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Abstract  12 

The latest and fastest-growing innovation in the medical field has been the advent of three-13 

dimensional (3D) printing technologies, which have recently seen applications in the production of 14 

low-cost, patient-specific medical implants. While a wide range of 3D printing systems has been 15 

explored in manufacturing anatomical models and devices for the medical setting, their applications 16 

are cutting-edge in the field of spinal surgery. This review aims to provide a comprehensive overview 17 

and classification of the current applications of 3D printing technologies in spine care. Although 3D 18 

printing technology has been widely used for the construction of patient-specific anatomical models 19 

of the spine and intraoperative guide templates to provide personalized surgical planning and increase 20 

pedicle screw placement accuracy, only few studies have been focus on the manufacturing of spinal 21 

implants. Therefore, 3D printed custom-designed intervertebral fusion devices, artificial vertebral 22 

bodies and disc substitutes for total disc replacement (TDR), along with tissue engineering strategies 23 

focused on scaffold constructs for bone and cartilage regeneration, represent a set of promising 24 

applications towards the trend of individualized patient care. 25 
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Introduction 29 

Low back pain caused by degenerative disc diseases, spinal deformities and injuries constitutes a 30 

growing problem within the modern society, affecting over 80% of the population worldwide1. Total 31 

incremental direct health care costs attributable to low back pain in the U.S. were estimated at $26.3 32 
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billion in 19982, while a more recent economic analysis carried out in the UK has estimated that direct 1 

healthcare cost for lower back pain is increasing and currently over £1.6 billion per year3. Most of 2 

the spinal surgeries are performed to relieve lower back pain, which has been reported to cause loss 3 

of mobility and even disability in some patients4, 5. In the UK, spinal surgery is the largest single 4 

component of expenditure for the management of low back pain6, with data evincing more than 4036 5 

lumbar spinal fusion surgeries during 2005 within the UK National Health Service7. From 2013 to 6 

2014, Hospital Episode Statistics, which records all admissions in the NHS, reported an increased 7 

number of 10,900 spinal fusions performed in the UK for neck and lower back pain. Almost 8,000 of 8 

these cases required implantation of fusion cages, while 600 were revision cases. 9 

To address the increasing demand and the wide number of possible surgical procedures and 10 

approaches, a huge amount of different spinal implants and devices are currently commercially 11 

available. The surgical options vary from spinal fusion, which is to date the most performed surgical 12 

procedure for the treatment of degenerative disc diseases, and artificial total disc replacement (TDR), 13 

which has been performed recently as an alternative to conventional fusion surgeries. However, 14 

despite the increasing clinical data, none of the existing procedures have shown to be completely 15 

successful and, at the 24 month follow-up, no significant differences in the clinical results have been 16 

found8. Revision surgeries are often required to address negative post-operative consequences and 17 

they are usually associated with even greater perioperative complications than primary procedures, 18 

thus predisposing patients to greater costs and utilisation of resources9. 19 

In this context, three-dimensional (3D) printing technology has the potential to revolutionize 20 

the surgical practice in surgery. The benefits of these emerging technologies in medicine are mainly 21 

related to the ability to rapidly convert two-dimensional (2D) digital medical images into 3D physical 22 

objects. Among the surgical applications, 3DP technologies has shown promise for uses in education 23 

and surgical planning by the fabrication of physical models of complex parts of the human anatomy. 24 

The use of 3D printed surgical models has been shown to help shorten operative time, thereby 25 

boosting surgical outcomes10. Biomodels have been beneficial in various branches of surgery, mainly 26 

when the procedures require manoeuvring around delicate neural structures, vessels and organs, and 27 

when the appreciation of anatomy can be difficult to attain from 2D radiographic images alone11. 3D 28 

printed anatomical models were found to improve measurement accuracy significantly in 29 

neurosurgery12-14, cranio-maxillofacial surgery15, 16, orthopaedics17, 18, cardio-thoracic and vascular 30 

surgery 19-21. The complex anatomy of the human body and its individual variances make 3D printing 31 

ideally suited to allow surgeons to prepare for highly customized procedures by means of custom-32 

designed devices, which can lead to better surgical outcomes, reduction of costs and operative time22. 33 

Moreover, the combination of reverse engineered data from medical imaging with customized global 34 



anatomical shape allows the fabrication of implants with virtually no limits on the complexity of the 1 

geometry achievable23.  2 

In this article, the recent opportunities and advancements of 3D printing technology are 3 

explored as it pertains to spinal surgery. We briefly discuss its basic concepts and benefits for the 4 

medical setting along with the main areas of application recently achieved in the field of spinal 5 

surgery. Figure 1 categorises the four areas in which 3DP has currently found applications: creating 6 

models for surgical planning and training; manufacturing custom-tailored drill and screw guide 7 

templates; fabricating spinal implants; and developing tissue engineered scaffolds for cartilage repair. 8 

 9 

 10 

  11 

Figure 1 | Diagram of the areas of interest and related applications of 3DP in spine care. 12 

 13 

Current challenges and needs for spinal surgery 14 

Current engineered solutions for the surgical treatment of spinal degenerative conditions 15 

include implant instrumentation, prosthesis, screws, rods and plates used to facilitate fusion, correct 16 

deformities, stabilize, reconstruct or reinforce the spine. Spinal fusion and total disc replacement 17 

(TDR) are the two main surgical procedures currently performed when conservative therapies have 18 

been unsuccessful.  19 

Intervertebral fusion is performed to stop the motion at a painful vertebral segment. The 20 

intervertebral disc is removed and interbody cage implants and bone graft material are inserted to 21 

help maintain spine alignment and achieve the fusion between the vertebrae (Figure 2). 22 

 23 



 1 

Figure 2 | OIC titanium cage manufactured by Stryker (A) and lateral X-ray of a non-migrated OIC cage perfectly 2 

fitting the intervertebral disc space (B) Source: reproduced and adapted with permission from Abbushi et al. 24. 3 

 4 

Wide variety of fusion cages are available in the market. They are generally classified into 5 

three types: anterior lumbar interbody fusion cages (ALIF); posterior and transforaminal lumbar 6 

interbody fusion cages (PLIF/TLIF); direct or extremely lateral interbody fusion cages (DLIF/XLIF). 7 

This classification is based on the direction through which the spine is approached for implanting 8 

fusion cages. Three materials have primarily been used in the manufacture of cage implants: titanium 9 

(Ti), polyetheretherketone (PEEK), and rarely carbon fibre reinforced polymers (CF-P)25. Titanium 10 

is known as a robust highly biocompatible material; however, because of the material rigidity it may 11 

results in stress shielding, which represents one of the main reason for the higher rate of non-union26, 12 

27. As an alternative for titanium, PEEK cages have been widely used during the past decade28-30. 13 

PEEK materials radiolucency and low elastic modulus are attractive attributes that make this material 14 

a good candidate for spinal fusion compared with titanium, which may also cause artefacts during 15 

medical image acquisition31. However, PEEK is known as a bioinert material and further 16 

functionalisation with Ti or osteoconductive materials such as hydroxyapatite (HA) may be needed 17 

for improving osseointegration32.  18 

Even though spinal fusion surgery has been widely applied in clinical treatment and the fusion 19 

rate has improved remarkably, several postoperative complications, such as adjacent segment 20 

degeneration caused by the increasing stress on the facet joints after lumbar fusion with pedicle screw 21 

fixation, have to be included in the surgical risks33. An alternative to spinal fusion is Total Disc 22 

Replacement (TDR) approach, a procedure that aims to treat degenerative disc diseases avoiding 23 

adjacent segment degeneration. As oppose to interbody fusion cages, which aim to promote fusion at 24 

an early stage, TDR implants are designed to maintain and transmit the axial load to the vertebral 25 

endplate throughout the whole patient’s life with no bony fusion34, 35. The clinical efficacy of disc 26 

implants compared to interbody fusion cages has been reported in several recent clinical studies36, 37. 27 

However, implant subsidence may occur and critical component for success are dependent on patient 28 

characteristics, surgeon-related factors and implant sizing38. Its clinical efficacy is also questioned, 29 

when compared with spinal fusion. 30 



Although spinal fusion cages and disc implants have been widely used for many years, none 1 

of the existing clinical devices has shown to be entirely successful and often bone plates and titanium 2 

screws are required to enable additional fixation. Standard implants and instrumentations may be 3 

unsuitable in some surgical cases, when patient characteristics are crucial to determine the most 4 

appropriate solution. Moreover, when spinal reconstruction is required to repair bone defects after 5 

tumor resection, fractures or injuries, the artificial body cages should ideally be manufactured at a 6 

specific size depending on the defect shape. Expandable cages can be inserted in a compressed form 7 

and they do not need to be manufactured at a specific size depending on the patient. However, several 8 

studies have shown that they are considerably more expensive to manufacture compared to the older 9 

types of vertebral body replacements and that the biomechanical stability of newly developed 10 

expandable cages is about equal to that of both non-expandable cages39, 40.  Therefore, customization 11 

is one of the current major priority in orthopaedics and spinal surgery and can be achieved by 12 

increasing the number of product sizes or, more accurately, by manufacturing patient-specific 13 

implants based on 3D medical images. 14 

 15 

 16 

Opportunities with 3D printing technology 17 

Generation of 3D objects from medical imaging 18 

The capability to translate data from clinical imaging techniques such as computed tomography (CT) 19 

or magnetic resonance imaging (MRI) makes 3D printing technologies particularly useful for many 20 

biomedical applications. 3D printing allows an easy conversion of digital models from medical 21 

imaging of a patient's anatomy for the fabrication of patient-specific anatomical models and medical 22 

implants from various biomaterials, offering a high level of control over the architecture, and 23 

guarantees reproducibility. Figure 3 shows the process workflow from image acquisition to the 24 

production of 3D printed anatomical models of the patient vertebrae. The image raw data are 25 

processed by dedicated 3D modelling software and 3D triangle mesh stereo lithography interface 26 

format (STL) and computer-aided-design (CAD) models are generated. The 3D model is further 27 

sliced into individual layers by a slicing software, which generate the machine code (e.g. G-Code). 28 

Once the 3D model is sliced into the desired number of two-dimensional (2D) sections and translated 29 

to the machine proprietary language, the machine reads the data from the CAD drawing and the raw 30 

material, in the form of powder, liquid or solid filament, is deposited layer by layer to build up a 31 

physical 3D object. The rapid-prototype model is ultimately post-processed. 32 

 33 



 1 

Figure 3 |  Process steps involved from image acquisition to the manufacturing of a patient-specific 3D printed 2 

model of the spine. DICOM (digital imaging and communications in medicine) images are acquired from patients by 3 

computed tomography (CT) or magnetic resonance imaging (MRI). The image raw data are consequently processed by 4 

dedicated 3D modelling software. The post-processing involves image segmentation and visualisation and allows the 5 

generation of a 3D triangle mesh (STL) and a computer-aided-design (CAD) model of the segmented region of interest. 6 

The 3D model is further translated into individual layers by 3D slicing software, which generate the machine code (e.g. 7 

G-Code) used for printing. The rapid-prototype model is finally post-processed and the 3D patient-specific model is 8 

obtained. 9 

 10 

 11 

While a range of 3D systems have been developed for industrial use; stereolithography (SLA), 12 

multijet modelling (MJM), selective laser sintering (SLS) and fused deposition modelling (FDM) are 13 

the main approaches that have been explored for medical applications41. Each technique, differ in the 14 

manner which layers are built and printing materials used. Every next layer is added to the first layer 15 

until the object is fully printed by dispensing the material with an extruder (fused filament), by using 16 

a chemical agent (binder) or a laser (sintering/melting), changing the state of the material42. Within 17 

the resin-based technologies, SLA is widely considered the “gold standard” for medical applications 18 

and typically constitutes the more efficient process for larger parts with high levels of build resolution. 19 

However, it is significantly more labour intensive and costly in comparison with other 3D printing 20 

techniques43. Between the powder-based systems, selective laser sintering (SLS) is a laser-based 21 

technique that involves a fine powder bed of thermoplastic, metal or ceramic materials. One of its 22 

major advantages is the ability to process about any material in a powdered form, including a variety 23 

of composite materials such as glass reinforced polymers, metal/polymer composite, metal/metal 24 

composites44. Other powder-based technologies include direct metal laser Sintering (DMLS) and 25 

selective laser melting (SLM), which use concepts comparable to the SLS except that the material is 26 



fully melted rather than sintered. Much attention has been paid to extrusion-based systems in recent 1 

years since they are mechanically simple and cost-effective processes in comparison to other solid 2 

freeform fabrication (SFF) techniques45. Fused deposition modelling (FDM) is the most commonly 3 

used and affordable extrusion-based technology available currently; however only materials in the 4 

form of solid filaments can be processed. Another cluster of 3D printing techniques is constituted by 5 

droplet-based systems, such as MultiJet printing (MJM) or PolyJet technology, where the liquid 6 

material is deposited in a droplet form. MJM techniques allow high resolution comparable with laser-7 

based systems; however, printing materials used by jetting-based processes are limited and the high 8 

price of these printers make this technology more suitable for large- scale production46. 9 

 10 

Customisation of implants and intraoperative instruments 11 

3D printing has been described to provide the possibility to create customized implants for 12 

prosthetic operations, rehabilitation, and plastic surgery47-49. Numerous medical implants with 13 

tailored geometries and physical properties, such as bone fracture fixation devices, parts for artificial 14 

hips or knees, nerve guidance channels or prostheses, can be manufactured using 3D printing 15 

techniques such as stereolithography50.  16 

There are many reasons emphasizing the need of customized implants. Firstly, patients outside 17 

the standard range of commercially available implants can benefit by means of implant size- or 18 

disease-specific special requirements; secondly, surgical outcomes may improve because of 19 

individual fitting and adequate match with individual anatomical needs51. One of the important 20 

features of a spinal implant is that it needs to fit closely to the upper and lower vertebrae endplates to 21 

allow the bone to grow into the implant and anchor it in place. Often the standard orthopaedic implants 22 

are not sufficient for  some  patient  groups and for the  most  complex  cases, surgeons have limited 23 

options and might need to do extra bone graft surgeries52. For this reason, most of the manufacturers 24 

of spinal implants usually provide for an assortment of cages and disc substitutes in different shapes, 25 

sizes and materials. However, very rarely the chosen device fits perfectly into the patient 26 

intervertebral space, and several trials with different implant prototypes following x-ray evaluation 27 

are needed during the surgery in order to find the best fit. This procedure definitely increases the 28 

duration of the surgical intervention with a consequent rise of costs, patient anaesthetic risks and x-29 

ray exposure. In this context, use of 3DP technologies for the fabrication of customized implants 30 

provide several opportunities to solve the current interventional issues with direct benefits to the 31 

surgical outcomes and patient recovery. 32 

 33 

 34 



Cost-effectivity and production enhancement 1 

The cost of additive manufacturing technologies has decreased recently because of the advent 2 

of low-cost desktop 3D printer and printable multi-materials with flexible characteristics are now 3 

commercially available. Another reason lies in the additive manufacturing concept: since the 3D 4 

objects are built in a layer-by-layer fashion, no waste of material is required. Additionally, with 5 

respect with the clinical field, since custom-designed implants fit patients specifically, they may 6 

recover more quickly and are less likely to experience surgical complications and revision surgical 7 

procedures, with a significant reduction of time and costs.  8 

The comparatively high speed and low operational cost of the 3D printers means that a large 9 

number of models can be produced during the product development phase53. As a result, productivity 10 

is increasing in terms of the number of cubic centimetres printed per hour, as well as the reliability 11 

and repeatability. Traditional manufacturing systems remain less expensive for large-scale 12 

production; however, the cost of 3D printing is becoming more competitive for small production 13 

runs54. 14 

 15 

Implant designing and optimization 16 

A significant potential of the 3D printing technologies lies within the ability of manufacturing 17 

complex geometry implants that are impossible to fabricate with conventional methods. Recent 18 

advances in both computational topology optimisation and 3DP have made possible the 19 

manufacturing of scaffold constructs with controlled architecture, which may facilitate the process of 20 

cell invasion and proliferation, by the designing of hollow geometries and multi-scale porosities. 21 

Reproducible irregular internal structures are obtainable with control over pore size, shape and 22 

interconnectivity. One way to achieve hierarchical design is to create libraries of unit cells at different 23 

physical scales that can be assembled to form scaffold architectures and printed by means of 3DP 24 

systems55. In this perspective, Finite Element Modelling (FEM) and Analysis (FEA) software allow 25 

the simulation of physiological and patient-specific conditions in terms of loads and interactions 26 

between the anatomical parts, as well as the possibility to perform topology optimisation for the 27 

designing of individually-optimized implants. 28 

 29 

3D printing in spinal applications 30 

In spinal surgery, 3D printing can potentially play a significant role in preoperative planning 31 

and training; intraoperative guidance with custom-designed drill and screw guide templates; spinal 32 

cages for interbody fusion surgery or vertebral body replacement (VBR); disc implants for total disc 33 



replacement (TDR); and tissue engineering for cartilage regeneration. We will review each of these 1 

applications in following sections. 2 

 3 

Models for preoperative planning 4 

Even though the use of 3D printed model for pre-operative planning in spinal surgery is not 5 

widely adopted, it has been shown to help shorten operative time, thereby boosting surgical 6 

outcomes10.  Recent work has shown promising results in reducing the operating time and 7 

intraoperative blood loss as well as the risk of postoperative complications. Mao et al.56 recently 8 

selected patients with congenital scoliosis, atlas neoplasm, atlantoaxial dislocation, or atlantoaxial 9 

fracture-dislocation and used 3D models for observation of the spinal pathoanatomy, surgical 10 

planning, and selection of internal-fixation instruments prior to surgical procedures (Figure 4.A). 11 

They reported no pedicle penetrations or screw misplacement according to the postoperative planar 12 

radiographic images. Ai-Min Wu et al.57 recently provided a protocol for printing accurate and 13 

inexpensive 3D spinal models for surgeons and researchers, by using a FDM apparatus. The resulting 14 

3D printed model is inexpensive and easily obtained for spinal fixation research.  15 

The current 3D-printed models are still not suitable for some surgical procedures where the 16 

relationship between anchorage tools and soft tissue is relevant. However, most spinal fixation 17 

techniques, including pedicle or lateral screw fixation, which are known to be safe if the screw does 18 

not perforate more than 2 mm outside the cortex, could be studied using 3D-printed models.  3D 19 

subject-specific prototypes manufactured by stereolitography58, 59or selective laser sintering (SLS)60 20 

have been used to investigate the usefulness of 3D printing in complex spinal surgeries (Figure 4.B). 21 

Yang et al.61 have shown that 3DP technology could reduce the misplacement rate of corrective 22 

surgery in the treatment of  Lenke 1 adolescent idiopathic scoliosis (AIS). The morphology of 23 

complex pathologies can be particularly difficult to assimilate from standard 2D imaging, and 3D 24 

printing has shown a potential role in producing accurate models of the spine for assistance in the 25 

planning, execution of the surgery and reducing the operating time.  26 

 27 



 1 

Figure 4 | 3D Printed haptic models of the spine manufactured by different 3DP techniques. Digital spinal 3D 2 

reconstruction based on the CT data set and rapid prototyping models of two cases of complex severe spinal deformity 3 

made by selective laser sintering (SLS) (A). Source: reproduced and adapted with permission from Mao et al.56 4 

Photosensitive resin 3D models used for observation of the spinal pathoanatomy, surgical planning, and selection of 5 

internal-fixation instruments prior to surgical procedures (B). Source: reproduced and adapted with permission from 6 

Wang et al.60  7 

 8 

Patient-specific screw guide templates 9 

Use of pedicle screws is the most common and effective procedure used in spinal surgery to 10 

stabilise vertebrae. However, placement of screws within pedicle is not always accurate using 11 

conventional surgical procedures, which relay mainly on surgeon experience and post-operative 12 

evaluation by x-rays. Misplaced screw during surgery carries several risks, which include injuries to 13 

the adjacent structures, such as vessels, nerves and viscera. 14 

With the aim of increasing the accuracy of screw placement during spinal surgical procedures, 15 

studies have been focus on improving instrumentation by using patient-specific screw guides. 16 

Recently, 3D printing of patient-specific guide templates for screw insertion and fixation during 17 

spinal surgery procedures have been reported. Several clinical and cadaveric studies have been 18 

involved in the evaluation of the placement accuracy of intraoperative screws inserted by means of 19 

3D printed drill guide templates62-71. The related instrumentations and outcomes are summarized in 20 



Table 1. Chen et al.62 have applied 3D printed guide templates manufactured using SLS technique in 1 

posterior lumbar pedicle screw fixation. Their results shown that compared with the traditional 2 

treatments, the use of intraoperative guidance could shorten the operation time and reduce the amount 3 

of haemorrhage. In recent studies63, 64 three types of templates for precise multistep guidance have 4 

been fabricated through a polyjet technology with a patient-specific approach to specifically designed 5 

fit and lock templates. The patient-specific guides resulted in increased accuracy and no incidences 6 

of perforation, providing a simple and economical method that also allows a reduction of the 7 

operating time and radiation exposure of spinal fixation surgery. Accordingly, Merc et al.66 reported 8 

that 3D printed multi-level drill guide templates designed for  the dorsal elements significantly lower 9 

the incidence of cortex perforation, therefore representing a potential application in clinical practice 10 

(Figure 5). Lu et al.67 have presented a novel computer-assisted 3D printed drill guide template that 11 

had to fit into the facet joints on a lock-and-key principle for placement of C2 laminar screws. The 12 

reported stereolithographic manufacturing time of the model was about 16 h and the price of each 13 

model of the vertebra and navigational template was about $20.  14 

Based on an investigation of the design criteria, material and taking limitation of 3D printing 15 

into account, a recent study72 presented several proposals for improving the spinal drill guides 16 

placement accuracy. The design solution proposed consisted in a transparent template, possibly 17 

manufactured using stereolithography, which included holes for inserting probes with scales for 18 

assessing the correct positioning of the guide on the vertebra. Crawford et al.73 have patented a 3D 19 

printed patient-specific surface-matched template for solving the problem of mis-placement of 20 

artificial discs and other surgical implants with minimal effort from the surgeons. Their invention 21 

contemplates a computerized tool for planning surgery comprising a haptic interface capable of 22 

providing force feedback and provides the surgeon with a custom made 3D printed alignment device 23 

created for the particular patient. Their tool can enable correct positioning of artificial discs and other 24 

surgical implants and help in pedicle screw trajectory adjustment, anterior plate adjustment, inclusion 25 

of adjacent levels within the fusion construct and artificial disc placement.  26 

 27 

 28 

Figure 5 | Designing (A) and temporary fixation (B) of a multi-level drill guide template that fits onto the dorsal 29 

elements of the facet joint. Source: reproduced and adapted with permission from Merc et al.(2013)66.  30 



Table 1 | Clinical and cadaveric studies of 3D printed patient-specific screw guide templates 1 

Year Authors 

Instrument 

intraoperative 

application 

Material 
3D Printing 

technology 

N° of patients - 

Experimental group 

Total N° of 

screws 
Placement accuracy - Experimental group 

Placement accuracy –  
Control group 

2015 Chen et al.62 
Posterior lumbar 

pedicle screw fixation 

Polyamide 

(PA220) 
SLS 20 118 

Excellent and good screw placement rate: 

100% 

Excellent and good screw 
placement rate: 

98.4% 

2014 Merc et al.65 

Pedicle screw 

placement in lumbar 

and sacral spine 

N/A SLS 11 72 

26% chance of screw misplacement (screw 

displacement > 3.125 mm or screw tip 

misplacement > 

6.25 mm) 

N/A 

2014 
Kaneyama et 

al.63 
Posterior C-2 fixation 

Nonsoluble 

acrylate 
POLYJET 23 26 

Mean screw deviations: 

 0.36 mm in the axial plane (range 0.0–3.8 mm) 

and  

0.30 mm in the sagittal plane (range 0.0–0.8 mm) 

N/A 

2013 
Sugawara et 

al.64 

Intraoperative screw 

navigation in the 

thoracic spine 

Nonsoluble 

acrylate 
POLYJET 10 58 

Mean screw deviation: 

0.87 ± 0.34 mm 
N/A 

2013 Merc et al.66 

Lumbar and first 

sacral 

pedicle screw 

placement 

Polyamide SLS 9 10 

Displacement sagittal 

(mm), mean (SD):  

0.3 (3.4) 

Deviation sagittal (°), 

mean (SD): −1 (5) 

Displacement sagittal 
(mm), mean (SD):  

1.5 (3.2)  
Deviation sagittal (°), 

mean (SD): −6 (8) 

2009 Lu et al.67 
Placement of C2 

laminar screws 
Acrylate resin SLA 9 N/A No bony breach N/A 

Year Authors 

Instrument 

intraoperative 

application 

Material 
3D Printing 

Method 

N° of cadaveric 

spines - 

Experimental group 

Total N° of 

screws 
Placement accuracy - Experimental group 

Placement accuracy –  
Control group 

2013 Hu et al.68 
C2 translaminar screw 

placement 
Acrylate resin SLA 32 64 

Entry point average displacement of the superior 

and inferior C2TLS in the x, y, z axis was 0.27 ± 

0.85, 0.49 ± 1.46, -0.28 ± 0.69, 0.43 ± 0.88, 0.38 

± 1.51, 0.23 ± 0.64 mm 

N/A 

2012 Ma et al.69 
Thoracic pedicle 

screw placement 
Acrylate resin SLA 10 214 

Average extent of pedicle violation (x ± s) (mm): 

0.95 ± 0.49 

Average extent of pedicle 
violation (x ± s) (mm): 3.29 ± 

1.84 

2011 Lu et al.70 
Cervical pedicle screw 

placement 
Acrylate resin SLA 6 84 

82 screws rated as Grade 0 (no deviation), 2 as 

Grade 1 (deviation of less than 2 mm), and no 

screws as either Grade 2 or 3 (deviation of more 

than 2 mm) 

N/A 

2005 Berry et al.71 

Cervical, thoracic and 

lumbar pedicle screw 

placement 

Polyamide SLS 4 50 

Two of the template 

designs facilitated the placement of 20/20 screws 

without error 

N/A 

SLA: Stereolitography; SLS: Selective Laser Sintering.  2 



Spinal implants 1 

3D printing technology is recently emerging as a subject of interest in manufacturing spinal 2 

cages for interbody fusion surgery and vertebral body replacement (VBR) as well as disc implants 3 

for total disc replacement (TDR).  4 

Within the set of spinal implants, one of the main advantages of additive manufacturing 5 

technologies consists of the capacity to fabricate porous geometries, which may derived from 6 

structural and topological optimization with the aim of facilitating the process of osseointegration. 7 

Moreover, to better match bone stiffness requirements and avoid stress-shielding effects, as well as 8 

delivering osteoconductive materials, high porosity is required in case of metallic materials. Hence, 9 

with the purpose of reducing stiffness while increasing osteointegration, Lin et al.74 developed a 10 

porous Ti-6Al-4V optimal-structure fusion cage fabricated by SLM process with consistent 11 

mechanical properties. The average compressive modulus of the tested caged was 2.97 ± 0.90 GPa, 12 

which was comparable with the reported porous tantalum modulus of 3 GPa and therefore provided 13 

sufficient compressive strength without excessive stiffness for maintaining spine segmental integrity. 14 

Table 2 compares the techniques and the results of recent studies associated with 3D printed interbody 15 

fusion cages. 4WEB Medical has recently patented75 and commercialized innovative 3D printed spine 16 

implants that may actively participate in the healing process. The web structure is configured to 17 

provide support along at least four planes of the implant to bear against tensile, compressive, and 18 

shear forces. The device may provide long-term support of the spine and actively participate in bone 19 

growth and healing process through the optimized open architecture, which allows for up to 75% of 20 

the implant to be filled with graft material to maximize bone incorporation.  Currently, the materials 21 

used in the rapid manufacture of commercially available spinal cage implants are titanium and PEEK, 22 

typically fabricated by SLS techniques because of the high temperature required for melting the 23 

materials. Other solutions for providing appropriate stiffness requirements and osteointegration might 24 

be achieved by the use of biomaterials such as polycarbonate (PC). Figueroa et al.76 have recently 25 

presented a new design concept for lumbar spinal surgery implants based on additive manufacturing 26 

for the generation of hollow geometries facilitating the process of osseointegration. Their simulation 27 

indicates that ABS material is not appropriate for cage implants while PC could provide technical 28 

feasibility to lumbar cages that provide the desired requirements in terms of strength and 29 

osseointegration. 30 

As an alternative solution to permanent implants, biodegradable cages are receiving increased 31 

attention in spinal fusion for reducing revision surgeries by avoiding post-operative complications 32 

such as stress-shielding effects and long-term foreign body reaction. In recent studies, optimally 33 

designed biodegradable intervertebral fusion cages were fabricated in poly(e-caprolactone) (PCL) 34 



mixed with hydroxyapatite (HA) using a selective laser sintering (SLS) solid freeform fabrication 1 

machine77, 78. Kang et al.77 developed a multiscale topology optimization technique to balance the 2 

complex requirements of load-bearing, stress shielding and interconnected porosity when using 3 

biodegradable materials for fusion cages. Figure 6.A shows the topology optimized fusion cage and 4 

a 3D printed prototype of the bioresorbable interbody fusion device with integrated multiscale 5 

topology optimization. Their PCL intervertebral device demonstrated to achieve the desired stiffness 6 

and strength, characteristics needed for better fusion outcomes. The compression tests revealed that 7 

the optimal fusion cages could withstand over 3 kN of loads, which is above the physiological level 8 

of the human lumbar spine79, 80. Based on this work, Knutsen et al.78 reported the first study focused 9 

on the evaluation of the mechanical fatigue properties of bioresorbable PCL cages for cervical spine 10 

fusion. They developed two biodegradable cervical cage designs composed of PCL/HA, a porous 11 

ring-shaped cage designed based on commercially available cervical fusion cages, and a novel, porous 12 

rectangular optimized cage design (Figure 6.B). The optimized design was created using a modular 13 

approach, combining a topology optimization approach81 for the porous regions with image-based 14 

design for the cage shape and serrated fixation ridges. Under dynamic testing both designs withstood 15 

5 million (5 M) cycles of compression at 125% of their respective yield forces; however, the measured 16 

compressive yield loads fall within the reported physiological ranges. Hence, the tested PCL 17 

bioresorbable cages would likely require supplemental fixation. Overall, very few articles have been 18 

focus on the application of PCL for fusion cages and more studies need to be done in the context of 19 

bioresorbable spinal implants.  20 

 21 

 22 



Figure 6 | Porous 3D printed bioresorbable PCL interbody fusion devices with integrated Global-Local Topology 1 

Optimization. Design domain and final design of an optimal interbody fusion cage and its fabrication using solid freeform 2 

fabrication (A). Source: adapted from Kang et al. (2010)81. Conventional cylindrical type cervical fusion cage with centre 3 

hole for bone graft and topology optimized cervical fusion cage design (B). Source: adapted from Knutsen et al. (2015)78. 4 

 5 

 6 

Most recently 3D printing has been introduced in spinal surgery as a tool for manufacturing 7 

individualized fusion implants that replicate the patient-specific topology of the vertebral endplates. 8 

Spetzger et al.82 performed a pilot project of the first implantation with an anterolateral standard 9 

approach of a custom-designed cervical titanium cage, made of trabecular titanium and manufactured 10 

with direct metal printing (Figure 7). The improved load-bearing surface allowed an accurate fit of 11 

the implant and has shown to be promising in decreasing the rate of cage subsidence. However, no 12 

mechanical or computational tests are reported for comparison with standard commercially available 13 

cervical fusion implants. 14 

 15 

 16 

Figure 7 | Virtual (A) and actual (B) design of a patient-specific titanium fusion cage implant, with a macro- and 17 

microcellular trabecular structure for improved osseointegration. Source: reproduced and adapted with permission from 18 

Spetzger et al.(2016)82. 19 

 20 

In the past 2-3 years, our group has been involved in 3D printing and computational analysis studies 21 

of patient-specific spinal implants. A low-cost bioprinting process consisting of a robotic tool 22 

enabling a layer-by-layer deposition of polycarbonate (PC) material was used to manufacture a 23 

patient-specific cage83. Computational models were employed for optimising existing device and 24 

design more effective solutions. Figure 8 shows the optimisation of an existing fusion cage by the 25 

combination of additive manufacturing and finite element analysis. Different materials such as Ti, 26 

PEEK, and PC along with different filling densities were tested. Consistently, stresses increased with 27 

reducing material density. Stress peak values were lower than the respective risk of failure in all the 28 

simulated cases and the patient-specific design showed lower stress distribution when compared to 29 

the conventional cage84. Computational analyses along with structural and mechanical testing and 30 

biocompatibility studies suggested the feasibility of a lighter, cheaper and patient-specific cage.  31 

 32 



 1 

Figure 8 | (A) Photograph of a conventional design 3D printed polycarbonate (PC) fusion cage. (B-D) Finite element 2 

analysis of the conventional cage  under 1 MPa compression: full (B) and cut (C) view of the distribution of Von Mises 3 

stresses for the 100% (B-C) and 25% (D) filling density design. 4 

 5 

 6 

  7 



Table 2 | Comparison of the results obtained from mechanical and computational testing in studies related to 3D printed interbody fusion cages 

Year Authors 
Spinal 

segment 

Cage 

characteristics 
Material 

3D 

Printing 

technique 

Average 

Compression 

Young Modulus 

Static 

Compression 

Standard Loads 

Finite element 

analysis (FEA) 

Dynamic 

Fatigue testing 
Conclusions 

2015 
Knutsen et 

al. 78 
Cervical 

Optimally 

designed porous 

biodegradable 

cage 

PCL/4% HA 

composite 
SLS N/A 

•847 N (Yeld) 

•4000 N withstood 

without ultimate 

failure 

N/A 

Ultimate 

Compression 

Failure Load: 

4.5 M cycles 

(125%) 

Fixation with supplemental 

devices would likely be 

required 

2013 
Kang, et 

al. 77 
Lumbar 

Optimally 

designed porous 

biodegradable 

cage 

PCL/4% HA 

composite 
SLS 

•Optimized 

microstructure pore 

cage: 7548.6 N/mm 

•Cylindrical pore 

cage: 7117.9 N/mm 

•Optimized 

microstructure pore 

cage: 2923 N (Yeld) 

•Cylindrical pore 

cage: 3376 N (Yeld) 

•Optimized cage 

without pore 

structure, 

V.Mises max: 8.23 

MPa under 1500 N 

compression 

N/A 

Sufficient static 

mechanical properties to 

support lumbar interbody 

loads 

2013 
Hunt et 

al.75 

Lumbar/ 

Cervical 

Web structure 

including a space 

truss 

Titanium alloy 

(e.g., γTitanium 

Aluminide) and 

other materials 

contemplated 

EBM/SLS

/DMLS 
N/A N/A N/A N/A 

Innovative spine implants 

with open architecture that 

allow for up to 75% of the 

implant to be filled with 

graft material 

2007 Lin et al.74 Lumbar 

Integrated 

topology 

optimization cage 

design 

Ti-Al6-V4 SLM 2.97 ± 0.90 GPa 
88.94 ± 1.28 kN 

(Ultimate) 
N/A N/A 

Comparable stiffness to 

porous tantalum, 

providing sufficient 

compressive strength 

without excessive 

stiffness for spine 

segmental integrity 

EBM: Electron Beam Melting; DMLS: Direct Metal Laser Sintering; SLA: Stereolitography; SLM: Selective Laser Melting; SLS: Selective Laser Sintering. 1 



Body replacement cages provide a widely accepted alternative to traditional spinal fusion 1 

cages for restoring the anterior coloumn height and repairing spinal coloumn defects caused by 2 

tumors, fractures and infections85, 86. 3D printing technology has been recently explored as a high 3 

potetential method to fabricate accurate  patient-specific self-stablizing artificial vertebral bodies 4 

(SSAVB) for tumor resection and bony reconstruction at the upper cervical spine87. The novel 5 

customized artificial vertebral body with controlled microstructure has been designed for better 6 

biomechanical stability and enhance bone healing and fabricated of porous Ti6Al4V using electron 7 

beam melting (EBM) technology. The first surgical case of  a C2 Ewing sarcoma resection and 8 

vertebral body reconstruction (VBR) using the 3D-printed body replacement cage has been recently 9 

performed at Peking University Third Hospital’s Orthopedics Department88.  10 

 11 

Along with interbody and vertebral body cages, the feasibility of manufacturing disc implants 12 

for total disc replacement (TDR) by means of 3DP technologies has been recently studied. Attempts 13 

to create a custom-designed conformal intervertebral disc using additive manufacturing technologies 14 

were conducted by de Beer et al.89, 90 Intervertebral disc endplates were successfully designed to 15 

overlap the geometry of the vertebra and were manufactured in Ti6Al4V by means of a direct metal 16 

laser sintering technology (Figure 9). Domanski et al.91 have recently conducted a preliminary 17 

research of applicability and degree of suitability of 3D printing techniques for the production of 18 

intervertebral disc implants. The authors fabricated disc substitute prototypes using different 3DP 19 

technologies such as FDM, Inkjet and SLS and patented two new intervertebral disc implants. 20 

However, not many attempts have been developed in the computational simulation and design 21 

verification of the 3D printed disc implants. Mroz et al.92 recently developed a new lumbar disc 22 

personalized endoprosthesis made of Co28Cr6Mo alloy with the use of selective laser technology. 23 

Their results ensured a full reflection of the mechanics and kinematics of the disc and the restoration 24 

of a normal height of the intervertebral space and lordotic angle, as well as a full range of mobility of 25 

the motion segment in all anatomical planes. Table 3 reports the 3D printing techniques used in recent 26 

studies for the fabrication of disc substitutes for total disc replacement (TDR). 27 

 28 



 1 

Figure 9 | Custom-made conformal design of a 3D printed Ti spinal implant for total disc replacement (TDR). A 2 

support structure was designed to orientate the bone endplate horizontally, perpendicular with respect to the vertically 3 

applied pressure.  For the designing of the conformal implant a Boolean subtraction operation was performed, followed 4 

by an undercut removal function. Source: reproduced and adapted with permission from de Beer et al (2012).89 5 

 6 

 7 

Table 3 | Comparison of the rapid prototyping techniques used in different studies for the 8 

fabrication of disc substitutes for total disc replacement (TDR) 9 

Year Authors Title Material 
3D Printing 

technique 

2015 Mroz et al.92 
New lumbar disc endoprosthesis 

applied to the patient’s anatomic features 
Co28Cr6Mo SLS 

2015 Domanski et al.91 
Rapid prototyping in the intervertebral 

implant design process 

ABSplus/P430 Thermoplastic FDM 

N/A 3DP INKJET 

3DP INKJET SLM 

2015 Uden et al.93 

Custom-tailored tissue engineered 

polycaprolactone scaffolds for total disc 

replacement 

PCL FDM 

2015 Rosenzweig et al.94 

3D-Printed ABS and PLA Scaffolds for 

Cartilage and Nucleus Pulposus Tissue 

Regeneration 

ABS/PLA FDM 

2013 De Beer et al.90 

Patient‐specific intervertebral disc 

implants using rapid manufacturing 

technology 

Ti6Al4 V DMLS 

2011 Whatley et al.95 

Fabrication of a biomimetic elastic 

intervertebral disk scaffold using additive 

manufacturing 

Degradable polyurethane (PU) 

Custom-built 

computed aided 

3DP 

EBM: Electron Beam Melting; FDM: Fused Deposition Modelling; DMLS: Direct Metal Laser Sintering;  10 

SLA: Stereolitography; SLM: Selective Laser Melting; SLS: Selective Laser Sintering. 11 

 12 

Tissue engineering for cartilage repair 13 

Cartilage regeneration based on tissue engineered biodegradable scaffolds is another attractive 14 

area of interest, which aims to mimic the viscoelastic nature of the native intervertebral disk (IVD) 15 

structure. The ideal implanted scaffold should be able to promote cell proliferation and differentiation 16 

and to integrate with the native cartilage with the long-term purpose of cartilage repair. Despite 17 



several promising studies96-100, current cartilage tissue engineering strategies are not yet capable of 1 

generating new tissue indistinguishable from native cartilage in terms of extracellular matrix 2 

composition, structural organization and mechanical properties. Using 3D printing techniques, 3 

Bonassar et al.101 created a tissue-engineered disc construct with cultured ovine nucleus pulposus 4 

cells seeded in a central hydrogel with anulus fibrosus cells aligning a collagen matrix 5 

circumferentially (Figure 10). With the aim of fabricating elastic scaffolds for intervertebral disc 6 

regeneration, Whatley et al.95 successfully developed a customized 3D printed device made in 7 

degradable polyurethane (PU). The technique used consisted in a custom-built computer-aided 3DP 8 

technology based on ultra-fine micropipettes that allowed for precise motion and control over the 9 

polymer scaffold resolution. Their 3D printed scaffolds exhibited mechanical properties comparable 10 

to those of native IVD tissue while mimicking the concentric lamellae morphology of the IVD. 11 

Rosenzweig et al.94 recently proposed the use of inexpensive desktop FDM apparatus for the 12 

fabrication of large-pore acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds 13 

for nucleus pulposus (NP) tissue regeneration. Mechanical testing showed sustained scaffold stability 14 

and preliminary results revealed that the NP cells maintained their individual phenotype over a three-15 

week culture period. FDM technology has also been used by Uden et al.93 for manufacturing custom-16 

tailored tissue engineered polycaprolactone (PCL) annulus fibrosus scaffolds for total disc 17 

replacement. The scaffold constructs were fabricated with nine different submacro- to macro-18 

porosities and the compressive stiffness was higher than that of the human IVD before and after 19 

hydration. 20 

 21 

 22 

Figure 10 | Comparison between a native rat intervertebral disk and a tissue engineered total disk replacement construct. 23 

Source: reproduced with permission from Klein et al. (2014) 22. 24 

 25 

Conclusion 26 

3DP technologies have been an essential tool in spinal research, and have shown promise in 27 

clinical applications such as planning, improving accuracies, and providing patient-specific 28 

instrumentations. However, there are only few reports related to the applications of personalised 3D 29 



printed spinal implants for interbody fusion, vertebral body replacement or total disc replacement. 1 

The technology has shown to be feasible for many spinal applications with a significant potential for 2 

the development of innovative customized design and surgical procedures. The combination of 3 

computational design optimisation with 3D printing technologies allows for the realisation of 4 

architecture optimized custom-designed implants and opens the way to promising future surgical 5 

solutions. Moreover, the range of printable materials is expanding, and degradability has shown to 6 

have several advantages for enhancing bone healing and avoiding stress shielding and long-term 7 

foreign body reaction. However, the low mechanical properties of bioresorbable materials may be 8 

problematic and future prospective studies are needed for evaluating their continuous reduction in 9 

strength under dynamic loading. While 3DP may be cost-efficient, the time needed to produce devices 10 

by current 3D technologies still limit its widespread use in hospitals. Therefore, forthcoming studies 11 

are needed to investigate the time- and cost-efficacy of this emerging technology for spinal 12 

applications. Numerous studies have demonstrated success using tissue engeenering strategies based 13 

on the fabrication of 3D printed biodegradable scaffolds and cell-based therapies to treat disc disease 14 

and many of  these successes are in the early stages of translation into the clinical setting. However, 15 

current cartilage tissue engineering strategies are not yet capable of generating new tissue 16 

indistinguishable from native IVD. Further invetsitative work is required to replacement nucleus 17 

polposus (NP) and annulus fibrosus (AF) tissues for intervertebral disc repair and to enhance cost-18 

effectiveness of medical intervention. 19 
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