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Background
3D printing has become more important in recent decades. 3D printing allows three-
dimensional renderings to be realized as physical objects with the use of a printer. It has 
revolutionized prototyping and found applications in many nonmedical fields. In medi-
cine, the technology has applications in orthopedics, spinal surgery, maxillofacial sur-
gery, neurosurgery, and cardiac surgery, amongst various other disciplines.

Doctors mostly work with two-dimensional X-ray images or two-dimensional images 
obtained from computed tomography (CT) or magnetic resonance (MR) scans to gain 
insight into pathologies. This requires excellent visualization skills from the surgeon. The 
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recent emergence of three-dimensional renderings of CT, MR, plain radiography, and 
echo imagery has improved visualization of complex pathologies but lacks tactile quali-
ties. 3D-printed objects can be used to study complex cases, to practice procedures, and 
to teach students and patients. [1].

Furthermore, some current surgical procedures are complex and require guidance to 
avoid damaging essential parts of the body, or to obtain an acceptable esthetic outcome 
[2]. In some cases, this guidance requires substantial amounts of ionizing radiation and 
can heavily increase surgical time [3]. Additionally, anatomical defects can require cus-
tom prosthetics to repair damage as accurately as possible [4].

The need for improved visualization and surgical outcomes has given rise to 
3D-printed anatomical models, patient-specific guides, and 3D-printed prosthetics. The 
growing surgical applications of 3D printing have made it interesting to analyze the cur-
rent implementation of this new technology.

This article gives an overview of the current usage of 3D-printing techniques in human 
medicine, more specifically surgery, based on a systematic literature review using three 
major literature databases.

We attempted to identify domains and usages where the technology is fairly common 
or has been used several times, and to report its potential advantages and disadvan-
tages. As healthcare budgets are under pressure and both hospitals and doctors desire 
to improve efficiency, we have included cost and cost effectiveness as variables in the 
analysis.

This resulted in the following research questions: (1) which surgical 3D-printing appli-
cations are commonly reported in human medicine? (2) What advantages, disadvan-
tages, and cost consequences do surgical 3D-printing applications have compared to the 
standard of care?

Methods
A systematic literature review was conducted using the Web of Science, PubMed, and 
Embase.

The search strategy was kept broad to ensure no relevant papers were excluded. The 
search headings were ‘3D printing’, ‘three dimensional printing’, ‘additive manufacturing’, 
and ‘rapid prototyping’. After expert consultation, an additional search was performed 
to include 3D-printing applications referred to as ‘patient specific’ guides and implants. 
Relevant articles found in references were added as well.

The initial database search was conducted in February 2015. An additional search was 
conducted in December 2015, to include all papers published in 2015. Only full papers 
of controlled trials and case series of minimum four cases, written in English, where 3D 
printing is applied for surgical purposes on living humans, were considered.

Manual screening of the titles and abstracts was performed so as to include only papers 
consistent with the application of 3D-printing techniques to human medical ends. The 
inclusion criteria were the use of ‘computer aided manufacturing’ (CAM), ‘computer 
aided design’ (CAD), ‘additive manufacturing’ (AM), ‘printed scaffold’,’stereolithography’, 
and ‘reverse engineering’ for human medicine. Additionally, titles containing ‘custom-
ized’, ‘patient specific’, ‘templates’ and ‘physical model’ were retained in order not to 
overlook potential uses.
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Examples of virtual 3D modeling or rendering without physical 3D models were 
excluded. Only clinical uses were considered; cadaveric, in vitro, and animal studies were 
not retained.

Only case series with more than three cases and clinical trials were selected, because 
we associate these with higher integration of the technology in the medical field. Pub-
lications written in languages other than English, or with no full paper available, were 
excluded based on the abstract.

Papers retained after the full-text review were analyzed in detail using an evidence 
table to report relevant study characteristics and outcomes. Based on commonly 
reported outcomes in the literature, we included the following variables: impact on oper-
ation room (OR) time or treatment time, level of accuracy of the printed part, impact on 
exposure to radiation, clinical outcome, cost, and cost effectiveness.

The impact on OR time/treatment time refers to time savings in the operation room or 
for the treatment itself, compared to the conventional procedure. This does not include 
savings in rehabilitation, nor does it take account of any additional work done by the sur-
geon prior to surgery.

The accuracy of the printed part was used to assess the quality of the printed part. For 
anatomical models, the resemblance to the original form was taken into account. For 
guides and implants, the accuracy of the printed part was assessed based on intraopera-
tive adaptations and the need to abort the intended procedure in favor of the conven-
tional procedure. The occurrence of few changes to the guide or few procedures being 
converted to the conventional procedure was considered to reflect good accuracy.

Radiation exposure was captured when mentioned explicitly by authors. Clinical out-
come was assessed as improved surgical precision or improved final outcome. Note 
that there is an overlap between accuracy of the printed part and clinical outcome, as 
accurate guides result in better postsurgical alignment and therefore a positive outcome 
score. Cost was captured when mentioned by the authors. As some authors have begun 
to debate cost effectiveness, we considered this variable when it was mentioned.

Results
After the initial database search in February 2015, 7482 papers were selected. The addi-
tional search in December 2015, including all 2015 publications, resulted in 1114 papers. 
3386 duplicates were removed. Screening of titles resulted in 1873 retained articles, with 
2223 articles being excluded.

353 papers were selected for full reading; 1520 articles were excluded, most of which 
were case studies.

After reading the full papers, 224 papers were retained for further analysis. With the 
exception of three papers, all were surgical. Nonsurgical papers were excluded. Six rel-
evant papers found in references of the accepted papers were added to the final analysis 
table, bringing the total number of papers to 227.

An overview of the selected papers ranked by medical domain is given in Additional 
file 1. One paper was split in three, as three different studies were published together. 
Another paper was split in two since two different studies were discussed in it. This 
resulted in 230 observations in the 227 included papers.

The search strategy and reasons for exclusion are given in Fig. 1.
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Only two papers were dated before 2000. Eight papers were dated between 2000 and 
2005, 30 between 2006 and 2010, and 189 between January 2011 and 25 February 2015. 
Figure 2 gives an overview of the number of selected papers per year.

The published results on 3D printing most often concern surgical guides (60 %) and 
models for surgical planning (38.70  %) (Fig.  3). Additionally, there are reports on the 
outcomes of using 3D printing to make custom implants (12.17 %), molds for prosthetics 
(3.91 %), models of implant shaping (1.74 %), and models for patient selection (0.87 %). 
Note that some papers used 3D-printing techniques for multiple purposes, resulting in a 
total greater than 100 %.

Fig. 1 Search strategy and reasons for exclusion
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Fig. 2 Overview of selected papers based on publication year
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The reports on 3D printing outcomes concern multiple surgical domains. Orthopedics 
has the largest share, with 45.18 % (Fig. 4): this is made up of knee (30.70 %), hip (8.33 %), 
shoulder (2.19 %), and hand (1.75 %) orthopedics. Maxillofacial surgery also accounts for 
a large share (24.12 %). This is followed by cranial surgery and spinal surgery, represent-
ing 12.72 and 7.46 % respectively.

More in-depth results are collected in an overview table (Table 1). The data is organ-
ized by usage of the technology and discipline. An overview of the number of papers is 
given in each category. The total of 270 exceeds the total number of papers, as one paper 
can address multiple usages of 3D printing. The first variable in the table is impact on 
operation room (OR) time/treatment time. Reductions in operating time are assessed as 
beneficial. Secondly, the accuracy of the printed part is evaluated. As explained above, 
radiation exposure is only taken into account when the change in radiation exposure 
is explicitly mentioned in the paper. Medical outcome and cost are the final regular 
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variables. The last of these, cost effectiveness, is only reported when the authors explic-
itly mention cost effectiveness. A broader version of the evidence table can be found in 
Additional file 2.

Custom implants

Custom implants are used in cranial surgery, dentistry, and maxillofacial surgery [4–32]. 
According to 17 out of 28 papers, custom implants reduce OR/treatment time. 25 papers 
mentioned good accuracy of the custom implants and improved medical outcomes. 
Radiation exposure was not mentioned in these papers. 14 papers mentioned increased 
costs, but one described an increase in cost effectiveness [4].

The custom implants were mostly made of titanium (10 of 28), polyether ether ketone 
(PEEK) (10 of 28), epoxide acrylate hydroxyapatite (2 of 28), hydroxyapatite (2 of 28), 

Table 1 Evidence table

(x) Number of studies quantifying the data with numbers/statistics

Number of studies Custom 
implant

Model 
for implant 
shaping

Model 
for patient 
selection

Model 
for surgery 
planning

Mold for  
prosthetic

Surgical 
guides

Total

30 9 2 89 4 136 270

OR/treatment time

Not mentioned 11 4 2 37 3 68 125

Time reduction 17 (4) 5 (1) 0 48 (13) 1 53 (28) 123 (46)

No time difference 1 (1) 0 0 3 (2) 0 8 (1) 12 (4)

Time increase 1 0 0 2 (1) 0 7 (5) 10 (6)

Accuracy of printed part

Not mentioned 3 1 1 4 0 16 28

Good/better accuracy 26 8 1 80 (4) 4 87 (13) 205 (17)

Average accuracy 1 0 0 6 (1) 0 23 (3) 30 (4)

Bad accuracy 0 0 0 0 0 10 (6) 10 (6)

Radiation exposure

Not mentioned 30 7 2 77 4 121 241

Less radiation 0 0 0 8 (1) 0 9 17 (1)

equal radiation 0 0 0 1 0 2 3

Increased radiation 0 2 0 3 0 4 9

Clinical outcome

Not mentioned 1 0 2 10 0 15 28

Improved 25 (2) 9 (2) 0 73 (8) 4 85 (15) 195 (27)

Equal 4 0 0 7 (1) 0 30 (7) 41 (8)

Negative impact 0 0 0 0 0 7 (2) 7 (2)

Cost

Not mentioned 16 7 1 52 3 94 173

Cheaper 0 0 0 4 1 2 (1) 7 (1)

Equally expensive 0 0 0 1 0 1 2

More expensive 14 (4) 2 (2) 1 32 (21) 0 39 (19) 88 (46)

Cost effectiveness

Cost-effective 1 0 0 8 1 10 19

Neutral 0 0 0 2 0 1 3

Not cost-effective 0 0 0 1 0 6 7
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polymethyl methacrylate (1 of 28), polypropylene–polyester (1 of 28), and nonspecified 
acrylic-based resin (4 of 28).

Anatomical models

Anatomical models can be used for implant shaping in maxillofacial surgery, a topic that 
was discussed in nine studies [33–41]. Five papers mentioned time reduction as advan-
tage [33, 36, 38–40]. Eight studies concluded that printed models provide good ana-
tomical representations and nine studies mentioned improved surgical outcomes. Two 
studies mentioned exposure to ionizing radiation [36, 41] and two mentioned increased 
costs [39, 41].

Anatomical models are also used in selecting patients for cardiovascular surgery; this 
was discussed in two studies [42, 43]. None of the papers mentioned time reductions, 
exposure to ionizing radiation, or medical outcome. One paper found the model to be 
a good representation of the actual pathology but did not mention the associated costs 
[42]. Another publication mentioned that costs increased as a result of using an ana-
tomical model [43].

Multiple domains use anatomical models for surgical planning. Our research showed 
anatomical models being used in cardiovascular surgery, vascular neurosurgery, dental 
surgery, general surgery, maxillofacial surgery, neurosurgery, cranial/orbital surgery, 
orthopedics, and spinal surgery [1–3, 9, 14, 15, 35, 37, 39, 43–121]. Among the 89 stud-
ies, 48 (53.93 %) mentioned reduced operation room time. Two (2.24 %) studies men-
tioned increased operation room time and 37 (41.57 %) did not mention any impact on 
operation room time. Only 13 of the 48 studies mentioning reduced operation room 
time and supported this statement with actual numbers or statistics [3, 39, 44, 72, 74, 
78, 81, 84, 99, 107, 117, 119, 120]. In 80 (89.89 %) of the publications, the printed part 
showed good accuracy, although this was only supported numerically in four studies 
[3, 81, 97, 106]. Exposure to ionizing radiation was not mentioned in 77 (86.51  %) of 
the publications, and eight mentioned decreased exposures [3, 59–61, 74, 79, 101, 107]. 
Three publications mentioned increased exposure to ionizing radiation [92, 111, 114]. 
No publication mentioned decreased medical outcomes with the use of anatomical mod-
els, while 73 publications mentioned improved medical outcomes. On the cost side, 52 
publications did not mention costs, four mentioned decreased costs, and 32 mentioned 
increased costs. Two-thirds of the studies reporting increased costs supported this claim 
with numbers or statistics. Eight studies, of which four used the models for maxillofacial 
surgery, estimated the anatomical models to be cost-effective [44, 58, 67, 74, 79–81, 97].

Molds for prosthetics

3D-printing techniques can be used to produce molds for making prosthetics, as dis-
cussed in three studies [45, 122, 123]. We encountered this approach in cranial surgery, 
maxillofacial surgery, and ear surgery. In all the studies, the printed parts were accu-
rate and improved the medical outcome. Both cranial studies were discussed in a single 
paper. One of these studies mentioned reduced OR time as an advantage [45]. The study 
using 3D-printed molds for ear prosthetics stated that their use reduced costs and was 
cost-effective [123]. None of these studies mentioned exposure to ionizing radiation.
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Surgical guides

Surgical guides are the most popular medical application of 3D printing, with men-
tions in 137 of the 270 papers (50.74 %) [10, 15, 30, 31, 39, 48, 59, 60, 62, 70, 71, 73, 
74, 76, 77, 79–81, 83, 84, 86, 88, 89, 92, 93, 96–98, 106, 108, 111–113, 118, 124–226]. 
Apart from orthopedics (guides for knee arthroplasties), 3D-printed surgical guides 
were also used in neurosurgery, dental surgery, spinal surgery, and maxillofacial sur-
gery. 28 of the 53 studies that mentioned reduced operation room time also supported 
this claim with numbers or statistics [39, 74, 81, 84, 118, 131, 132, 135, 136, 140, 141, 
145, 151, 152, 162, 175, 177, 181, 190, 194, 196, 200, 207, 210–212, 219]. Increased pro-
cedural time was seen in seven papers, of which five supported this with numbers or 
statistics [62, 73, 125, 143, 153, 161, 225]. 88 studies reported that the guides had good 
accuracy, while 23 reported average accuracy, and ten mentioned insufficient accu-
racy. Interestingly, six out of the ten papers reporting insufficient accuracy backed this 
up with numbers or statistics [148, 165, 182, 185, 191, 211]. Radiation exposure was 
not mentioned in 123 (89.13 %) studies. Less radiation was mentioned in nine stud-
ies, including by six of the 11 spinal surgery studies. Surgical guides improved clinical 
outcomes in 86 (62.31  %) cases, gave similar results in 31 cases, and had a negative 
impact on clinical outcome in seven studies, all of which were knee orthopedics. The 
cost associated with the guides was only mentioned in 42 studies, of which 39 stated 
it to be more expensive and two stated it to be equally expensive. 19 of the 39 studies 
which indicated that the new technology was more expensive supported this finding 
with numbers or statistics. Ten studies stated that the guides were cost-effective, while 
six stated that they were not cost effective. None of these studies backed these claims 
with numbers.

Considering all applications, the new 3D-printing technology reduced operation room 
time in 46 % of the studies. 76 % of the studies mentioned that the printed part had good 
accuracy, and 72 % mentioned improved medical outcomes. On the other hand, 33 % of 
authors stated that the technology was more expensive.

Table 2 Reported impact of medical 3D printing on operation room time

Italic text outlier correction (outlier defined as study with a highly different outcome compared to the average of the 
remaining studies within the group)

Count Average (in min) Standard deviation

Cranial surgery Custom implant 4 −69.16 92.62

Cranial surgery Custom implant 3 −15.81 7.74

Maxillofacial surgery Model for implant shaping 1 −42

Cerebrovascular Model for surgery planning 1 −30

Maxillofacial surgery Model for surgery planning 5 −5.8 78.52

Maxillofacial surgery Model for surgery planning 4 −43.5 24.52

Orthopedics hip Model for surgery planning 2 0.75 6.75

Spinal surgery Model for surgery planning 2 −45.5 17.5

Maxillofacial surgery Surgical guide 6 −60.33 61.85

Orthopedics ankle Surgical guide 1 −12

Orthopedics hip Surgical guide 4 −0.025 5.72

Orthopedics knee Surgical guide 20 −6.73 13.68
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Reductions in operation room time

Operation room time has always been one of the major arguments for medical 3D print-
ing. Of the 227 articles, 42 described the precise impact of using 3D printing technol-
ogy on OR time. For the majority of applications, 3D printing resulted in time savings. 
The results are given in Table 2. 3D applications such as surgical guides for maxillofacial 
surgery, models for spinal and maxillofacial surgical planning, and models for shaping 
implants used in maxillofacial surgery seem to benefit the most from the technology.

Discussion
At the time this review was begun, no other analysis of the integration of medical 
3D-printing techniques, domain, and use existed. Around mid-2015, Hammad et  al. 
reviewed 93 articles concerning current surgical applications [227]. Both their review 
and the present one come to similar conclusions. This review is more elaborate, includ-
ing as it does 227 surgical papers and using a standardized form to evaluate these papers.

One of the main inclusion criteria was the use of 3D-printed materials for in  vivo 
medical purposes. Papers describing 3D models used for medical teaching and testing 
purposes were therefore not included. Case series of four or more trials were consid-
ered, as we believe these reflect the maturity of the technological application for the 
specific domain. The number of publications meeting our selection criteria is increas-
ing: only two studies were selected from 1999, while there were 70 qualifying studies 
in 2015, showing the growing interest of the medical sector in 3D-printing technolo-
gies. 3D-printed parts have several purposes in the medical setting. While anatomical 
models made up the biggest share in the early years of medical 3D printing, the growing 
importance of 3D-printed guides is noticeable. Surgical guides are now the most com-
monly reported type of 3D-printed application, with 60 % of studies mentioning the use 
of printed surgical guides.

Anatomical models

3D-printed anatomical models see broad use in the surgical field. Our review suggests 
that, in orthopedics, their use has been shown to be beneficial, especially in complex 
hip replacements, where improved medical outcomes were reported unanimously. Also, 
studies of cranial (mostly orbital) fractures have reported improved results which have 
been credited to the use of anatomical models as guides prior to and during surgery, 
in order to understand the pathology better and to avoid pitfalls. These cranial ana-
tomical models are often also used to shape the implant prior to surgery, resulting in 
an improved fit of the implant, improved medical outcome, and reduced surgical time. 
As with the anatomical models used for orthopedic and cranial purposes, our research 
suggests that spinal and maxillofacial models improve operation planning and clinical 
outcome, while reducing operation time. Furthermore, anatomical models can reduce 
the need for fluoroscopy during spinal surgery, reducing exposure to ionizing radiation.

Our research found anatomical models useful for planning vascular procedures such 
as percutaneous valve implantation, repair of aorta and cranial aneurisms, and surgical 
planning of complex congenital heart malformations. Furthermore, two cardiovascular 
studies suggested that the models improve patient selection for endovascular proce-
dures, as compared with standard medical imaging.
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Anatomical models can have direct usage during surgical procedures. During tooth 
transplant surgery, 3D models of teeth are used to prepare the donor site, improving 
the procedure’s success rates. Furthermore, anatomical models of the mouth are used to 
make drilling guides for dental implants and to make custom obturators for patients fol-
lowing maxillectomy. The latter reduced the amount of labor-intensive work on the part 
of both dentists and technicians. Furthermore, maxillofacial models are frequently used 
to shape implants prior to surgery, further enhancing surgical speed while improving 
clinical and esthetic outcomes.

Although anatomical models can be used on their own, our study perceived a ten-
dency toward using anatomical models in combination with printed surgical guides. 
Apart from the previously mentioned benefits, anatomical models can be used for teach-
ing medical students and can improve patient communication and knowledge of the 
pathology.

Surgical guides

Our research suggests that surgical guides are well incorporated in orthopedic sur-
gery, spinal surgery, maxillofacial surgery, and dental surgery with more than half of the 
selected studies of our review mentioning the use of guides. Knee surgeons seem to be 
most interested in using guides. The uniquely positive results of knee orthopedic papers 
from 2012 gave way to more neutral results the years after, suggesting the initial excite-
ment was tempered when the technology became more common. More recent studies 
mention no substantial difference in clinical outcome between patient-specific guides 
and standard instrumentation for total knee arthroplasty. Increased procedural com-
plexity and less-experienced low-volume surgeons favor the use of surgical guides. Apart 
from clinical results, patient-specific guides reduce the number of surgical trays needed 
and slightly reduce OR time. Greater reductions in OR time were when surgeons have 
become more used to the guided procedure, according to one of the selected papers. 
Cost-effectiveness remains to be proven, but recent studies mentioning the cost-effec-
tiveness of knee-guides suggest that the technology does not offer enough advantages to 
cover the additional costs associated with the guides.

Based on our findings, surgical guides seem to reduce operation room time and 
improve medical outcomes for spinal and cranial surgery. This is due to the simulation 
on models and the accurate translation of the preliminary surgery by means of guides. 
More than half of the selected studies reported reduced exposure to ionizing radiation 
(Additional file 1) due to the decreased need for fluoroscopy. In maxillofacial surgery, 
3D-printed models and surgical guides are increasingly used for mandibular reconstruc-
tions and orthognathic surgery. The guides are used for the resection of both the man-
dibular part and the graft, as well as to reconstruct the missing part during oncological 
mandibular resections and reconstructions. According to the results of our research, spi-
nal surgical guides translate the surgical planning accurately and make the outcomes less 
dependent on the surgeon’s experience. Similar results are seen with the use of guides 
during dental surgeries. Some authors question the systematic use of dental guides 
because of the associated higher costs, and suggest that guides be used only in complex 
cases. Finally, 3D-printed stereotactic fixtures can be used to guide implantation of deep 
brain stimulation implants with a substantial reduction of surgical time.
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The accuracy of the guide or model and the accurate placement of the guide play 
important roles in the final clinical outcome or advantage provided by the model. The 
overlap between accuracy and clinical outcome is therefore unavoidable. The accuracy of 
guides can vary depending on the manufacturer providing the 3D-printed element and 
the time between the scan used for the production of the guide and the moment of sur-
gery. Furthermore, surgical experience is needed to detect defective guides. Finally, the 
use of MRI or CT has an impact on the accuracy of the guide.

Custom implants

Anatomical models can be used as molds to manufacture prosthetics, as seen in selected 
cranial and ear surgery studies. Furthermore, patient-specific 3D-printed prosthetic 
molds have been used in chin augmentation surgery, resulting in both decreased surgi-
cal time and an improved esthetic outcome on account of the personal profile match. 
Finally, our research (Additional file  2) suggests that 3D-printing techniques can suc-
cessfully be used to directly print the final implant, most commonly in cranial surgery. 
Cranial custom implants seem to be accurate and to decrease OR time, while being asso-
ciated with improved clinical outcomes in nearly all the studies considered.

Likewise, 3D-printed trays and fixation plates improve medical outcomes and reduc-
ing operation room time for maxillofacial surgery. Moreover, one selected study pre-
sented the additional advantage of improved bone formation and angiogenesis with the 
use of custom implants.

Finally, complete dentures can also be made by rapid prototyping. The results vary, 
with one study mentioning lower esthetics for 3D-printed dentures and another study 
mentioning esthetics similar to standard dentures, while highlighting the advantages of 
face simulation before printing the final prosthetic.

General

3D-printing techniques are widely used for medical purposes. In the majority of the 
studies selected here, the medical outcome is improved by the use of 3D-printing. How-
ever, we believe that the enthusiasm should be tempered somewhat, as only 14 % of the 
investigated studies supported this statement with numbers, making this major advan-
tage rather subjective.

Operation time reduction is mentioned in nearly half of the selected studies and backed 
with numbers in only two-thirds of these cases. In general, most 3D-printing applications 
seem to reduce the OR time, but wide variances can be seen between the different usages. 
Some OR time reductions are too small to result in relevant benefits. Although OR time 
reduction is a major advantage that could contribute to significant financial reduction, 
the increased time needed for surgical planning is rarely considered. Few studies explic-
itly mentioned the increased preparation time or discussed whether outsourcing surgical 
planning is an option. According to two selected studies using surgical guides for knee 
arthroplasties, surgeons and patients spend more time preparing for surgery than can be 
reduced during the surgery. Furthermore, these studies suggest that planning might more 
accurate when performed by the surgeon than when outsourced.

Although the large majority of the selected studies do not mention exposure to ion-
izing radiation, two-thirds of the studies that do mention radiation report a decrease in 
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this ionizing radiation. This can be explained by the high proportion of spinal surgery 
applications that mentioned decreased exposure to ionizing radiation, as fluoroscopic 
guidance is a well-known practice in that specific domain. It would be questionable to 
extrapolate this finding to other domains, as medical 3D printing requires CT scans or 
MRI. The first of these exposes the patient to a significant amount of ionizing radiation; 
fluoroscopic guidance, on the other hand, is not that frequently used.

Patients can additionally benefit from technology as anatomical models improve 
patient understanding of the pathology and procedure. This results in improved patient–
doctor communication and greater patient satisfaction. Tactile anatomical models can 
also assist medical and surgical students to improve their knowledge.

Cost-effectiveness of the new technology is suggested in 7 % of the selected publica-
tions, but is nowhere supported by numbers. Other publications question the cost-effec-
tiveness and conclude that the use of 3D printing is not cost effective. Several authors 
mention that the complexity of cases can justify the additional cost of surgical guides. 
The growing economic pressure on healthcare makes it increasingly important for 
researchers to consider the economic sides of new technologies and techniques. Even 
small analyses made by non economists can be an indication of whether a new technique 
tends to be cost-effective or not. Fuller cost-effectiveness studies would be needed to 
evaluate the acceptability of the technology, both for complex cases and for routine cases 
using 3D printing. Although this was one of the key points of this review, few data on it 
could be found in the literature.

The cost of 3D-printed parts depends heavily on the manufacturing facility. Cheap 
desktop 3D-printers allow cheap 3D models and guides, but have less quality approv-
als and controls than commercial manufacturers, who are required to meet high quality 
standards. Furthermore, the reported costs of self-printed parts differ from author to 
author, with few mentioning direct preparation costs (CT, MRI, multiple prints, soft-
ware, and computer) or the time cost involved in designing the model. The heterogeneity 
of these printed parts prevents more in-depth analysis. Therefore, we would encourage 
future research to present the data in a much more transparent and objective way, and to 
make the first steps into cost-effectiveness calculations.

Although we considered additional articles found in the references of the selected pub-
lication, we are aware that some relevant articles might have been missed. We included 
case series and trials with four or more observations with the assumption that the most 
integrated practices will have publications stating their specific use. This means that 
subjects only reported in case reports could have been missed, even if they were well 
integrated. Surgical publications were considered and analyzed using an evidence table. 
Not all aspects that might be advantageous for a specific usage can be considered, espe-
cially when these advantages are not the direct result of the 3D-printed part. Medical 
3D-printing applications used for testing, demonstrations, and training only were not 
incorporated in this review.

Conclusion
3D printing is already well integrated in medical practice and the literature. Applica-
tions vary from anatomical models (mainly for surgical planning) to surgical guides and 
implants. The main advantages stated by the authors of the selected papers are reduced 



Page 13 of 21Tack et al. BioMed Eng OnLine  (2016) 15:115 

surgical time, improved medical outcome, and decreased radiation exposure. Unfor-
tunately, the subjective character and lack of evidence supporting majority of these 
advantages does not allow for conclusive statements. The increased cost of this new 
technology, and the often limited or unproven advantages, make it questionable whether 
3D printing is cost effective for all patients and applications. Several authors have indi-
cated that medical 3D printing has greater advantages when used to handle complex 
cases and with less experienced surgeons.
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