicia et al. (2011)

and Kavetski and Fenicia (2011) enable a further generalisation in model structure

construction by using reservoir elements, lag functions and junction elements as

basic building blocks to represent different flow configurations.
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Still, both FUSE and SUPERFLEX provide a direct construction of model struc-

tures as a set of (non-linear) ODEs. As stressed by Fenicia et al. (2011) themselves,

the focus is not on a particular computer code or on software design aspects, but

on the conceptual elements supporting controlled flexibility in hydrological mod-

els. FUSE provides a fast interface for hydrological modellers to create and test a

variety of existing model structures and it illustrates as such the similarity in the

mathematical foundation of most of these models (proof of concept). However,

in essence it just adds a domain-level layer on top of general ODE implementa-

tions, as is done in other scientific fields like water quality modelling, ecological

modelling or chemical engineering.

Existing lumped hydrological model structures such as PDM discuss alternative

model structure options as well (Moore, 1985), providing them some level of flexi-

bility (mostly just depending on the available implementation or software). How-

ever, in most cases, the authors just mention the PDM model acronym referring

to the name but giving little insight in the specific options used, which can differ

between implementations and between different research institutes.

The lack of transparency about model structure implementation is currently more

of a problem than the availability of model software environments. Hence, easy

and interpretable communication of the chosen model structure is essential to

ensure that the implementation can be done in any environment or software most

suitable for the user. This chosen model structure can be any of the legacy models,

a configuration of the FUSE or SUPERFLEX environment or any newly defined

model structure. By providing a way to communicate about the model structure

in a generic way, the modeller has maximal flexibility in the (software) tool used.

Hence, to improve the communication and reproducibility of scientific publications

on this topic, focus should go to a standardised approach to communicate about

model structure decisions.

The combination of the ODE representation in a matrix representation and the

description of the used numerical solver (ideally, an open source implementation)

provides the necessary information to communicate about any model structure

configuration in a reproducible way, independent of a specific software environ-

ment.

9.4 The Gujer matrix representation

Standardisation of model structure definitions has been used in different disci-

plines, such as waste water treatment modelling (Gujer and Larsen, 1995) and
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pharmaceutical modelling (Sin et al., 2008). The International Water Association

(IWA) task group on Mathematical modelling for design and operation of biologi-

cal waste water treatment introduced a model representation for biokinetic models

such as the ASM family (Henze et al., 1983; Gujer and Larsen, 1995).

Table 9.1: Standard representation as a Gujer matrix of a process model

consisting of state variables S1,. . . ,Sm, processes p1,. . . , pn, stoichiometric

coefficients ν1,1,. . . , νn,m and kinetics ρ1,. . . , ρn

−−−−−−−−−−→ continuity
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When applied to (bio)chemical reactions, a process is described by a reaction rate

and by the stoichiometric coefficients for all components involved in the process.

The mass balances for all components are described by a set of ODEs, taking into

account the stoichiometry, the reaction rate and the sign of the reaction (produc-

tion versus consumption), all summarized in a matrix representation (Table 9.1).

The matrix is composed of the following elements:

� the left column lists all n processes pi accounted for in the model

� the top row lists all them different components Sj taking part in the processes

� the right most column lists the reaction rates ρi for the respective processes

in the left column

� the core part of the matrix represents the stoichiometric coefficients νi,j

� the left bottom cell lists the stoichiometric (occurring in the matrix core

cells) parameters, the right bottom cell lists the kinetic (occurring in the

right column) and the center bottom cell the component full names

As such, the total transformation rate of a component Sj is given by
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rj =

n∑
i=1

νi,jρi j = 1, . . . ,m (9.1)

where rj is the total transformation rate of the component Sj, νi,j is the stoichiomet-

ric coefficient of the substance Sj for the process pi and ρi is the reaction rate of the

process pi. Non-zero elements of a row of the matrix represent which components

are affected by a given process. In other words, non-zero elements of a column indi-

cate which processes have an influence on a given component or in which processes

the component takes part. The signs of the stoichiometric coefficients indicates

consumption (-) or production (+) of the corresponding component.

An example of the matrix representation was provided in section 4.2.2 to clarify

the respirometry model used (Table 9.2).

Table 9.2: Representation of the respirometry model as a Gujer matrix

consisting of state variables to represent aerobic degradation of acetate SA

by biomass XB consuming oxygen SO

process pi stoichiometry reaction rate ρi

XB SA SO

Heterotrophic growth
with SA as substrate

1 − 1
Y − 1−Y

Y µmax
SA

KS+SA
XB

Endogenous respiration -1 -1 bXB

Aeration 1 kLa(S
0
O − SO)

stochiometric

parameters:

Y

b
io

m
a
ss

(m
(
C
O

D
)
l-1

)

su
b

st
ra

te
(m

(
C
O

D
)
l-1

)

ox
y
ge

n
(m

(
-C

O
D

)
l-1

)

kinetic

parameters:

µmax,KS, b

kLa, S
0
O

9.5 A Gujer matrix alternative for hydrology

Despite the differences with chemical reactions, where the matrix can be used to

distinguish between the stochiometric and kinetic coefficients, the idea of combin-

ing the processes, state variables and fluxes in a single matrix is reusable with
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respect to the current range of lumped hydrological modelling described in litera-

ture.

To translate the concept of the Gujer matrix to a hydrological point of view,

we need to translate existing lumped hydrological models such as those created

by the pyfuse environment into their respective components. From a functional

process perspective, catchment dynamics include partition, storage, release, and

transmission of water (Fenicia et al., 2011). These are represented by the usage of

three generic building blocks:

1. Reservoir element: represents storage and release of water

2. Lag function element: represents the transmission and delay of fluxes

3. Junction element : represents the splitting, merging, and/or rescaling of

fluxes

Different configurations of these building blocks can be constructed to represent

the catchment characteristics. Furthermore, constitutive functions (e.g., relating

fluxes to reservoir storage) and associated parameters need to be defined to con-

struct new models. As such, these building blocks and constitutive functions need

to be represented in the proposed matrix representation, inducing some adapta-

tions to the original Gujer concept. A major difference with the Gujer matrix

is the description of the transport terms by the matrix instead of the conversion

functions (and related stoichiometry). The proposed matrix representation coun-

terpart for lumped hydrological model structures is drafted in Table 9.3. For each

part, the incorporation will be discussed.

9.5.1 Reservoir element

A reservoir element in lumped hydrological modelling is a representation of catch-

ment scale processes related to storage and release of water. As such, this can be

represented by mass balances, i.e. a set of ODEs (Equation 2.1), where each reser-

voir models the storage of water in function of time of a represented catchment

entity. The incoming and outgoing fluxes are defined by either external forcing

(e.g. rain, evapotranspiration), internal fluxes (e.g. percolation, drainage...) or

outgoing fluxes (discharge). The response observed and used for evaluation is in

the case of hydrological modelling mostly a discharge (flux), or any aggregation

metric derived from it (cfr. section 3.3). As such, the original model definition of

equation 2.1 can be translated to:
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Table 9.3: Translation of the Gujer matrix concept towards standard matrix

representation of lumped hydrological models consisting of state variable

S1,. . . , Sm, processes p1,. . . , pn, flux redistribution indicated by ν1,1,. . . ,

νn,m and constitutive functions describing the fluxes f1,. . . , fn

process pi reservoir configuration flow
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dS(t)

dt
= f(S(t),qt,in(t),θ, t) (9.2)

q̂(t) = g(S(t),qt,in(t),θ, t) (9.3)

for ns defined reservoir elements, with state variables S(t) representing storage,

subject to external forcing qt,in(t) and fluxes q̂(t) that can be related to a measured

variable.

The mass balances define the incoming and outgoing fluxes of the reservoir. Each

mass balance is represented by a column in the matrix (reservoir configuration)

and the processes pi acting on the reservoir are listed in the rows of the matrix.

The incoming and outgoing fluxes for each specific reservoir are listed as fluxes

υi,j , defined by the flux name and a positive or negative sign, representing re-

spectively incoming or outgoing flow. In the last row, a full description of the

reservoir type can be added to clarify the catchment function representation of

the reservoir.

Each of the processes defining fluxes υi,j is defined by either a constitutive function

(fi) or an external forcing (qt,in). The description is listed in the last column of
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the matrix representation and can vary widely. As mentioned by Fenicia et al.

(2011), these functions will form part of an extendable library with some of them

frequently chosen. The concept is comparable to typical kinetic functions that

are used in (bio)chemical reaction descriptions, with a - sometimes preconceived -

preference of Monod kinetics.

In most cases, the observed flux q̂(t) is the combination of outgoing fluxes coming

from different reservoir elements (mostly the catchment outflow). This is repre-

sented by a separate column defining qtot, where all the contributing fluxes are

listed and the sum of the individual fluxes provide a comparison with the mea-

sured catchment outflow. In the case of subflow comparison (Willems et al., 2014),

individual fluxes can be linked to the subflows measured (or derived with filtering

techniques).

9.5.2 Junction element

In contradiction to a typical Unit Hydrograph approach for routing application

in lumped hydrological models which is a consecutive set of linear reservoirs, the

representation of the entire set of catchment processes is mostly an interconnection

of reservoirs in function of the catchment characteristics. Multiple reservoirs (and

lag-functions) are connected with each other using junction functions (either join-

ing or splitting). A typical example is the joining of fluxes coming out of reservoirs

before entering yet another reservoir. These junction elements can also contain

parameters to manipulate the junction.

The representation of junction elements is embedded in the reservoir configuration

and they are part of the υi,j elements. Functions and parameters are written as

a matrix element within the reservoir configuration. The rule is that the specific

flux qi used in that line is described by the constitutive function in the rightmost

column of the matrix. As such, other elements (parameters and/or functions) can

be used to represent splits or joints, next to lag functions discussed in the next

section 9.5.3.

Direct joints of two reservoirs into a third reservoir are captured by the format

itself, where two negative fluxes will appear (on different columns) and with a

positive sign at the column of the receiving third reservoir. A split can be achieved

on a single line, as illustrated in Table 9.5 to redistribute the saturation excess

qq (which itself is calculated by the constitutive function at the right hand side).

Hence, υ3,2 = + (1− d)q∗qhf(t) and υ3,3 = + dqq to divide it amongst respectively
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reservoirs Sf and Ss. Hence, the constitutive function in the rightmost column

describes the qq calculation.

9.5.3 Lag function element

Delays arising from channel routing are present in many model descriptions and

thus a necessary element to properly represent the catchment behaviour. Tra-

ditionally, models like Hydrologiska Byr̊ans Vattenbalansavdelning model (HBV)

and FUSE make a distinction between the storage part of the model and the rout-

ing part of the model. In those cases, the retention of water from channel routing

is represented by a sequence of linear reservoirs.

Actually, reservoir configuration for routing could be explicitly incorporated in

the matrix representation by adding an extra column for each reservoir in the

cascade, including more state variables. Representing each individual reservoir

of the routing sequence as individual columns in the matrix would hinder the

interpretation of the matrix representation. However, in most cases, these tanks in

series are assumed to behave linearly. As such, the link with the unit hydrograph

concept (Beven, 2012) will be used to represent the routing of water as a lag-

function (in the case of linear operators) instead of adding individual reservoirs in

the matrix.

In general, the lag-function is represented by a convolution operator (e.g. Gamma-

function, Nash-cascade...) acting on a described flux by adding ∗hf(t). Fenicia

et al. (2011) advocate to make those lag functions applicable in all parts of the

model structure to provide flexibility beyond the traditional storage-routing model

structure distinction. Hence, such a convolution operator can be added at the

following locations:

� Added to a flux qi in the flow column of the matrix representation. As such,

this represents the traditional case of a routing part of the model, where an

outgoing flux is routed to the catchment outlet. For example, in Table 9.3,

the total discharge is calculated as qtot = qi
∗hf(t) + qn.

� Added to an internal catchment flux qi as part of the reservoir configuration.

An outgoing flux qi of a reservoir S1 is subject to the convolution operator

before it enters in another reservoir S2. Hence, the incoming flow of S2 is

qi
∗hf(t). This is also illustrated in Table 9.5.

� Hypothetically it can also be added to an incoming external forcing. How-

ever, this application would probably be rather rare.
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In the specific case of a lag-function affecting joined fluxes as illustrated in Figure

9.1, the matrix representation does not provide a direct representation. However,

due to the linear properties of the lag functions used and taking into account

superposition of linear functions, this situation is similar to applying twice the lag

function to each of the fluxes individually. The latter can easily be incorporated

in the matrix representation.

Figure 9.1: Situation example of a routing where the combination of two

subflows qf and qi is affected by a lag function, wherafter the sum with a

third flow qs corresponds to the total outflow (left). This situation cannot

be directly represented by the matrix representation. However, due to the

linear characteristics of the lag functions used to represent routing, this is

similar to the representation where both are affected indivually by a lag

function (right) which can be easily incorporated in the matrix notation.

9.6 Application to existing model structures

In order to test and illustrate the usability of the matrix representation, some

existing models will be converted into the proposed matrix format. First, two

model structures used in Kavetski and Fenicia (2011) are converted to the matrix

representation. These models are referred as model M1 and model M7 similar to

the model names in Fenicia et al. (2011) and Kavetski and Fenicia (2011). Both

M1 and M7 are already defined as a set of ODEs in the original publication and

the matrix is provides a more dense representation.

Next, two models regularly used in both an operational and scientific setting,

respectively PDM Moore (1985) and NAM Nielsen and Hansen (1973), will be

handled. Current literature does not provide these model structures as a set of

ODEs. Hence, their translation towards a set of ODEs is required before the

matrix representation for these models can be defined.
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9.6.1 Model M1 (Kavetski and Fenicia, 2011)

Model M1 is a minimalistic representation of a catchment by representing the

entire catchment as a perfectly mixed reactor (Figure 9.2). Despite the limited

usability of this structure in real applications, the representation provides an easy

first example of the matrix representation concept.

Figure 9.2: Model M1, acting as the extreme simplistic model representa-

tion, consists of a single non-linear reservoir Sf with three parameters. The

outflow qf is a power function of the storage, while the predicted evapora-

tion ef is proportional to the potential evaporation (Kavetski and Fenicia,

2011). Model parameters are added in gray font color.

The model describes three main processes: rain, evaporation and catchment out-

flow (left column of Table 9.4). The model exists of a single non-linear reservoir,

represented in the reservoir configuration part of the table as a single mass bal-

ance:

dSf

dt
= pt − ef − qf (9.4)

with pt represented by the incoming rainfall pt,in acting as an external forcing.

Evaporation is proportional to the potential evaporation et,in, which is an exter-

nal forcing as well. The storage Sf influences both the constitutive functions of

evaporation and outflow. Evaporation is defined by parameter Ce and a smooth-

ing function for near-zero storage values, governed by a smoothing parameter ω.

Outflow qf is described by a power function of the storage with parameters α and

kf. No lag-functions are used in model M1, the total flow qtot = qf.

9.6.2 Model M7 (Kavetski and Fenicia, 2011)

Model M7 consists of three reservoirs, eight parameters and one lag function.

Hence, it resembles more complex model representations actually used for practical

applications. The unsaturated reservoir Su receives incoming rain pt,in, evaporates
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Table 9.4: Gujer matrix representation of the M1 lumped hydrological

model structure presented in Kavetski and Fenicia (2011)

process reservoir configuration flow constitutive functions

Sf qtot

rain +pt pt,in

evaporation −ef et,inCe

(
1− e−

Sf
ω

)
outflow −qf qf kf(Sf)

α
fa

st
fl

ow parameters

Ce, kf, α

water −ef and produces excess overflow water −qq, which is divided amongst the

other reservoirs Sf and Ss.

Figure 9.3: Model M7, a three reservoir lumped hydrological model with

in total eight parameters (Kavetski and Fenicia, 2011). The excess water of

the unsaturated reservoir Su is distributed amongst a fast flow reservoir Sf

and a groundwater reservoir Ss. Model parameters are added in gray font

color.

A lag function affects the sub flux going to the fast flow reservoir and is explained

in more detail in the left lower corner of the matrix representation. The fast flow

reservoir acts as a non-linear routing function, whereas the slow flow reservoir

represents the catchment groundwater by means of a single linear reservoir. The

lower right corner of the matrix representation gives an overview of the parameters

of the constitutive functions, the flux split and the lag function. Total flow is

derived from summing up the fluxes listed in the flow column qtot = qf +qs.



CHAPTER 9 MODEL STRUCTURE MATRIX REPRESENTATION 197

Table 9.5: Gujer matrix representation of the M7 lumped hydrological

model structure presented in Kavetski and Fenicia (2011). The operator ∗

denotes a convolution operator to incorporate lag functions in the model

structure representation

process reservoir configuration flow
constitutive

functions
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9.6.3 NAM model

Original NAM model

NAM is the abbreviation of the Danish Nedbør Afstrømnings Model, literally

meaning rainfall-runoff model. Nielsen and Hansen (1973) describe the original

model, developed at the Hydrological section of the Institute of Hydrodynamics

and Hydaulics Engineering at the Technical University of Denmark. During the

last decade, the model is maintained by DHI (Danish Hydraulic Institute) as a part

of the MIKE software-suite. It is used within the operational water management

at the Flanders Hydraulics Research, a division of the department of Mobility and

Public Works of the Flemish government.

The NAM model is a rainfall-runoff model that operates by continuously account-

ing for the moisture content in different and mutually interrelated storages. These

storages include: (1) snow storage (not included here), (2) surface storage U, (3)
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lower or root zone storage L and (4) groundwater storage (S3) (DHI, 2008). The

model structure is shown in Figure 9.4. In the remainder of the section, the original

naming U and L is used to make the parallel with the original model description

and parameter names.

Figure 9.4: Overview of the original NAM model, illustrating the surface

U storage reservoir and lower soil storage L reservoir representing the soil

compartment, the overland routing and the base flow routing by reservoir

S3 (scheme redrafted from DHI (2008)).

Rainfall contributes to the surface storage when the temperature is above freezing

point (freezing is neglected for this dissertation and not shown in figure). When the

surface storage compartment is full, the remaining rainfall infiltrates towards the

lower zone storages and contributes to the overland flow. Water is also extracted

by (potential) evapotranspiration and interflow (hypodermic flow, i.e. horizontal

flows in the unsaturated zone). The lower zone storage controls the different

subflows, varying linearly with the relative soil moisture content of this lower

zone storage. The different processes modelled by NAM are conceptualized by 9

empirical model parameters that need to be calibrated. A short description of

each one of the model parameters is presented in Table 9.6.

The potential evapotranspiration, et,in, is a forcing variable. The evapotranspi-

ration of the surface storage ep occurs at a potential rate and is limited by the

available water content (ep = et,in − U). When the moisture content U is less

than potential evapotranspiration et,in, the remaining fraction of evapotranspira-

tion varies linearly with the lower storage water content (L/Lmax) by:
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Table 9.6: Overview of the NAM model parameters of the original model

description (DHI, 2008)

parameter description

Umax mm Maximum water content in the surface storage

Lmax mm Maximum water content in the lower zone

CQOF Overland flow runoff coefficient

TOF Threshold value for overland flow recharge

TIF Threshold value for interflow recharge

TG Threshold value for groundwater recharge

CKIF h Time constant for interflow from the surface storage

CK1,2 h Time constant for overland flow and interflow routing

CKBF h Time constant for base flow routing

ea = (et,in −U) · L

Lmax

(9.5)

Total evapotranspiration is modelled as the sum of ep and ea. The interflow (hy-

podermic flow), qif, is assumed to be proportional to the surface storage U, and is

given as

qif =

 1
CKIF

L
Lmax

−TIF

1−TIF
U if L

Lmax
> TIF

0 if L
Lmax

≤ TIF

(9.6)

When surface storage is full, excess rainfall pn (effective rainfall after subtract-

ing the interflow), will form overland flow, whereas the remainder is diverted as

infiltration into the lower zone and groundwater storage. Overland flow, qsx, is

assumed to be proportional to this saturation excess pn and depends on the soil

moisture content in the lower zone storage, given as

qsx =

 CQOF

L
Lmax

−TOF

1−TOF
pn if L

Lmax
> TOF

0 if L
Lmax

≤ TOF

(9.7)

The amount of water recharging the groundwater storage depends on the soil

moisture content in the root zone. The groundwater storage will generate baseflow.

The baseflow is assumed to be proportional to the amount of infiltrating water

recharging the groundwater storage and depends on the soil moisture content in

the lower zone storage. The groundwater recharge is given by
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qg =

 (pn − qsx)
L

Lmax
−TG

1−TG
if L
Lmax

> TG

0 if L
Lmax

≤ TG

(9.8)

The routing of the inter flow uses two linear reservoirs in series with the time

constants CK1 and CK2, usually assumed equal (CK1,2). Overland routing is

also based on two linear reservoirs, but with a variable time constant depending

on an upper limit for linear routing (equation not given, analytical solution used).

The base flow qb routing is calculated as the outflow from one linear reservoir (S3

in Figure 9.4) with time constant CKBF. Total flow q is assessed by summing all

different subflows.

The original NAM model uses an Operator Splitting (OS) approach in combination

with an explicit fixed step solver to calculate the states and flows in function of

time. Due to the closed source properties of the code implementation, further

evaluation of the implementation is however limited.

ODE representation of NAM

When screening the general structure of the NAM model, the model can be sepa-

rated by a storage part and a routing part of the model. The surface storage and

lower storage are accounting for the storage part of the model, whereas the base

flow compartment can be seen as part of the routing when the capillary flow is

not taken into account (as is assumed regularly). Doing so, the routing model of

the NAM model can be categorized as a set of linear reservoirs for the different

subflows. Hereby, the further representation of the NAM model will only focus on

the storage part.

As opposed to other conceptualizations, the water storage representation in the

NAM model upper storage represents storage of water that is intercepted by veg-

etation, captured in surface depressions and storage in the uppermost layers (a

few cm) of the soil. In Figure 9.4, the similarity with a soil moisture profile is

made (DHI, 2008), where the upper soil storage represents the fraction above field

capacity (free storage), filled when the tension storage is at capacity. Actually,

the conceptualization is slightly different and the water movement from the up-

per storage to the lower storage can be interpreted as excess water of the upper

storage that is diverted as infiltration towards the lower zone. The excess water

that is not infiltrating will enter the streams as overland flow, for which it can be

interpreted as infiltration excess as well. Similar to the original NAM, U and L are
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used, where the U represents a surface storage transferring water to the tension

storage L when at capacity.

The state equations for the NAM implementation are:

dU

dt
= pt,in − ep − qif − qsx − qb − qstof

dL

dt
= qstof − ea

(9.9)

with the fluxes given in Table 9.7, where the different smoothing functions are

added. The flux qstof is added in addition to the original model description. This

does not alters the conceptual idea of the NAM model, but is required to represent

the overflow of water when the maximum storage capacity Umax is reached. The

overflow is the amount of water flowing to the lower zone storage, which is similar

to the original NAM conceptualisation. Whereas a maximal storage capacity Lmax

for the lower zone is defined as parameter as well, this is only used to calculate

the fluxes while conceptualizing the storage itself as of unlimited size (no overflow

of water).

Compared to the original constitutive functions defined in section 9.6.3, additional

smoothing operators Φ are used as well. These operators also do not change

the conceptual model, but are added to improve the handling of threshold-type

behaviour, which can result in discontinuities in the response surface (Clark and

Kavetski, 2010; Kavetski and Clark, 2010). Φ represents a logistic smoothing

operators as used by Clark et al. (2008) (and included in Table 9.8). For a more

in depth discussion in terms of implications and possible solutions, the reader is

referred to Kavetski and Kuczera (2007).

The ODE representation differs from the original NAM version, giving rise to other

flow calculations. Figure 9.5 compares the flow outcomes of both versions for a

three year period, for both the calculated outflow and the different subflows. Fig-

ure 9.6 shows a comparison between the state variables in both implementations.

The effect on the resulting outflow seems rather small, but the differences on the

state variables and the individual subflows is larger. This is because the model is

slightly different conceptualized to enable a representation in terms of differential

equations rather than the operator splitting approach explained in DHI (2008).

The similarity is still appropriate to refer as the NAM model.
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Table 9.7: Overview of the NAM fluxes in the ODE representation

Flux Flux equation

evapotranspiration
a ep = et,in(1− e−U

ω )

ea = (et,in − e1)
L

Lmax

overland flow b

qsx = CQOFΦ
(

L
Lmax

, TOF, ω
)
·[

L
Lmax

− TOF

1− TOF

U

]
Φ (U, Umax, ω)

inter flow b qif = CKIF

[
L

Lmax
−TIF

1−TIF
U

]
Φ
(

L
Lmax

, TIF, ω
)

base flow b

qb = Φ
(

L
Lmax

, TG, ω
)
·[

L
Lmax

− TG

1− TG

U

]
Φ(U, Umax, ω)

overflow flux b qstof = pt,inΦ (U, Umax, ω)

a Smoothing constraint for min function as proposed by Kavetski and Kuczera (2007)

b Smoothing step discontinuity by logistic smoothing as proposed by Kavetski and Kucz-

era (2007)

Matrix representation of NAM

The matrix representation is given in Table 9.8. Evapotranspiration of the surface

and tension storage is split into two separate processes. Both are called evapo-

transpiration, notwithstanding the different interpretation given to both. Since the

water in the surface storage is considered to be freely available, this could be noted

as evaporation instead of evapotranspiration. However, to remain similarity to the

description in the model manual (DHI, 2008), the usage of evapotranspiration for

both is preserved.

The constitutive functions for overland flow, inter flow and base flow are very si-

milar and as such, part of the function (g(Tx)) is summarized in the parameter

section of the matrix representation to support readability. Functions for smooth-

ing the differential equations are added in the short notation as well. In literature
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Figure 9.5: Comparison of the fluxes calculated by the original NAM im-

plementation and the representation as ODEs. The combined outflow for

a three year period (a), the three subflows for the same period (b) and a

zoom on 2004 of the subflows (c) is presented.

papers, these operators and their smoothing parameters should be provided as

well to ensure reproducibility of the model structure implementation.

The routing components of the model consistent of linear reservoirs and are added

as lag functions of the different subflows, with the subscript n defining the number

of tanks. In the case of the single reservoir base flow routing, the Gamma function

reduces to the analytical solution of a single reservoir. To understand the simi-

larity with Figure 9.4, it is important to understand that the lag-function that is

combined with qg corresponds to reservoir S3 (a linear reservoir) and the resulting

flow derived from q∗ghγ,1(t) represents the baseflow qb. Total catchment outflow q

is given by qtot = q∗sxhγ,2(t) + q∗ifhγ,2(t) + q∗ghγ,1(t).
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Table 9.8: Gujer matrix representation of the NAM lumped hydrological

model structure. The naming ’et’ is a short description of evapotranspi-

ration. The operator ∗ denotes a convolution operator to incorporate lag

functions in the model structure representation. Function g(Tx) is a help

function to shorten notation, due to the similarity of the constitutive func-

tions. Φ are smoothing functions to handle threshold behaviour as proposed

by Kavetski and Kuczera (2007).

process
reservoir

configuration
flow constitutive functions

U L qtot

rain +pt pt,in

surface et −ep et,in(1− e−U
ω )

tension et −ea (et,in − p1)
L

Lmax

overland flow −qsx q∗sxhγ,2(t)
CQOFΦ

(
L

Lmax
, TOF, ω

)
·

g(TOF)Φ (U, Umax, ω)

inter flow −qif q∗ifhγ,2(t) CKIFΦ
(

L
Lmax

, TIF, ω
)
g(TIF)

base flow −qg q∗ghγ,1(t)
Φ
(

L
Lmax

, TG, ω
)
·

g(TG)Φ(U, Umax, ω)

overflow flux −qstof +qstof pt,inΦ (U, Umax, ω)

lag functions

hγ,n(t)=
1

kΓ(n)

(
t
k

)n−1
e−

t
k

with k equal to

CK1,2 or CKBF su
rf

ac
e

st
or

ag
e

te
n

si
on

st
or

ag
e

parameters

Umax, Lmax, CQOF, CKIF,

TOF, TIF, TG, CK1,2, CKBF

and

g(Tx) =

[
L

Lmax
−Tx

1−Tx
U

]
and

Φ(y, ymax, ω) = 1

1+e
ymax−y−ωε

ω
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Figure 9.6: Comparison of the states calculated by the original NAM imple-

mentation and the representation as ODEs. The surface storage reservoir

defined as U in the original NAM model (a) and the lower reservoir defined

as L in the original NAM model (b) are presented. The periods shown are

selected in function of the visual clarity, with for both (a) and (b) the right

graph a zoom of the period shown in the left graph

9.6.4 PDM model

Original PDM model

The PDM is a lumped rainfall-runoff model which transforms rainfall and evapo-

ration data into flow at the catchment outlet. Figure 9.7 shows the general layout

of a PDM model that is commonly used in practice. The main model components

are shortly discussed here and a more detailed description can be found in Moore

(1985) and Moore (2007). It is used within the operational water management

(flood forecasting) at the Flanders Environment Agency, part of the Environment,

Nature and Energy policy domain of the Flemish government.

The model consists of three main components: (1) a probability distributed soil

moisture storage component for separation of direct runoff and subsurface runoff,
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(2) a surface storage component for transforming direct runoff to surface runoff

(surface routing), (3) a groundwater storage which receives drainage water from

the soil moisture storage component and contributes to baseflow (Moore, 2007).

A description of the model parameters is presented in table 9.9.

Figure 9.7: Overview of the PDM model structure illustrating the soil stor-

age representation S1, the routing of the overland flow with 2 linear reser-

voirs and the base flow reservoir, named S3 in the original PDM description,

but also referred to as S2 to comply with the pyfuse layout (redrafted from

Moore (2007))

The soil moisture storage component, defined by the probability distributions,

represent different locations in the catchment, which also have different storage

capacities. During any rain event, reservoirs with the smallest storage capacity will

be filled first and will start to produce rapid runoff first. The area of the catchment

that produces fast runoff is calculated from the proportion of the catchment with

filled reservoirs Ac(t). As such, the probability-distributed soil moisture storage

component is used to separate direct runoff and subsurface runoff. Hence, the

instantaneous direct runoff rate qsx per unit area is defined by the product of

the net rainfall rate (pt,in − ea) and the proportion of the basin generating runoff,

defined by a distribution function F (C(t)) (see also equation 9.15).

A Pareto or truncated Pareto distribution function is mostly invoked for practical

applications, although the PDM model offers a wide range of possible distributions

(Moore, 2007). In this study, the following Pareto distribution function F (C) and

probability density function f(C) are used to describe the critical capacity C below
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which reservoirs are full at some time t:

F (C(t)) = 1−
(

1− C

Cmax

)b
p

0 ≤ C ≤ Cmax (9.10)

f(C(t)) =
bp
Cmax

(
1− C

Cmax

)bp−1

0 ≤ C ≤ Cmax (9.11)

where Cmax the maximum storage capacity in the basin and where parameter b

controls the degree of spatial variability of storage capacity over the catchment. For

the chosen Pareto distribution for storage capacity, the following unique relation

between the storage over the basin as a whole S1(t) and the critical capacity C(t)

exists:

S1(t) = S1,max

(
1−

(
1− C(t)

Cmax

)bp+1
)

(9.12)

and the total available storage S1,max can be derived from parameter Cmax by

S1,max = Cmax

bp+1 .

The ratio between actual (ea) and potential evapotranspiration (et,in) is defined

as

ea

et,in

= 1−
(

(S1,max − S1(t))

S1,max

)be
(9.13)

and mostly depends linearly (be = 1) or quadratically (be = 2) on the soil moisture

deficit, (S1,max − S1(t)).

Loss towards the groundwater as recharge is defined by the assumption that

the rate of drainage, q12, is linearly dependent on the basin soil moisture con-

tent:

q12 =
1

kg

(S1(t)− Sτ )
bg (9.14)

where kg is the drainage time constant and bg the exponent of the recharge function,

in this dissertation set to 1. Sτ is the threshold storage below which there is no

drainage and the water is immobilised by the soil tension. Again, other drainage

options are discussed in Moore (2007), but focus is here on the translation of a

single chosen model structure.

In the original description of Moore (2007), both surface and base flow routing

can be modelled by either non-linear storage reservoirs or a cascade of two linear
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reservoirs. Here, a single (commonly applied) option is further used. The routing

by the surface storage is represented by a cascade of two linear reservoirs, with

equally assumed time constants kf. Subsurface flow is routed by the groundwater

storage by a non-linear storage routing function. In this case, baseflow is calculated

by qb = kb (S2(t))
3
. By summing the surface runoff and base flow, the total

discharge at the catchment outlet is calculated at every time step of the simulation.

Notice that S2 is used here, which does not correspond to the original model

description of Moore (2007), referred to this reservoir as S2.

ODE representation of PDM model

In the original PDM model (Moore, 2007), different distributions types are in-

cluded to represent the probability-distributed storage model component. Never-

theless, in most applications a Pareto distribution is used as explained in section

9.6.4, which is similar to the VIC/ARNO model used by Clark et al. (2008) as

well. Moore (2007) defines the critical capacity below which all storages are full

at some time t as C and the contributing area A* at time t for a basin of area A

is:

Ac(t) =
A*

A
= F (C(t)) (9.15)

with the function F (C) the distribution function of the storage capacity. The cor-

responding runoff qsx is then defined by the fraction of rainfall as defined by

qsx = Acpt,in (9.16)

The critical capacity C for the Pareto distribution is defined by:

C(t) = Cmax

(
1−

(
1− S1(t)

S1,max

) 1
bp+1

)
(9.17)

If we combine equation 9.17 and equation 9.10, the contributing area Ac(t) is

defined as

Ac(t) = 1−
(

1− S1(t)

Smax

) bp
bp+1

(9.18)
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Table 9.9: Overview of the PDM model parameters

Parameter Description

Cmax mm Maximum store capacity

bp Exponent of Pareto distribution control-

ling spatial variability of store capacity

be Exponent in actual evaporation function

bg Exponent of recharge function

kg h mm(bg−1) Groundwater recharge time constant

kb h mm2 base flow time constant

kf h Time constants of cascade of two linear

reservoirs

Sτ h Soil tension storage capacity

The non-linear baseflow reservoir of the original PDM model can be simulated by

using a non-linear reservoir representing the lower layer storage with the baseflow

exponent parameter n = 3.

The drainage is described by the flux q12 given in Table 9.10. The Sτ parameter

defines the soil at field capacity, making the S − Stau conceptually identical to a

free tension storage.

As such, we can combine these flux equations (an overview is provided in Table

9.10) in the following set of mass balances:

dS1

dt
= pt,in − ea − qsx − q12 − qufof

dS2

dt
= q12 − qb

(9.19)

Similar to the translation for the NAM model, an additional overflow flux qufof

is defined when maximum capacity is reached. However, in the case of PDM,

the overflow of the storage represents additional surface runoff. Furthermore,

smoothing operators are added as well here to improve the handling of threshold

behaviour (Kavetski and Kuczera, 2007).

Figure 9.8 compares the flow outcomes of the original PDM version as described

by Moore (2007) and the ODE representation for a three year period, for both the

calculated discharge and both subflows. Figure 9.9 focuses on the state variables.

The differences of the modelled flow are smaller than the differences of the NAM

model ODE representation.
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Table 9.10: Overview of the PDM fluxes in the framework version

Flux Flux equation

evapotranspiration ea = et,in

(
1−

(
1− S1

S1,max

)be)
overland flow a qsx = pt,inAc

percolation b q12 = 1
kg

(S1 − Sτ )bg Φ(S1, Sτ , ω)

base flow qb = kb(S2)
3

overflow flux b qufof = (pt,in − qsx)Φ(S1, S1,max, ω)

a Probability soil moisture store based saturated area Ac given in equation

9.18

b Smoothing step discontinuity by logistic smoothing as proposed by Kavet-

ski and Kuczera (2007)
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Figure 9.8: Comparison of the fluxes calculated by the original PDM im-

plementation and the representation as ODEs. The combined outflow for a

three year period (a), the two subflows for the same period (b) and a zoom

on 2004 of the subflows (c) is presented.
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Figure 9.9: Comparison of the state of the soil storage S1 calculated by the

original PDM implementation and the representation as ODEs.

Matrix representation of PDM

Table 9.11 represents the structure in the matrix representation. The storage part

is represented by reservoir S1, where the Pareto function is used as a constitutive

function for overland flow qsx. As such, the flexibility of the PDM model consid-

ering the probability distribution function, is translated in the chosen constitutive

functions for overland flow.

A second reservoir (i.e. mass balance) is added to represent the groundwater

flow, modelled as a non-linear reservoir with a power function with parameters

α and kb. The overland flow routing is not added to the matrix representation

as a separate column, since it is modelled by a cascade of two linear reservoirs,

which is nothing more than the lag function hγ(t), represented by the function in

the lower left corner. In general, it is advisable to include these linear reservoir

sequences as lag functions instead of extra columns (i.e. reservoirs). By doing so,

the matrix representation is more dense, but it also provides clarity in what is

solved numerically (each column) and what is solved analytically (lag functions as

analytical solution or approximated). By adding the function to the overland flow

qsx, the total outflow of the catchment is derived by qtot = qsx
∗hγ(t)+qufof

∗hγ(t)+

qb.
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Table 9.11: Gujer matrix representation of the PDM lumped hydrological

model structure. The operator ∗ denotes a convolution operator to incorpo-

rate lag functions in the model structure representation. Φ are smoothing

functions to handle threshold behaviour as proposed by Kavetski and Kucz-

era (2007).

process reservoir configuration flow constitutive functions

S1 S2 qtot

rain +pt pt,in

evapo-

transpiration
−e1

et,in

(
1−

(
1−
S1

S1,max

)be)
percolation −q12 +q12

1
kg

(S1 − Sτ )bg ·
Φ(S1, Sτ , ω)

overland flow −qsx qsx
∗hγ(t)

pt,in

(
1−

(
1−

S1

S1,max

) bp
bp+1

)
base flow −qb qb kbS3

2

overflow flux −qufof qufof
∗hγ(t)

(pt,in − qsx)·
Φ(S1, S1,max, ω)

lag functions

hγ(t)=
1

kfΓ(2)

(
t
kf

)
e
− t
kf

u
n

sa
tu

ra
te

d

sl
ow

fl
ow

parameters

S1,max, bp, be, bg,

kg, kb, kf, Sτ

and

Φ(y, ymax, ω) =

1

1+e
ymax−y−ωε

ω
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9.7 Discussion

The matrix representation in this chapter provides an overview of a model struc-

ture configuration in a dense format (cfr. the combination of tables and scheme

in Kavetski and Fenicia (2011) and Clark and Kavetski (2010)). Mass balance

equations can easily be derived from the matrix by writing down each column in

the reservoir configuration. Moreover, the risk of missing an element in the model

description is decreased which supports the transparency and reproducibility of

the work. Still, complete reproducibility is only provided by making the source

code itself available, since the usage of the same numerical solver within different

development tools can still provide differences in the results (Seppelt and Richter,

2005).

A such, the matrix representation can be used in any hydrological modelling pa-

per to specify the specific modelling decisions. Moreover, a specific representation

of some of the currently well-known models (as was done for the PDM or NAM

model in this chapter) could be agreed on as reference models and get a specific

code, similar to what the wastewater treatment community did with the ASM fam-

ily to model wastewater treatment plants (Henze et al., 1983; Gujer and Larsen,

1995). This would for example lead to a clearly defined PDMP model to define

the Pareto distribution version of the PDM model. This can pave the way for

standardisation and benchmarking in hydrological modelling, in order to system-

atically evaluate competing alternatives and prioritize model development needs

(Clark et al., 2015a).

This chapter provided the general representation and further tests should be done

to evaluate the usefulness for practical applications. At the same time, the benefits

of the representation could already by exploited. By translating existing lumped

hydrological models in a systems dynamics representation, a manifold of modelling

and simulation platforms can be used, such as the pyideas Python Package 2 de-

veloped by Van Daele et al. (2015c). Moreover, users of the programming language

R would be able to solve the models with deSolve (Soetaert and Petzoldt, 2010b),

taking benefit of the compatible available modelling techniques for sensitivity and

uncertainty analysis (Soetaert and Petzoldt, 2010a).

Eventually, automatic converters and Gujer matrix editors, as they are part of

existing software such as WEST (Claeys, 2008) and Aquasim (Reichert, 1994) can

be developed for lumped hydrological model building. Moreover, it also provides

a solution for existing model software to communicate about their specific model

implementation without the need of sharing all of their source code and this in an
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elegant and complete way, supporting a closed source business model as it is still

frequently seen in environmental modelling.

The method is also relevant in a spatially explicit approach of (hydrological) mod-

elling. Mass balances acting on a single cell (local entity), where cell can be typical

grid cells, Hydrological Response Units (HRUs) (Olivera et al., 2006) or Represen-

tative Elementary Watersheds (REWs) (Reggiani et al., 1998, 1999) can be written

down by the matrix representation presented here. An extra representation would

be necessary to represent the spatial processes (spatial configuration). In essence,

this is a set of PDEs in which fluxes are represented by constitutive functions as

well.

9.8 Conclusion

In chapter 2 the lack of flexibility in the model development process is identified

as a bottleneck for an improved model based approach. This issue is specifically

apparent in the case of so-called lumped hydrological models, a class of models

frequently used and studied in hydrological modelling. Model structures are pro-

vided as monolithic implementations with limited flexibility and unclear separation

between the mathematical and computational model.

This chapter proposes a matrix representation for lumped hydrological model

structures to overcome these issues. By treating these model structures as a set of

ODEs, flexibility on the (finest) process level is accomplished and variations on in-

dividual model component combinations made possible. Moreover, the definition

as a set of ODEs supports a separation between the mathematical and computa-

tional model. Finally, the matrix representation provides a generic representation

of the equations in the mathematical model to make the model configuration more

transparent without depending on the implementation itself.

By sharing the matrix in combination with the numerical scheme used to solve the

equations, the elements are available to accurately reproduce any lumped hydro-

logical model structure that can be translated as a set of ODEs which supports an

improved practice of model structure handling and representation as sought-after

and defined as objective of this dissertation.
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based model structure
evaluation considering rating

curve uncertainty

Redrafted from

Van Hoey, S., Nopens, I., van der Kwast, J., and Seuntjens, P. (2015b). Dynamic identifiabi-

lity analysis-based model structure evaluation considering rating curve uncertainty. Journal of

Hydrologic Engineering, 20(5):1–17

10.1 Introduction

Water managers and related decision makers use lumped hydrological models for

a variety of applications, ranging from forecasting models, for catchment charac-

terisation and incorporating them in integrated applications. The ability of such a

model to reproduce observations determines the credibility of the predictions pro-

vided by the model. However, uncertainty in data, model parameters and model

structure hampers this evaluation. The aim of this chapter is to provide more

insight in model structural failures by combining the components and elements

explained and implemented in previous chapters.

Parameter identifiability enables the identification of model deficiencies (chap-

ter 2). Different methodologies for sensitivity and identifiability analysis are im-

plemented in the pystran Python Package 4, where DYNIA is of particular interest
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due to the temporal analysis of parameter identifiability. By evaluating the model

performance in function of time, periods for which the model is failing are identi-

fied while the parameter influence identifies which model component is the most

important during these periods (Reusser and Zehe, 2011). This concept of tempo-

ral parameter identification to identify and analyse deficits in model structure has

been introduced by Beck (1986). Parameter values are considered to have a fixed

value within a model structure. When variation of the parameter as a function of

time would be needed to improve the model behaviour, this can actually indicate

a model deficiency.

The DYNIA technique will be applied to two model instances of the pyfuse mod-

elling environment presented in chapter 9. As such, the architectural implemen-

tation of both models is the same and these models can be compared on their

structural properties itself. The latter requirement would not be satisfied when

comparing model structures from different model software environments.

The DYNIA approach fits in the metric oriented approach (section 3.2.2). A

proper performance metric needs to be defined to evaluate the model performance

in function of time. Considering the limitations of discharge measurements in nat-

ural rivers being dependent on a correct stage-discharge relation (rating curve),

the uncertainty should be taken into account in the model evaluation, i.e. trans-

lated towards the performance metric. The limits of acceptability (section 3.4.3)

anticipates for this in the performance metric construction.

This chapter allows the parameter values to change as function of time in order

to detect model structure failures. In order to take into account the limitations

provided by uncertain data, the data uncertainty is taken into account in the per-

formance metric construction. The aim is to check for model structural deficiencies

by using a dynamic evaluation of the parameter values, while using the uncertain

values of the measured discharge instead of the deterministic values normally re-

ported and applied.

First of all, the issue of rating curve uncertainty is shortly introduced and previous

applications of temporal parameter identification for model structure evaluation

are discussed. Then, the strategy applied in this chapter (using components intro-

duced in earlier chapters) is explained. Further, the individual steps are discussed

in more detail in the materials and methods section. The outcomes and a discus-

sion on the applied strategy are closing the chapter.
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10.2 Rating curve uncertainty

The inherent uncertainty in flow measurement restricts the ability to discriminate

among competing hydrological model structures (Clark et al., 2011b). Taking into

account the uncertainty on the rating curve in the model evaluation is thereby

worthwhile investigating.

Measuring discharges in natural rivers is not straightforward, due to the hetero-

geneity of the river bed and river banks. However, the measurement of the water

level itself is more obvious to do. In order to relate the (constantly) measured

water levels with the effective discharges in the river, a relation is set up between

water level and discharge, which is called a rating curve.

With regard to rating curve uncertainty, Di Baldassarre and Montanari (2009)

distinguish (1) errors of the stage-discharge relation induced by interpolating and

extrapolating of river discharge observations, (2) the presence of unsteady flow and

(3) the seasonal variation of the roughness, with increasing errors when discharges

increase. To determine the observational error from rating curve interpolation

and extrapolation, Blazkova and Beven (2009) and Westerberg et al. (2011a) use

a fuzzy regression method introduced by Hojati et al. (2005). Pappenberger et al.

(2006) use a two-dimensional fuzzy membership function to evaluate the parameter

combinations for the rating curve functions resulting in likelihood measures to

compute uncertainty bounds in prediction. Krueger et al. (2010) and McMillan

et al. (2010) further extended this concept by fitting the rating curve towards

a subset of data points and checking consistency of the fit with the remaining

points.

The incorporation of the uncertainty of the rating curve in model evaluation has

been described in literature and most approaches use a time step based method.

Beven (2006) proposed the extended GLUE approach as a way to partly avoid

the subjectivity of the GLUE uncertainty analysis by translating the uncertainty

of the discharge observations in limits of acceptability (Blazkova and Beven, 2009;

Westerberg et al., 2011b; Krueger et al., 2010; Liu et al., 2009a). The limits

of acceptability approach (section 3.2.2) directly fits within the metric oriented

approach as a method to construct a performance metric, which can be used by a

wide range of methods and it not restricted to GLUE applications only. The latter

provides information about the effect on variability of the model output.

Beven (2008b) proposes fuzzy weighting functions (in most cases triangular) to

assign time step based weights according to the level of performance. The time step

based weights can be aggregated to a model performance metric. McMillan et al.
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(2010) derive the complete PDF of the measured flow to form a likelihood function

used in Bayesian inference parameter search. This results in higher parameter

uncertainty and hence wider uncertainty bounds for flow predictions compared to

the use of a deterministic rating curve based inference scheme.

10.3 Time variant parameter identifiability
for model structure evaluation

Temporal analysis to evaluate the information content of data and to extract sig-

nature information is a valuable procedure to identify potential model deficits,

already proposed by Beck and Young (1976) and Beck (1986). Traditionally, this

was done for discrete models and by applying an extended Kalman Filter approach

for recursive parameter estimation. More recently, de Vos et al. (2010) use tem-

poral clustering to identify periods of hydrological similarity. Reusser and Zehe

(2011) propose an approach to understand model structural deficits based on a

combination of the type of model errors with parameter influence and model com-

ponent dominance. Reichert and Mieleitner (2009) combine the estimation of time

dependent model parameters with the degree of bias reduction to identify model

deficiency.

Several scientists proposed the use of time-variant and stochastic parameters based

on observations of variations in optimal parameter sets and of relations between the

model states and the optimal parameter set (Beck and Young, 1976; Cullmann and

Wriedt, 2008; Lin and Beck, 2007; Reichert and Mieleitner, 2009; Kuczera et al.,

2006; Tomassini et al., 2009). This proposal can be linked to the Data-Based

Mechanistic approach (DBM) that uses state-dependent parameters to identify

non-linear systems (Young et al., 2001). The main argument for introducing

stochastic parameter values is the inherent stochasticity of conceptual models due

to spatial and temporal averaging (Kuczera et al., 2006). Next to this, Cull-

mann and Wriedt (2008) argue that state-dependent parameter changes should be

incorporated in the formulation of process based models intended for long term

simulations, hereby adapting to different environmental conditions. Muleta (2012)

reports improved calibration and validation results when applying a season-based

calibration approach. However, when using lumped hydrological models, the gen-

eral assumption remains that model parameters are constant in time, given that

catchment characteristics do not change within the time frame for which the model

is developed. If parameter optima change in time, then the inference is that there
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is a missing aspect in the model formulation and thus a model structural error

(Abebe et al., 2010).

As mentioned, the idea of allowing parameters to vary in time to gain informa-

tion about potential model structural improvements goes back to Beck and Young

(1976) and the potential of learning from the behaviour of time-dependent pa-

rameters is higher than from corrections in model states (Reichert and Mieleitner,

2009). As such, the use of time-dependent parameters and identifiability eval-

uation as done by the DYNIA approach is a key strategy for model structure

evaluation. The DYNIA approach improves the amount of information that can

be obtained from the observed time series through the use of a moving window.

Cullmann and Wriedt (2008) compared the optimised parameter set derived with

the Gauss Marquardt Levenberg (GML) algorithm on event basis with the iden-

tifiable regions of the DYNIA approach and concluded that in most cases both

coincide. Furthermore, by reorganizing the data according to the state variable

(i.e. flow) instead of using the time series as such, a relation between the optimal

parameter value and the observed flow is revealed. This leads to the suggestion of

using state-dependent (transient) model parameters for models in operational con-

ditions. Wriedt and Rode (2006) conclude the same when they observed a shift

in the confidence range of a parameter that controls the inter flow volume at

increased discharge. They also evaluated the evolution of the parameter identifi-

cation range with growing window size and concluded that for most parameters

a constant uncertainty range was obtained after one or two years of simulation.

Lee et al. (2004) compare two model structures, with one of them a probability

based model structure. Parameters were either non-identifiable over the entire

time series or exhibited time-dependency in their optimal values. Seasonal varia-

tions of the optimum parameter values were consistent and much clearer than the

variations between dry and wet years. They suggest improved model structures

based on the correlation between the shifts in the posterior distributions of the

parameters and the soil moisture storage dynamics. However, these adaptations

did not result in a significant improvement in terms of representing the outflow

hydrograph. Tripp and Niemann (2008) use the DYNIA approach to compare

a PDM with a more physically based soil moisture representation model. They

noticed structural errors in both models and also argued that the identifiability of

a model parameter is not a sufficient reason to confirm the assumptions underlying

the parameter occurrence. Indeed, the parameter that seemed the most stable and

identifiable in a short period of time appeared to vary in time when evaluating

a long time period. Nevertheless, the latter is actually just a consequence of the

nature of these models, making them only suitable in a limited space and time

frame. Abebe et al. (2010) apply the DYNIA approach on the HBV model and
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retrieved for three out of five analysed parameters clearly defined periods with

high information content in order to identify the parameter values. The relation

between model parameters and soil moisture state was also highlighted.

10.4 Model structure evaluation strategy

In this chapter, we apply a combination of existing methodologies for model eval-

uation implemented in chapter 3 (Figure 10.1) and we apply this approach to

evaluate and compare the NAM and PDM lumped hydrological model structures

implemented in the pyfuse python package as explained in chapter 3. Different

elements for improving the model evaluation and identification are considered and

discussed. As shown in Figure 10.1, the approach of combining existing method-

ologies to enhance the model structure evaluation consists of:
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Figure 10.1: Schematic overview of the chapter. The DYNIA approach

evaluates the model structure and parameter identifiability (b) based on

limits of acceptability that are derived from the uncertainty in the rating

curve (a) and on a Monte Carlo set of model runs (c). Subsequently, the

prediction uncertainty is assessed with the GLUE approach (d).

� Figure 10.1a: Take data uncertainty into account of discharge observations.

Since model performance metrics are based on the comparison of modelled

and observed time series, they are very dependent on the reliability of the

flow measurements used. The inherent uncertainty in the observed flows
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often restricts the ability to discriminate among competing model structures

(Clark et al., 2011a). Taking into account uncertainty on the rating curve

in the model evaluation is thus essential, but usually not done in model

evaluations.

� Figure 10.1b: A two-step application of the DYNIA approach is proposed

and represents the central part of the methodology. By applying the DYNIA

approach on a subset of selected simulations, it highlights the compensation

of parameter values conditioned by the overall performance.

� Figure 10.1c: Incorporating two lumped hydrological model structures with

different structural characteristics. The PDM model (Moore, 2007) uses

a probability distribution to conceptualise the spatial differences in water

storage capacity, whereas the NAM model (Nielsen and Hansen, 1973) as-

sumes a single reservoir. Furthermore, different routing and groundwater

configurations are used.

� Figure 10.1d: The lack of identifiability is further assessed by the GLUE

approach by accepting all parameter sets and model structures that are be-

havioural according to the proposed limits of acceptability (Beven, 2006).

The selected behavioural model simulations are used to compare the predic-

tion uncertainty of both models under the defined acceptance limits. The

results should be interpreted relatively in between both models to evaluate

the effect of the identified model deficiencies on the prediction uncertainty.

As such, the workflow applied here attempts to provide maximal information about

the malfunctioning of the models. By making the origin of malfunctioning more

transparent, the modeller is less vulnerable to making type I and type II errors

and gets more insight in the background of the prediction uncertainty.

The components of the method are laid out according to Fig. 10.1 both in section

10.5, Materials and Methods, as well as in section 10.6, Results. The latter section

also contains the direct outcome of the model analysis. The reasoning about the

structural deficiencies of the models used in the illustrating case together with the

advantages and shortcomings of the combined approach are discussed in section

10.7.
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10.5 Materials and Methods

10.5.1 Forcing and input observations

Study catchment and data

The Grote Nete is used as study catchment. The available information about

the forcing variables (rain and evapotranspiration) and the observed flow where

introduced in section 6.2. However, a deterministic value of the observed flow was

used to evaluate the model performance in Part III. To include the uncertainty

of the observed flows, the water level (stage) measurements are used as well to

derive an envelope of expected flow values instead of a deterministic estimate.

The derivation based on the rating curve is explained in the next section.

Rating curve uncertainty derivation

The stage-discharge evaluation points of the Geel-Zammel discharge station, re-

presented by triangles in Figure 10.2, are used for deriving the uncertainty on

the observations. A power law is assumed to define the relationship between the

discharge and the water level:

Q = a(h+ b)c (10.1)

with, Q the discharge, h the water level and a, b, c fitting parameters.

To estimate the uncertain power law, an uncertainty envelope based on an initial

uncertainty estimate of both the discharge derivation and the water level mea-

surements was first defined. By varying the 3 parameters of the power law, those

realisations included in the uncertain envelope of the different measurements were

used to derive an overall rating curve uncertainty envelope, similar to Pappen-

berger et al. (2006). A membership function of 1 was given to each rating curve

which is within the assumed uncertain boundaries of the measured discharge and

water level and zero when outside these boundaries. This method is in line with

other methods to assess the rating curve uncertainty that also use sampling based

approaches (McMillan et al., 2010) or methods based on fuzzy regression (West-

erberg et al., 2011b; Shrestha and Simonovic, 2010).

The same measurement error for all the calibration measurements of the discharge

was assumed. Literature reports values between 1.8 % and 8.5 % for discharge
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Figure 10.2: Uncertainty outcome based on a 5 % measurement error in Q,

the triangles are the measurements and the different gray shades represent

different percentiles of the behavioural set of power law realisations

measurements and 3 till 14 mm for the water level measurements (Pappenberger

et al., 2006). In this test-case study, a discharge error of 5 % and no error for the

water level is assumed. The latter resides in the fact that no specific information

about the observation spot was available and that the relative error in the dis-

charge is expected to be significantly larger than the relative error in the water

level measurement. More elaborated research would be needed to identify a more

reliable value of this uncertainty, since uncertainty in the individual rating curve

measurements can be significant for both low and high discharges (Blazkova and

Beven, 2009).

When 1 out of 16 membership functions is allowed to be zero (i.e. curve does not

cross the defined uncertainty of the observation), the set of behavioural parame-

ter sets can be used to derive uncertainty bounds of the discharge measurements.

In this way, the possibility of a very bad measurement is taken into account in

the evaluation, without explicitly excluding specific measurements. The resulting

uncertainty envelope is shown in Figure 10.2. The uncertainty increases towards

lower and higher (extrapolated) values of the stage-discharge measurement points.

Since only membership functions of one and zero are used, every behavioural real-

isation gets the same weight. This assumption is made since the model error was

expected to be larger than the measurement error similar to Krueger et al. (2010).
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For the same reason, it is not expected that the hydrological model realisations

would fall into these measurement uncertainty bounds for all time steps. Thus,

adding more detailed information about the observation error structure within the

bounds would not add significant information to the model structure evaluation

and focus is on the relative differences with increasing uncertainty towards the

more extreme values.

For every time step in the flow time series, the measured value was assumed to

correspond to the median value in the uncertainty envelope of the rating curve

(Figure 10.2). The percentiles of this envelope corresponding to this median value

were used to translate the uncertain rating curve into the flow time series uncer-

tainty. The resulting uncertainty bounds from 2003 till 2005 are given in Fig-

ure 10.3. These percentiles are used as limits of acceptability in the remainder of

the approach (Figure 10.1).

10.5.2 PDM and NAM lumped hydrological model structures

The PDM and NAM model implementations were introduced in chapter 9, both

in the original descriptions as in the more generic ODE description. Notice that

for this application the original version was used and that the parameter names

and symbols in this chapter are according to the original model descriptions of

respectively section 9.6.4 and section 9.6.3.

The focus on these two specific model structures is mainly triggered by the rele-

vance for current operational water management in Flanders, since they are models

applied in operational water modelling frameworks. The NAM model has been em-

ployed successfully to describe the hydrological behaviour of Flemish rivers in the

past (Vansteenkiste et al., 2011) and is used by the Flanders Hydraulics Research

in their water management activities. Also abroad the concepts and performances

of the model structure had been proven adequate in different applications (Refs-

gaard and Knudsen, 1996).

To screen the parameter space, a brute force sampling approach is used and a total

of 500 000 model simulations of both model structures were performed. Sampling

of the parameter combinations was performed with a quasi random sampling tech-

nique (Sobol, 1967) assuming a uniform distribution between the defined ranges

(cfr. section 3.5). Parameter ranges are given in Tables 10.1 and 10.2 for respec-

tively PDM and NAM models. For the PDM model, the parameter ranges are

based on those proposed by Cabus (2008). The results of the study performed by
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Figure 10.3: Observation uncertainty for the years 2003, 2004 and 2005

with the measured discharges presented as black line. The grey uncertainty

band is delimited by the 5th and 95th percentile values as computed from

the rating curve analysis. Increasing uncertainties for both lower and higher

discharges are apparent. These uncertainty bound are used as limits of

acceptibility to assess the model performance.

Vansteenkiste et al. (2011) was used to set up the parameter ranges for the NAM

model.

10.5.3 Performance metric: Limits of acceptability

Considering the uncertainty of the measured discharges, the limits of acceptability

approach provides a method to define a performance metric that takes the un-

certainty into account (cfr. section 3.4.3). The limits of acceptability are directly

derived from the uncertainty bounds coming from the rating curve uncertainty. As

such, the specified minimum (Qmin) and maximum (Qmax) limits of acceptability

(Figure 10.3) correspond to the data uncertainty. By using these limits, the prob-

lem of making assumptions about the statistical characteristics of the modelling
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Table 10.1: Overview of the PDM model parameters ranges assumed for the Nete

case, based on the ranges proposed by Cabus (2008).

Parameter Description Sampling range

Cmax (mm) Maximum storage capa-

city

160–5000

b Exponent of Pareto distri-

bution

0.1–2.0

be Exponent in actual evapo-

ration function

1–4

bg Exponent of recharge

functiona

/

kg (h mmbg−1) Groundwater recharge

time constant

700–25 000

kb (h mm2) Base flow time constant 0.0002–1.0

kf (h) Time constants of cascade

of two linear reservoirs

0.1–40

Sτ (h) Soil tension storage capa-

city

0–150

a value of bg was set to 1 for all simulations, see section 9.6.4

error needed in Bayesian applications is avoided (Beven et al., 2008; Beven and

Freer, 2001; Vrugt and Robinson, 2007).

In order to rank the different model simulations, these limits were translated into

a model evaluation score. A similar approach as Westerberg et al. (2011b) and

Liu et al. (2009a) is chosen, i.e. the score is -1 and 1 when simulated discharges

are equal to respectively the lower and upper limit of the uncertainty bounds and

linearly interpolated values are used in between the boundaries (Figure 10.4, left).

Summing the absolute values of the scores of the individual time steps results in

an aggregated score for each model simulation.

In principle, a model prediction will be selected if all modelled values fall between

the specified minimum (Qmin) and maximum (Qmax) limits of acceptability for all

time steps. However, under these criteria, all model realisations are rejected and,

similarly to (Blazkova and Beven, 2009; Liu et al., 2009a), relaxation of the criteria

is to be considered . A first option is relaxing on the number of observation points

that need to satisfy the specified limits. This needs careful verification in order to

avoid that periods of non-compliance with the limits, are the periods of interest.

A second option is relaxing on the initially set acceptance limits of the individual
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Table 10.2: Overview of the NAM model parameters ranges assumed for

the Nete case, based on the study performed by Vansteenkiste et al. (2011).

Parameter Description Sampling range

Umax (mm) Maximum water content

in the surface storage

3–25

Lmax (mm) Maximum water content

in the lower zone

50–250

CQOF Overland flow runoff coef-

ficient

0.01–0.99

TOF Threshold value for over-

land flow recharge

0–0.7

TIF Threshold value for inter

flow recharge

0–0.7

TG Threshold value for

groundwater recharge

0–0.7

CKIF (h) Time constant for inter

flow from the surface stor-

age

100–1000

CK1,2 (h) Time constant for over-

land flow and inter flow

routing

3–48

CKBF (h) Time constant for base

flow routing

500–5000

observation points and thus accepting time steps with scores larger than 1 or

smaller than -1 (Liu et al., 2009a). The type of relaxation used in each step in the

methodology is explained in the next two sections. Finally, the compliant subset

of simulations could also be determined by taking a percentage of best performing

simulations considering their summed score.

The scores themselves are both used in the DYNIA and the GLUE approach in

order to:

� Make a first subset selection of simulations to apply the DYNIA approach,

using the entire calibration period (see section 10.5.4).

� Evaluate and select the simulations in the different time frames set by the

DYNIA approach (see section 10.5.4).
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� Select the behavioural simulations to derive the prediction uncertainty ac-

cording to the GLUE approach. For the latter, the scores need to be trans-

formed into weights. The weights of the different behavioural simulations

are subsequently used in the GLUE methodology to derive the prediction

limits of the ensemble of model realisations (see section 10.5.5 and Figure

10.4).

Figure 10.4: Calculation of the scores (left) and weights (right) based on the

uncertainty ranges derived from the measured flow. Qmin,t and Qmax,t are

the lower and upper limit for the flow uncertainty at time step t and Qt the

measured flow, corresponding to the median of the uncertain measurements.

A score of 0 is assigned to simulated values equal to Qt, -1 to values at the

lower limit and 1 to values at the upper limit. Other values are linearly

inter- and extrapolated. Scores are converted to weights by a triangular

weighting function at every time step. Simulated time steps closer to Qt

receive proportionally higher weights and scores outside the boundaries are

0 in order to construct a likelihood value.

10.5.4 DYNIA approach

Prior application of limits of acceptability

In contrast to Wagener et al. (2003), for this application a two-step application of

the DYNIA approach is applied. First, a subset of simulations is selected based on

a performance metric aggregated over the entire calibration period. In this way,

only those simulations able to satisfy an initial set of limits of acceptability are

selected. By only retaining this subset of simulations, the further analysis focuses

on the posterior parameter distributions that represent the (overall) dynamics of

the system with a certain user-defined minimum level of performance.

score(t) weight(t) 
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After a first rejection of all simulations, a relaxation was applied towards both

the limits of the score and the fraction of time steps the simulation needs to be

in the allowed envelope. Since over- and underprediction of the simulations is

observed at similar degree, both the upper and lower score limits are extended to -

2 and 2. In other words, the initially derived uncertainty measurement boundaries

seemed to be too conservative. Next to this, the percentage of time that the

simulations are allowed to be outside the score limits is set to 10 % of the simulation

period. As such, the limits of acceptability are relaxed and a total of 477 parameter

combinations for the NAM model and 389 parameter combinations for the PDM

model are accepted. The relaxation is done specifically for this case based on

expert judgement and should be reconsidered when more or less confidence in

either the model structure or the data exists.

Given the applied relaxations, it is important to understand at what time instants

the model simulations are violating the score boundaries in order to observe po-

tential systematic failure of the selected simulations. This check was done visually

based on an empirical cumulative distribution of the scores over the different time

steps. A balance in the number of over- and underpredictions is required for fur-

ther analysis. Besides the calibration period as a whole, a more detailed check was

done on selected periods of the hydrograph. First, a separation was performed

to discriminate different modes of the hydrograph similar to Boyle et al. (2000);

Wagener et al. (2001a); Krueger et al. (2010). A segmentation was done between

driven (wetting up, positive slope of the hydrograph) and non-driven (draining,

negative slope of the hydrograph) periods, illustrated in Figure 10.5. A further

separation of the non-driven periods in quick and slow non-driven periods was

made using a threshold for flow. This threshold was set to the mean flow of the

season the period belongs to (in contrast to Wagener et al. (2001a), using overall

mean flow) in order to better adapt to the seasonal variations. Secondly, a separate

seasonal segmentation was done to evaluate the seasonal effects.

DYNIA application

The DYNIA approach, initially developed by Wagener et al. (2003), is essentially

a dynamic extension of the RSA (Hornberger and Spear, 1981) (section 5.8).

An important decision in the analysis, is the selected time window for which the

scores are aggregated for each of the parameters, enabling the identification of im-

portant response modes. Since for all parameters, the same (uncertain) flow time

series is used, a classification between a short (1-5 d), median (5–30 d) and long

(30–45 d) window was used for parameters that are expected to mainly contribute
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Figure 10.5: Illustration of the segmentation to seperate driven and non-

driven periods of the hydrograph, inspired by Boyle et al. (2000). Driven

periods are identified by increasing flow values due to incoming rain, whereas

non-driven periods are characterised by decreasing flow values. A further

distinction is made between non-driven fast periods and non-driven slow

periods using on a threshold value, i.e. is the mean flow of the season.

to respectively overland flow, unsaturated zone and groundwater processes. When

the window size is too narrow, the influence of the data error could become too

influential, whereas too wide window sizes can result in aggregation of different

periods of information (Wagener et al., 2003).

By adapting the time frame manually within the proposed ranges, the period that

gave the most (visual) information about a parameter’s behaviour was selected.

Depending on the window size, the time steps at the beginning and end of the time

series that are distorted need to be excluded for the interpretation (Wagener et al.,

2003). For each parameter of both model structures, a plot was made representing

the dynamic identifiability of the parameter.

10.5.5 Prediction uncertainty derivation with GLUE

GLUE (Beven and Binley, 1992; Beven and Freer, 2001) is explained in section 5.9

in chapter 4. It accepts all simulations satisfying the defined requirements and

combines them into output variability (uncertainty) limits based on their corre-

sponding performance metric values (Beven, 2006). Hence, it provides insight in

the variability of the output under the specific selected conditions of the parameter

conditioning process. In the remainder, the output variability will be referred to as

prediction uncertainty, considering the common terminology in literature. Notice

the discussion in section 5.9 about the legitimacy of referring to uncertainty.
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In this application, all model realisations having a model output within the min-

imum and maximum limits for a sufficient amount of time steps, considering the

applied relaxations, are considered as behavioural. The definition of prediction

percentiles requires a likelihood weight to be specified for every model run (Beven,

2006). To obtain this aggregated likelihood weight, the scores at all individual

time steps are first translated using a triangular weighting function, similar to

fuzzy membership functions (Liu et al., 2009a; Westerberg et al., 2011b; Blazkova

and Beven, 2009) and then summed up to derive a single weight associated with the

particular model realisation, similar to Liu et al. (2009a). Again, other methods

to combine the weights of the individual points are possible (e.g. giving peri-

ods of low flow and high flow more importance) and worth testing, which fits in

the performance metric approach. Models that produce flow predictions close to

the observations will have higher weights and vice versa. Other conceptualisa-

tions about the measurement error could be used to construct these weights as

well.

To derive the prediction uncertainty, the same limits of acceptability as those of

the first subset selection (section 10.5.4) were used in a first analysis. As such, the

information about the parameters and structures can be related to the prediction

uncertainty coming from this set of selected simulations. Subsequently, a second

(additional, i.e. result of the DYNIA application, see section 10.6.1) selection of

behavioural parameter sets was done based on the scores during the individual

seasons. In this way, the analysis is based on a seasonal segmentation in contrast

to the analysis of the entire calibration period. Limits of acceptability were put for

each season separately with score limits of -2.5 and 2.5 and a maximum percentage

of 5 % of the time steps that these limits might be trespassed. As such, less concern

is put on the individual scores, but more on the percentage of time in contrast

to the selection criteria for the entire period (aggregated scores). This sub period

posterior parameter evaluation was performed to get insight in the behaviour of

the model structures with respect to the seasonal dynamics.
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10.6 Results

10.6.1 DYNIA model evaluation

Prior application of limits of acceptability

Figure 10.6 shows the scores for the entire calibration, as well as for the driven

and non-driven periods. 90 % of the time steps are within the -2 to 2 boundaries

defined as (relaxed) limits of acceptability. The gray bounds indicate the -1 and

1 boundaries: they indicate those model simulations with a prediction within the

derived observation uncertainty bounds. No unbalanced over- or underestimation

of the scores is observed, except for a slight skewness of the scores during the non-

driven slow periods. This indicates shortcomings of both the model structures in

representing the long-term drying up of the catchment. Based on the seasonal

scores (Figure 10.7), differences between both models are clearer and the long

term seasonal limitations appear to predominate the short term representation of

the wetting and drying after a rain event. Furthermore, larger differences in the

histogram plots in between the models indicate the mutual difference between the

model structures to be more apparent at the seasonal level.

The imbalance between over- and underestimation of the scores is not excessive

and the relaxation of the score is wide enough to minimize the risk of type II

errors, i.e. excluding potential accurate simulations. As such, this subset selection

is considered sufficient to initiate further DYNIA analysis. The approach was

used to focus on the selected parameter sets and to augment the insight in the

uncertainty inherent to model structures.

Results of DYNIA for NAM model

Figure 10.8 shows the identifiability analysis for the parameter (TOF), which is

the threshold value for overland flow of the NAM model. The plot visualizes

both the DYNIA results in the parameter-time space and the derived IC over

time. The range of the y-axis at the parameter side is taken from the original

parameter boundaries. The combined analysis allows on the one hand to identify

periods with high identifiability and on the other hand to verify the location of

optima in the parameter space during these periods. The IC of TOF is the highest

during summer rain events, where the width of the confidence limits is decreasing

and the confidence region is centered around lower values of the parameter. The
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Figure 10.6: Empirical cumulative distribution of the scores of all be-

havioural model realisations for the entire calibration period as well as

selected parts of the hydrograph for both NAM and PDM model. The

histograms are normalised by the number of behavioural simulations and

represent the % of time steps of the defined period. The gray band repre-

sents the -1 and 1 boundaries of the measured uncertainty.

mode of the distributions of the parameter value fluctuates during the remaining

periods without particular optima, indicating that varying values of the parameter

can yield similar score values. This can be explained either by the influence of

the other parameters in the model (i.e. identifiability problems) or by the model

output being not sensitive to this parameter during these periods. However, during

the summer months the threshold is more identifiable and has generally a lower

value compared to the other periods (generating more overland flow).

The Lmax parameter representing the maximum water storage in the lower soil

between root zone and groundwater (Figure 10.9) evolves towards different para-

meter values during different periods. Lower values appear during winter months

in 2004 and 2005, whereas higher values are obtained during spring months of

2003 and 2004. As stated by Wagener et al. (2003), this typically indicates a fail-

ure of the model structure due to the inconsistency in the way the model fits

the observed flow during different seasons. Moreover, parameter CKBF behaves

in the opposite direction to compensate for this seasonal variation (results not
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Figure 10.7: Empirical cumulative distribution of the scores of all be-

havioural model simulations for the different seasons for both NAM and

PDM model. The histograms are normalised by the number of behavioural

simulations and represent the % of time steps of the defined period. The

gray band represents the -1 and 1 boundaries of the measured uncertainty.

shown, but the seasonal parameter switch is also visible for the winter season in

Figure 10.14).

Similar analyses of the other parameters shown in appendix A of the NAM model

show a shift towards very low values of Umax during certain rain events, but this

causes at the same time overestimation of the peaks. CQOF is identifiable during

winter events and also for TG seasonal variation of the optimal parameter value is

recognisable, but not as distinct as for the previous parameters. For TIF, identifi-

ability of the parameter is low throughout the entire calibration period, whereas

for CKIF a small shift towards higher values is observed in winter months when

the catchment is in wet condition. Differences in the area of identifiability of the

CK1,2 parameter during rising and falling limbs indicates that using the same

time constant for overland flow and inter flow will be too simplistic to capture the

retention of the basin.
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Figure 10.8: Results of the DYNIA procedure for parameter TOF (NAM

model) applied to the behavioural model simulations for the entire calibra-

tion period. The black line in the top graph shows the measured stream-

flow (right axis). The dark gray lines are the 90 % confidence limits derived

from the cumulative distribution of the parameter values (left axis) of the

behavioural model realisations and the gray shading indicates the size of

the gradient of these distributions, with a darker color for a higher value

(better identifiable). A time window of 3 days was used since the parameter

belongs to the group with quick response processes. In the lower graph the

rain is shown in gray (right axis) together with the Information Content

(IC; black , left axis), defined by one minus the width of the confidence

limits over the parameter range. Identification of TOF is mainly possible

during summer storms.

Results of DYNIA for PDM model

For the PDM model, Figure 10.10 shows the dynamic analysis of the maximum

storage capacity (Cmax). In this case, the periods with the highest information

content along the entire period are the periods of heavy rain. In these periods

convergence towards clearly defined parameter ranges is much more present than

in other periods. In the recession after the winters of 2003 and 2004, a shifting

towards higher values together with a decrease in identifiability is visible, but

to a lesser extent than the shifting of the Lmax parameter of the NAM model

(Figure 10.9), indicating a better representation of the seasonal variation in the

catchment.

The parameter b that defines the shape of the pareto distribution and thus repre-

sents the spatial variation in the catchment, is the second parameter defining the

unsaturated zone processes (Figure 10.11). During most of the year, parameter b
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Figure 10.9: Results of the DYNIA procedure for parameter Lmax (NAM

model) applied to the behavioural model simulations for the entire calibra-

tion period (see Figure 10.8 for explanation). Changing regions of iden-

tifiability are identified in summer and winter, possibly indicating model

structural shortcomings.

strives to lower values, except for the spring periods, where the parameter is less

identifiable, probably due to the interaction with Cmax. Furthermore, the increase

of the parameter value indicates more variation in the catchment in terms of soil

storage availability.

Similar plots of other parameters of the PDM model are shown in appendix A.

The exponent of the evaporation function be does not show a distinct area of iden-

tifiability. The groundwater recharge constant kg is much more identifiable than

the base flow time constant kb, showing the importance of the drainage function

to capture the seasonal variation of the groundwater. The storage capacity Sτ of

the drainage function on the other hand is less identifiable, whereas the routing of

the overland flow (kf) is identifiable during the entire period, but exhibits jumps

between two optima that are not directly seasonally related.

10.6.2 Prediction uncertainty derivation with GLUE

Prediction uncertainty

Based on the set of accepted parameter combinations and their corresponding

(normalised) weights, the output prediction uncertainty of both model structures

is computed. Figure 10.12 gives the uncertainty (90 % prediction uncertainty)

for 2004 and compares the uncertainty about the observations with the modelled
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Figure 10.10: Results of the DYNIA procedure for parameter Cmax (PDM

model) applied to the behavioural model simulations for the entire calibra-

tion period (see Figure 10.8 for explanation). Identifiability is the highest

in periods of heavy rains with a consistent tendency towards values of about

700 mm.

prediction uncertainty for 2004. PDM tends to underpredict the peaks during

winter months, but captures the dynamic behaviour in the summer months. The

variation in June is completely missed by the NAM model. Both models are

overestimating the flow peaks in March. Mainly the periods where one out of

the two models is unable to predict the dynamics are useful to distinguish model

structural differences.

For the validation period, the prediction uncertainty of 2006 is shown in Fig-

ure 10.13. Similar differences between the model structures as compared to the

calibration period can be observed. PDM better captures the recession periods in

July and October and the NAM model predicts in general higher peak discharges.

During storms, uncertainty boundaries related to the NAM model are wider com-

pared to those of the PDM model. The similarity in the failures of the models in

both calibration and validation periods further confirms that the conclusions of the

identifiability analysis are independent of the choice of calibration period.
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Figure 10.11: Results of the DYNIA procedure for parameter b (PDM

model) applied to the behavioural model simulations for the entire calibra-

tion period (see Figure 10.8 for explanation). Higher optimal values during

winter and spring months increases the overland flows.

Posterior evaluation of periodically selected parameter
combinations

In Figure 10.14 the posterior parameter distributions of the NAM model are shown

for each season. The resulting posterior parameter distributions are in correspon-

dence with the model identification (section 10.5.4). Seasonal variation of optimal

parameter values is mainly visible for parameters Lmax, CKBF and CKIF . Over-

land flow parameters, CQOF and CK1,2, are highly identifiable during winter,

whereas TOF is during summer months. Nevertheless, seasonal differences are

visible due to rain events happening during respectively wet or dry conditions

of the catchment. The posterior distributions of the parameter TIF do not con-

tain a small, clearly defined optimal region in any season. Since also the DYNIA

approach revealed no specific region of identifiability, the usefulness of the infil-

tration threshold for this application can be questioned and simplifying the inter

flow description (leaving out the TIF parameter) can be considered.

The posterior distribution of the parameters of the PDM are shown in Figure 10.15.

The seasonal variation that is visible for the Cmax parameter (mainly winter and

fall) in combination with parameter b is different to the DYNIA results since the

higher posterior values during winter were not accepted in the limits of accept-

ability set for the entire calibration period. A higher value for Cmax (more water

storage capacity) would help the prediction during winter but tends to predict the

rest of the hydrograph wrongly. The main differences with the seasonal variation is
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Figure 10.12: Uncertainty boundaries for measured and predicted flow du-

ring 2004 (calibration), both confined by the 5 % and 95 % percentiles. PDM

tends to underpredict the peaks during winter months, but captures the dy-

namic behaviour in the summer months. The variation in June is completely

missed by the NAM model.

Figure 10.13: Uncertainty boundaries for measured and predicted flow du-

ring 2006 (validation), both presented by the 5 % and 95 % percentiles.

glspdm better captures the recession periods in July and October and the

NAM model predicts in general higher peak discharges. During storms,

uncertainty boundaries related to the NAM model are wider compared to

those of the PDM model.

noticeable for parameter kg. Again, these high values in summer and spring were

not taken into account in the DYNIA approach. These high values decrease the

drainage towards the groundwater reservoir. The posterior of the non-driven slow

J1n Feb Mar 

2004 
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Figure 10.14: Posterior parameter sets of the behavioural model simula-

tions selected based on the specific part of the hydrograph for the NAM

model. Driven periods and non-driven quick periods are excluded since no

behavioural sets were present according to the used limits of acceptability.

supports the convergence towards winter values. Based on the seasonal selection

kb and Sτ are not identifiable.

10.7 Discussion

This chapter combines for the first time the limits of acceptability approach

(Beven, 2008b) with the dynamical identifiability approach DYNIA (Wagener
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Figure 10.15: Posterior parameter sets of the behavioural model simula-

tions selected based on the specific part of the hydrograph for the PDM

model. Driven periods and non-driven quick periods are excluded since no

behavioural sets were present according to the used limits of acceptability.

et al., 2003). By doing this it is possible to evaluate the potential of detecting

model structural deficiencies, while taking into account the rating curve uncer-

tainty. Using the resulting uncertainty band of the flow time series as evaluation

limits, one does not need to make explicit assumptions about the nature of the

modelling errors (Beven, 2008b). When the analysis of the obtained evaluation

scores for different subperiods is lacking clear indication of over- and underpredic-

tion (Figure 10.7), the added value of the DYNIA approach becomes clear. Indeed,

by applying the DYNIA approach, one can get insight into the model structural
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limitations. Comparable information about the parameter time-variation is de-

rived by the subperiod parameter selection (section 10.6.2), but this is based on

the knowledge of seasonal defects brought by the DYNIA approach. This, in

combination with the ease of use, illustrates the advantages of applying the DY-

NIA approach as generic information source for model structure evaluation and

improvement in comparison to model evaluation based on a comparison of the

performance towards one or more performance metrics.

A first difference between the applied models is the soil moisture storage compo-

nent. NAM is using one upper and lower storage reservoir, whereas PDM uses

the probability distribution concept aiming at conceptually introducing the spa-

tial variability. Furthermore, a linear routing of the groundwater is used in the

NAM model in contrast to a non-linear routing of PDM. Groundwater recharge

is comparable when bg is assumed 1 for the PDM model. The differentiation in 3

subflows in the NAM model, against 2 in the PDM model is partly compensated

for by the use of one time constant for both overland flow and inter flow in the

NAM model. The limitations to simulate the seasonal dynamics are dominating

the peak discharges of the individual rain events, mainly dominated by the soil

moisture storage conceptualisation. From the results presented here, the proba-

bility distribution approach from the PDM model seems to be more suited.

Moreover, capturing the seasonal dynamics is in this catchment mainly related

to the groundwater representation, due to the sandy soils and low slopes in the

catchment. The absence of identifiability of the PDM base flow time constant (kb)

and the interplay of the seasonal variation in the NAM base flow time constant

(CKBF) with the soil moisture Lmax suggest shortcomings for both models, albeit

for different reasons.

In the NAM model, a clear compensation of the parameter values suggests that

the inability of the soil moisture storage is causing these problems, probably due to

the inability to capture the dynamics by only one reservoir. During winter months,

lower Lmax values produce more runoff in combination with higher base flow time

constants to prevent the overprediction. After the winter months, higher Lmax

values are needed to decrease the flows together with lower base flow routing. In

general, the combination of the small Umax reservoir and the single Lmax reservoir

accounting for unsaturated zone is not sufficient to incorporate seasonal variations.

The insufficiency of the unsaturated zone concept of the NAM model to capture

the water retention in the catchment throughout the year is further supported by

the seasonal variation of the posterior parameter distributions as pointed out in

section 10.6.2.
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In the PDM model, the seasonal variation is mainly captured by the soil moisture

variation in combination with the identifiable recharge parameter (kg), inducing

the limited influence of the kb parameter. Higher values of b indicate a higher spa-

tial variation during winter months (indicating the shortcoming of a single reservoir

based model structure), whereas the low values during the rest of the year suggest

more uniformity in the catchment implying that a single storage may be sufficient

during these periods. McMillan et al. (2011) reached similar conclusions based on

the non-uniqueness of the storage-discharge relationship, suggesting that multiple

reservoirs are required. As such, the seasonal variation is captured by varying

proportions of flow from the different reservoirs (cfr. the PDM approach).

Since the DYNIA approach starts from the simulations selected by the same limits

of acceptability as the GLUE approach, the characteristics of the predictions can

be compared. The mismatch between the flow predictions of the NAM model

in the falling limbs was observed by applying the GLUE approach and can be

explained by the changes in the region of identifiability of the CK1,2 parameter,

which is shown by the DYNIA approach. The overestimation of the peaks and

their larger prediction uncertainty in the NAM model is mostly related to the lack

of identifiability of the treshold TOF and thus related to the influence of the lower

zone configuration (see Equation 9.7). Notice that the GLUE method is actually

used as a sensitivity analysis on the output variability referred to in section 5.9.2,

comparing the effect of the defined limits on the output variability of two models.

The output uncertainties should be regarded in this way and only interpreted

relative to each other and to the observation uncertainty.

Foregoing conclusions are made based on the application on one single catchment

and might be different for other catchments with different specifications. The

method can be applied to any model structure analysis and type of hydrological

data. To derive generalised conclusions, a larger effort using a larger set of basins

would need to be used. However, this was beyond the scope of this dissertation

that merely wanted to demonstrate the methodology and its assets.

A restriction in the application of the limits of acceptability approach is the need

for relaxation of the initial limits of acceptability to avoid rejection of all model

simulations (both in terms of parameterisation and structure). Similar relax-

ations were also needed in the work of Blazkova and Beven (2009) and Liu et al.

(2009a).

However, since the focus is on model evaluation, the approach is rather based on

rejection of bad parameter sets and model structures than on parameter optimiza-

tion (moreover, the number of simulations would be far too insufficient to identify

the overall optimal region). For model evaluation, it is important to identify and
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focus on particular parts of the time series that are not well simulated (Beven,

2008b). This learning by rejecting is made possible by consecutive relaxing of the

limits of acceptability. In the presented approach, 2 major degrees of freedom

were altered. The first one is the % of allowed time trespassing the limits and the

second one is relaxing of the limits.

When putting rigorous requirements on the % of time and at the same time relaxing

the limits, more focus is given towards the prediction of the general behaviour of

the dynamics. Alternatively, more focus can be put to periods of violating the

initial derived limits by relaxing the % of time, and keeping the original limits.

In the application here, a relaxation of both was used to gain general insight in

the behaviour of the resulting behavioural simulations. This choice will, however,

be case specific. It depends on the expected uncertainty in the data and the

confidence in the model structures to be tested.

The described relaxations were taken into account in both the DYNIA and GLUE

approach. The resulting behavioural model simulations used in section 10.5.3 were

selected based on a time-aggregating performance metric, whereas in section 10.6.2

separate limits on different response modes of the hydrograph are used. However,

comparable results were obtained by Peters et al. (2003). The DYNIA approach

allows evaluating the selected simulations in function of time. In model evalu-

ation, the use of multiple, non-commensurable, evaluation functions focusing on

different underlying assumptions is essential (Gupta et al., 1998; Winsemius et al.,

2009), but the selection of the most appropriate criterion is not always straightfor-

ward. The application of the DYNIA approach can give guidance in the selection

of performance metrics. For this application example, the use of a total seasonal

volume could support the model optimization for practical applications. Besides,

by focusing on the behavioural simulations with DYNIA, information is extracted

about the reasons for the lack of identifiability of the selected (behavioural) pa-

rameter sets. Insight is given in how identification (in terms of parameter space

and model structures) can be improved, leading to a more objective and guided

reasoning when defining limits of acceptability.

In summary, incorporating the DYNIA approach in the model structure analysis

methodology (Figure 10.1) is a straightforward way to discover potential pitfalls

and to enhance the learning curve about model structure improvement. Looking

into model performance in function of time gives guidance towards model opti-

mization and identification. By incorporating the discharge uncertainty, potential

periods of wrong measurements (so called disinformative observations in Beven

and Westerberg (2011)) are less influential on the model evaluation, making it less

biased compared to using deterministic flow values. Since these disinformative pe-
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riods lead to biased inference of the parameter distributions (Beven et al., 2011),

these periods are indicated by the DYNIA approach and can be further checked

for. Furthermore, it is shown that the uncertainty about the observations is not

inhibiting the identification of deficiencies in model structure. Still, the use of

erroneous input forcing (i.e. rainfall and evapotranspiration data) can obscure the

differences in model performance. Accounting for input forcing errors in the struc-

ture evaluation can potentially clarify parameter value switches (Kavetski et al.,

2006b,a; Vrugt et al., 2008a).

From a practical point of view, the modeller has different options facing these

structural flaws:

� Model rejection can be the conclusion, given rise to model adaptations or

developing new ones. Since the method offers knowledge about where the

model fails, a starting point for model structure adaptation is inherently

suggested by the method. Bringing in more physical based reasoning can be

the conclusion as well as simplifying the current model. More physical rea-

soning is needed when physical processes are missed, whereas simplification

is needed when overparameterization is the case.

� When different structures are acceptable and their imperfections are com-

plementary (meaning they have shortcomings for different reasons), the mo-

deller can bring the results together in an ensemble. When different model

structures do have common pitfalls, the incorporation of both is redundant.

� When the results suggest disinformative observation periods instead of model

structural failures, the modeller needs to further check the potential errors

in the discharge records.

� The time-dependent information assists the modeller in selecting a repre-

sentative set of objective functions for further model assessment. Selecting

objective functions focussing on the ’potential’ pitfalls of the model structure

is of more use than an overall Nash-sutcliffe or RMSE function.

The workflow applied is believed to be more generic in use than the illustrative

case described in this chapter. Data different from flow measurements, such as

groundwater level information or isotope data (Fenicia et al., 2008; Winsemius

et al., 2009) can be used in addition to derive extra limits of acceptability. However,

in many cases these types of data are not available and the flow time series remain

the main basis for model evaluation. Finally, also other model structures can be

incorporated in the analysis or the information of the identifiability analysis can

be used to propose model structure adaptations.
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10.8 Conclusions

This chapter combined different methods implemented in the pystran Python

Package 4 of chapter 3 to identify and explain model structure deficiencies. The

application is done on two specific instances of the pyFUSE model environment

of chapter 9, NAM and PDM, because of their applications in current operational

water management. As such, it illustrates how the entire set of modelling tools

presented in previous chapters can be combined to propose strategies for model

evaluation. More specifically, the application of this chapter contributes to (1)

an improved model structure evaluation, preventing the modeller from making

type I and type II errors and (2) gain insight in the derivation of the prediction

uncertainty.

It starts from the idea of using limits of acceptability, both by the rating curve

application and by the ability to propose evaluation functions that are able to

discriminate the model structures on their performance. The latter information

comes from the DYNIA approach, which indicates where model structures have

potential pitfalls. Instead of testing multiple objective functions hoping that differ-

ences will be seen, the DYNIA analysis instantly indicates where these differences

can be found. Practically for the presented analysis, the seasonal evaluation is

essential to compare the performance of both models. Parameter identification

is directly evaluated by the DYNIA approach, which provides a direct generally

applicable strategy to identify model structure failures. As such, the usage of tem-

poral parameter identification methods is still a promising technique for model

structure evaluation.

Still, the DYNIA method suffers from the subjectivity in the relaxation of the

limits of acceptability and the user-defined moving window for which the scores

are aggregated. To overcome these limitations, a new method, called Bidirectional

Reach (BReach) (Van Eerdenbrugh et al., 2016a,b), is currently developed which

adopts the idea of a time step based model evaluation but overcomes the subjective

relaxations by combining the information of multiple relaxation levels. Moreover,

by checking the distance for which a parameter combination performs according to

the limits and relaxation (referred to as reach) for each observation individually,

the method is independent of a chosen window size. Hence, the BReach method

overcomes the major drawbacks enlisted.
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CHAPTER 11

General conclusions

When a proper mathematical model is available, it becomes a powerful tool for

both scientists and engineers. It enables to evaluate the process behaviour under a

variety of different conditions both rapidly and inexpensively. Moreover, different

what if scenarios can be tested without the need of influencing or disturbing the

actual process itself, which is crucial in an environmental context.

Modelling is well-developed in a wide range of scientific disciplines. More specific,

the group of continuous dynamical models, generally described by a set of ODEs,

is frequently used in a wide range of existing environmental modelling environ-

ments and applications, although sometimes hidden from the end-user within the

(monolithic) implementation.

Within any modelling exercise, the system to describe needs to be defined. The

system is the part of reality that is being studied and always depends on the

research question at hand. In environmental modelling, a wide range of spatial

and temporal scales is possible (cfr. bacterial activity of a reactor versus climate

models). The model represent a conceptual representation of the system as a set

of process descriptions, i.e. mathematical equations.

Environmental science deals with complex structures characterized by many inter-

acting processes and the representation in model equations is always a simplified

version of the real system. The identification of a proper mathematical model

is a learning process just as any kind of scientific investigation and is prone to

falsification. In other words, we learn about the system behaviour by failing to

represent it.
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Each system is unique. The environment itself is highly heterogeneous and the

availability of observations as well as the modelling purpose itself is case- and

system dependent. Hence, it is clear that a tailor-made approach is essential to

cope with these variations.

Nevertheless, some hampering factors were identified in a first stage of this dis-

sertation. These factors provoke a conservatism in the modelling field. Many

environmental modelling studies are limited to the tweaking of model parameters,

which is insufficient regarding the requirement for customization.

11.1 Observed conservatism in modelling

In Part I, some main bottlenecks were identified and discussed in more detail.

First, the incoherence in the terminology, notwithstanding the similar mathema-

tical framework, hampers collaboration, makes coherence lacking and eliminates

the confidence of stakeholders and practitioners.

Secondly, the quest for the ultimate super model drives model development towards

increased detail of the process descriptions averse to the necessity of sufficient

data, required to test these detailed hypotheses. This gives rise to an identifia-

bility problem, where it becomes impossible to distinguish alternative hypotheses

(representations), and limits the testability of models.

The latter is enforced by a third factor of protectionism towards the own (model)

creation and the related bias towards positive reports focusing only on the capa-

bilities of the proposed model structure.

A fourth identified factor arises from the classic approach of model software de-

sign. The direct impact of the architecture and implementation is often ignored

and models are delivered as closed-source, monolithic entities as an all in one ap-

proach. With regard to the evaluation process, this limits the ability to attribute

differences in model behaviour to the chosen process descriptions. Besides, it leads

to redundant implementations, it limits the capability to adopt new insights and

causes a general lack of reproducibility.

Fifth, besides continuous remarks from scientists within the different disciplines

about inferior model evaluation practices, model evaluation is still regularly limited

to the one-liner the model fits the data quite well. Indeed, it is true that any model

can be falsified under stringent conditions and one should strive to check if the

model is appropriate for its intended purpose. However, the uniqueness of each
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model study requires also adaptation in the evaluation, which is not provided by

using the same aggregated performance metrics over and over again.

Finally, the intrinsic heterogeneity of the natural environment which is an open

and uncontrollable system compared to, for example, an industrial setting makes

the modelling process more challenging.

As intended by Objective D.1, the identification and clarification of these bot-

tlenecks provide an valuable insight for the environmental modelling commu-

nity.

11.2 The diagnostic approach

To counteract the observed hampering factors, a diagnostic framework for fur-

ther model development and application was initiated as put forward by Objec-

tive D.2:

� Accept the idea of multiple working hypotheses and consider model

structure building (identification) as a learning process based on failures

� To make this practically and technically possible, flexibility in model deve-

lopment in an open and transparent manner, is a necessary condition

� Extending the scrutiny of model structure evaluation is essential in any

stage of the model exercise, going beyond current model calibration practices

The acceptance of multiple working hypotheses is a direct answer to the failing

quest towards far too detailed model descriptions that cannot be supported by

a sufficient set of observations. Any conceptual representation, i.e. model struc-

ture, is merely a hypothesis about the system functioning and can be supported

or falsified by the available observations. At the same time, this concept pro-

vides intrinsically a defence against the protectionism towards any created model

structure and diminishes the exaggerated focus of treating a model structure as

an end-product.

The pragmatic response to the acceptance of multiple hypotheses, is the provision

of flexibility in the model construction and identification process. It was illustrated

in section 2.5.2 that flexibility is provided by a wide range of existing software

environments and frameworks, however these are not always supporting a rejection

framework (lack of transparency, coarse granularity. . . ). Objective S.1 aimed to

derive a set of requirements for model structure development that support the
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multiple working hypotheses approach. These requirements were defined based on

current literature sources:

� Supporting alternative representations of the considered processes

� Provide alternative interconnections between model processes and com-

ponents, i.e. construction options

� A clear separation in between the mathematical and the computa-

tional model

� Accessible and modular code implementations

To fulfil these requirements, the finest granularity was used in the dissertation,

i.e. adaptation on the implementation of the ODEs themselves. Actually, any

flexible framework that supports flexibility on this level, while keeping the com-

putational model separated from the mathematical model itself, is able to support

such an approach, on the condition that openness to the model source code is

provided.

The final element of the diagnostic approach is the need for an improved model

evaluation in function of the identification process. This is a generalisation of the

current calibration procedure towards a combined and iterative process of para-

meter and process (model structural) adaptation. Practical identifiability, both in

terms of parameters and model components, is the guiding principle during the

evaluation. This means that model structures should contain influential parame-

ters which effects on the model output are not cancelling each other out. In other

words, process descriptions used, should have an identifiable functionality.

Since the available observations are mostly the limiting factor to identifiability, all

efforts to extract the utmost information content from the available data should be

made. This task is complementary to the search for additional data sets offering

new information.

The elements of the diagnostic approach were used as main driving principles in

the execution of the remaining of the dissertation.

11.3 Tools to support a diagnostic approach

In the second part of the dissertation, the existing tools for model evaluation were

interpreted based on a diagnostic approach. First of all, the requirements in func-

tion of current environmental modelling environments were identified, resulting
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in the selection of model independent implementations that rely on a numerical

approximation and take into account the entire parameter space.

A wide range of tools with these characteristics are described in literature, typically

considered within a categorization towards their focus either on model calibration,

sensitivity analysis or uncertainty analysis. However, the fragmentation and lack

of coherence is apparent, resulting in redundancy in the implementations. More-

over, from a practical point of view, the implementations do not always support an

extensive exploration leading to adefault-setting application with aggregated per-

formance metrics that do not support to differentiate between alternative model

representations.

This was counteracted by a metric oriented approach (Objective E.1), focu-

sing on the construction of multiple aggregation metrics of time series that can be

translated to different performance metrics. The resulting (performance) metrics

can be called by algorithms for either optimization, sensitivity analysis or identi-

fiability analysis. Besides, a clear separation between the sampling strategy, the

metric construction and the algorithmic evaluation itself, reduces the overlap and

reveals the common elements in many of the existing methods in literature.

The combination of both time-variant and aggregated metrics by multiple methods

for a respirometric model illustrated the central position metrics have, as aimed for

by Objective A.1. The identifiability and model calibration of a respirometric

model structure with an additional time-lag component was verified. The analysis

revealed that practical identifiability of the time-lag extension could be confirmed,

given the availability of experimental data for which the ratio between the added

substrate and the biomass is high enough.

The particular advantages of sensitivity analysis to assess the identifiability of

parameters lead to the decision to make a number of existing algorithms for SA

available. As intended by Objective E.2, the combination of an extensive descrip-

tion of the individual methodologies in combination with the release of the code

to effectively apply these methods tries to overcome current lack of transparency

in the application of SA methods.

The pool of available methods provides the opportunity to select a SA method that

is fit for purpose, keeping in mind the computational effort. This was translated in

a flow-chart that guides the user in the selection process. Still, the opportunity of

recycling simulations amongst different methods has been highlighted and would

provide the opportunity to combine the information provided by existing methods

without the need of additional simulations.
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The entire set of implementations and methods of Part II do rely on already exist-

ing methods described in literature. However, the metric oriented approach puts

the focus where environmental modellers need it most: the ability to translate

a specific modelling objective in a set of (performance) metrics that

are able to diagnose the model structure. These metrics can be used to

evaluate the appropriateness of the model structure for the objective at hand and

considering the available data. By facilitating the link with existing algorithms in

a modular framework while providing sufficient theoretical background about the

method, the application of sensitivity analysis in a transparent manner is facili-

tated.

11.4 Application of diagnostic approach
to hydrological modelling

In Part III and Part IV, the focus is on the application of the diagnostic approach

on hydrological modelling, more specific on lumped hydrological models. As illu-

strated in the dissertation, this type of model structures can be converted to ODE

based model structures.

An existing model environment, i.e. the VHM, is the starting point of the appli-

cation in Part III. The flexibility in the implementation of lumped hydrological

models is further generalised in Part IV. In this section, conclusions are drawn

with respect to the applications of the diagnostic approach proposed.

11.4.1 Evaluation of alternative representations
within a flexible framework

The rationale of the VHM is the consideration of model structures as flexible

entities. Moreover, it considers the model building process as a combined effort

of model structure identification and model calibration. As such, the VHM ap-

proach is compatible with a diagnostic approach and was selected as a case study.

Based on the approach, a set of model decisions was defined and the suitability

assessed.

In accordance with the multiple hypotheses requirements, VHM does provide al-

ternative representations of the processes and alternative construction options.

However, the original VHM model implementation (source code) is not available.

Therefore, inspecting the separation between the mathematical and computational
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model was not feasible. To comply to the requirements of the multiple working

hypotheses approach, a new openly accessible version was implemented in python

and verified with the outcomes of the original implementation.

Ensemble evaluation

The flexibility provided by the VHM approach resulted into a set of 24 diffe-

rent representations of the hydrological catchment, based on four types of model

decisions that were chosen for the case study: leaving out either the inter flow com-

ponent, the (non)-linearity of the soil storage, the dependency on antecedent rain

to represent saturation excess overflow and three routing alternatives. Further-

more, it was decided to focus on two separate modelling objectives: respectively

the ability to represent either high flows or low flows. A set of performance metrics

was chosen, based on the flow duration curve, together with the well-known NSE

metric.

The specific focus towards the low flow and high flow performance metrics that

are based on the flow duration curve, lead to different optimal parameter combina-

tions, illustrating the potential of tuning a model in function of a specific purpose.

Furthermore, the effect of the chosen performance metric on the resulting para-

meter set was shown, similar to reports of previous authors (Gupta et al., 1998;

Boyle et al., 2000).

The main cause is the lack of identifiability, leading to a wide range in parame-

ter combinations able to achieve a comparable performance. So, when applying

these models in an operational setting, the application (scenario analysis, predic-

tion. . . ) should always be in direct correspondence to the focus of the selected

performance metrics. In other words, the lack of identifiability does not make the

model structure useless for operation, but it limits the range of the application

to the specific aim it was evaluated (calibrated) for, which is represented by the

choice of performance metric.

In a next step, the optimal performance of the 24 model structures was com-

pared to assess if a parameter optimization is able to make differentiation on

the four defined model structural decisions (Objective A.2). The performance

and resulting hydrograph after optimization to a specific metric were very similar

amongst the members of the ensemble. The effect in variation of individual model

structure components (one process at a time) could not be effectively assessed

based on the performance metric in the case of the VHM model. For the four

model decisions defined based on VHM, parameter optimization was not useful

to differentiate model structures within the flexible model environment. At the
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same time, the parameter values corresponding to the optimal performance var-

ied largely amongst the different ensembles, notwithstanding their common task

within the model structure.

The latter is probably due to the insufficient parameter identifiability of the in-

dividual members of the used ensemble in this study, leading to the inability to

distinguish them based on the used performance metrics. In other words, the pa-

rameter identifiability of the individual model structures is important to compare

individual model decisions based on performance. For the chosen set of model

decisions, the lack of parameter identifiability hampered the execution of the di-

agnostic approach.

Qualitative assessment

As the different model representations cannot be distinguished based on their per-

formance, a new graphical method was presented that could still provide useful

information, even though identifiability lacks. The method fits in the metric ori-

ented approach, as it can be applied to a variety of user-defined metrics.

The qualitative and visual technique builds on the characteristics of a SA and the

methods developed in Part II. Similar to SA techniques that quantify sensitivity

based on a one at a time adaptation of a parameter value, the technique evalu-

ates the changes in function of a single model adaptation. By an interpretation

of the shift in parameter influence induced by a single model adaptation, the rel-

evance of the related model component towards the used performance metric can

be assessed.

Applied to the case study of the Nete presented in chapter 6 it could be concluded

from the analysis of the selected performance metrics that the choice of a non-linear

storage component is recommended, whereas the usage of an inter flow component

and the antecedent rain concept are mainly necessary to represent the low flow

conditions. Besides, routing can be simplified.

The generalisation of the concept of parameter sensitivity analysis towards model

component sensitivity analysis is a useful concept. It enables the guidance towards

a more identifiable model structure as intended by Objective A.3.

Limitations of the VHM approach

The VHM approach is unique in the way it provides a step-wise approach to setup

the model and in the derivation of the parameters based on different transfor-
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mations of the available flow, rainfall and evapotranspiration observations. The

VHM approach uses different information sources (derived from the original flow

time series) in the calibration and model building process, while keeping the model

structure flexible. As such, it fits in the methodology of this dissertation and it

provides an embedded multi-criteria evaluation of the model performance making

the resulting parameter values more robust. However, at the same time, some

shortcomings should be emphasised, to understand the limitations of the model

and in order to take the next steps.

First, in the original contribution of Willems (2014), the authors do refer to a

parsimonious modelling approach, which is something I do not agree with. The

terminological indistinctness of the word parsimonious modelling was described

in section 2.5.1, as well as the proposed handling of parameter identification as

model property. Moreover, in case of the VHM approach, with a total number of

parameters ranging from 9 till 15, it is rather contradictory to call the approach

parsimonious, even though the calibration is done component based on different

data-derived information streams. The model structures involved are all practi-

cally not identifiable, as illustrated by the similar performance achieved by them

in chapter 7.

Secondly, the implementation of the VHM model is obscure with regards to the

different fractions calculated and with how to keep the balance straight. The

distinction between the mathematical and computational model cannot be made.

The closure of the mass balances by making sure the sum of the fractions is one,

is actually a model structure decision on itself. It seemed that the fractions as

presented in Willems (2014) do need adaptation to make sure the mass balance

stays correct which was not reported on.

The VHM approach acts as a valve distributing the incoming rainfall amongst the

different components. By applying a splitting of the incoming rainfall, it is unique

in this sense to most other lumped hydrological models. But from a perceptual

view, rainfall directly contributing to the groundwater, does not really represent

the catchment behaviour. In many cases, groundwater is raised by percolation from

the soil moisture component. When modelling a system by describing the different

processes and their exchanges to make a representation of it, the perception of the

reality should be reflected in the model structure (hypothesis of the system). Even

in the case that this conceptualisation would be correct in some cases, the VHM

approach is too limited in structural degrees of freedom to reflect a variety of

existing catchments with different underlying processes.

Furthermore, when checking the output of the fractions plots, the occurrence of

discontinuities are rather contra-intuitive, considering the discontinuous behaviour
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of the fractions when the antecedent rain concept (representing the effect of in-

filtration excess) is active (Figure 6.8). These discontinuities should be avoided,

both from a system representation point of view, where these jumps are not ex-

pected, as well as for model calibration leading to difficulties in the convergence

towards an optimal parameter set (Clark and Kavetski, 2010; Kavetski and Clark,

2010, 2011).

Nevertheless the comparable rationale with the diagnostic approach and the ad-

vantages of using different data sources within the model identification process,

these limitations make the VHM model structure implementations incompatible

with the diagnostic approach. It declares the importance of a solid computational

model (implementation) and proper model architecture as a minimal requirement

to make a diagnostic approach possible.

As such, it can be concluded that we should always be aiming for identifiable

and distinguishable model structures within a general flexible environment for

modelling lumped hydrological models, while keeping the numerical implementa-

tion and discontinuity handling correct. These conclusions were taken as initial

requirements in the next part of the dissertation.

11.4.2 Diagnosing structural errors in lumped hydrological models

Based on the VHM application, we learned on the one hand that the application of

the diagnostic approach is only feasible when the computational and mathematical

model are clearly separated. On the other hand it revealed that an identifiability

analysis is the main driver in the identification of model deficiencies, as it is a

necessary condition to attribute model differences to specific process adaptations

as proposed by Clark et al. (2015b).

In Part IV, these two issues were tackled in order to fit the construction and evalu-

ation of lumped hydrological models in the diagnostic approach proposed.

Towards reproducibility in hydrological modelling

Existing environments that support flexibility in the model building process for

lumped hydrological models do mostly not comply with the requirements for a

multiple hypotheses approach. Actually, both in the case of fixed model structures

as well as flexible environments, the lack of transparency in the implementation

and the inappropriate implementation of the computational model are the main

weaknesses.
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The FUSE concept proposed by Clark et al. (2008) provides an answer to this

problem by translating existing lumped hydrological model structures in a general

ODE mathematical model, similar to the central type of model structures studied

in this dissertation (Equation 2.1).

To improve the current sharing of lumped hydrological models, a further general-

isation of the FUSE approach is proposed. It summarizes the model in a matrix

representation that is independent from the software or programming language

used. It adapts the existing Gujer matrix representations for (bio)chemical ODEs

model structures to cope with lumped hydrological model structures.

Specific attention is given to the translation of the NAM and PDM model into a set

of ODEs. Both models are currently used in the operational water management in

Flanders as part of a flood prediction system. It can be concluded that the ODE

representations are not entirely the same as simulations of the original simulation

platforms. However, the translation into a set of ODEs unifies both models and

places these two specific model structures in a much wider framework of alternative

model representations.

In Table 11.1 the matrix representation is verified towards the requirements for

a multiple hypotheses approach. For each of the requirements, the properties of

the matrix representation comply. Hence, when communicated together with the

applied solver implementation (computational model), the diagnostic approach is

supported.

Table 11.1: Assessment of the proposed matrix representation for lumped

hydrological models with respect to the requirements of the multiple hy-

potheses approach.

requirements multiple hypothe-

ses approach

properties matrix representation

alternative process descriptions choice of constitutive functions

alternative interconnections and

construction options

choice of the reservoir

configuration

separation between mathemati-

cal and computation model

solver independent description of

the model structure

accessible and transparent open communication of the cho-

sen model structure
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A standardised way of communicating about model structures supports

reproducibility in the application of lumped hydrological models. As intended

by Objective S.2, the communication about hydrological model structures is

made explicit and at the same time compliant tot he requirements of the multiple

hypotheses approach. It removes the obscurity of existing implementations and

cures us from the fetish towards model name acronyms.

Time-variant model evaluation

In the last part, different aspects of the dissertation were brought together by

performing a model evaluation of the NAM and PDM lumped hydrological model

structures.

The DYNIA method is of particular interest for model structure evaluation as it

provides insight in the parameter identifiability as a function of time. Due to the

importance of the uncertainty of the discharge when derived from a rating curve

analysis, it was decided to incorporate this information in the performance metric

construction as limits of acceptability. In a final step, the GLUE approach was

used to assess and compare the effect of a chosen threshold on the variability of

the model output for both models.

The application provided useful information about both model structures. Whereas

it is known that the groundwater representation is essential to capture the sea-

sonal dynamics of the Nete catchment, both models tackle it differently but both

approaches show shortcomings. Furthermore, the probability based soil storage

representation of the PDM model outperformed the NAM structure. Still, it is

important to understand that the derived information about the model structural

behaviour of both NAM and PDM are function of the observed time series used

and the characteristics of the Nete catchment and should not be generalised.

Hence, the main result is that a time-variant evaluation (in this case DYNIA)

provides guidance towards both model optimization and identification, as was

intended by Objective A.4.

Periods of high influence of the parameters can be identified using the graphical

output of the DYNIA method. These periods provide the best chance of estimating

parameters more reliable and should be used in the aggregation or performance

metrics.

When selecting a set of performance metrics, it is not always straightforward to

identify a set of complementary metrics, each focusing on a different aspect of

the model performance (Gupta et al., 1998). The outcome of the DYNIA method
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provides information about useful aggregations and metrics. For example, in the

application of the Nete catchment, the use of a total seasonal volume could support

the model optimization for practical applications.

Summarized, the DYNIA method or, more general, a time-variant approach of

model evaluation, provides a general scan of the model behaviour which helps to

identify deficiencies, as an x-ray scan enables a medical doctor to make a further

diagnosis about the injuries.

As such, time variant parameter identifiability provides a promising research per-

spective that should be further developed and made (publicly) available to a wider

audience. Initiatives such as the temporal performance evaluation by Reusser et al.

(2009), which is directly accompanied with a supporting R, package should be sup-

ported.





CHAPTER 12

Perspectives

Starting from current limitations of environmental modelling practices with respect

to model identification and evaluation, an alternative diagnostic approach has

been proposed and applied in this dissertation. Based on a flexible implementation

of the mathematical and computational model on the one hand and an improved

integration of model evaluation tools and performance metrics on the other hand,

a step towards the assessment of individual model decisions is taken. However,

further elaboration is needed to make this approach work in an operational setting

and the approach is prone to discussion.

A drawback of proposing multiple working hypotheses as different model repre-

sentations was already noticed by Chamberlin (1965). It is far easier for students,

practitioners and stakeholders to accept a single interpretation (model) as a rep-

resentative to apply than to recognize the several possibilities and putting them

into a learning framework.

Furthermore, one could argue that the existence of the huge variety of environ-

mental scientific disciplines using modelling approaches and relying on its own

modelling traditions is an organically grown response to the need of flexibility

in the modelling approach. This could be considered as a good thing, since each

community develops a tailor-made approach. However, the sprawl of semantic dis-

cussions and obscurity in terminology within and in between them illustrates the

consequence of this situation. The reality is that current fragmentation in between

disciplines lead to redundancy and inferior practices. Counteracting this situation

is not evident and some level of redundancy will always be existing.

However, each scientist should have the continuous ambition of keeping inferior

practices and redundancy to a minimum. Only by accepting the modularity in
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modelling and seeking a model fit for purpose, within the uniqueness of each place

and application, scientific research can make progress. Confronting the features

of a large set of (tailor-made) model structures and the properties of the corre-

sponding applications (system characteristics, data, research question,. . . ) could

eventually lead towards more unified theories. It provides the opportunity to rec-

ognize patterns on a larger level. Current practices of tuning existing monolithic

models towards each new application will only result in more tweaking of param-

eters to make model outputs fit with the observations. This sense of positivism

without identification of the deficiencies of the model structure itself does not

support scientific knowledge on the long run.

It is important to understand that the flexible approach is not a statement against

detailed model descriptions. Under the assumption of sufficient data and when

it supports the research question, it would be very conservative to be against a

more detailed description. The main requirement for an identifiable model is the

proper balance between data availability and model complexity. Flexibility in

model development is the key to find this balance considering the uniqueness of

each model study. Each component in the model has a specific function in the

conceptual representation and should be identifiable as such.

Real world observations are needed to confirm the proper functioning of the con-

sidered components. This does not mean that all parameters need to be iden-

tifiable during the whole simulation. Processes are active during different time

periods (cfr. difference between wet and dry weather conditions) which should

be represented by changes in the sensitivity of model components as well. When

the real-world observations do not represent the processes included in the model

representation, identifiability will be hampered.

This is why time-variant methods for sensitivity and identifiability are essential in

the model evaluation process. It enables the modeller to evaluate if components

are representing the real-world processes as intended and to assess the consistency

of the representation in function of time. This is also why predictions outside the

range of data characteristics tested with (calibration and validation), will always

be prone to uncertainty.

This dissertation supports future modellers in understanding the modelling ter-

minology, putting existing methods and models in the right perspective and as

such, to improve their model evaluation and application capabilities. An impor-

tant step is the availability of a modular and transparent set of tools (which can

be adapted).
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Still, drawbacks and failures are present in the implementations. The original

design goals of the implementations do not comply any more with current best

practices of scientific computing (Wilson et al., 2014). The awareness towards

the underlying architecture (code, code structure, code documentation. . . ) of the

implementations has been a gradual process in line with a growing concern in the

broader scientific world (Prabhu et al., 2011).

In this final chapter, the further development of a diagnostic approach is framed

in a broader scientific perspective. Starting from a Mea Culpa in the practical

execution of the diagnostic approach, a further perspective is provided.

12.1 Mea culpa

A major failure that can be addressed is the trap that many researchers seem

to fall into: the creation of yet another set of packages by a single contributor,

trying to capture a range of functionalities, which seem to be limiting after all.

During the execution of the dissertation, the illusion of yet another package for

model evaluation methods was considered. It is doomed to again be used by

only a small community of believers and die silently on the graveyard of good

intentions. As such, the proposed solution is actually the engine itself of the

scattered development. The acronym-fetish towards model structures has been

converted to a fetish of acronyms for new packages.

Whereas the intention of making the methods and applications accessible to others

can be encouraged, simply the fact that the implementations are shared and open

does not make it superior or better.

It is clear that more transparency in modelling applications and the availability

of tools for model evaluation can counteract the conservatism discussed in the

beginning of the dissertation. The question is on how we can make progress as

a modelling community, taking into account the need for a reproducible scientific

practice, the dissemination of good practices and the reduction of redundant work

by individuals. In the next sections, I will elaborate on a possible way forward,

based on the experiences gained during the execution of the work.
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12.2 Modularity as scientific good practice

Monolithic model implementations were identified as a major drawback for envi-

ronmental modelling. They hamper the evaluation of individual model processes

and they do not align with the need of adaptation towards changing conditions.

Flexible model environments that comply to the requirements of a multiple hy-

potheses approach overcome this drawback. Flexibility is practically provided by

a modular implementation of corresponding components. The latter is not new

in integrated modelling (Voinov and Shugart, 2013) and is also reflected in the

numerous environments for modular model development (section 2.5.2).

This trend towards modularity is also seen in computer software design. It aims to

break monolithic software down into many separate components (microservices)

which operate together as a whole. When different components provide a service

to other components over a network using a communication protocol, this is re-

ferred to as a Service-Oriented Architecture (SOA). Following quote by Newman

(2015) about the advantages of microservices can be directly transferred with the

flexibility arguments for modelling as well:

With a system composed of multiple, collaborating services, we can

decide to use different technologies inside each one. This allows us to

pick the right tool for each job, rather than having to select a more

standardized, one-size-fits-all approach that often ends up being the

lowest common denominator. . . With microservices, we are also able to

adopt technology more quickly, and understand how new advancements

may help us.

By making the creation of independent and reusable functionalities the goal of any

kind of implementation, re-usage is possible, redundancy (copy-paste behaviour)

is reduced and automation is supported.

The necessity of modularity is not only a model building requirement, but should

be extended towards a more general good scientific practice (Wilson et al.,

2014). When created as independent functionalities, entities can interact with

one another and implementations easier shared. It can be further extended into

reproducible workflows for which each of the steps can be interchanged when

needed.

Scripting languages such as R and Python are gaining popularity as a fast and

reliable way to modular and flexible development (Vitolo et al., 2015). Basically,

every function created in Python or R is already an independent functionality that
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can be integrated in a wider workflow (pipeline). It directly counteracts current

practices in Graphical User Interface (GUI) based spreadsheet software that lead

to unreproducible workflows, lack version control and limit automation.

Some of the developed functionalities will be useful for a wider audience. As

proposed by Buytaert et al. (2008), commonly used routines and processes can

then be implemented as generic software libraries in a low-level language such

as C or Fortran and reused in virtually every environment. Actually, for some

numerical solvers, this is already the case and these libraries are used in commercial

applications as well (Hindmarsh, 1983).

The question is how this process can be managed. The risk is that it results in a

variety of similar packages doing similar things and all developed by a single de-

veloper (mea culpa). Some redundancy will always exist and competition can also

accelerate new developments. However, the key to a more successful development

is the collaboration across the boundaries of scientific disciplines, which will be

explored in the next section.

12.3 Towards community based collaboration

Environmental modelling is an interdisciplinary field, relying on computational

and mathematical knowledge to study the natural environment. However environ-

mental scientists are not trained in all aspects of computation and math and need

to rely on external knowledge. Collaboration is essential, but not always feasible

and is directly dependent from the network working in, making it sometimes ad

hoc. Collaboration should be feasible on a much larger scale.

The current success of open-source software development illustrates the poten-

tial of a collaborative development across different disciplines. Python Pandas

(McKinney, 2010) is supported by over 500 contributors and spans a wide range

of disciplines with both industrial and academic backgrounds. The environmental

modelling community can learn a lot from open-source development, where func-

tionalities are available as packages and libraries which can be forked, adapted and

extended.

The main reason of the successful collaboration is the technological advancement,

making global communication possible (cfr. the digital revolution is able to sup-

port commons on a larger scale). Online curated code repositories such as

Github, Gitlab and Bitbucket, provide a platform for online collaboration. Code

can be revised, features can be discussed and the history of the code development
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is tracked by the revision control system. It is a transparent system, making it

possible for anyone to cooperate.

These environments can support the collaboration across the boundaries of scien-

tific disciplines and we should take advantage of this opportunity. In short, we

should build our tools on the shoulders of giants, i.e. the open source com-

munities active world-wide and continuously developing improved tools in their

field of expertise.

Consider following example. The increasing popularity of Bayesian applications

within the hydrological modelling community appears to result in a narrow range

of applied methods (mainly BATEA and DREAM), both dependent on an MCMC

sampler. The sampler scheme itself is nested within the code. Though, the field

of Bayesian computing is fast evolving an improved sampling strategies are con-

stantly developed, which would be interesting to test as well. A proper decoupling

of the sampling strategy would enable to anticipate to the continuous develop-

ment achieved in mathematical and statistical research, made available by open

source libraries focusing on MCMC sampling (Davidson-Pilon, 2015). At the same

time, more fundamental research communities are able to make their developments

available to a wider audience by contributing to these libraries.

The aim is to make sure that each scientific community can focus on their specific

specialisation, respecting the qualification of other communities and building on

each other strengths. By doing so, we can continuously rely on these communi-

ties provide the theoretical and technical foundations that we need to build our

domain specific technology on. The metric oriented approach fits in this prospect,

putting the focus on the domain knowledge, while relying on external knowledge

for sampling and optimization.

Hence, this is an advocacy towards a more collaborative code development,

where code revision within the community is a continuous process, just as it is

with publications. It enables a continuous development cycle, where more revision

by more partners can lead to an accelerated development and more scrutiny. It

counteracts the regularly seen central-development approach, where a single group

is ‘providing’ their methods as a black box towards a wider community (Kuczera

et al., 2006; Pianosi et al., 2015; Vrugt, 2015), which is not transparent at all.

The current success of open source scripting languages, such as R and Python,

do already support collaboration by a continuously growing group of users. An

increasing trend in the usage of open source developments for research purposes

is already observed. However, modular code implementation, code sharing and

collaborative development as a scientific good practice is not yet embedded in



CHAPTER 12 PERSPECTIVES 269

current environmental modelling practices. In the next section, the perspective of

an open science policy is put forward as an engine for collaboration and accelerated

progress.

12.4 Open science as an engine for collaboration

Access to the implementation is important for a fundamental aspect of scientific

practice. The entire idea of scientific peer-review is based on the ability to repro-

duce the results. Reproducibility of computational methods is only possible when

the entire implementation is available (Peng, 2011). However, the publishing and

sharing of code is still lagging behind (Buytaert et al., 2008). Focus is currently

still on the publication itself, which is only the minimal level on the entire spectrum

of reproducibility (Figure 12.1).

Figure 12.1: The spectrum of reproducibility. Current common practice of

scientific publication peer review only supports a very minimalistic level of

reproducibility. The necessity of sharing both code and data is essential to

enable replication of scientific studies (Peng, 2011)

When new methodologies are proposed in literature, but the implementation is

not available, it hinders the execution by the peer researchers and limits scientific

progress. Scientific investigation should be open and transparent to ensure direct

reproducibility and repeatability. It requires a change in mindset for current sci-

entific practice, but provides many opportunities as well. As scientists, we should

not be ignorant to this necessity.

In the following sections, we will discuss this from the perspective of respectively

the scientific practice, the scientific education and the private sector.
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12.4.1 An open scientific practice

Current scientific progress based on a peer review process of papers does not pro-

vide the incentives to researchers to share their implementation. Many environ-

mental scientists are reserved about sharing their code. Actually, most scientists

understand the importance of scientific computing (Prabhu et al., 2011), but do

regularly not know how reliable the software they use actually is (Wilson et al.,

2014).

In other words, development of software tools are not regarded as a scientific con-

tribution and academic environments do not reward tool builders (Prabhu et al.,

2011). The current focus on the achievement of publications results in reduced

attention towards the implementation itself, which is however the central part

of environmental modelling. Proper scientific attribution for software citation is

currently lacking.

The advantages of publishing source code in an organized and proper manner are

however evident, similar to the benefits of data sharing (Roche et al., 2015). It

allows other scientists to reproduce prior work and compare new contributions

on an equal footing. Researchers do not have to spend time rewriting the same

pieces of code. It enables revision of code by other scientists, guarding against

the bugs everyone inevitably makes and improve readability (Wilson et al., 2014).

Similar to open data initiatives, the public sector should take a leading role by

demanding open access by default. Sharing accelerates scientific discoveries and

can save taxpayers’ money by avoiding unnecessary duplication.

Hence, code implementation is as a fully fledged part of the experimental apparatus

and should be built, checked, and used as carefully as any physical apparatus

(Wilson et al., 2014).

To facilitate this process, code revision should become an essential part of the

scientific investigation. However, a rigorous review of a computational method

implementation will typically take longer than that of a more traditional paper

(Editorial, 2015). Hence, researchers should get explicitly rewarded for their con-

tribution to code development and revision. This means attribution for the cre-

ation of new code, but even more important, scientific attribution for the

revision and improvement of existing code.

Scientists should not continuously create new packages, but collaborate on the

development of functionalities, using the current technological features provided by

online curated code repositories. The latter is the best antidote against the fetish

of acronyms and a crucial incentive for collaborative development. Furthermore, it
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would support continuity in scientific development across the borders of individual

projects and dissertations.

Furthermore, classic scientific communication based on journal papers is not the

appropriate communication channel for code collaboration and collective deve-

lopment as it is proposed here. It requires a fast communication medium where

technical adaptations can be directly discussed by the community. We should ex-

plicitly discuss and express the collaboration on code development, taking it away

from the corridor discussions at conferences to the plenary sessions.

12.4.2 Preparing future environmental modellers

Recent studies have found that scientists typically spend 30% or more of their

time developing software, whereas 90% or more of them are primarily self-taught

programmers (Wilson et al., 2014). Current environmental scientists lack exposure

to basic software development practices such as writing maintainable code, using

version control and issue trackers, code reviews, unit testing, and task automa-

tion.

These skills are essential to make an open and reproducible scientific practice

successful. At the same time, environmental modellers should not all be trained

computer engineers. An equilibrium needs to be searched for, which requires

changing the features of the software systems scientists use on the one hand and

getting researchers to work with systems supporting reproducibility on the other

hand (Peng, 2011; Shou et al., 2015).

The former is a transition currently going on. For example, OpenRefine has a his-

tory that can be exported along with the data and imported back in to OpenRefine

to reproduce the analysis (Verborgh and De Wilde, 2013). The latter is shifting

as well. Lab skills for research computing are getting increased importance in

the curriculum of environmental education. The growing success of international

workshops such as software carpentry illustrate the awareness (Wilson et al., 2014).

Emerging technological developments, such as the Jupyter notebook (Shen, 2014),

provide an interactive computing environment that directly facilitate the repro-

ducibility of the executed work.

To support reproducibility, the competence of writing re-usable functions

that are small enough to test and reuse, should be central in the education

of environmental scientists. Just making code available is not enough, the way in

which it is done, is as important as the delivered code itself.

http://openrefine.org/
http://software-carpentry.org/
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Furthermore, the contribution towards open source code projects should

be part of the scientific curriculum of every environmental modeller.

Bug fixing and coding new features would be too ambitious at the start. However,

writing documentation, participating to discussions about issues, diagnosing bugs,

writing tests and creating examples are definitely evenly useful. By doing so, the

essential competences for a reproducible and collaborative scientific practice are

acquired, while the continuity in development is assured.

12.4.3 A business model for open science

Closed source (proprietary) modelling software still constitutes an important part

in the scientific literature. Reporting scientific analysis based on closed source

model environments hampers reproducibility and is unfair to scientists without

the access to the necessary licenses. Closed source environments can only be

changed by their owners, who may not perceive reproducibility as a high priority

(Peng, 2011).

At the same time, (closed source) software development also facilitates the deve-

lopment and distribution towards practitioners of good modelling practices. It pro-

vides the essential software backbone and enables the computational optimization.

A competitive market will stimulate the innovation and accelerate incorporation

of new technologies.

We should strive to combine the strengths of both worlds. A distinction needs to be

made about the modules required for a scientific investigation (model components,

algorithms for model evaluation. . . ) and the elements of the GUI that facilitate

the user experience.

The former elements need to be embedded in a scientific reproducible practice with

accessibility of the code, whereas the latter provides the opportunity for software

development companies to differentiate themselves from both competitors and a

script-based approach.

Actually, this contributes to the idea of collaboration across community boundaries

(section 12.3). The elements that are fundamental part of the scientific research

are developed as a collaborative effort between both research institutions and

software companies. It provides a solid layer supported by scientific research and

can be cited as such. At the same time, the implementations are accessible to

anyone who wants to create a product or application from it, facilitating the user

experience.
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Users who do not have the competences to work with the implementations directly,

will rely on these applications. Still, this does not limit the scientific reproducibil-

ity. The essential building blocks for model construction and evaluation directly

rely on the publicly accessible code and can be referenced as such. Product de-

velopers are able to close the parts of the code that contribute to user experience,

but are obligated to keep the core functionalities of the mathematical and com-

putational model as well as the model evaluation methods accessible. This is

made possible by the modular approach of implementation (section 12.2) and by

proper licensing of the different components to determine responsibil-

ity of the users (Roche et al., 2015). By providing an open source license, the

conditions on how to use and collaborate on the code are stipulated. Adding no

license at all means that default copyright laws apply and that nobody else may

reproduce, distribute, or create derivative works from the code1. An open-source

license allows reuse of your code while retaining copyright. Hence, they provide

the necessary terms on which collaboration on a community level can be expressed

and can actually counteract misuse.

This perspective is actually a translation of the current open source software busi-

ness models, illustrating the huge potential of this approach. Indirectly this ac-

tually already happens, since we constantly use functionalities written in some

language and provided by someone. By making this explicit, environmental mo-

delling would become much more democratic and fair on a global scale.

This does by no means threaten the service oriented business model of consultancy

companies active in the environmental sector. On the contrary, it can potentially

diminish the false concurrency of universities and other public institutes, since

scientific developments and tools are accessible and directly available. As such,

collaborations between public and private partners are not a necessity in order to

have code access, but a collaboration of specific service and knowledge. It also

opens perspectives to a more competitive tender application, since all applicants

can start from a common accessibility to the fundamental implementations. Hence,

creativity and excellence will be the key drivers.

12.5 Need for standardisation

Open science supports collaboration, since it provides the ability to integrate the

work of others. The main obstacle to take is the communication in between the

different actors, otherwise the incoherence in terminology will hinder progress (sec-

1http://choosealicense.com/no-license/
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tion 2.4.1). The ability to interconnect model components and methodologies

(connectability) should be regarded as important as the accessibility of the im-

plementation itself (Kraft, 2012; Le Phong et al., 2015). Interoperability of

building-blocks is a major source of concern which can be enabled by defin-

ing standards (Vitolo et al., 2015).

To ensure consistency among concepts belonging to similar scientific disciplines

and across disciplines, standardization of definitions, data and formats is continu-

ously needed. The standards managed by the OGC (Open Geospatial Consortium)

for geospatial data, such as the WaterML 2.0 for water observations data and the

Open Modelling Interface (OpenMI) for the exchange of data between process

simulation models, are examples of existing standards relevant for the water com-

munity.

The internet provides the most universal communication platform currently avail-

able, so compliance with the open standards provided by The World Wide Web

Consortium (W3C) is essential to exploit the abilities of the web. Hence, stan-

dardised web services provide the best chance for the sharing of information in

between components (and communities). It enables standardized data exchange

which can be used to chain different functionalities into complex workflows (Vitolo

et al., 2015).

12.6 Closure: A perspective for the implementations

This chapter started with the awareness about the limitations of the translation

of the diagnostic approach towards a practical working scheme. The perspective

of an open and reproducible scientific practice is a main driver to overcome the

conservatism in environmental modelling in direct support of the diagnostic ap-

proach. It guards against protectionism and it inherently provides flexibility in

both model construction as well as evaluation.

Part of the work of this dissertation has been made available online. So, what is

the perspective of the developed packages?

The integration of the pystran Python Package 4 with comparable initiatives

(Houska et al., 2015; Usher et al., 2015) is a major perspective to ensure the

continuity of the implementations and the work. Furthermore, the package should

be dismantled into two major parts to better support the metric oriented ap-

proach.
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The first part should be completely oriented on the creation of performance met-

rics, further extending the existing functions to develop metrics as well as more

theoretical descriptions (e.g. likelihood functions). This can considerably extend

the exploration and diagnosis phase of model structures and overcome conservative

model evaluation practices. A clear selection on the interactions with existing ma-

jor packages is a crucial element to ensure good practices in terms of optimization

and sampling.

The other part should focus on the further development of methods for sensiti-

vity and identifiability analysis with a particular focus on time-variant methods.

The main design goal should be the ability to recycle simulations as efficient as

possible among different algorithms to maximize the extracted information (sec-

tion 5.10.2).

The development and integration of machine learning techniques within the scope

of the sklearn package in Python could serve as a blue print on how a set of algo-

rithms can be collected within a rigid framework (Pedregosa et al., 2011; Buitinck

et al., 2013). The library is developed by an international community, with a focus

on maintainability by using strict quality guidelines about code consistency and

unit-test coverage.

The hydropy Python Package 1 represents another type of development which has

only been shortly mentioned in the dissertation. It provides a practical support

in the calculation of aggregated metrics. It already relies on a giant to ensure

the base functionalities and just adds a small layer of domain knowledge on top

of it. Ensuring compatibility with the Pandas package is the main perspective,

while gradually adding alternative domain-specific methods. Further development

is currently conducted within the own research unit, adding additional classes for

handling time series originating from a lab-based environment. External collabo-

rators are invited to contribute to the code.

Other implementations are available on Github2 and can be used and further im-

proved by other users. Furthermore, the flowchart to provide guidance on the

selection of a sensitivity analysis method is available. Github provides an appro-

priate online environment to collaboratively discuss, adapt and improve it in the

future.

A similar exercise could be useful for the standardised matrix representation

for lumped hydrological models. Making the further development an open and

transparent discussion could potentially provide it the leverage it needs to be gen-

erally accepted. Another useful perspective is the extension towards a generic

2https://github.com/stijnvanhoey

https://github.com
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model description and implementation for spatial explicit (distributed) hydrologi-

cal modelling according to the requirements of the diagnostic approach. The most

known distributed hydrological model, providing a range of process descriptions, is

MIKE-SHE (Refsgaard and Storm, 1995). It provides an OpenMI interface (Moore

and Tindall, 2005) for coupling with other models, but fails at the request for code

accessibility. Both the model building approaches of Kraft (2012) and Clark et al.

(2015b,c) are open access, using a set of conservation equations and are provid-

ing flexibility in the structural configuration, while keeping the mathematical and

computational model separated. They comply to the requirements and should be

further supported by the hydrological modelling community. In combination with

an extension of the matrix representation towards PDEs, reproducibility would be

supported on a distributed level as well.

Still, lumped hydrological models should be treated as a set of ODEs and commu-

nicated as such, supported by the standardized matrix representation. This also

means that code contributions should go to modelling environments supporting

the implementation of any set of ODEs, such as the development of the pyideas

package in Python (Van Daele et al., 2015c) or the deSolve package in R (Soetaert

and Petzoldt, 2010b).
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APPENDIX A
Additional figures for DYNIA

application

In this appendix, the DYNIA plots are given for the remainder of the parameters

not provided in the main text.

A.1 PDM model
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Figure A.1: Results of the DYNIA procedure for parameter be (PDM model)

applied to the behavioural model simulations for the calibration period (see

Figure 10.8 for explanation).
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Figure A.2: Results of the DYNIA procedure for parameter kb (PDM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.3: Results of the DYNIA procedure for parameter kf (PDM model)

applied to the behavioural model simulations for the calibration period (see

Figure 10.8 for explanation).
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Figure A.4: Results of the DYNIA procedure for parameter kg (PDM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.5: Results of the DYNIA procedure for parameter Sτ (PDM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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A.2 NAM model

10

20

30

40

C
K

1
,2

0

5

10

15

20

Fl
o
w

 (
m

3
/s

)

 
 2003

 
 2004

 
 2005

Jan Jul Jan Jul Jan Jul
0.0

0.5IC

0

5

10

ra
in

 [
m
m

]

Figure A.6: Results of the DYNIA procedure for parameter CK1,2 (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.7: Results of the DYNIA procedure for parameter CKBF (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.8: Results of the DYNIA procedure for parameter CKIF (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.9: Results of the DYNIA procedure for parameter CQOF (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.10: Results of the DYNIA procedure for parameter TG (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.11: Results of the DYNIA procedure for parameter TIF (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Figure A.12: Results of the DYNIA procedure for parameter Umax (NAM

model) applied to the behavioural model simulations for the calibration

period (see Figure 10.8 for explanation).
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Andréassian, V., Le Moine, N., Perrin, C., Ramos, M.-H., Oudin, L., Mathevet, T., Lerat, J., and

Berthet, L. (2012). All that glitters is not gold: the case of calibrating hydrological models.

Hydrological Processes, 26(14):2206–2210.
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