5,401 research outputs found

    3D-printing techniques in a medical setting : a systematic literature review

    Get PDF
    Background: Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Methods: Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. Results: 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. Conclusion: 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D- printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Evaluation of the accuracy of surgical reconstruction of mandibular defects when using navigation templates and patient-specific titanium implants

    Get PDF
    The management of patients with post-traumatic and post-operative mandibular defects is a major challenge even for experienced surgeons. Performing traditional reconstructive interventions with the use of bone autografts is always confronted with the problem of inconsistency between the shape, architecture, a biological. An alternative to conventional bone grafting is the use of digital protocol and CAD /CAMtechnology, which allows fabricating different types of customised medical devices. All patients underwent reconstructive and restoring interventions with the use of patient-specific titanium implants guided by a full digital protocol.Patients were examined in compliance with the standard scheme. To repair the defects, PSIs were fabricated with the use of selective laser sintering of titanium.The introduction of digital technologies and computer technique of diagnosing, planning and implementation of surgical interventions has been the main direction aimed at the improving the accuracy and predictability of reconstructive restorative surgery. Among the main achievements in this direction are the improvement of software and methods of computer modeling, as well as the introduction of CAD /CAMtechnology.The use of CAD /CAMtechnologies, in particular, navigational surgical templates and patient-specific implants for the repair of mandibular defects ensures a high level of accuracy and predictability

    Optimization of craniosynostosis surgery: virtual planning, intraoperative 3D photography and surgical navigation

    Get PDF
    Mención Internacional en el título de doctorCraniosynostosis is a congenital defect defined as the premature fusion of one or more cranial sutures. This fusion leads to growth restriction and deformation of the cranium, caused by compensatory expansion parallel to the fused sutures. Surgical correction is the preferred treatment in most cases to excise the fused sutures and to normalize cranial shape. Although multiple technological advancements have arisen in the surgical management of craniosynostosis, interventional planning and surgical correction are still highly dependent on the subjective assessment and artistic judgment of craniofacial surgeons. Therefore, there is a high variability in individual surgeon performance and, thus, in the surgical outcomes. The main objective of this thesis was to explore different approaches to improve the surgical management of craniosynostosis by reducing subjectivity in all stages of the process, from the preoperative virtual planning phase to the intraoperative performance. First, we developed a novel framework for automatic planning of craniosynostosis surgery that enables: calculating a patient-specific normative reference shape to target, estimating optimal bone fragments for remodeling, and computing the most appropriate configuration of fragments in order to achieve the desired target cranial shape. Our results showed that automatic plans were accurate and achieved adequate overcorrection with respect to normative morphology. Surgeons’ feedback indicated that the integration of this technology could increase the accuracy and reduce the duration of the preoperative planning phase. Second, we validated the use of hand-held 3D photography for intraoperative evaluation of the surgical outcome. The accuracy of this technology for 3D modeling and morphology quantification was evaluated using computed tomography imaging as gold-standard. Our results demonstrated that 3D photography could be used to perform accurate 3D reconstructions of the anatomy during surgical interventions and to measure morphological metrics to provide feedback to the surgical team. This technology presents a valuable alternative to computed tomography imaging and can be easily integrated into the current surgical workflow to assist during the intervention. Also, we developed an intraoperative navigation system to provide real-time guidance during craniosynostosis surgeries. This system, based on optical tracking, enables to record the positions of remodeled bone fragments and compare them with the target virtual surgical plan. Our navigation system is based on patient-specific surgical guides, which fit into the patient’s anatomy, to perform patient-to-image registration. In addition, our workflow does not rely on patient’s head immobilization or invasive attachment of dynamic reference frames. After testing our system in five craniosynostosis surgeries, our results demonstrated a high navigation accuracy and optimal surgical outcomes in all cases. Furthermore, the use of navigation did not substantially increase the operative time. Finally, we investigated the use of augmented reality technology as an alternative to navigation for surgical guidance in craniosynostosis surgery. We developed an augmented reality application to visualize the virtual surgical plan overlaid on the surgical field, indicating the predefined osteotomy locations and target bone fragment positions. Our results demonstrated that augmented reality provides sub-millimetric accuracy when guiding both osteotomy and remodeling phases during open cranial vault remodeling. Surgeons’ feedback indicated that this technology could be integrated into the current surgical workflow for the treatment of craniosynostosis. To conclude, in this thesis we evaluated multiple technological advancements to improve the surgical management of craniosynostosis. The integration of these developments into the surgical workflow of craniosynostosis will positively impact the surgical outcomes, increase the efficiency of surgical interventions, and reduce the variability between surgeons and institutions.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidente: Norberto Antonio Malpica González.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Tamas Ung

    Applications of 3D printing in the management of severe spinal conditions

    Get PDF
    The latest and fastest-growing innovation in the medical field has been the advent of three-dimensional printing technol- ogies, which have recently seen applications in the production of low-cost, patient-specific medical implants. While a wide range of three-dimensional printing systems has been explored in manufacturing anatomical models and devices for the medical setting, their applications are cutting-edge in the field of spinal surgery. This review aims to provide a com- prehensive overview and classification of the current applications of three-dimensional printing technologies in spine care. Although three-dimensional printing technology has been widely used for the construction of patient-specific ana- tomical models of the spine and intraoperative guide templates to provide personalized surgical planning and increase pedicle screw placement accuracy, only few studies have been focused on the manufacturing of spinal implants. Therefore, three-dimensional printed custom-designed intervertebral fusion devices, artificial vertebral bodies and disc substitutes for total disc replacement, along with tissue engineering strategies focused on scaffold constructs for bone and cartilage regeneration, represent a set of promising applications towards the trend of individualized patient care

    Patient-specific modelling in orthopedics: from image to surgery

    Get PDF
    In orthopedic surgery, to decide upon intervention and how it can be optimized, surgeons usually rely on subjective analysis of medical images of the patient, obtained from computed tomography, magnetic resonance imaging, ultrasound or other techniques. Recent advancements in computational performance, image analysis and in silico modeling techniques have started to revolutionize clinical practice through the development of quantitative tools, including patient#specific models aiming at improving clinical diagnosis and surgical treatment. Anatomical and surgical landmarks as well as features extraction can be automated allowing for the creation of general or patient-specific models based on statistical shape models. Preoperative virtual planning and rapid prototyping tools allow the implementation of customized surgical solutions in real clinical environments. In the present chapter we discuss the applications of some of these techniques in orthopedics and present new computer-aided tools that can take us from image analysis to customized surgical treatment

    Three-dimensional printed surgical templates for fresh cadaveric osteochondral allograft surgery with dimension verification by multivariate computed tomography analysis

    Get PDF
    Background: The fit of the allograft is a particular concern in fresh cadaveric osteochondral allograft (FOCA) surgery. Digital design and fabrication were utilized in conjunction with traditional surgery to enable efficient discovery and reproduction of appropriately dimensioned allograft. Methods: A patient with large osteochondral defects in the lateral femoral condyle was to undergo FOCA surgery. A digital virtual operation was performed, based on computed tomography (CT) images of the patient. Polyamide saw templates were manufactured using a selective laser sintering process, and gypsum powder was used to manufacture preoperative and intraoperative medical models with binder jetting process. The design dimensions were verified numerically by determining the intactness of the section surface and allograft volume based on four independent measurements of the initial design, and an automated design optimization strategy was postulated. For the surgery, a lateral longitudinal approach was employed. Results: The virtual operation allowed an efficient design of the saw templates. Their shape and dimensions were verified with a numerical CT analysis method. The allograft dimensions (medial-lateral/superior-inferior/anterior-posterior) were approximately 40/28.5/24 mm, respectively, with the anterosuperior corner diagonally removed, yielding a section volume of approximately 16.5 cm(3). These manually chosen dimensions were reminiscent of the corresponding computationally optimized values. Conclusions: Use of computer-aided design in virtual operation planning and three-dimensional printing in the fabrication of designed templates allowed for an efficient FOCA procedure and accurate allograft fitting. The numerical optimization method allowed for a semiautomated design process, which could in turn be realized also with surgical navigation or robotic surgery methods. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe
    • …
    corecore