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ABSTRACT

G/M/1 and M/G/1-type Markov processes provide natural models for
widely differing stochastic phenomena. Efficient recursive solutions for the
equilibrium and transient analysis of these processes are therefore of consider-

able interest. In this direction, -a new class of recursive solutions are proposed
for the analysis of M/G/1 and G/M/1 type processes.

In this report, the notion of when a process is LEDI- complete which
means it has complete Level Entrance Direction Information, is introduced for
G/M/1-type Markov processes. This notion leads to a new class of recursive
solutions, called finite-memory recursive solutions, for the equilibrium proba-
bilities of a class of G/M/1-type Markov processes. A finite-memory recursive
solution of order k has the form ‘

%n-f-k = T, W; + %n+lw2 + -+ 7—‘_n+k—1Wk:

where 7, is the vector of limiting probabilities of the states on level n of the
process and W;, 1 = i < k, are square matrices.

It is also shown that the concept of LEDI-completeness leads to a finite-
memory recursive solution for the transient behavior of this class of G/M/1-
type processes. Such a recursive solution has the form

Tark(s) = Ta(S)Wi(s) + Top1 (8)Wa(s) + = + Tojx1(s)Wi(s)-
where 7, (s) is the Laplace transform of 7,(t), the vector of state ‘occupancy
probabilities at time t for the states on level n of the process.

The relationship between these finite-memory recursive solutions and
matrix geometric solutions is also explored. The results are extended to the
case where the transition rates are level dependent.

It is also briefly explained how a finite memory recursion for the equili—
brium and transient probabilities of M/G/1 type Markov processes can be
obtained.



CHAPTER 2
INTRODUCTION

» In the algorithmic analysis of various stochastic models which arise in a wide range
of stochastic phenomena, efficient computétional forms for both the equilibrium and
traiisient probabilities of the underlying stochastic process are desirable. Recursive
forms,- such as the matrix geometric solutions developed in [Neul],[Neu2] for the.
, vequilibrium' probabilities of a large class of proeesses, are particularly desirable since

they often greatly reduce the dimensmnahty of the computational problem

One very large cla,ss of processes for which these recurs1ve solutions exist, at least
for the equlllbrium probabilities’ of the process, is the class of Markov processes of
G /M/ 1-type. This is fortunate since these processes provide good stochastic models for

problems arising in computer communications, queueing theory, and inventory theory.

The recursive solution developed in [Neul],[Neu2] for the equilibrium probabilities
of these processes arises in a natural fashion from the structure of the state space and
the types. of transitions allowed in these processes. The state space EofaG /M/ l—type
Markov pr.ocess is usually assumed to have the following form: B

E={(@j)i=z 0,1 =<j=N} | “(1.1)

in which N is finite but otherwise arbitrary. This state space can be clearly broken up

into levels by performing a lexicographic partitioning on the first state variable [Neul].
| For each. level k, a probability vector T (t) can then be defined. It contains the
probabilities of* state occupahcy at time t for each of N states on that level. Thus, for’

level k, |
() = [ ma®) Ma(® () | )

where j(t) is the probability the process is state (k,j) at time t. The entire set of
occupancy probabilities at time t for the process is then specified by the infinite-

dimensional vector

A =[m0 mO RO - mO o} 09



s1t10ns from level k can only reach levelk—!—li o

A';In a: G/M/ 1-type process, upward tr 1

e do nward transmons from level k can reach m one trans1tlon, any level J for b < k

. ‘.;:‘Thls' act, plus the above partltxomng a.nd ordermg of the state space 1nto Ievels, 1mp11es SR
‘.":thatthegen ‘ s "

”tor Q of the process ha,s the followmg form

':‘:he’ A, sm(lQ)arethe "slblbmat‘rices:;i»inf thegenerator 1n(14)Iterat1ve techmquesfor R




computing R are provided in, for instance, {Neul]. Methods of directly computing the
minimal nonnegative solution of (1.9) have recently been developed in MuC1].

This chapter introduces new techniques for the solution of (1.5) bandv(1.7 ) for
G/M/ 1-type Markov procésses. vThese‘techniques rely on the notion of Compléte Level
Entrance Direction Information or, more conc1sely, LEDI-completeness, and the fact -
that every G/M/1-type Markov process can be modified to be LEDI—complete by an

approprlate expansion of 1ts state space.

| Spec1ﬁcally, the notion of LEDI-completeness is iused to develop a new class of
recursioﬁs,' called Finite-Memory Recursive (FMR)'Sélutions, for those G/M/1-type
Markov processes in which there is exaétly one .state‘ on each level which accepts
downwa’rd transitions. A finite-memory recursive solution of order r for the equilib’fiu‘m

probabilities of such processes has the form
%k—f—r_ = %nwl + 7—fk+lvv2 + o+ ﬁk+r—lwr7 ‘ (1‘10)

where 7 is the vector of limiting probzibilifies of states on level k of the process and
Wi, 1 <i=<r, are NxN matribces. An :il‘gorithm for computing the equilibrium
probabilities " through finite memory recursions is provided. Also, the relationship
between finite. memory recursions and matrix geometric recursions for the equilibrium

probabilities is explored. These results are proven in Chapter 2.
A finite-memory recursive solution of order r for the transient probabilities is then
shown to exist in the transform domain for ‘this class of G/M/1-type processes. With

7 (s) representlng the Laplace transform of T 7rk (t), it will be shown that

Farils) = Ta(s) W1 (5) + wn+1(s)w2(s) o b Rapa@Wal. (1D

On inverting the transform, the vector of state occupancy probabilities at time t can be
“found. These results are explamed in Chapter 3. Also, the. results are extended to the

level dependent G/M/1- type Markov processes.

Thus, finite memory recursive solutions prOV1de a tractable method for both the
equilibrium and transient analysis of the class of G/M/1-type Markov pro'cesses
considered in this chapter. 7 o

In Chapter 4, it is briefly described how the notion of LEDI-completeness leads to a
finite memory recursion for the computation of the equilibrium and time depéndent

probability distribution of M/G/1-type Markov processes.



o A"i_based on the re

een developed 1n [BeC] and [ZhCl] for both the equ1hbr1um andf-;}v-i 1
; _:}QuaspBlrth—and-Death (QBD) processes For QBD-processes,f-_”v.A-'

L

__he 31gn1ﬁcance of t } A'f"approach in thls chapter and the related Work in [ZhCl] fork'vi_

"""'f-‘trans1ent analy81s is- now explamed by contrastlng 1t W1th other currently known_l,-

o fv':l:approaches to tran31ent analy31s In general these other approaches do not lead to';; -

e _‘“. recurs1ons of small dlmensw , nd' do not always reveal the structure of the tranS1ent‘,

- For 'a contlnuous-tlme Markov chaln Wlth ‘an ;nﬁmte-dlmenswnal 1nﬁn1tes1mal'_ .

fgenerator,v Q lthetechmque of un" ’rmlzatlon often leads to n1ce solutlons [Gra] It is

ductlon of the contmuous—tlme Markov chaln to a dlscrete-tlme chaln

o subordmated to a P01sson process, and can be apphed When all the d1agonal entr1es of L

Q are bou_r,ded in magmtude by the same real number If thls real number is called q,

o ‘_‘the'trans1ent solutlon i truncatmg the followmg serles




e n Lo . S
Wherel/Il I/“"lP If)—ﬂ‘() P =(Q/q) + 1 |

It may be poss1ble that the approach in [Neul], which results in the matrlx
-geometrlc solutlon in (1 8) above, can be extended to the transient case as well. One |
possible Vehlcle for this extension might be the matrlx R(s) ;ntroduced in [Rar_n].

would be very 1nterest1ng to see if vth1.s leads to a result of the form .
ARG =RmaGRE) (116
for G/M/ 1 type processes | o o v |
Some other recent work on - trans1ent analys1s consists of studles of the trans1ent
behavior = of regulated (reﬂectmg) Brownlan motion - and  the M/M/ 1. queue

[Ale] [AbW2] [AbW3] and transient analysis of the 1ntegrated “services d1g1tal ‘
networks [ZhC2] and the tlme-dependent M/M/1 queue [ZhC3] | o

N otation

Throughout thls report, bold lower-case letters, such as f denote column vectors,
lbold lower-case letters with an overbar, such as f denote row vectors and ‘bold capltal
letters, such as H, denote matrices. Regular type 1s used for sets and scalars, and the
o symbols I 0, and e denote the 1dent1ty matrlx, the matrlx of zeros, and a column

» Vector of 1’ ’s, respect1vely



CHAPTER 2
FINITE MEMORY RECURSIVE SOLUTIONS FOR THE EQUILIBRIUM
' ANALYSIS OF G/M/1 TYPE MARKOV PROCESSES

2.1 State Space Expansions-Complete Level Entrance Direction Information:

Consider a G/M/l-type Markov process with the generator Q in the canonical

form given in (1.4). The state space of the Markov process is

E = {(,j):1= 0;j€T for i=0,j €S for i = 1},
where S .= {s;, 83, *** ,sn}yand T = {t;, t5, -+, ty}. Thus, the matrices By, Co ,
B,i= 1 afe kxk, kxN and ka, respectively. The matrices A; , i>0, are all square
matrices of dimension N. . |
‘ It is assumed throughout this chapter fhat the entries of all of the matrices defined .
above are finite, and that there is a fixed integer m such that
Ay =0,B, =0 V k= m+1l. Consequently, the G/M/1-type Markov process is
regular [Cin, pg 251] since all transitions rates are then bounded by a common constant.
If is alsQ assumed throughput this paper that the process is irreducible.

The state space of the Markov process can be partitioned in a natural manner as

explained in the following definition.

Definition 2.1: The Lexicographic partition of the state space E, of a G/M/1-type
Markov process consists of levels L; such that

Li 2 {(i,j):ifixed; j €S} V i2>1
and the boundary level

Lo 2{(0,j):j€T}

The state space E can be expanded to help understand the probabilistic behavior of
the original process and to simplify the computation of the equilibrium probabilities. In
the following, the considerations which arise in the expansion of the state space of an

arbitrary Markov process are discussed and a specific expansion procedure for G/M/1-



. type Markov processes 1s developed

Cons1der a. Markov proce5s Xt W1th state space E’ such that Xt 1s 1ts aggregated. T

process w1th state space E Equ1valently, under state space expanslon Xt is embedded?‘

"':1nto Xt For any superset E’ of E there ex1sts a part1t10n ) of E’ thh 1ndex set E Let '

Q’ (q ij )l jeE be the 1nﬁn1te51mal generator of X’ and’ assume that every coset: E; is-

g - aggregated 1nto a state i (1EE) Tt is shown in- [FeL] [MeY] that X is Markowan 1f and' B
R only 1f Eq kl is 1ndependent of k for all kEEl, and is equal to qlJ Thus the total‘

transrtlon rate from any of the states in El 1nto E must be equal There is, however,
B ,freedom in how to d1rect these rates 1nto the states of the coset E ThlS freedom can. bev

: ‘explo1ted to arrlve at an efﬁc1ent computatlonal form for the llmltlng probabllltles

Now G/M/ 1= type Markov processes are con51dered and a state space expansmn'
‘technlque is descrlbed wh1ch Wlll eventually lead to a recurs1ve computatlonal form for

' : the equlhbrlum probablhtles The followrng deﬁn1t1on prov1des the crlterlon for state»

R space expansmn

" Deﬁmtlon 2 2 The state space of a . canonlcal, 1rreduc1ble Markov process of' |
G/M/l type is sa1d to have Complete Level Entrance Dzrectzon Informatzon, or to be
,LEDI-Complete, 1f for every p031t1ve 1nteger i the set of states L on level 1 can be

- :}lpartltloned 1nto two sets U and D such that none of the states in: U can be reached 1n'
_‘ L'vone trans1tlon from any of the states on levels Lk, k > 1 and none of the states in D can
'v"be reached in one tran51t10n from any of the states in level L1 1 :

| Clearly, the states in U accept upward tran51txons, but not downward trans1t1ons,' e

-”‘:those in' D accept downward trans1tlons, but not upward trans1t10ns States whlch‘,

. accept nelther upward or downward trans1tlons may be placed in e1ther D or U

The G/M/ 1- type process descrlbed by the generator Q in (1. 4) is LEDI—complete 1f ‘

-and only if the follow1ng condltlon on. the columns of* the matr1ces, Al, 1_Y 0 i#l 1s»4
-l'satlsﬁed If column 7 in Ao has any nonzero entrzes all entnes m column J of each_y

,matrzx A;, 1> 2 must be exactly zero; and, zf column k in some’ matrz:c A,, 1> 2 has

fiany non zero entry, all entrzes n column k ofAO must be exactly zero

L It is shown in the follow1ng theorem that any G /M/ 1- type process can be mod1ﬁed ’
‘ so that 1t is LEDI—complete W1thout changmg the probablhstlc behawor of the process




8,

Theorem 2.1: Any G/M/1-type pfocess can be modified into a second G/M/1-type
process which is LEDI-complete by an expansion of its state space. _

Proof (by Construction): Let the original G/M/1-type process be Z; = ( Xt, Y; ) and the
-new process be Zt = ( 5(‘0,’ XNQ, V~Vt> ). The new process can be defined by specifying its
state transition diagram or, equivélently, its generator. Since the state space expansion

technique can be better visualized through the state transition diagram, it is chosen.

The state transition diagram for Zt is obtained from the state transition diagram
of Z; by following the proéedure outlined below for the modification of the state
transition diagram of Z. | :

The states in the original state transition diagram of Z; are considered one at a

time. Suppose the state currently being considered is (i,y).

(a) If (i,y) accepts inward transitions only from level i, relabel it as (i,y,0). The.

transitions into and out of (i,y,0) are the same as those into and out of (i,y).

(b) If (i,y) accepts one or more inward transitions originating in any of the levels Ly,
k> i+1, and accepts no inward transitions originating in L;_;, then relabel thé
state as (1,y,2). The transitions into and out of (i,y,2) are the same as those into

and out of (i,y).

(¢) If (i,y) accepts one or more inward transitions from level Li_;, and no inward
transitions originating from any level Ly with k > i, then relabel it as (i,y,1). The

transitions into and out of (i,y,1) are the same as those into and out of (i,y).

(d) If (i,y) accepts inward transitions from both level L;_; and one or more of the
levels Ly for k= i+1, split it into two states, labeled as (i,y,1) and (i,y,2). All
transitions from IL;_; which used to end in (i,y) are now transferred to (1,y,1). All
transitions from every Ly, k= i+1 which used to end in (i,y) are now transferred
to (i_,y,2). Any transition from L; which used to end in (i,y) may now be sent to
either (i,y,1) or (i,y,2). The rates of all these inward transitions remain the same,
even if their destination has been changed. The destination and rates of all
transitions leaving both (i,y,1) and (i,y,2) are the same as the destination and rates
of all transitions leaving state (i,y). This state space expansion technique is

illustrated in Figure 2.1.

Once steps (a) through (d) have been applied to each state in the state transition

diagram for Zi, the new state transition diagram specifies the generator of the process
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as .

LEDI Incomplete G/M/1-Type Markov Process -

Fig 1-a. rBeyfore Splitting

....

bewcoyfmcecina

T ag

LEDI Complete G/M/I;Type Markov Proéess

Fig 1-b. After Splitting

2.1 State Space Expahsion Technique applied to a G/M/1 type'queué; |



Zt (Xt, Yt, Wt) w1th state space -

- E =‘{(i~,j‘,k) :-iz 0; j .6 T for i=0, j € S for i>1; k € {0,’1,2}};

From the constructlon of Zt, the followmg facts are 1n1med1ate

(1) -The process »Z (Xt, Yt, Wt ) is an LEDI—complete G/M/l type Markov process__"
:smce, by constructlon, none. of the states at any level receives both upward and','.'

downward tran51t1ons .

(2) Zt is irredu(‘;i-ble if and only if 7y is irreducible.

(3) For any w; the distrlib'ution ofv the sojourn time of the new process in the state.
(x,y,w) is the same as the sojourn time of the orlglnal process in the state ( ,y)‘.g_

. This follows since these states have the same outward trans1t1on rates.

4 Let the 1n1t1al d1str1but1on of the original process be: 7T0( i, _]) whlch is defined for all, S
" the states (i J)EE Define the initial distribution 7o(i,J, k) of the new process to be

‘any d1str1but1on for wh1ch EWO(I,J,k)=7TO(l,j). Then, for any time t,b the
k : B

.probablhty that the or1g1nal process is in the state (,j) at t1me tis the- sum, overl '

4l values of k of the probab111ty that the new. process is in the state (i,3,k).

(5) Suppose that Z(w) = (Xt(w),Yt( )Wt(w)) is a sample funct1on of Z. Then then

p'r‘ojection (it(w),?t(w)) is a valid sample function of the or1g;nal process, Z;.

» Ezample 2.1: The effect of the above state splitting algorlthm on the state transition
vdiagram of a G/M/ 1-type Markov process with a single state on each level is illustrated
in Flgures 1.a and 1.b. ’ - |

. ‘Without loss of generahty, we now restrict consideration to LEDI-complete
G/M/l-type Markov processes. This allows ‘the set of states on each level to be

‘ part1t1oned into two disjoint groups as descr1bed below

- Consider the N states L = {sl,s2, ;sN} on level i of an LEDI—complete
process. Group the states in L; in such a way that the last r elements correspond to the
states which accept downward transitions. These last r elements in L; are all the states

(1,3,k) Wh'ere k>:2. They are all the states in level L; which “accept downward



10 :

' ~_transi‘tion‘s Thrs part1t10n1ng leads, 1n the next sectron, to a canomcal form. for the

i ’I'w'i.‘;generator of an LEDI—complete, G/M/ 1- type Markov process and consequently to ﬁmte-_’lf:}i";_' :'7

SR memory recurszve solutrons

2 2 Ex1stence of lete Memory Recurswe Solutxons for the Ethbrlum :1':7',‘-

o ':.Probabxhtxes

4 The submatr1ces Ak, k> 0 of the generator of an LEDI—complete G/M/ 1- typeg

i :_ Markov process may each be blocked 1nto r1ght and left halves by groupmg the states at'-_':-'-.' o

ileach level ‘as descrlbed above Let AkL, for all k> 0, cons1st of the leftmost m—

: columns of the matr1ces Ak, k> 0 Let AkRa for all k> 0 be the rlghtmost r .

: columns of Ak, k> 0.

Slnce the process s LEDI—complete and the set of states at each level 1s part1t1oned_—_'. - an

= so that the last T states are those that accept downward trans1t10ns, the rlghtmost 1'1. e

- columns of AO’ thh are called AOR: are all zero. Sxmxlarly the leftmost m—r columns_ -

) "-‘of Ak, k> 2 Wh1ch are called AkL, are all Z€ero.

,,./-The above drscussron shows that the generator of an LEDI—complete G /M /1 t)’pe_'
- Markov process can be ertten as L ‘ | e T ‘ ‘
5§ Bz L 0 ; 5""A2R ) A1L Am

: :’::,_It can. be noted that the states at the level zero need not be spht s1nce they recelve only_‘

L _;_5downward tran51t10ns Recall that 1n th1s chapter We are consrdermg G/M/ 1- type__-_' |
SR e .».;Markov processes for whlch Ak = 0 and Bk = 0 for k> m+1 or equlvalently"_ )

Perform the followrng column operatlons on the generator Throughout the

- ”p,‘:generator, add to the set of N—r columns w1th the followmg block structure }‘ _f . s




1 1

| = Gy, the set of N—r columns

L

vMore prec1sely, for all k > 2 add to the N—r columns, {kN+s 1

' ~ Ner columns {kN + N(N—2) + t 1= t < N—r}

sSN—r}, the'_l |

After these column operatlons, a new matrlx Q is obtalned Where

. .B1 »Al'L -A1R CAg
By 0 A Ay

A-(m—i—2)bR> : 0

A(m-1)R vAOL ‘

Anr - Aqg
_0' 0

o]
B
e e e o

: »0‘,

C(23)

' When the Markov process is ‘recurrent nonn'ull there exists a unique solution to the_

; lnﬁnlte system of hnear equatlons 7TQ 0,. or, equlvalently, 7TQ = 0 On ut1hz1ng the’

| - structure of Q, the system of equatlons 7TQ =0 leads to
Bo AoL
Bl AILV
1B, ©

~and

B, 0|

ey



for all n > 1

£



orthant.

Proof Cons1der a set of k succes

this Nxk matrix be denoted by L. Smce the G/M/ 1- type Markov process 1s 1rredu.<:1ble,'

A, is nonsingular [‘Ne_ul]. Consequently, L is a full rank matrix. Let

Wi !

Theorem 2.2: If the LEDI-comp G M/ 1 ty e"Markov process is 1rreduc1ble, there
exists an i, with 2 = i =m, such that [A;r:A;1] is nonsingular.

Proof Assume that [AIR AIL] is smgular for all i such that 2 <

For each i, vf,his is a system of N linear equations in N-1 unknowns. Separating the-Néth

equation from the rest, we have



o -f}j;nonnegatlve

e — AlLUAxRU

Because of th‘el,

1nce, v Lemma 2 1, A1LU has a nonpos1t1ve 1nverse, yl is nonpos1t1ve'

:“:..M;Hence if yl satlsﬁes (2 8), then A;RD is. nonpos1t1ve But from 1ts pos1t10n in - the

E '_-:-: Thus, in’ Order to reach the states at level i

" ultimately to N 2‘)_; 1t however A1LD =

"ir_‘g,-generator, -AxRD must be nonnegatlve Therefore, 1f [A,R A1L] is s1ngular, then

= 0 So, by hypothes1s, for each 1, 2<1< m, ..,_foRD —0 Thls is poss1ble 1f‘-

- 0 or. AILDyl =. 0 We con51der these two cases} separately

@ 9)‘f L

p051tlon in. the generator, all the components of A1LD and A;RU are“_' ﬂ

' The 'last state, ( N 2), at each level i 1s the only state Whlch recelves a downward' oo

;“trans1t10n from any of the hlgher levels Hence if A,RD = 0 for all 2< 1<m, then (1, N» PR

2) cannot be: reached 1n one step from any of the states (1+k N 2), _} k = m—i R

m (°+m-1 N, 2), there should be a’ :

‘sequence of trans1tlons .‘from (1+m-1 N 2) through thv ’states on level 1+m-1 to some T

'state (1+m- 5 J, 0

-] rom Whlch there

'reached from the state

]\and A1LD—[°102

f..a_trans1t10n to some state at a lower level and" .

‘V-‘then no other state on level 1+m-1 can be o

o c’jj. be Strlctly pOSItWe, Where 1<11<N—1 BY‘hYPothes1s TR,
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Nﬂv

AILDZ = Z ckzk = 0
: o “ k=1 :
Slnce all the terms 1n the sum are nonposmve, %y Zjys woes zJI must equal zero. Let the,

other zero. components of % be labeled B0 O< s<t Where t= 0. Let the set of 1nd1ces
corresponding  to  the zero  components of z be denoted by H; e,
Ho= {dde i) | |
 Since
Ay 2 = ARy,
the J’th equatlon yields

N-1 - v
E AlL(J k) = AiRjZ 0 fOI‘ j =12, - N-1.

si_iic‘é VAILI(j ) z is the only p0331b1e pos1t1ve term in the above sum, 1f 7 = 0 then A_,R
must be zéro. Hence | ‘
Whlch 1mp11es that ‘ &

| Awg, =0 for JEH and pEH.

G:p)
- In the above disciission™a fixed valte of i is considéred. But the results hold for any
value of i, since [ Ajp Aqp ] is s1ngular, by hypothe51s, for all'2 = i =m:. But the set

"H can depend on i. Let

gg B

Hi.

1
Slnce cJ ) cJ o cJ are strlctly pOS1t1ve components of A1LD, G D {_]1, _]2, T, Jl } “

Let the state (1 N 2) = V be the one that accepts downward tran51t10ns 1nto Ievel i,

“and reorder the set S of states on each level of the process arriving at .

=‘[{k:k6§ GU{v} } GU{V}}

With  the above teordering of the states on each level of the "process,

Ay and Ajg, i= 2 will be transformed to



. -Hence, from the.state V-at level 1, the Only states at level i that arewreachable are the.v,"':" SR

"ﬁ"-'fones whlch do not have an outward transmon to any state on. a lower level Thus there“v':—f ‘

ELIS n p'ath from any state on level 1 to anyj#state on level i-m (or any lower level)f» .

L ":;reduclble L D

_A'v.Therefore the new generator Q obtalned by reordermg the states at each level 1s‘f

~"Coroll “ ——.%’ AIR + vl, where vl is nonnegatlve If [A,R 1L ] is smgular-f jj'»f' :
' f;fi-f'or' < i <rn, then the G/M/ 1 type process is reduclble ‘

i 'Theorem 2 3 If the G/M/ 1 type Markov process 1s u-reduclble, then a ﬁnlte memory‘_'

e érecurswe solutlon fo _the equlhbrlu n probablhtles ex1sts

P Proof (by constructzon} Consrder the generator obtalned after spllttlng the states Thls ' -

s shown 1n (2 1) and is repeated here for the sak of _convenlence

s "-_:;:Thus, 1f _the G/M/ 1 type Markov process is- 1rreduc1b1e, then [AIR A1L] 1s":"v .




By A 0 0 O
By Ay Ajr AgL 0
B, 0 Ap A Ar
Q=|B; o Azg 0 ’V,A‘zR.

Bm 0 AmR o A—mflR'

- The following proéedure provides a method of finding a finite ‘memory recursive
solution for the equilibrium probabilities. N

i

Initiali-zation. i = m, Am}i =A_p, Q =Q.

- Step 1. If | AR : Aqp, | is singular |
~ then g0 to step 2
else go to step 3.

Stép‘z. If | AiR ' A;y, | is singular, then the column AiR belongs to the column spéée of
’A1L;  Thus there_ exiéts a vector x such timt ‘ (AiR = A, X;- Let
—x; = | ozil, oziz, s ,‘oz.i\;_l ]T, From the p'roof of Théorem 20»2; it is clear thétq x; is
inonposmve and hence the components of —x; are nonnegative.

- Zero out the column AlR by performlng column operatlons on the generator. Add
to “the ‘column kN, ‘the linear combination of N-1 columns
kN '+‘N(‘N—‘2) +t, 1 =t = N-1, with the ol's as the coefficients of the linear
combination, for all k > 2. '

~ . After these column operations, the matrix Q,,_; becomes



;,After .t_ ese column operatlons,"v he matrlx Qm_, becomes




BT R

BO A()L 0 . »0 ..: . 0 : . 1
B A AlR A 0
o B2 0 AzR Aqg, : - An;

By 0 Agg 0 Agg

S Q'm.'—i,+1‘j = Bl—i 0 _ A’(i—1)~R AoL A(i;g)ﬁ E | (210)
| B 0 Ap Au Apap L

B, 0 0
0o 0 0
- From the global balance equatlons, Wh1ch state that 7 T Qm_,_,_l = 0, we have

7rE1 +7 +1E2+ + +1_1Ei = o,, for all J> 1,

Where El = lA1R Agrl, Ep = [AzR.: Ajt], Ey =[Ayg : 0] . for 3 =< k< 1—-2
p= l AR AoL Jand E; = | Ag Al Hence | | '

7rJ

+ie 1~7TW1+ Ty Wg + - + Titi— Wi A = 1,‘
' 'where Wk = Ek E ! for 1< k <i-l. Thus a finite memory recurs1ve solut1on of v

order i-1 for the. equlhbrlum probablhtles ex1sts stop (or ex1t)

It rema1ns to verlfy that the above procedure termmates in a ﬁn1te number of :

1terat10ns and a ﬁmte memory recursive solutlon of order k ( < k <m-1)is. found

If [A,R A1L ] is nonsmgular for some k, 3 < k - m, then 1t is. clear that the .,
procedure termmates 1n m-k+1 steps and that a finite memory recursive solutlon of?
order k-1 for the equ111br1um probabll1t1es 1s found Otherwrse, by the corollary to the_p '

prev1ous theorem, [A2R Agp, | s nonsmgular and a matr1x geometr1c solution for the ‘
, _equlhbrlum probablhtles is found in m—2 steps Thus, the procedure termlnates in. at b.
most m-2 steps ' '
.’1' : : '

Even though the. above algorlthm provides a ﬁnlte memory recursive solutlon fori
. the equlhbrlum probab1ht1es, it leads to a boundary Value problem, Whlch is d1scussed' =

in the next sectlon o



o : ."2 3. Resolutlon of the Assoclated Boundary Value Problem. S -

R the prev1ous sectlon, let a ﬁnlte memory-,-_f(:: .

‘om, the algorlthm con51dered

re _,j’solut10n of order l result for the equlhbrmm probablhtles Then from the

1 of equatlons

darySYstem SR R

e need (l-l)N—l—r-l more equatlons’ It 1s not clear where the mlssmg equatlons come from ;

"'."Th1s boundary Value problem is- now resolved by relatlng the ﬁnlte memory recurswe
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{2 13) 1mphes and is 1mp11ed by the followmg assomated matrix geometrlc SOlllthIl‘ k

[ +1,' rer 7Tj+1*] = [7Tj3 Tty ~-4, T | T, (2 14)
where - S . R
00 0 W,
110 o W,
01 0 W,
. T: . ,
00 I W,
Deﬁnin'g -I/—J = {%J’ 7-.Tj+1, , %j‘l‘l'—.l }, fI‘OII]. (214) we have
Dy =5, T YV j= m-l4l o (218)

v 'I“Il"'the following, we assume for the sake of éimplicity that T is diagonalizablé‘ Lzef,_‘
S be the mdex set of the eigenvalues of T which are on or outside the unit circle and let .
" pi bea rlght ‘elgenvector corresponding to an eigenvalue N such that |N | = 1. The'
follo\.zvvif‘l‘g, lemma pr'ovi‘des a necessary and sufficient condition for the G/M/1-type

process to be recurrent nonnull. -

Theorem 2.4. The irreducible G/M/1-type Markov process with generator Q is

- recurrent nonnull if and only if Tp_j,p; =0 V i€S.

Proof. If Q is recurrent n‘onn'ulrl, then the solution to 7Q = 0 is unique and is such that

4

0o . S
Yme = 1. ‘ : (2.16) :
n=0 ' ; R
But
| © . R _ 00
Y the =Ty 1€ + 2Ty 0@ + 3Ty _j43e + * + (lnl)ﬂm—le + 1 E Ty €.
n=m-I+1 ‘ - . ' ' : ¢ n=m <

Hence (2.16) implies



| Suppose I/m I+1Px .f— O V 1€S It 1s sufﬁcwnt to show that 7 whlch is related to 1/1- o

o L j-‘ 1s the umque solutlon to 7TQ , 0 and 1s a]so a probablhty dlstrlbutlon

converges to a zero matrlx as n a,pproa,ches_"’ :

_Slnce the solutlon to thls recurswn a.lso satlsﬁes the finite ‘-memory rec”
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respectively :’corres"p"ond‘in‘g to the eigénvalues on or outvs'vi‘de‘ the unit -circle, then the

matrix _
B, Ag .0 ]
B, Ap E
B, 0 E, 0
U=|B; 0 E_ 0
Bt O -’:_'E’l+,l E; py Ds
B, 0 0 - Ej

has rank k—l—mN—l and the 1n1t1a1 probablhty vector .can be determmed up to a scalar_—- g E

constant from the system

. I:%O .%1 Ceeeses 7_T:m]U = 0 Y ' v S - (218)

Probf. From Theorem 2.4, o

R | | ol |
[%o Tt Ty 7_Tm—1] [p} =0 V1=<i=<s

Pi

Now by appending the columns of the form [ } to the boundary system (2.12), its.
‘ col_lim‘n Spdee may be expanded. After taggiﬁg these equations, the rank of the fnatrix c
Z 0 0 ‘-0

: Pl P2 ST Py

is k+(m+1 l)N—r—I—s Now suppose k-+(m +1-)N-r+s < k—l—mN—l Then the dlmensmn of -
the left’ null space;, V of U is at least two Consider any vector o in the solutlon space,_:

o e | L
V. Since & L.——; 0V 1=i < s, from the recurSion in (2.15), all the anstable :'mode_s

are ehmlnated Thus the recursion

n+1+l —m,
Vn+1 — Vm lT

iﬁitid’li‘ied*by» o is stable. Since the: solution generated by this recursion also sa{iisﬁqe"sé_‘-the" '
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finite: memory recursion system, the solution space of 7TQ =0, has a d1mens1on of at ;7
least two This contradicts the hypothesis that the G/M/1- type Markov process Q is '
recurrent nonnull so (2.18) and (2.13) must determme the equlllbrlum probablhtles up ..

toa normallzmg constant o

‘Remark When a ﬁmte memory recursive solutlon of order one, or, equlvalently, a
matrix geometric solution results from the algorlthm consrdered in the previous sectlon,

there Wlll be r m1ss1ng equatlons in the boundary system and ‘similar results can be'

derlved to solve the boundary value problem For these results for QBD-processes, see

. [Zha]
' vv Now We summarize the results of the previous two sectlons by prov1d1ng a

procedure for computing the equlllbrlum probabilities of G/M/ 1-type Markov processes

(a) Ut111z1ng the algorithm provided in the proof of Theorem 2.3, determine the order. '_

~of the finite memory recursion system and the W,’s. Compute the spectral_

"'representatwn of the associated matrix geometrlc solution and find the matrlx T

by removmg the unexc1ted modes

(b) ',A scalar multlple of the initial probablllty vector can be computed by ﬁndmg a
} :,}:Vector in the left null space of U described in Theorem 2.5. Utilizing this vectorf
";‘and T computed in step (a), find a solutlon T to TQ = 0. ‘Since the G/M/ 1- type .
: Markov process is recurrent nonnull, 7 can be normalized to arrive at a proba.blhty
»' d1str1but10n, 7. The normallzat1on method is 1llustrated below From (2. 15) usmg:"'

the deﬁn1t1on of un

. : ek e - o
(B )e=k( %7 Je +( 3 (k-0)Fnoira Je.
) - n=l1 -

'n=0 n#o

| Thus 1f a solutlon T for which - k( Z‘ﬂn Je = «is found then the equlllbrlum -
~ n=0 . , . :

: probablhty vector ,u of the G/M/l type Markov process can. be found by:r_"

" - multlplylng it by —k—

- 'Now we illustrate' the results of th‘e,ab‘ove procedure with the following example.
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,Ezample 2 2: Con81der the LEDI—mcomplete G/ M/ 1- type Markov process shown in Flg

'l-a, __Where ao = 2 ag = - 4, a3 =4. By the state space expans1on technlque descrlbed in -
“ section 2 an LEDI—complete G/M/ 1- type Markov process can be obtamed The o
._;}generator of the G/M/ 1- type Markov process has the form ' c o

By Cy AAg B T T
T i i R L ¢ 51 S
By Cy Ay Ay Ay ot -

. where . |

0_ g1 0 ) o
Ay = L, A =] - | and Ay =0fork =
o 4f TP o 4 ok o

4

4} T2

andﬁBk'# 0fork = 3.

00_2 c1

0 4 | A
. }Ck—Ofork> 4
0 4

1-6 o G o 4 c
0o —6 ‘2,‘ 04f 7
From the global balance equatlons 7TQ =0, a finite memory recurs1ve solutlon of
Yw.order 2 results, since: [A3R A1L ] is 1nvert1ble In other\_Words, ‘ ' o
- ,Where N | | |
B ~_0_.2'~2.-3‘ : 02 —1-,_;.2

,The boundary system of llnear equatlons is glven by -




o The elgenvalues of T arer 1 1 0. 22474487131586 -2 22474487139159

1

1 00824844 =0

0. ,0824,84,4- s

tor m the left null

th v'éoeﬁclent matrlx 1n th,_” bove system as ,:Afull ran,_,
thls matrlx 1s determlned up to multlp _catlve constant One such Vector is*
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0.25
0.5
0.0337116584135978
0.0837116584135982
0.00757668317280430

| Now, using a solution to the boundary system and the definition of the _ﬁniiv;e,
memory recursion‘sy'st,em, a solution to TQ = @ can be determ;lned.‘»T'he soluti‘on.‘ cén be
normalized to arrive at a probability distribution. The ’normalizetion rnet_hod is
1llustrated below From (2 15), usmg the definition of 7, v

( E T )e = 2Toe + 27_Tle + 7_T'2ve + e ’ (2.20)

n=1
Where & is a column vector whose first n components are 1’s and the next n components

are all zeros. Thus if a solutlon 7 for which 2( E Tp)e = o is found then the equlhbrlum
: n= 0

- probability vector of the G /M/1- type Markov process can be found by multlplymg ’r by.
2 v

a
]

Now it is shown how various equilibrium performance measures can be cOmi)uted‘
" through the finite memory recursion for the limiting probabilities.

- Computation of the Marginal and Conditional Probabilities, Moments:

‘Whenever a finite memory recursive solution for the equilibrium probabiﬁli‘t_ies
exists, easily computable formulas for several marginal and conditonal probabilities can
be_» found. Also, closed form expression'sr_ for the factorial moments can be obtained. In
meny specific models; the:following‘ qu.antities have a uséful practical interpretatio’n.”’

. . 0 —
(a) The row vector T = Y 7y is given by

=Ty 4T+ T+ Dmon [T T 718, O (221).
where 1 is the ,orderv of the finite memeory recursion system and € is a column veEtor,

whose first n components are 1’s and the remaining components are zeros. Once the



L }1n1t1al probablhty vector | 7, To 7r1 P 7rm ] i found from the boundary system,v: , |

g 1sv'eas11y computed from (@. 21) The component 7rJ of 7r is the equlhbrlum-
probablhty that the process is in the set { ; J : >0} ' N

- (b) The marglnal dlstrlbutlon {,u,n+1, n >m} is given by

© Mn41 = 7Tn+1e ‘”‘ 7Tn_]+1W1e + 7rn_1+2W2e + + 7!' Wle ' (222)

(c) Us1ng the results from (a) .and (b), the ' _condrtlonal Qv"probabiliti’e's‘vff'-‘

{ Nn J)’ n= m+1 }for 1= J : nvare found to be_»: |

'. ’u'n(‘]) - (~J)_1%m E n 20 v v (223) -.

“In many practical apphcatlons they play a useful role

Also the moments of the margmal and condltlonal dlstrlbut1ons can be expressed in S
-'""closed form by s1mple formulae For example the ﬁrst ‘moment of the marglnal o

‘dlstrlbutlon E(N) is glven by -

BN =Fe+ - +im —1+1)’m1+1e+[(m—1)1—(m—1—1) ”I_T]—z!(m)'?"

2. 4 Rela.tlonshlp between Flmte Mernory Recurswe Solutlons a.nd Ma.trlx" _

o -Geometrlc Solutlons

The class of ﬁnlte memory recursive solut1ons are now related to the matrlx :

tr1c solutlons through the assoc1ated matrlx geometrlc solutlon descrlbed by T

In the follow1ng the characterrstlc polynomlal of T and some propertles of T are_.; ‘

| :f."found Then the nonzero elgenvalues and ‘the correspondlng left elgenvectors of R are -
related to those of T. It is then explalned how this relatlonsh1p can be used: to ﬁnd the'- _

: _'._:,:rate matrlx R from T if desn'ed

'_:}Lemma 2 3 The charactenstlc polynomlal of T is |

Det( )\lI - >\l lw‘ . )\l 2W1 1 vv— >\W2 Wl ) o (225) :

o v:‘Proof (by znductzon) When a ﬁnlte memory recursrve solutlon of order one results, the_'
'charactenstlc polynomlal of T 1s, by deﬁnrtlon, det( >\I Wl) Hence the claim holds.

V,Now suppose that the clalm holds for l*-m and consrder the case When a ﬁnlte memoryf'



o recurswe solutlon of order m+1 results ie. 1—— m-+1. In thls case, thé associ-ated matrlx '

geometrlc solutlon is descrlbed by

& = © ©

S o © O
- )
© o © o

z

o]
<@
54

[<=]

e

=
B
=

|
]
>
i
o e &
e e e .
I
Z

lo 0 <IN —W,
loe 0 - 0 1 (M-Wny)

. Usmg the formula for the,‘_determ_ini_avnt of a block matrix of ‘the above form

© Dey M —T)=Det(M)Det|: i i i = '—i—Ii;[-d S oW ]

‘ Slmphfymg and usmg the mductlon hypothe31s
=Det(>\I)Det( DT — NElW_ e xwz - le i W2 )
= Det( N"F — W, — W, - W1 )

Thus by induction the result i in (2.25) holds for all values of 1.

Lemma 2.4. T has an eigenvalue at 1 and another at 1. 5
Proof. From .Lemma 2.3, the characteristic polynomial of T is given{r by '

| Det( NI = N= 1wl _N-2W, — .- — AW, — W, ). Since the matrix Ej; is




X o AlSO by deﬁmtlon, B

hat there exists an f

~"{-';-recur51ve solutlon of order l results, [ A j A

e are all smgular Hence there ex1st vl 's such that

AxR = A1LV1 for 1+2 m—l andi AmR=A1

SRt AR = A'IR AOLV1+1 fOI‘ l+1 51 Sm—l

. Ap =A1va +A0LV1+1f0r 41 <P<m-1.

Y AmR +

E "Also, mce A 's are the sub matrlces of generator Q,

ZA‘IR ,—_'“—‘( AoL +A1L )e, :
Ui 1 B
| blf_‘where €isa vector of n-l ones. From (2 27) and (2 28), we have

' EAR = “’[ AOL +A1L ][ e + 2 v, ]—AlLv

S ,.Her_ice'-] e

EAIR +A1+1R = EAIR AOLVI+2 == [AOL +A1L H
I 1 f] v 'k i= 1 .




: A= l+2 EE

and T has an elgenvalue at 1

Now 1t 1s shown that T has an elgenvalue of 1 It is sufﬁc1ent to show that there S

'ex1sts an f such that ‘ _ : o o :
. [(—1) El+1 + (—1)1 IE1 e ,ﬁ— B, +E1 ] f = o
( 1)1 == +1 then usmg the deﬁnltlon of E ’s, we have o N

[ ( 1) E1+1 + (—1)l 1El g E2 ¥ El ] [A1+1R — AlR U AR:O]

» “Hence 1t is ev1dent that such an f can be found Therefore T has an. elgenvalue‘ of -1. g :
The proof in- the case Where ( 1)l = =1 follows along the: same hnes as in the aboveli B
casé. - : ' ' T P
The followmg Theorem is- useful in’ computmg the nonzero elgenvalues and. he"":’
'correspondmg left elgenvectors of the rate matrlx from the matrlx geometrlc solutlon '

y ,::.fassoc1ated Wlth a ﬁmte memory recursrve solutlon

“Let . 7 KR : : . :
COBOY = NITW N WL - W, =Wy

',"A(x)' S ONmAL NRTAL 4o + XA+ Ag.

Theorem 2 6 If ©isa Honzero root of Det(A(>\)) and f is the correspondmg vector in
'-,the left null space of A()\), then 1 is a root of Det( (M), and T is the correspondmg‘
vector in the left null space of B(\). The converse also holds except when j is an: ( 1— )
‘_throotofl | LT ' - , , ’
| Proof Suppose uis a nonzero root of Det( ( )) and fis the correspondmg vector 111:‘1 )

the left null space of A()\) Then




. and that the converse holds wh

ove equation and’ rewriting,
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f(MA1+1R + pt IAIR 4o +A1R) = 0

'ThUS 1f 7 and f satlsfy (2. 29) and (2 30), then they also satisfy (2 32) and (2 33) . _tf; :

u and f satlsfy (2 32) and (2 33) and let p be not an (-1 ) th root of -1. From (2 32) 3nd o

(2 53), | g |
' f{ N MA1L ‘l' A0L ) +( NAlL +A0Ll }

“Let f( uAIL +A0L ) =~G:'. The .abovev equ.atlon 1mpl1es '

(4 ll‘l‘l)G——O

-Slnce /J, is not an (l 1) th root of -1, G = f( ,uAlL + A{,L ) = 0. Thus (2. 30) is satISﬁed
" By reversmg the argument in the above case, it is easy to see that if ,u and. f satisfy
' '(2 32) ‘they also satlsfy (2.29). : | B

.'Corollary The row Vector f is a left: elgenvector correspondlng to a nonzero e1gen alue-'

Nof Rif and only if - v _
(>\II—>\1 Wi = AW - Wl)—O . (234)_::'_:
Remark 1: The above Theorem and the corollary show that the nonzero elgenvalues of
"R are a subset of those of T. ‘ ' ' _' il
‘Remark 2: Once the eigenvalues and left’ elgenvectors of the rate matrix are computed .

usmg the criterion in (2. 34) the rate matrlx R can be found usmg one of the two, _

' methods developed in | [MuC1],[MuC2].

| It is now shown that 1f the rate matrlx R is dlagonahzable then 1t satlsﬁes a rnatr1x '

‘ ‘~equatlon with ‘W, ’s as the coefﬁc1ent matrices.

Lemma 2.5. R satisfies the following matrix equation.

R! ~R-!'W, —~ --+ —RW, —HW,; = 0,

Where'"i‘I-I is the sum of the residue matrices of R correspondlng to th’e non ro

,eigenvalnes - I % A
Proof ‘Let B'= { Xl,l—l 2,...,s } be the set of nonzero eigenvalue of R and let f~ and g, '
be the corresponding left and right eigenvectors respectively.: From the corollary to:”

Theorem 5, fl satlsﬁesv(2.34). Premultlplymg by g we have



X}g,fl >\l 1g,i'Wl

o approach was employed for Qua51-b1rth-and death processes in [ZhCl]
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: | CHAPTER 3’ s
FINITE MEMORY RECURSIVE SOLUTIONS FOR THE TRANSIENT f
© ANALYSIS OF G/M/l TYPE MARKOV PROCESSES .

"3 1 Transmnt Analysls of G /M/ 1-type Markov Processes

The transition function - of a. tlme-homogeneous, contmuous—tlme Markov chaln '

vsatlsﬁes the differential equatlon L ‘
) =7t Q B
‘ ‘Ta,ki‘ng the transform on both sides of (3.1')'and rearranging, we have S
ANQ-d)="F0). 2

: Assume that the process at’ tlme 0 is in one of the states at level 0. Equlvalently,

w0) = [(0):0:0: -+ |.

' Slnce 7T(t)' is a’ probablhty dlstrlbutlon, each of its components is nonnegative aﬁdf

' _bounded by one: It is easy to see that this boundedness implies that there is a smgle’_';f

: constant  bounding every entry of 7(s)  whenever SESRHP, Where 1 _

‘. SRHP = { s: Real(s) > 0 }. This boundedness of the solution to (3.2) ensures thatfthere"
is only one solution to (3.2). This follows from Theorem 4.18 in [Cin], Whizcl’l’ is .

: rephrased below. "

Lemma:3.1. If ‘each“component of the solution 7(s) to (3.2) is bounded by a coniino_n'” ;
constant c(s) for Re(s) > 0, then 7(s) is unique.
v . In the following, the existence of a finite memory recursive solution fo‘r,' th‘e‘ ‘b
.‘tréﬁSient state occupancy probabilit'ies is shown. V :

Con31der the matrix ( Q —sI') and perform the same column operatlons that

transformed (3.1) into’ (3 3), arriving at
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BO(S) A{)L y 0 o _ 0 s
‘ By AIL(_) AlR(S) AOL
| By : ’0' AzR A1L(S) ‘ A-IR(S

j Am—2R o Am—sR nd ( ) o

Ap-1R, AOL m-zR‘ L
| AmR A1L(S) Ay —1Rff" S IR

oo}
B
{
s
e ° ° ° es . “

. _;:_fIn the above, the matrrces with s as an argument such as AIL(S), have a-s added tot_' L

B th'se entrres thch are on the dlagonal of Q On utlhzmg the structure of- the above"’ o

' ;__'matrlx obtamed by perforrnmg column operatlons on. ( Q = sI ) ( NQ —sI ) = ——7r(0) B

-leads to -

{Bols)  Aq | SR
B Ao

B S N
oo 7o w0 I LR

o "':"?”':'AlR(S) AOL ERa
[ At afm()] FE
e T m—lR A_ﬂL 7' S

. 'When [AmR AlL( ). ] is mvertlble (3 5) leads to i

| 4”‘44“1 s );1;‘ T (S)Wl(s) + s )Wz(s) + +7rn+m_ (s)wm—v(‘,) "

;_."Thus the notion of LEDI—completeness leads to a ﬁmte memory recurswe solutlon for-x R

. the Laplace transform of the Vector of state occupancy probablhtles at tlme t



3

v Now we- cons1der the case. Where [Am'R' AILY(':) ] 1s not 1nvert1ble As in chapter 2 o

: ,\1t is now shown tha,t even in thls case, a ﬁnlte memory recurswe solutlon ex1sts s

: Lemma 3.2. If the G/M/ 1- type Markov process is 1rreduc1ble, then the matrlx A1LU( )

sformed by remov1ng the last TOW and last column of Ay1,(s) is a nonsingular matrlx over

v ;.;the ﬁeld of ratlonal functlons 1n s and the elements of the 1nverse are str1ctly ratlonall :

“functlons B _ v

: 'Proof From Lemma 2 1 A1LU is nonsmgular Also ‘ v

A1LU(S) —'AILU —s BT R ’Y-""(‘3-j6)'

o Slnce the matrlx A1LU has only n elgenvalues, the determlnant of A1LU(S) is. not |
_‘:1dent1cally zero. Hence it s nons1ngular in the field of rational funct1ons in s. Slnce the’ »
elements of the adjomt of Aqruls) are polynomlals of degree at most N-1 and the‘,‘v

characterlstlc polynonnal is. of degree n, the elements of the inverse of A1LU(S) are.‘ '

strlctly rational functlons in s.

,‘ ‘. Theorem 3.1. kig the L‘EDI—complete G/M/ 1-type Markov process: is irreducible,“‘f.th’en :

_ there exists an index 2 < i <m such that [Ajg:Aqg,(s)] is nonsingular. -
Proof Suppose that [ AR : Ay(s)] is singular for all 2 = 1<m Equlvalently, there

ex1sts an. N—l d1mens1onal column Vector i such that v L o

ApEwils) = Ag for 2=i<m R 37

-Rewrifing -the abovesystem of equefions 7 | | ‘ | |
Auu(s)yils) = Ay . o (38)

“and | | B
AlLDYx (S) = AIRD '} S (3.9)

, “S1nce AILU(S) is nons1ngular by Lemma 3.2, |

.Yi(S) AILU Hs)Ary. i ('3"-10)_,

Slnce the elements of the inverse of AlL(s) are strictly rat1onal functlons in s and AIRU:::

is nonnegatlve, yl (s) is & strictly rational function of s. Hence if yi(s) satlsﬁes (3 9), then

.AIRD is a rat1onal functlon of s. Therefore, if lAlR A1L | is singular, then AxRD = 0.



"Vzasvﬂ

i So by hypothes1s, A:RD =0 2 < ;<. m' ;Th1s is poss1ble 1f A1LD =0-or Aleyl = 0 Inf

o ase When A1LD = 0 a contradlctlo »
: ar lvument as in- the proof of Theorem 2 2 Even When A1LD # 0 but A1LDY1 =0, a '

: 's1m11ar argument as in- Theorem 2 2 c;y' jbe used Deta1ls are omltted for the sake of

: brewty

1nce the above Theorem ensures that [AIR AlL( )} is nonsmgular for some’ 5’: -,

o zlmemory recurswe solutlon for the transwnt state occupancy probabllltles can be found

Even though the notlon of LEDI—completeness leads to a ﬁnlte memory recurslve. |

e solutlon for the trans1ent probablhtles, as in the equlhbrlum case, a boundary value"

: - .":"‘Boundary Value Problem

j-fproblem results The boundary value problem 1s now con51dered and 1ts solutlon 1s,1 :
- Ag-descrlbed ' SR e S SR

B.y:’ con51der1ng the system of equatlons 7r( )(Q—— sI ) —j'— 7T(0) (3 2) and. :

’-:'break1ng 1t approprlately, we arr1ve at a boundary system and ‘a. finite memorys,‘v‘tt

o j@recurs1on system s1m11ar to those n (3 2) and (3 3) Suppose a ﬁmte memory recurswe -

""'"'n of order 1 results i. e

d}MQ—W@Wﬂs+ +mH1@W@)vJ Mm4 T' ouff

;:'As in, the equ111br1um analy81s, , 1t 1s easy to see that the boundary system is |

. ";ung

s solutlon to'an assoclated matrlx geometrlc solutlon, 1t is now shown, Where the mlssmg‘

o .{vequatlons come from

rCons1der the set of states at levels J, J-l-l i _]+l-1 and form the vector’v"_

_"_}"rreduclblhty can be obtalned by the’ sameffit*j"

m, by usmg a 51m11ar procedure as ‘in the proof of Theorem 23 a ﬁnlte_‘

_'rdetermmed by (- 1)N+r-1 equatlons By relatmg the ﬁnlte memory recurswe Sy

[WJ(S), J+1(s), : J+l 1(s)] The ﬁnlte memory recurs1ve solutlon of order S

: 'v‘fdescrlbed in (3 11) 1mphes and 1s 1mphed by the followmg assoclated matrlx geometnc A

: ".solutlon

N 1<> G




o i,_"‘Theorem 3. 2 If { P s) ql(s) 1

e

.‘ Deﬁmngi)l(s) [%( ) 7rj+1 (s), 3+1 l(s) L from (311) We have B a3
T VJ+1(S) = uj(s) T(s) L (3 14);:*

Now the fact that the squtlon to (3 2) is a probablhty dlstrlbutlon and that it 1s_-7:: :

'umque leads to the followmg Theorem

every SESRH;P, the matrlx 3
" ino(s) Ag 0 0
: B AIL(S) El ! .

U»(‘-Sf);': B, 0 B . e 0 o OI‘-_. (315)
| S0 S By opls) ot opsG))

W
-+
ot
=)
. =
ey
—
wn
~

,-has full rank and the 1n1t1al probablhty vector satisfies.the system

- [Wo(s) m(s) Tome1 (s)] (s) — ,v[‘_ﬂo<o)': 00] |

: Proof Components of the row Vector 7rn(t) are probablhtles Consequently each of.v‘f\f

jv»them is nonnegatlve and bounded above by one.’ Therefore fl() . Eﬁ (t) 1s a-“
g . ‘ n—O

’t'monotone ‘sequence: of nonnegatlve functlons Also, since - E 7T ot )e = 1 the sequencefj "
n=0 IR :



'Of'tf IS a nonnegatlve functlon, : E 7r (t)e 1s ar monotone sequence of

Je " ‘t;':Hene’e_ bytheMonotoneConvergence wT
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'the transforms 1s 1mp0351b1e in all but s1mple cases, . 1eav1ng numerlcal 1nvers1on as the

: only pos31ble alternatlve Thus the accuracy of the approach depends on the numerlcal‘

o '1nver51on algorlthm

It 1s noW shown that the above results can be extended in a natural manner. to the :
" -equﬂrbnum and tran31ent ana1y31s of G/ M/ 1 type Markoxr processes in wh1ch the :
' transrtlon rates between the states on a level and into the states on a level depend on"_
the current level belng con51dered In other Words, in the generator in (1 4), the matrlcesi '

A0<1<marereplacedbyA() 0'-_<;1<m Vo= 1o

'3 2. Extensron to Level Dependent G/M/l type Markov Processes:

G/M/ 1- type Markov processes with 2 canomcal, 1rreduc1ble generator of the

followmg form arise: commonly in apphcatlons [MuC4].

By c0 o o 0
Bi(1) Ai(1) Asf)) 0 ©
5 B M@ AR &A@ 0 ] (317)
: By(s) As(3) A5(3) A1(3) Ao(4)
By -“\34(4)'A3(}4’) Ay (4) A4(5)

‘Wlthout loss of generahty, we assume that the G /M/ 1- type Markov process descrlbed
by the generator Q is LEDI—complete Now by employlng a procedure similar to the one
descrlbed i Theorem 2.3; it can be: shown that a ﬁnlte memory recursive solutlon of the

vform
7Tn+k = ’/anl(n) + 7Tn+1W2(11+1) + oo+ %n+'k—1Wk'(n+k_1)

:‘ex1sts for the equlhbrlum probablhtles of the process: é prov1ded certain condltlons are
satisfied’ by the: number and:-type of states at each level: The number of states rece1v1ng
downward transmons at each level is equal to one and the number of states at each

level is- the same.

Also, by employlng the technlques 31m11ar to the one in the previous section, 1t can“
‘be shown that a finite memory recursive solutlon for the Laplace transform of the state. -

oc-cu.pancy .probabihtres of‘ the process Q ex1sts.
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3. 3 Numerlcal Con51deratlons. :

7 Equlllbrlum ‘and tran31ent analy31s of G/M/ 1- type Markov processes by ﬁnlte
'-memory recursion essentlally requlres the computatlon of a stable assoclated matrlx,"
: geometrlc recursmn and the 1nvers1on of Laplace transform Numerlcal con51derat10ns
‘arising in the computatlon are. dlscussed below | L '

.Computatlon of the W matrlces S

W s can be computed ‘using the algorlthm descrlbed in the Theorem 2 3 Th1s
'algorlthm ut111zes routlnes for checkmg the smgularlty of a matrlx and for 1nvert1ng a
- matrlx Numerlcally stable routlnes for performlng these computatlons are avallable 1n'.

the IMSL library.

Stable Recurswn Matrlx Computatlon

Con51der the matnx geometrlc recursmn matrxx T assoclated w1th the ﬁmte
1 mem ' ry recurs10n system 1n (2 13) The spectral representatlon of T is e
E R (3.18)

. Where ul is the rlght elgenvector of T correspondlng to the elgenvalue )\ and Vi is the -

‘ left elgenvector From (2 15)
| Ty = I/JT V = m—l+1 SR (319)

| From the proof of Theorem 24, 1f |>\| > 1 then l/m H_lp, = 0 Thus the mode
.‘correspondlng to >\ is unexcited by the 1n1t1al probablhty vector Let there be k such
elgenvalues on or outside the unit. circle, denoted by >\1, Ag. wey Ap. Con51der the ‘matrix
T obtalned from T by deletlng the unexc1ted modes This modlﬁcatlon of the matrix T
is necessary since unexclted modes can - cause instabilities 1n the computatlon of
‘equlhbrlum probabllrtles Thus the stable assoc1ated matrlx geometrlc recurs1on matrlx
has the spectral representatlon ' ' ' o
E N u,v1 S (320)
Tisk4l e :
It can eas11y be lnferred from (3 18) that T not only satlsﬁes the same recursmn matrlx

as T but 1s also stable 1n the sense that as: n-—roo T converges to a zero matrlx ' ]

Numerical Inversion of Laplace Transform:
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» Many numerical inversion algorlthms are avallable [KrS] We choose the ihversion
algorlthm developed by Homg and ledes [HOH] since We have obtalned good results
Wlth it in the related work in [ZhCl] o

The above theoretlcal results and the numerlcal procedures for the computatlon of -
the. transient state occupancy probabilities of a G/M/ 1 -type Markov process are now

illustrated with a specific example.

E:cample 3. Cons1der a G/M/ 1- type Markov process described by a generator as in
(2.19) in Whlch

o 10 21 Jod4] 0 3 | B

B0= 3 o 3 Bl ——_—-A2, B2:A33,Ild Bk=0V k = 3.
' o ~7 2 o _
;.CO=A{)3 Cl = i'() 6., C2=A2, C3:A3 and Ck=0V k = 4._

From the system of equations in (3. 2) since [ Agg : Ayp(s) is invertible, a ﬁmte

memory recursive solution of order 2 results. Equwalently

Fara(s) = Fals)W1(6) + T ()Wa(s)  for n = 2,

where .-
B | o 2342s) _ L :
| - - —(94s) —(13+s)
W) = |17 gi::) Wo(s) = | 104s  (20429) |
0 == | o -3

Furthermore, the boundary system of linear equations is given by
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[-3—s 2 1 0

0
3 —3-s 0 0 . 0
o | oo 4 1 21
(7o) Ta(s) : Tals) : ) | . . is'_lg'_s — 70 - 0]
: | 02 0 6 0 |
0 0 0 3 0
o 0o 0o 2 0

‘ ’ThlS 1s a system of 5 equatlons in 8 unknowns To determlne the unlque solutlon to the
"system, 3 more 1ndependent equatlons are . needed ‘Since the G/M/ 1-type Markov
: process is recurrent nonnull ‘these remalmng equatlons should some how be obtalned
from the finite memory recursion system As shown in this section, the condltlons for
the stability of the associated matrix geometric ‘solution provrde the clue to the

problem The assocxated matrix geometrlc solutlon is descrlbed by

1 —(23+2s)'-
T0+s (2042s)
O R
-1 ° ° Tz |
S ‘——(9,—|-,‘s) .—(13+s)
: 10+s  (20+42s)

The ngenvalnes of T (s) are ‘_

Vit __\/(25-%) |
e :

MO G 0o bl =, -0 Y

| It is’ easy to show that the elgenvalue at y is strlctly 1n31de the unit c1rcle for

by
(10+s

: SESRHP and all the others are on or out51de the unit c1rcle But by Theorem 3.2, all the
modes correspondmg to ‘the elgenvalues on or out51de the umt circle must dlsappear
. LTherefore by taggmg the correspondlng elgenvectors, P1 (s),p2 (s),p3(s) to the boundary

system, we can ﬁnd the un1que solutlon “This is shown below



0
I I (R
To(s) : i(s).: Ta(s) : Ta(s) 1| -
TR
0
0

| Smce the coefﬁclent matrlx in the above system of lmear equat1ons is.. mvertlble“the

' _'boundary Vector [71'0( ) Ty (s) Ty (s) 7T3( ) ] can be computed

To lllustrate the ut1llty of the above method varlous tran51ent performance'

-':measures, whlch are: of mterest in practlcal .models. are computed These performance S

';.Var(a;);-——L(t)=;°z°:’i..2?‘ﬁ(oé _Me (323>

: Laplace transform of these quantities can be computed in. closed form smce a ﬁmte_

-_memory recurswn ex1sts The approach is descrlbed below

Con51der the matrlx geometrlc solutlon assoclated w1th the ﬁmte memory . recurswe;

).

' i-descrlbmg the assoc1ated matrlx geometrlc solution.. Then the spectral decomposmon of -

vsolutlon of order 2 and let 15(8), ¥i(s) | be the right -and left eigenvectors ‘of'« T

T(s) is. gwen by

(s) —>\1( )El(s) + % x4-’E4-(,$)5" |

where El(s) = u,(s)\—rl(s) ,f,or i= 1’,;;2, 3, 4 The stable recursion matrix T(s) is glven :

(s) NEBE). S ’_ (324) .v

Utlhzmg T(s), closed form expressron for the trans1ent performance measures can easﬂyf



e

,:}:VM(S) =7 (s)e + 27r2 (s)e + [ 7T2 (S) .;”3 (S) ” 31 - 2T(S) HI e 'T(S)] | e (3 27) :

: ~v--Us1ng‘ the numerlcal 1nver51on algorlthm,

g (1 1) (t)

> argument in‘i ' ‘th PI'OOf f Theorem : 32 The' plots 'Qf'f_'ﬁl
T, 2 (t), ] ( )andT (t) are shown 111 Flgures 3 1 3. 5 . S

(1 2)() (t) and the tall,_;,-‘:‘“f‘
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3.3 First Moment of the time dependent probability distribution.
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3.5 The tail distribution‘fof the G /M/1 type Markov process.
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e S CHAPTER 4 _ :
FINITE MEMORY RECURSIVE SOLUTION S FOR THE EQUILIBRIUM
AND TRANSIENT ANALYSIS OF M/ G/1- TYPE MARKOV PROCESSES

4.1 Flmte Memory Recursmns for the Equlhbrlum and Tra,n51ent Probablhty '5_'_':_. e -

Dlstrlbutlons

An M/ G/ 1 type Markov process is a contlnuous time vector Markov process on the

state.space {iLj):1= O, 1< j=<n} Wlth generator of the form

6. B, B B, B,
Co Ay Ay Ag Ay -
0 A A1 Ay A
0 0 “Ao“'AllAz "

h M/ G/‘i'—'type processes;_prov'id,e natural stochastic models for _widely diﬁ"ering*stochvastici ;
phenomena [Neul]. - ( _ i

The notlon of LEDI-Complete state space, introduced for G/M/ 1- type Markov
processes can be extended in a natural manner to M/G/1-type Markov processes Any.-i; .
M/ G/ 1- type process can be made LEDI-complete by expanding the state space.. Thusf‘
there is no loss of generahty in restricting. con31deratlon to LEDI-complete M/ G/1- type"'
" Markov processes By performlng column operations on the generator, it can be seen |
that a finite memory recurswe solution for the equilibrium probab1ht1es ex1sts The

boundary value problem which arises in finding the 1n1t1al probablhty vector. can be :

resolved by an approach similar to the one described in section 2.3. The results can also‘-) |

be extended for the trans1ent analysis of M/ G/1-type Markov processes.

Based on the idea of convertmg a system of differential equations 1nto algebralc "
equations by Laplace transformatlon, a transform domain approach to the tran51ent
analys1s of M/G/1-type Markov processes can be developed. This method parallels the"."":‘
development in the prev1ous chapter 3. Specifically, it can be shown that a, ﬁnlte‘._ :
memory recursive solution for the Laplace transform of the vector of state occupancy

probab1ht1es at time t exists.



It is easy to see that in the same sp1r1t as the above extens1on, ﬁnlte memory

| ;recursrve solutlons can be extended to the equlhbrlum and trans1ent analy81s of multr-':'-'w _

idlmensronal M/G/ 1 and’ G/M/l type Markov processes Thls extensron should ber

S : stralght forward but tedlous

‘_ 4. 2 Concluswns

» In thls chapter, 1t is brleﬁy descrlbed how the notion of LEDI complete state space,‘;;‘_'
fmtroduced for G/M/ 1- type Marko*sr processes, can be extended to- the M/ G/1-type s

' 1 Markov processes and how thls concept leads to- ﬁnlte memory _recursions for the :

E equlhbrrum and transwnt analysrs of M/ G / 1-type Markov processes




 CHAPTER5
' CONCLUSION

_ In this report the notion of Level Entrance Direcﬁon Inforrﬁdtz'on Complei’e”)state
»space is” 1ntroduced for the G/M/ 1-type and M/ G/1-type Markoy processes It i is then.

shown that this criterion leads to a ﬁmte memory recurswe solutlon for the equlhbrlumv :

probab1llt1es Also, it is proven. that a ﬁnlte memory recursive solution for the Laplace‘

;transform of the state occupancy probab1l1t1es can be found Thus a tractable method'
for -the trans1ent analys1s of these ] processes is. found The relat1onsh1p between matrlx‘

geometrlc solutions and ﬁnlte memory recursive solut1ons is explored Thus. ﬁn1te )

.~ memory recursmns 1n contrast to matrix geometnc recursions not only prov1de closed

‘form recursion matr1ces but also lead to tractable transient analysxs of ﬁmte as Well as :

.:countable state space skip free chains.
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