9,425 research outputs found

    Fast Evaluation of Ensemble Transients of Large IP Networks

    Get PDF
    We extend a numerical approximate solution method (the Z-iteration) to time-dependent open networks of M(t)/M(t)/1/\infty and M(t)/M(t)/1/K queues, and apply the method to obtain transient performance metrics of large IP networks. The method generates a set of coupled differential equations, one for each queue in the network. The equations are numerically unstable under certain conditions (e.g., large bandwidths and buffers), and we present techniques to overcome this problem. The resulting numerical procedure is accurate and very fast. For example, a 20-second evolution for a 1000-node network with high-speed links (104\approx 10^4packets/sec) and large buffers (104\approx 10^4packets) was obtained in 18 minutes on an Ultra Sparc, whereas simulation would take days

    Analysis of Markov-modulated infinite-server queues in the central-limit regime

    Get PDF
    This paper focuses on an infinite-server queue modulated by an independently evolving finite-state Markovian background process, with transition rate matrix Q(qij)i,j=1dQ\equiv(q_{ij})_{i,j=1}^d. Both arrival rates and service rates are depending on the state of the background process. The main contribution concerns the derivation of central limit theorems for the number of customers in the system at time t0t\ge 0, in the asymptotic regime in which the arrival rates λi\lambda_i are scaled by a factor NN, and the transition rates qijq_{ij} by a factor NαN^\alpha, with αR+\alpha \in \mathbb R^+. The specific value of α\alpha has a crucial impact on the result: (i) for α>1\alpha>1 the system essentially behaves as an M/M/\infty queue, and in the central limit theorem the centered process has to be normalized by N\sqrt{N}; (ii) for α<1\alpha<1, the centered process has to be normalized by N1α/2N^{{1-}\alpha/2}, with the deviation matrix appearing in the expression for the variance

    Continuous feedback fluid queues

    Get PDF
    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with generator Q(y)Q(y) at times when the buffer level is yy, where the entries of Q(y)Q(y) are continuous functions of yy. Moreover, the flow rates for the buffer may also depend continuously on the current buffer level. Such models are interesting in the context of closed-loop telecommunication networks, in which sources interact with network buffers, but may also be deployed in the study of certain production systems. \u

    Combined analysis of transient delay characteristics and delay autocorrelation function in the Geo(X)/G/1 queue

    Get PDF
    We perform a discrete-time analysis of customer delay in a buffer with batch arrivals. The delay of the kth customer that enters the FIFO buffer is characterized under the assumption that the numbers of arrivals per slot are independent and identically distributed. By using supplementary variables and generating functions, z-transforms of the transient delays are calculated. Numerical inversion of these transforms lead to results for the moments of the delay of the kth customer. For computational reasons k cannot be too large. Therefore, these numerical inversion results are complemented by explicit analytic expressions for the asymptotics for large k. We further show how the results allow us to characterize jitter-related variables, such as the autocorrelation of the delay in steady state

    Scaling limits for infinite-server systems in a random environment

    Get PDF
    This paper studies the effect of an overdispersed arrival process on the performance of an infinite-server system. In our setup, a random environment is modeled by drawing an arrival rate Λ\Lambda from a given distribution every Δ\Delta time units, yielding an i.i.d. sequence of arrival rates Λ1,Λ2,\Lambda_1,\Lambda_2, \ldots. Applying a martingale central limit theorem, we obtain a functional central limit theorem for the scaled queue length process. We proceed to large deviations and derive the logarithmic asymptotics of the queue length's tail probabilities. As it turns out, in a rapidly changing environment (i.e., Δ\Delta is small relative to Λ\Lambda) the overdispersion of the arrival process hardly affects system behavior, whereas in a slowly changing random environment it is fundamentally different; this general finding applies to both the central limit and the large deviations regime. We extend our results to the setting where each arrival creates a job in multiple infinite-server queues
    corecore