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Abstract: Competitive optimization techniques have been developed to address the complexity of 

integrated water resources management (IWRM) modelling; however, model adaptation due to 

changing environments is still a challenge. In this paper we employ multi-variable techniques to 

increase confidence in model-driven decision-making scenarios. Here, water reservoir management 

was assessed using two evolutionary algorithm (EA) techniques, the epsilon-dominance-driven self-

adaptive evolutionary algorithm (-DSEA) and the Borg multi-objective evolutionary algorithm 

(MOEA). Many objective scenarios were evaluated to manage flood risk, hydropower generation, 

water supply, and release sequences over three decades. Computationally, the -DSEA’s results are 

generally reliable, robust, effective and efficient when compared directly with the Borg MOEA but 

both provide decision support model outputs of value.  

Keywords: self-adaptive technique; many-objective; multi-variable; decision makers; reservoir 

operation strategy 

 

1. Introduction 

Water resource management problems (i.e., surface and groundwater) are complex due to their 

non-linear, dynamic, multimodal properties that need robust methods to solve, such as optimization 

algorithms [1] based on evolutionary algorithms (EAs) inspired from evolution and the natural 

selection of species [2,3]. Many of these have been proposed by researchers with different techniques, 

such as: the non-dominated sorting genetic algorithm (NSGA II) [4], multi-objective evolutionary 

algorithm based on decomposition (MOEA/D) [5], indicator-based evolutionary algorithm (IBEA) [6] 

and differential evolution (DE) [7]. Furthermore, approaches based on swarm intelligence include 

particle swarm optimization (PSO) [8] and ant colony optimization (ACO) [9] while the annealing 

process in metallurgy inspired simulated annealing (SA) [10]. A review of EAs and other 

metaheuristic algorithms and their applications can be found in [11,12]. Examples using these 

techniques for solving water resources management problems include Hurford et. al., [13], and others 

[14–17] using -NSGA-II, MOEA/D, Borg MOEA and NSGA-II, respectively to optimize reservoir 

management strategy based on multidisciplinary objectives like flood control, hydropower 

generation, and water supply.  

Benchmark functions such as DTLZ and WFG series were often used in comparative studies to 

assess algorithms’ performance, as in [18−21], however they consider forward and easy to solve 

versus real-world problems [22]. These algorithms often have many parameters that require 

calibration, which has a major impact on computational performance and optimal achievement 

[23,24]. Karafotias et al., [25] presented a review of the approaches for the calibration and control of 
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parameters. There are two types of EA parameter-setting problems categorised as (a) parameter 

tuning and (b) parameter control. Parameter tuning relates to the initial values of some parameters 

that are set before executing the algorithm. Parameter control involves adjusting values during the 

run time [26].  

Parameter tuning is applied to parameters such as population size, mutation and crossover rate, 

and has been discussed in the literature and recommended values proposed [25]. However, some of 

the parameters can vary widely and generally need extensive trials to find suitable values for a 

particular problem. For example, the distribution index for the simulated binary crossover (SBX) 

operator may vary between 0 and 500 [27]. Similarly, Reynoso-Meza et al., [28] concluded from 

experimental studies on multi-objective optimization problems that the value of the step size for the 

differential evolution (DE) operator is case sensitive. It is difficult to set default values for all 

problems. Parameter control is more important than parameter tuning in genetic algorithms (which 

directly affect the algorithms’ performance) [29], however, these parameters have received less 

attention in the literature [25]. These issues reduce the confidence of decision makers to use modelled 

EA results [1]. For example, Ishibuchi et.al., [21] demonstrates that algorithms’ optimality behaviour 

may change under different problems’ environments, based on experimental studies on test 

benchmark functions. Nevertheless, the need of EA models capable to adapt with such a problematic 

is evident.  

In this article, a novel approach -DSEA (epsilon-dominance-driven self-adaptive evolutionary 

algorithm) is presented using a range of novel techniques including: (i) Diversity expansion; (ii) Self-

adaptation of the control parameters of recombination operators; (iii) Exploration extension; and (iv) 

Virtual dominance archive. The algorithm’s performance was investigated using a constrained real-

world regional water resources management problem. A comparative analysis with Borg MOEA [30] 

was utilized as the Borg MOEA has superior reliability when compared with a range of robust 

published algorithms [18,31].  

The key properties that define the comparison are: (i) Reliability, which refers to the replication 

and consistency of the best solutions achieved [32] (ii); Robustness, which relates the algorithms 

dependable performance in different problem environments [22]; (iii) Computational efficiency, i.e. 

the algorithm’s speed of convergence to the non-dominated solutions [33]; and (iv) Effectiveness, 

which refers to the closeness of the solutions achieved to the true Pareto-front and their distribution; 

and dominance front extension in objective space [34]. The outcome demonstrates the robustness of 

the proposed -DESA technique to maintain optimality achievement under different problem 

environments that may increase integrated water resources management (IWRM) decision makers’ 

confidence to adopt the EAs’ results. 

2. Materials and Methods  

2.1. Adopted Multi-Objective Optimization Approach 

Commonly, real-word optimization problems have multiple objectives. A brief explanation of 

some of the key concepts associated with multi-objective optimization is provided here. An 

constrained multi-objective optimization problem may be described briefly as follows [35] 

Minimize: F(x) = [f1(x),   ,   ,   fM(x)]T (1) 
 

Subject to: ��(�) ≥ 0, ∀� ∈ �� 

ℎ�(�) = 0, ∀� ∈ �� 

x ∈ X 

X  Rn is the decision space, i.e. X = [xL, xU] where x = [x1, x2, …, xn]T is the decision variable vector 

of dimension n; and xL and xU are the vectors of the lower and upper bounds on x, respectively. F(x) 

consists of M objective functions fi : X →Z  RM, where i = 1, …, M, and Z is the objective space’s 

feasible region containing all decision variables in X that satisfy all constraints. The ��(�) and ℎ�(�) 

represents the ith of ��  and jth for ��  inequality and equality constraints, respectively. For 

unconstraint problems, �� = �� = ∅, and Z = X [30]. 
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The concept of Pareto-dominance [35−37] is used widely to characterise the solutions of multi-

objective optimization problems, and superior solutions are said to dominate inferior solutions.  

Thus: 

1. In a minimization problem, a vector u = (u1,  . . . , uM)T is said to dominate another vector v = (v1, . 

. . , vM)T  if ui ≤ vi  for  i = 1,  . . . , M and u ≠ v. This property may be denoted as u ≺ v. 

2. A feasible solution x∈ X is called a Pareto-optimal solution, if there is no alternative solution y∈ X 

such that F(y) ≺ F(x). 

3. The Pareto-optimal set, PS, is the union of all Pareto-optimal solutions, and may be defined as PS 

= {x ∈ X :∄y ∈ X, F(y) ≺ F(x)}.  

4. The Pareto-optimal front, PF, is the set comprising the Pareto-optimal solutions in the objective 

space. It may be expressed as PF = {F(x)|x ∈ PS}. 

2.2. Details of Epsilon-Dominance-Driven Self-Adaptive Evolutionary Algorithm (-DSEA) Optimization 

Algorithm 

The algorithm is based on the main principles of multi-objective evolutionary algorithms 

(MOEAs) e.g. recombination, mutation and dominance sorting. However, novel techniques are 

included to enhance the algorithm’s ability to handle the complexities of different problem 

environments. These techniques are: 

1. Diversity expansion to increase decision variables’ search space exploitation  

2. Self-adaptive operators’ parameters for parameters in process tuning 

3. Exploration extension for algorithm revival and stagnation coping 

4. Virtual dominance archive to improve diversity and convergence.  

The algorithm employs six recombination operators having different evolving techniques for 

biological genetics process (e.g., crossover), which depend on chromosomes from the parent to 

generate new chromosomes. These operators are: simulated binary crossover (SBX) [27]; differential 

evolution (DE) [7]; parent-centric crossover (PCX) [38]; unimodal normal distribution crossover 

(UNDX) [39]; simplex crossover (SPX) [40]; and uniform mutation (UM) [41]. The corollary offspring 

(son) from these operators, excluding the UM, will mutate by polynomial mutation (PM) operator 

[42] to produce new generation set. Geetha and Kumaran [43] reviewed several crossover operators 

used in evolutionary algorithms. Here, the hyper-boxes (whose dimensions are equal to ) sorting 

technique of objective search space [44], and non-dominated archive were employed as in [30,45,46].  

2.2.1. Diversity Expansion 

The search procedure in an optimization algorithm has two main components, exploration and 

exploitation. Evidence in the literature indicates the best results are achieved if exploration and 

exploitation are deployed preferentially in the early and latter stages of the search, respectively 

[47,48]. Accordingly, a procedure that safeguards diversity in the population at the start is 

incorporated in the proposed algorithm which employs all the available recombination operators at 

the initial stage. After the initial random seeding, the algorithm uses each recombination operator to 

generate new offspring, selecting parents from the entire population. If more parents are needed (e.g., 

in case of odd number of parents), they are selected from the population using a binary tournament 

selection. Figure 1 illustrates the procedure by which the parents are selected. 
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Figure 1. Illustrates operator’s parents’ selection from the entire population candidates after the initial 

random seeding at the beginning of the evaluation process. 

2.2.2. Self-Adaptive Mechanism and Formulae 

In each generation, the recombination operators are selected on a competitive basis, according 

to the proportion of dominance solutions in the archive (NDS) contributed by each operator. Thus, 

the selection probabilities for the recombination operators are obtained as follows [30,49]. 

��
��� =

���� + 1

∑ ����� + 1����
���

 �, � = 1,2, … ��� (2) 

where ��
��� is the probability of ith recombination operator, NDSi is the number of solutions in the 

archive contributed by the ith recombination operator, NRO is the number of recombination operators; 

The constant 1.0 is used to avoid probability values of zero.  

However, operator’s dominance achievement is sensitive to the relevant parameter setting. This 

problematic, (e.g., parameter control problem) was classified into three categories depending on the 

way the parameter variation is accomplished [26]: (a) deterministic, (b) adaptive, and (c) self-

adaptive. Deterministic control is based on rules that are specified a priori [50,51]. In self-adaptive 

control, the parameters may be encoded to evolve in the genotype such that, for example, mutation 

and recombination are applied to the decision variables also [52,53], which extends the search space 

to cover the parameter values and consumes more time during the optimization processes [26]. The 

adaptive method (b) was considered more effective in solving complex problems, as a feedback from 

the optimization process is set to adjust parameter values during optimization progresses [26,54]. The 

aforementioned technique was adopted by many researchers to improve algorithms’ performance, 

as in [30,49,55−57], however none of these (and others) develop a self-adaptive technique that is 

sensitive to optimality achievement during evaluation progress [31]. 

The success of any operator depends on the chosen values of the parameters that directly affect 

its performance. Any operator may lead an algorithm to suboptimal solutions because of 

unsatisfactory parameter calibration. However, parameter calibration is extremely challenging. This 

difficulty provided the motivation for establishing a dynamic relationship between the values of the 

control parameters of the recombination operators and their relative effectiveness, to obviate the need 

for fine tuning. The efficiency of the optimization algorithm is thus improved by continuously 

seeking to improve the collective effectiveness of the recombination operators. In other words, the 

formulation developed herein allows the values of the control parameters of each recombination 

operator to improve adaptively based on the success of the recombination operator compared to the 

rest of the recombination operators. 
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Table 1 shows the lower and upper bounds of the operator control parameters. If an operator’s 

ability to contribute offspring to the dominance archive is decreased, its selection probability ��
��� 

will decrease according to Equation 2. In turn, the values of the relevant control parameter decrease 

and the recombination operator’s ability to contribute new offspring to the archive will improve. 

It is worth noting that, initially, all the recombination operators have an equal selection 

probability (��
���) of 1/NRO. During the evaluation process the ��

��� value for any recombination 

operator changed along with its control parameters, according to its contribution in the dominance 

archive. If any recombination operator is relatively unsuccessful, its selection probability (��
���) and 

parameters controls will decrease. If the effectiveness of another recombination operator decreases, 

the selection probabilities of some or all the other recombination operators will increase with the 

values of their control parameters. In this way a dynamic equilibrium is maintained among the 

operators’ selection probabilities, which in turn regulates the operator control parameters. A set of 

formulae (equations) developed ensemble parameters’ tuning with the relevant dominance 

attainment. The parameters’ tuning domains (i.e., tuning range) were set based on default or 

recommended values suggested in the literature, and experimental investigation carried out on 

common test functions, as illustrated in Table 1. 

Table 1. Parameters control formulae in epsilon-dominance-driven self-adaptive evolutionary 

algorithm (-DSEA). 

Operator Parameters Domain Adaptation Functions Comments 

SBX 1 � [0,100] ���
��� × 100� Distribution index 

DE 2 
CR 

F 

[0.1,1.0] 

[0.5, 1.0] 

��� (0.1, ��
���

�
 ) 

0.5 + (��
���/2) 

Crossover probability 

Step size 

SPX 3 � [2.5, 3.5] 2.5 + ��
��� Expansion rate 

PCX 4 
�� 

��  
[0.1, 0.3] 

0.1 + (��
���/5) 

0.1 + (��
���/5) 

These parameters 

(standard deviations) 

control the spatial 

distribution of the 

offspring for PCX and 

UNDX  

UNDX4 
σ� 

σ� 

[0.4, 0.6] 

[0.1, 0.35] /√� 

0.4 + ���
���/5� 

�0.1 + (��
���/3)�/√�  

1Simulated Binary Crossover; 2 Differential Evolution; 3 Simplex Crossover; 4 Parent-Centric Crossover; 
5Unimodal Normal Distribution Crossover 

Figure 2a illustrates the relationships between operators’ dominance attainment and their 

control parameters values and shows how operators’ parameters auto-tuned according to the 

operator successful to produce non-dominated solutions in the dominance archive.  

2.2.3. Exploration Extension Mechanism 

This mechanism is based on initializing (resetting) all operators’ selection probabilities ��
��� 

uniformly to1/NRO. It aims to provide an equal opportunity for all the operators, by assessing the 

performance best on the most recent results. Otherwise, the previously successful operators with 

more solutions in the archive would continue to dominate based on past performance as dictated by 

Equation 2.  

The number of resets depends on a random integer Nr such that �� ∈ ℕ� ∈ [1, 3]. When the 

algorithm starts, an Nr value is selected at random and the maximum permissible number of function 

evaluations NFEmax is divided by �� + 1 to determine the reset interval Er. For example, if NFEmax = 

300,000 and Nr = 2, the reset occurs at every Er = 100,000 function evaluations. Hence, in this case, two 

resets occur during the entire optimization. Formally, 

�� =
������

�� + 1
;   �� ∈ ℕ� ∈ [1,3] 

 
(3) 

where Er is the reset interval. 
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Figure 2b shows an example of the resetting process and its relation with self-adaptive 

mechanism to extend algorithm explorations and escaping from possible local optima. 

 

Figure 2. Illustrates the self-adaptive mechanism (a) and exploration extension (b) used by -DSEA. 

2.2.4. Virtual Dominance Archive 

In early stages of an evaluation process for constraints problems with enormous decision 

variables, the -dominance archive techniques (Section 2.1.3) tend to maintain only the non-

dominated solutions in the dominance archive. Experimental tests on such problems show only one 

non-dominated solution maintained in the archive while exploring the design space for feasible 

solutions. Hence, the operators’ parameters will be on its minimum values during this stage in the 

evaluation process using the proposed self-adaptive mechanism. To overcome this issue, a virtual 

dominance archive was developed by randomly generating a virtual number of the dominance 

solutions for the selected operator to preserve diversity and early convergence exploration for 

feasible solutions using the entire parameter’s domain.  

2.2.5. Constraint Handling Strategy 

The fundamentals of evolutionary algorithms are based on handling only unconstraint 

optimization problems [35], many techniques were proposed for constraint problems, like penalty 
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function, special representations and operators, and repair method [58]. Here, the penalty function 

technique is adopted as follows [59]: 

ℱ(x) = f(x) + �(x)  (4) 

where ℱ(�) is the expanded objective function, and �(�) is the constraint violation amount, which 

can be expressed as (based on Equation 1): 

�(x) = � A�

�

���

. ����0, g�(x)�
�

+ � B�

�

���

. �h�(x)�  (5) 

where �� ��� ��  ∈ ℝ�, are penalty factors. I and J are the total numbers of inequity and equity 

constraints, respectively. 

2.3. Comparative Paradigms  

There are many types of MOEAs’ paradigms introduced in the literatures, including many-

objectives algorithms [12,60−62], however, previous algorithms’ design principles were often 

adopted in developing new algorithms [61] like -MOEA [45] and -NSGA-II [63] which employed 

the -dominance sorting proposed by Laumanns et al., 2002, on the original version of MOEA [64] 

and NSGA-II [4]; MOEA/D [5] also employed decomposition on the origin MOEA.  

MOEAs’ effectiveness is commonly measured using quantitative metrics like the hypervolume 

metric [65] which evaluate the non-dominated solutions’ hypervolume, and generational distance 

metric [66] which measure the average distance between the dominance solutions and the closer 

Pareto-front set. However, these metrics (and others) may provide misguiding results and most of 

their design principles depends on the true Pareto-front, which is unknown in real-world problems 

[22].  

Accordingly, the comparative assessment of -DSEA are based on a real-world engineering 

problem. Here, the state-of-the-art Borg MOEA [30] was adopted for comparative purposes since it 

outperforms or met other state-of-the-art algorithms’ achievement, such as: -MOEA, -NSGA-II, 

MOEA/D, GBE3, OMOPSO, IBEA, NSGA-II, AMALGAM [18,30,67−70]. Borg employs many 

MOEAs’ design principles based on previous works like; recombination, mutation, and dominance 

sorting (e.g., -box). The authors present novel techniques to improve the exploration and 

exploitation process including; -progress indicator of stagnation and improvement, population 

expansion to preserve diversity exploration, multiple recombination operators for search variations, 

and self-adaptive of operator. A concise detail of these techniques are presented below, more details 

are presented in aforementioned literatures. 

Borg MOEA uses an active population of solutions and an external archive that stores dominant 

solutions, and the population size is proportional to the archive size. Initially, the archive is empty; 

hence an initial population size is required. Subsequently, the population size changes as follows [30] 

� =
��

��
;  � ≥ 1  (6) 

where NP and NA are the population and archive sizes, respectively, and γ is the ratio of the 

population size to the archive size, and equal to 4 [30].  

The -progress index measures the improvements while searching for new solutions. If the 

algorithm finds new dominant solutions in a new unoccupied -box (if the new dominant solutions 

have different -box indices) it means there is improvement, otherwise no improvement flag will 

mark a stagnation sign. If the last case continues for a number of evaluations, a revival process named 

“restart” will be triggered to escape from possible local optima. The restart involves emptying the 

population and re-populating based on the population to archive ratio (Equation (6)). The population 

is refilled using all solutions in the archive. Any remaining empty slots in the population are filled 

with solutions created by uniform mutation of solutions that are selected randomly from the archive.  

The trigger for the revival process depends on any of the following three conditions: 

a. If there is no change in the archive size for a certain number of evaluations;  

b. If there is no improvement indicated by the �-progress indicator; and 

c. If the current population to archive ratio exceeds 1.25  
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Borg follows the same crossover and mutation techniques mentioned in section 2.2, and employs 

Equation 2 to self-adaptive operator’s selection. In Borg, the relevant operators’ parameters have 

fixed pre-execution values during evaluation process. 

2.4. Identification of a Real-World Experimental Test Problem 

A case study in Iraq’s Diyala river basin was adopted as a real-world IWRM problem which is 

more complex than common benchmark test functions [22]. GWP, [71]. The Global Water Partnership 

defines the IWRM as “IWRM is a process which promotes the co-ordinated development and management of 

water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable 

manner without compromising the sustainability of vital ecosystems”. Authors and institutes adopt 

different water management concepts (about 41 variant possible explanations for the term 

“integrated”) due to the generalization in IWRM definition. Some examples are: water supply and 

water demands; surface water and groundwater; water quantity and water quality; urban and rural 

water issues; government and NGOs (non-governmental organizations) [72,73]. The river basin has 

two multipurpose dams, Derbendikhan just at the northern international border in Sulaymaniya 

governorate, and Himren in the middle part of the basin in the Diyala governorate (Figure 3). Here, 

Derbendikhan dam’s operation strategy for the next three decades was selected as a benchmark 

problem. Based on monthly dataset from 1981 to 2012 (33 years), a total of 396 decision variables 

(reservoir releases) need to be managed during the time-scale. Generating hydropower is the main 

current operation target, hence power penstocks (tunnels) are the main reservoir outlet of the 

proposed management model. 

 

Figure 3. Catchment area of the transboundary Diyala river basin in Iraq. 

2.4.1. Objectives Functions Formulae 

The reservoir water budget is governing by the water balance equation, as: 

 

����
� = ��

� + ��
� − ��

� − ��
� + ��

� − ���
� + ���

�  , t =1, 2,.. T 
 (7) 
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where ��
� and ����

�  are the reservoir storage at time t and t+1, ��
� and ��

� are reservoir inflows and 

releases, respectively. ��
� is the evaporation losses from reservoir surface, ��

� is the direct rainfall 

on the reservoir. While, ���
�  and ���

�  are seepage losses and groundwater recharges from the 

reservoir, respectively.  

The reservoir operation strategy (��) is represented by the following multi-objective (or many 

for more than 3 objectives) formula: 

 

��� �� = ( �������� , ��������, �������, �������, �����)  (8) 

 

where ��������  is for maximizing winter storage to fulfil summer demands, ��������  is for 

minimizing summer storage to absorb expected flood wave in the next season, �������  is for 

maximizing hydropower generation, ������� is for minimizing agriculture projects’ water deficit, 

and �����  is for minimization releases fluctuation. These targets represent the following aspects: 

social (��������  and ��������); economic (������� , �������); and environmental (�����). 

The details of these objectives functions are as follows: 

 

��� �������� = � �
����

� − ��
�

����
�

�

�

  

��

���

+ ��  , � = 1, 2, . . ��  (9) 

 

��� �������� = � �
��

� − �����
�

����
�

�

�

+ �� , � = 1, 2, . . ��

��

���

  (10) 

 

��� ������� = � �
�����

� − ���
�

�����
�

�

��

���

+ ��  , � = 1, 2, . . �  (11) 

 

��� ������� = � �
��� − ����

�

�����

�

��

���

+ �� , � = 1, 2, . . �  (12) 

 

��� ����� = � �
��

� − ����
�

����
�

�

����

���

+ ��  , � = 1, 2, . . �  (13) 

 

�� = � × � ��

��

���

;   � ≥ 1 , � = 1, 2, . . ��  (14) 

Where: 

����
�  = maximum allowable reservoir storage 

�����
� = minimum allowable reservoir storage for hydropower generation 

TW, TS and T = winter, summer and total operation periods, respectively. 

���
�= hydropower generation at time t 

�����
� = maximum hydropower generation 

��� = projects’ water demands at time t 

����� = maximum projects’ water demands 

����
� = delivered water at time t 

����
�  = maximum reservoir releases at time t 

CP = penalty factor includes all the violations of the model, which could be expressed  

NC = number of constraints  

�� = penalty function for the (ith) constraint 

A = a positive real number 

The hydropower generation can be expressed as: 
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���
� = ��

�. ��. ��
���. ��

��  (15) 

Where (��
���) is the turbine discharge, (��

��) is the net head between reservoir level and the tail water 

after the power plant, (��
�) is the efficiency of power plant, and (��) is the water density. 

2.4.2. Reservoir System Constraints 

The reservoir storage is limited between the minimum and maximum allowable 

storage, 283.48 ≤ ��
� ≤ 2572.0 (million cubic meters), the water level head (��

�) should be ≥ 434.0 

m.a.s.l, the power generation must be less than 249000 Kw and greater than 16000 Kw, and the 

release between 51.84 ≤ ��
� ≤ 878.6 million cubic meters/month. Hence, the penalty functions (��) 

can be expressed as: 

�� = � ���[0, (��
� − 283.48)]

�

���

  (16) 

 

�� = � ���[0, (2572.0 − ��
�)]

�

���

  (17) 

 

�� = � ���[0, (��
� − 434.0)]

�

���

  (18) 

 

�� = � ���[0, (���
� − 16000)]

�

���

  (19) 

 

�� = � ���[0, (249000 − ���
�)]

�

���

  (20) 

 

�� = � ���[0, (��
� − 51.84)]

�

���

  (21) 

 

�� = � ���[0, (878.6 − ��
�)]

�

���

  (22) 

2.5. Computational Properties 

The computational parameters of the problems were 2.0 × 106 function evaluations and  = 0.1 

for three objectives, and  = 0.5 for five objectives, with 10 and 20 runs for both algorithms. The 

minimum population size was 100 while the maximum was 1000. A Dell OptiPlex 780 computer was 

used (Core Duo 2 E8400, 2  3.0 GHz, 8.0 GB RAM, Ubuntu 16.04 operating system). Table 2 shows 

the parameter values used for both algorithms. A program (code) in C language was developed to 

build the current model.  
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Table 2. Parameter values used in the optimization algorithms. 

Parameters Borg -DSEAa Parameters Borg -DSEA 

Initial population size 100 100 SPX parents 10 3 

Tournament selection size 2 2 SPX offspring 2 2 

SBX crossover rate 1.0 1.0 SPX expansion rate λ 3 [2.5, 3.5]  

SBX distribution index  15.0 [0, 100] UNDX parents 10 10 

DE crossover rate CR 0.1 [0.1, 1.0]  UNDX offspring 2 2 

DE step size F 0.5 [0.5, 1.0]  UNDX  0.5  [0.4, 0.6]  

PCX parents 10 10 UNDX  0.35/√� [0.1, 0.35]/√�  

PCX offspring 2 2 UM mutation rate 1/L 1/L 

PCX  0.1 [0.1, 0.3] PM mutation rate 1/L 1/L 

PCX  0.1 [0.1, 0.3] PM distribution index m 20 20 

L is the number of decision variables. The permissible range for dynamic parameters is shown in 

brackets. The parameters  and  are defined in Table 1. aThe initial values of dynamic parameters 

used in -DSEA are as shown for Borg MOEA. 

3. Results 

3.1. Performance Achievement 

3.1.1. Algorithms’ Reliability 

Figure 4 illustrates the Pareto-front for 20 replicated random runs of the case study benchmark 

problem for both algorithms using three objectives. Although both algorithms converged to possible 

optima, -DSEA shows better reliability. Notably, Borg MOEA has faced some challenges in six trials, 

as it was stagnant in four and had overdue convergence in two. Some of these contain only one 

solution, as highlighted with dotted lines. In addition, some others have discontinuous Pareto-front 

(with gaps) in the objective search space. This behaviour reduces an algorithm’s reliability to produce 

near optimal solutions over replicated random execution (for example when testing the confidence 

of the model output), and is a key factor when solving more complex problem using high-

performance computer resources (e.g., parallel processing with multi-core). Conversely, -DSEA 

shows reliability over 20 runs to converge to the possible optimal solution, with commonly 

continuous Pareto-front. Hence, less randomness creeps into runs increasing the confidence that 

optimal solutions can be achieved.  

 

Figure 4. Pareto-fronts for twenty random runs achieved by both algorithms. 
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A high-dimension problem (5 objectives) was employed for advance algorithms’ assessment as 

shown in Figure 5. The optimum solutions’ median for 10 trials of both algorithms is presented. 

Notably, both algorithms produce possible optimum solutions, but the -DSEA has slightly more 

reliable trends over execution repetitions as supported by the self-adaptive parameters’ technique 

used in this EA, which was also approved by [74] for 20 runs. Insight investigation shows that a Borg 

MOEA stack in local optima twice (run 3 and 7), and adapt with PCX operator for all trials, as in three 

objectives scenario; while -DSEA adapts at the initial stage with SBX operator, then with PCX and 

SPX operators in parallel for the rest of evaluation process (Figure S1 in the supplementary data). The 

resetting technique’s effectiveness is obvious over changing the trend of the operators’ adaptation to 

escape from a local optima pitfall. Execution trial No. 4 shows competitive achievement of both 

algorithm, which may consider for comparative investigation. 

 

Figure 5. Five objectives’ median optimum solutions of 10 runs of both algorithms. 

Hence, the proposed mechanism provides advance diversity and balancing between exploration 

and exploitation process toward possible Pareto-front set. 

3.1.2. Algorithms’ Robustness and Efficiency 

In -DSEA, non-dominated feedback loops control the operators’ adaptation and their 

parameters. Figure 6a illustrates the self-adaptive operators’ parameter-tuning behaviour of -DSEA 

during the evaluation process. The most effective operators adopted to generate dominance solutions 

for the best trial are SBX, PCX, and SPX. Initially the virtual dominance archive mechanism tuned the 

operator’s parameters when only one solution is kept in the dominance archive. Then the SBX 

operator was adopted until the first resetting trigger at 5.0 × 105 function evaluation. The PCX 

operator is then involved by increasing the variation parameters (�� and ��) to about 0.15. The SPX 

operator is also involved at the same time when its parameter () changed to about 2.7. Both PCX and 

SPX operators compete to explore dominance solutions till the third resetting trigger, and after that 

the SPX operator starts to generate more dominance solutions in the dominance archive. Increasing 

PCX and SPX parameters will generate new offspring farther away from their original parents, which 

will increase algorithm exploration in the design search space.  
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Figure 6. (a) Parameters self-adaptation of the most effective operators for the best solution achieved, 

and (b) algorithm convergence to generate dominance solutions during the evaluation process. 

The algorithms’ convergence (efficiency) also investigated using the decision variables vector 

(��� ) development in the dominance archive during the evaluation process. The ���  is equal to 

���
� + ��

� + ��
� + ⋯ + ��

�  , where x1 to xn are the decision variables. Based on the best solution 

achieved, Figure 6b shows ��� convergence of both algorithms. Both achieved early convergence, 

but -DSEA converged faster, hence -DSEA’s efficiency was endorsed in the proposed test problem. 

The progress of the objectives’ convergence of both algorithms over 10 iterations of high-

dimension problem is presented in Figure S2 and S3 in the supplementary data, respectively. Early 

convergence was achieved by both algorithms, -DSEA converged at 1.25 × 104 function evaluations 

for all iterations, and Borg MOEA converged at 25 × 104. The -DSEA needs less execution time to 

achieve solutions. Where there are limited computational resources (e.g., CPU, Ram, etc.,) this 

achievement is significant. Furthermore, Borg MOEA suffered significant and interim stagnation in 

7 trials (2, 3, 7, 9, and 4, 6, 10, respectively) in the early stage of evaluations. Only three out of 10 trials 

maintained dominance solutions improvement over the entire evaluation. The PCX operator’s 

adaptation with fixed parameters and recycling repetitively archive’s dominance solutions may 

restrict the extent of the algorithm’s exploration in the design search space. Conversely, only one trial 

(no. 9) suffered significate stagnation in -DSEA, however the expansion diversity and resetting 

techniques succeed in reviving the algorithm’s exploration to find new dominance solutions in the 

dominance archive. The robustness of -DSEA to escape from local optima are evident. Figure 7 

shows trial no. 4 as a sample of convergence progress, since both algorithms achieved competitive 

solutions (based on Figure 5). 
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Figure 7. Convergence progress during evaluation process of both algorithms for trial no. 4. 

3.1.3. Algorithms’ Effectiveness 

For real-world multi-objective problems, and especially in water resources management 

problems, the true Pareto-front (e.g., optimum solution) is unknown [22], and it is difficult to measure 

an algorithm’s effectiveness for such problems, as other relevant factors should also be evaluated 

such as the coverage of the Pareto-front and its extent in the objective space [34]. Hence, the 

qualitative comparison was often based on the best solution achieved over several replicated trials 

(e.g., equal or more than 20 runs). The results here show the reliability of both EA models but better 

computational performance by -DSEA. 

3.2. Strategic Achievement 

Table 3 demonstrates results’ analysis of both algorithms’ achievement based on best optimum 

solution to maximise hydropower generation, as it is one of the main dam’s operation targets. The 

gross sum of hydropower, storage, and releases of the reservoir were presented to demonstrate the 

contrast between two algorithms’ achievement, based on the relevant optimization techniques. The 

results of both are harmonic, with advance merit of -DSEA. 
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Table 3. Results’ analysis of water resources management strategy of Derbendikhan dam achieved by both algorithms based on maximising hydropower generation. 

 Borg MOEA -DSEA 

 Area 1 Head 2 Power 3 Storage 4 Releases 5 Area Head Power Storage Releases 

3 Objective problem 

Min. 19.18 437.79 24.50 433.55 129.94 17.32 434.73 24.83 373.82 129.75 

Max. 122.79 485.97 249.00 2565.84 866.25 121.80 485.86 246.37 2551.05 877.20 

Mean 74.37 474.71 94.76 1732.33 336.06 76.39 475.53 94.77 1775.22 336.17 

Median 72.03 477.12 83.00 1743.17 297.19 78.92 478.95 84.37 1867.41 316.10 

St.7 27.19 10.11 50.88 523.86 174.84 24.99 10.42 51.88 496.30 183.22 

Gross6   37.52 686.00 133.08   37.53 702.99 133.12 

 5 Objective problem 

Min. 16.94 434.09 23.44 361.60 130.72 19.10 437.67 24.09 431.16 130.45 

Max. 122.97 485.98 249.00 2568.50 866.08 123.14 486.00 249.00 2570.98 797.97 

Mean 66.09 470.67 90.46 1555.39 337.72 71.90 472.95 91.77 1672.36 334.80 

Median 61.55 473.63 82.14 1540.19 316.81 71.78 477.05 82.00 1738.53 298.79 

St. 29.89 12.83 45.64 597.36 162.74 28.94 12.58 47.18 583.53 169.11 

Gross   35.82 615.94 133.74   36.34 662.25 132.58 
1 Surface area of reservoir in km2; 2 Head of water in m.a.s.l; 3 Hydropower generation in MW; 4 Reservoir storage in m3 ×106); 5 Reservoir releases in m3/month ×106; 6 Gross 

sum units of: Power in GW; Storage in m3 ×109); Releases in m3/month ×109. 7 St. for Standard Deviation. 
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Figure 8a,b depict algorithms’ attainment of 10 multi-objective multi-variable trials and show 

the consistency of the -DSEA is marginally better than Borg notably from the period 1 to 216 months. 

The same behaviour also achieved for the next period, which reflect -DSEA algorithms’ ability to 

generate possible competitive optimal solution with fewer replicated trials. 

Consistency with the relevant historical (actual) dataset should also be reviewed during decision 

making trials (i.e. solutions’ quality), as in Figure 8 c,d. Both algorithms achieved competitive results, 

but -DSEA’s result has better reaction to flood waves and better agreement with the historical data. 

Here, spillway discharge did not factor in the models or the developed management model, since 

flood waves events usually last hours or a couple of days in the investigated region. Accordingly, no 

relevant sensitive reaction was observed since monthly average management was adopted by the 

model. 

 

Figure 8. Comparative graphs between achieved releases of both algorithms based on maximizing 

hydropower generation objective. (a) and (b) show detail results for 10 runs, while (c) and (d) 

illustrate historical and model releases. 

As a source of renewable energy, hydropower generation is one of the key-operational targets 

of the tested real-world problem, and often for any multipurpose dam projects, that needs to be 

carefully management under different operation scenarios, such as flood risk management. Two 

objectives were adopted, ��������  and �������� , the later selected for insight investigation, as it is the 

most critical operation scenario that may affect other operational targets. Figure 9a,b illustrate 

solution distribution density achieved by both algorithms over the power generation domain. In 

general, -DSEA achieved high repetition of 30 to 50 Mw solutions, and gentle gradient repetition 

after that, while Borg MOEA has steeper gradient repetition starting from 30 Mw and thereafter. -

DSEA achievement offers insight for investment decision making as minimum power generation of 

30 Mw could be guaranteed for next three decades.  

Hydropower generation depends on two variables, turbine’s discharge and water net head, as 

in Equation 15 (turbine’s efficiency and water’s specific weight assumed constant). Figure 9c,d 

illustrate hydropower generation solution’s space achieved by both algorithms. Competitive 

distribution over solution space was accomplished by both algorithms for turbine discharge ≤600 

MCM, while better space’s exploitation for greater values (600 MCM) achieved by -DSEA. Borg 

tends to maximize power generation by releasing more water, but solutions are irregularly deployed 

(clustering) which possibly due to local optima pitfall. 
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Figure 9. Insight analysis of hydropower generation accomplished by both algorithms under flood 

risk management scenario (��������). (a) and (b) shows solutions repetition density, while (c) and (d) 

demonstrate head-discharge-hydropower solution space. 

For example, in the region of <80m net head (���) and >600 MCM releases (Figure 9c,d), only 

five solutions formed as two groups achieved (green colour), which is not the case in -DSEA.  

Recreation is another target to optimize for revenue. Figure 10 shows reservoir surface area 

achieved by both algorithms for the considered time-scale of ��������  scenario. The mean and 

median surface area were about 52 and 49 km2, 51 and 44 km2 achieved by -DSEA and Borg 

respectively. The small violation between these values indicates competitive results’ distribution, 

corollary more solutions greater than these values achieved by -DSEA. Hence, projects’ revenues 

could be improved even in such a critical scenario.  

 

Figure 10. Reservoir’s surface area distribution achieved by both algorithms under �������� 

scenario. 
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4. Discussion 

4.1. Algorithms’ Optimization Techniques 

The technique of Borg MOEA tends to adapt based on operator experience after finding possible 

feasible solutions. The SBX operator was adopted in the early stage of evaluation process, then PCX 

operator adopted to the end. Zheng et al., [48] observed that, for two-objective problems, Borg MOEA 

tended to converge prematurely and population diversity decreased relatively rapidly. This is 

because Borg MOEA does not maintain a separate transient sub-population of offspring as in NSGA-

II. Offspring that dominate its parents immediately replaces one of the parents; the choice of the 

parent that is replaced is random. As new solutions are introduced, the selection pressure on less 

competitive solutions increases, due to the binary tournament selection used for a crossover. Fitting 

solutions have a higher probability of selection for a crossover, leading to more exploitation and less 

exploration and thus less diversity. Secondly, the injection trigger that depends mainly on -progress 

indicators, did not always succeed in reflecting stagnation during the evaluation process. Thirdly, 

PCX operator produces offspring in the vicinity of the parents. If the PCX operator creates solutions 

around the best solutions, the PCX-generated solutions quickly dominate the archive, leading to more 

exploitation, less exploration and consequently relatively rapid loss of diversity. As stated 

previously, the recombination operators are deployed in proportion to the number of offspring they 

contributed in the archive. 

In Borg MOEA the operator that produces more successful (i.e., non-dominated) offspring is 

deployed more frequently. However, as the search progresses and the balance between exploration 

and exploitation shifts gradually, it is desirable that the operators be deployed based on the current 

status of the search rather than their previous performances or cumulative successes. In other words, 

the selection of the operators should recognize the current performance also. Hence, the proposed 

performance assessment of the operators relies on the results from the current phase of the search 

rather than the cumulative performance to date. 

The novel technique of virtual dominance archive used in -DSEA removes operator bias and 

extends the algorithm’s exploration by tuning the operators’ parameters control within the specified 

domain, resulting in a robust convergence progress at initial stage of the evaluation process. In the 

same context, resetting these parameters’ values during evaluation process help the algorithm to 

escape from local optima pitfall, and improve its exploitation to find new non-dominated solutions.    

4.2. Water Resources Management Case Study 

Although both algorithms achieved possible optimum solutions, -DSEA generates more robust 

results. Based on gross sum of five objective problems (Table 3), an extra 520 MW and 46.31 MCM of 

hydropower generation and reservoir storage was achieved, respectively. The mean and median 

water head achieved by -DSEA were about 1.5 m higher than those of Borg MOEA in all cases. This 

will provide advance security against possible dam failures in the future as the water head should be 

above 455.0 m.a.s.l [75]. Although this problematic was not considered in the current model as an 

objective or a constraint, all the relevant mean and median values achieved by both algorithms satisfy 

this restriction. This area of study should be considered in future work. 

Figure 11a,b illustrates results’ quality of reservoir water level (m.a.s.l) produced by both 

algorithms over 10 runs, based on maximizing hydropower generation. Notably, more results of 

≥460.0 and fewer of ≤440.0 were generated by -DSEA. The same achievement observed in the critical 

scenario of minimizing storage in summer, represented by ��������, as in Figure 11c,d. Nevertheless, 

the latter has better results’ than Borg MOEA regarding the current potential risk. Moreover, the 

harmony of results’ distribution over 10 trials is evident, endorsing the reliability of -DSEA. 

Within this framework, good exploration-exploitation balance of slave (or secondary) solution 

search space of hydropower generation and reservoir surface area were attained (Figure 9). Although 

the master decision variables’ search space is relevant to reservoir releases while other dependent 

variables are calculated accordingly (e.g., power generation, storage, area, etc.,), the compete 

optimality achievement mapped to those sub-variables. This is not the case in other optimization 
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algorithms, since often competitive investigation only covers the master decision variables and/or 

objectives’ search space, either in test functions or in real-world case study benchmarks. Insight or 

deep diagnosis assessment considering indirect variables should be used in such competitive studies. 

 

Figure 11. Demonstrates reservoir water level distribution achieved by both algorithms of 10 runs. (a) 

and (b) are the best solution to maximize hydropower generation; (c) and (d) the same as those to 

minimize summer storage. 

The results suggest water resources decision makers are advised to implement different 

optimization algorithms, especially when solving multi or many objective problems, to explore 

possible new optimal results with advance quality, and to reinforce results’ reliability. The -DSEA 

achievement was previously assessed using more complex water resources problem, as in [74,76], 

however, more assessment is recommended to solve different problem environments. 

5. Conclusions 

In this research, strategic planning of water resources under competitive optimization 

techniques was investigated.  Decision makers often adopt optimization techniques to evaluate a 

wide range of competitive water resources management decisions. However, past studies 

demonstrate that an algorithm’s optimal output varies according to the problem environment. 

Furthermore, slave (dependent) variables’ quality are often not analysed in depth, which could play 

an important role in improving a project’s economic success. Here, a comparative assessment of two 

optimization techniques was tested against a real-world water resources strategy. The Borg MOEA 

and the -DSEA performance was contrasted based on the relevant strategic plans using objective 

functions (i.e., the Pareto-front), master and slave variables.  

The results by both models showed possible optima, with an advanced reliability and robustness 

when using -DSEA as it provided consistent results closer to near-optimal solutions. Both algorithms 

have auto-adaptive operator techniques, but Borg appoints a mono-operator after a specific number 

of evaluations (e.g. PCX), while multi-operators sequence during the evaluation stages (e.g. starting 

by SBX operator and ending with PCX and SPX operators in parallel). The Borg MOEA reviver’s 

techniques should consider this drawback, as early stages stagnation is evident, especially in many-

objectives problem. The -DSEA escapes from local optima by employing by-stage operators’ 

parameters, which may be useful when applying to real-world problem solving.  

The compete achievement of -DSEA was mapped onto the relevant water resources strategic 

plan. In all adopted scenarios for the real-world case study results show that extra hydropower, 
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reservoir storage and surface area can be achieved. The releases have better consistency and 

sensitivity with the historical dataset and flood waves. The model outputs can be used to manage 

power generation to support, for example, an investment opportunity while still promising 

recreation investment opportunities achieved by maintaining larger reservoir surface area over the 

adopted time-scale. The results demonstrate the importance of insight and in-depth analysis of 

relevant objectives and variables using EA models. 

The -DSEA and the relevant approach could be evolve for similar and/or even more complex 

real-world problems, such as groundwater management, water supply system, water allocation, etc., 

by adding and/or modifying objective functions, decision variables, and constraints. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/11/10/2021/s1: 

Figure S1: Active -DSEA operators’ selection probability achievement over 10 runs using five-objectives 

engineering problem, Figure S2: Convergence progress of dominance solutions during evaluation process of 

engineering problem for 10 trials using Borg MOEA, Figure S3: Convergence progress of dominance solutions 

during evaluation process of engineering problem for 10 trials using -DSEA.  

Author Contributions: Conceptualization, J.Y.A.-J.; Methodology, J.Y.A.-J.; Writing—original draft preparation, 

J.Y.A.-J.; Writing—review and editing, R.M.K.; Validation, R.M.K. 

Funding: This research was funded by Iraqi Ministry of Higher Education and Scientific Research 

(MHESR)/University of Baghdad, grant number 2012-2013. 

Acknowledgments: The authors thank Professor Patrick Reed and David Hadka for providing the source code 

for Borg MOEA. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Maier, H.; Kapelan, Z.; Kasprzyk, J.; Matott, L. Thematic issue on Evolutionary Algorithms in Water 

Resources. Environ. Model. Softw. 2015, 69, 222–225. 

2. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, 

Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. 

3. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of 

the 1st international Conference on Genetic Algorithms, 1985; pp. 93–100. 

4. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-

II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. 

5. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. 

Evol. Comput. 2007, 11, 712–731. 

6. Zitzler, E.; Künzli, S. Indicator-Based Selection in Multiobjective Search. Computer Vision ECCV 2012 2004, 

3242, 832–842. 

7. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over 

Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. 

8. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth 

International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 

39–43. 

9. Dorigo, M.; Stützle, T. Ant Colony Optimization; Bradford Company: Scituate, MA, USA, 2004. 

10. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. 

11. Coello, C.A.C.; Lamont, G.L.; van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective 

Problems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. 

12. Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: 

A survey of the state of the art. Swarm Evol. Comput. 2011, 1, 32–49. 

13. Hurford, A.P.; Huskova, I.; Harou, J.J. Using many-objective trade-off analysis to help dams promote 

economic development, protect the poor and enhance ecological health. Environ. Sci. Policy 2014, 38, 72–86. 

14. Qi, Y.; Bao, L.; Ma, X.; Miao, Q.; Li, X. Self-adaptive Multi-objective Evolutionary Algorithm based on 

Decomposition for Large-scale problems: A Case Study on Reservoir Flood Control Operation. Inf. Sci. 

2016, 367–368, 529–549. 



Water 2019, 11, 2021 21 of 23 

 

15. Salazar, J.Z.; Reed, P.M.; Quinn, J.D.; Giuliani, M.; Castelletti, A. Balancing exploration, uncertainty and 

computational demands in many objective reservoir optimization. Adv. Water Resour. 2017, 109, 196–210. 

16. Al-Jawad, J.Y.S.; Tanyimboh, T.T. Reservoir operation using a robust evolutionary optimization algorithm. 

J. Environ. Manag. 2017, 197, 275–286. 

17. Dai, L.; Zhang, P.; Wang, Y.; Jiang, D.; Dai, H.; Mao, J.; Wang, M. Multi-objective optimization of cascade 

reservoirs using NSGA-II: A case study of the Three Gorges-Gezhouba cascade reservoirs in the middle 

Yangtze River, China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1–22. 

18. Hadka, D.; Reed, P. Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective 

Evolutionary Optimization. Evol. Comput. 2012, 20, 423–452. 

19. Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An Evolutionary Many-Objective Optimization Algorithm Based on 

Dominance and Decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. 

20. Liu, Z.-Z.; Wang, Y.; Huang, P.-Q. AnD: A many-objective evolutionary algorithm with angle-based 

selection and shift-based density estimation. Inf. Sci. 2018, 1–20, doi:10.1016/j.ins.2018.06.063. 

21. Ishibuchi, H.; Setoguchi, Y.; Masuda, H.; Nojima, Y. Performance of Decomposition-Based Many-Objective 

Algorithms Strongly Depends on Pareto Front Shapes. IEEE Trans. Evol. Comput. 2017, 21, 1. 

22. Maier, H.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.; Cunha, M.; Dandy, G.; Gibbs, M.; Keedwell, E.; 

Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, 

research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. 

23. Goldberg, D.E. Sizing Populations for Serial and Parallel Genetic Algorithms. In Proceedings of the 3rd 

International Conference on Genetic Algorithms, San Francisco, CA, USA, 4–7 June 1989; pp. 70–79. 

24. De Jong, K. Parameter Setting in EAs: A 30 Year Perspective. Informatik im Fokus 2007, 54, 1–18. 

25. Karafotias, G.; Hoogendoorn, M.; Eiben, A.E. Parameter Control in Evolutionary Algorithms: Trends and 

Challenges. IEEE Trans. Evol. Comput. 2015, 19, 167–187. 

26. Eiben, A.; Hinterding, R.; Michalewicz, Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol. 

Comput. 1999, 3, 124–141. 

27. Deb, K.; Agrawal, R.B. Simulated Binary Crossover for Continuous Search Space. Complex Syst. 1995, 9, 

115–148. 

28. Reynoso-Meza, G.; Sanchis, J.; Blasco, X.; Mart´ınez, M. An empirical study on parameter selection for 

multiobjective optimization algorithms using Differential Evolution. In Proceedings of the 2011 IEEE 

Symposium on Differential Evolution (SDE), Paris, France, 11–15 April 2011; pp. 1–7. 

29. Stephens, C.R.; Olmedo, I.G.; Mora-Vargas, J.; Waelbroeck, H. Self-Adaptation in Evolving Systems. Artif. 

Life 1998, 4, 183–201. 

30. Hadka, D.; Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol. 

Comput. 2013, 21, 231–259. 

31. Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.; Reed, P.; Herman, J.; Kasprzyk, J. Evolutionary 

multiobjective optimization in water resources: The past, present, and future. Adv. Water Resour. 2013, 51, 

438–456. 

32. Marchi, A.; Dandy, G.; Wilkins, A.; Rohrlach, H. Methodology for Comparing Evolutionary Algorithms for 

Optimization of Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 22–31. 

33. Silver, E.A. An overview of heuristic solution methods. J. Oper. Res. Soc. 2004, 55, 936–956. 

34. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. 

Evol. Comput. 2000, 8, 173–195. 

35. Deb, K. Multi-Objective Optimization using Evolutionary Algorithms, 1st ed.; John Wiley & Sons: Chichester, 

UK, 2001. 

36. Stadler, W. A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960. J. 

Optim. Theory Appl. 1979, 29, 1–52. 

37. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999. 

38. Deb, K.; Joshi, D.; Anand, A. Real-coded evolutionary algorithms with parent-centric recombination. In 

Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; 

Volume 1, pp. 61–66. 

39. Kita, H.; Ono, I.; Kobayashi, S. Multi-parental extension of the unimodal normal distribution crossover for 

real-coded genetic algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, 

Washington, DC, USA, 6–9 July 1999; pp. 1581–1587. 



Water 2019, 11, 2021 22 of 23 

 

40. Tsutsui, S.; Yamamura, M.; Higuchi, T. Multi-parent recombination with simplex crossover in real coded 

genetic algorithms. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference, San 

Francisco, CA, USA, 13–17 July 1999; pp. 657–664. 

41. Michalewicz, Z.; Logan, T.; Swaminathan, S. Evolutionary operators for continuous convex parameter 

spaces. In Proceedings of the 3rd Annual Conference on Evolutionary Programming, 1994; pp. 84–97. 

42. Deb, K.; Agrawal, S. A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms. Artif. 

Neural Nets Genet. Algorithms 1999, 4, 235–243. 

43. Geetha, T.; Mahalakshmi, K.; UmmuSalma, I.; Kumaran, K.M. An Observational Analysis of Genetic 

Operators. Int. J. Comput. Appl. 2013, 63, 24–34. 

44. Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E. Combining Convergence and Diversity in Evolutionary 

Multiobjective Optimization. Evol. Comput. 2002, 10, 263–282. 

45. Deb, K.; Manikanth, M.; Shikhar, M. A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread 

Pareto-Optimal Solutions; KanGAL Technical Report No.2003002; IIT: Kanpur, India, 2003. 

46. Kollat, J.; Reed, P. A computational scaling analysis of multiobjective evolutionary algorithms in long-term 

groundwater monitoring applications. Adv. Water Resour. 2007, 30, 408–419. 

47. Zecchin, A.C.; Simpson, A.R.; Maier, H.R.; Marchi, A.; Nixon, J.B.; Maier, H. Improved understanding of 

the searching behavior of ant colony optimization algorithms applied to the water distribution design 

problem. Water Resour. Res. 2012, 48, doi:10.1029/2011WR011652. 

48. Zheng, F.; Simpson, A.R.; Zecchin, A.C.; Maier, H.R.; Feifei, Z. Comparison of the Searching Behavior of 

NSGA-II, SAMODE, and Borg MOEAs Applied to Water Distribution System Design Problems. J. Water 

Resour. Plan. Manag. 2016, 142, doi:10.1061/(ASCE)WR.1943-5452.0000650. 

49. Vrugt, J.A.; Robinson, B.A. Improved evolutionary optimization from genetically adaptive multimethod 

search. Proc. Natl. Acad. Sci. USA 2007, 104, 708–711. 

50. Hesser, J.; Männer, R. Towards an optimal mutation probability for genetic algorithms. In Parallel Problem 

Solving from Nature, Proceedings of 1st Workshop PPSN I Dortmund, FRG, 1–3 October 1990; Schwefel, H.-P., 

Männer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 23–32. 

51. Aleti, A. An Adaptive Approach to Controlling Parameters of Evolutionary Algorithms. PhD. Thesis, 

Swinburne University of Technology, Melbourne, Australia, 2012. 

52. Deb, K.; Beyer, H.-G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evol. Comput. 

2001, 9, 197–221. 

53. Farmani, R.; Wright, J.A. Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. 

Comput. 2003, 7, 445–455. 

54. Giger, M.; Keller, D.; Ermanni, P. AORCEA—An adaptive operator rate controlled evolutionary algorithm. 

Comput. Struct. 2007, 85, 1547–1561. 

55. Kaveh, A.; Shahrouzi, M. Dynamic selective pressure using hybrid evolutionary and ant system strategies 

for structural optimization. Int. J. Numer. Methods Eng. 2008, 73, 544–563. 

56. Vafaee, F.; Nelson, P.C. An explorative and exploitative mutation scheme. In Proceedings of the IEEE 

Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8. 

57. Vrugt, J.A.; Robinson, B.A.; Hyman, J.M. Self-adaptive multimethod search for global optimization in real-

parameter spaces. IEEE Trans. Evol. Comput. 2009, 13, 243–259. 

58. Lwin, K.; Qu, R.; Kendall, G. A learning-guided multi-objective evolutionary algorithm for constrained 

portfolio optimization. Appl. Soft Comput. 2014, 24, 757–772. 

59. Bechikh, S.; Datta, R.; Gupta, A. Recent Advances in Evolutionary Multi-objective Optimization, Adaptation, 

Learning, and Optimization; Springer International Publishing: Cham, Switzerland, 2017; Volume 20.  

60. Li, B.; Li, J.; Tang, K.; Yao, X. Many-Objective Evolutionary Algorithms: A Survey. ACM Comput. Surv. 2015, 

48, 13:1–13:35. 

61. Mane, S.U.; Rao, M.R.N. Many-Objective Optimization: Problems and Evolutionary Algorithms—A Short 

Review. Int. J. Appl. Eng. Res. 2017, 12, 973–4562. 

62. Bechikh, S.; Elarbi, M.; Said, L.B. Many-objective Optimization Using Evolutionary Algorithms: A Survey. 

In Recent Advances in Evolutionary Multi-objective Optimization; Bechikh, S., Datta, R., Gupta, A., Eds.; 

Springer: Cham, Switzerland, 2017; pp. 105–137. 

63. Kollat, J.; Reed, P. Comparing state-of-the-art evolutionary multi-objective algorithms for long-term 

groundwater monitoring design. Adv. Water Resour. 2006, 29, 792–807. 



Water 2019, 11, 2021 23 of 23 

 

64. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley 

Longman Publishing Co., Inc.: Boston, MA, USA, 1989. 

65. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. 

Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 1999. 

66. Van Veldhuizen, D.A.; Lamont, G.B. Evolutionary Computation and Convergence to a Pareto Front. In 

Proceedings of Late Breaking Papers at the Genetic Programming 1998 Conference, Madison, WI, USA, 22–

25 July 1998; pp. 221–228. 

67. Hadka, D.; Reed, P.M.; Simpson, T.W. Diagnostic assessment of the borg MOEA for many-objective 

product family design problems. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, 

Brisbane, Australia, 10–15 June, 2012; pp. 1–10. 

68. Woodruff, M.J.; Reed, P.M.; Simpson, T.W. Many objective visual analytics: Rethinking the design of 

complex engineered systems. Struct. Multidiscip. Optim. 2013, 48, 201–219. 

69. Salazar, J.Z.; Reed, P.M.; Herman, J.D.; Giuliani, M.; Castelletti, A. A diagnostic assessment of evolutionary 

algorithms for multi-objective surface water reservoir control. Adv. Water Resour. 2016, 92, 172–185. 

70. Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water 

allocation under climate change. Sci. Total Environ. 2017, 607, 294–303. 

71. GWP (Global Water Partnership). Sharing Knowledge for Equitable, Efficient and Sustainable Water Resources 

Management; Version 2; Global Water Partnership (GWP): Stockholm, Sweden, 2003. 

72. Cardwell, H.E.; Cole, R.A.; Cartwright, L.A.; Martin, L.A. Integrated Water Resources Management: 

Definitions and Conceptual Musings. J. Contemp. Water Res. Educ. 2006, 135, 8–18. 

73. Biswas, A.K. Integrated Water Resources Management: Is It Working? Int. J. Water Resour. Dev. 2008, 24, 5–

22. 

74. Al-Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. A Comprehensive Optimum Integrated Water 

Resources Management Approach for Multidisciplinary Water Resources Management Problems. J. 

Environ. Manag. 2018, in press. 

75. World Bank. Dokan and Derbendikhan Dam Inspections Report; Consultant Services by SMEC International 

Pty. Ltd.: Melbourne, Australia, 2006. 

76. Al-Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. Optimum socio-environmental flows approach for 

reservoir operation strategy using many-objectives evolutionary optimization algorithm. Sci. Total Environ. 

2018, 651, 1877–1891. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


