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Ĝ

The matrices R and G of matrix analytic methods and
the time-inhomogeneous periodic
Quasi-Birth-and-Death process

B.H. Margolius

Abstract We solve for the asymptotic periodic distribution of the continuous time 
quasi-birth-and-death process with time-varying periodic rates in terms of R̂ and 
matrix functions which are analogues of the R and G matrices of matrix analytic 
methods. We evaluate these QBDs numerically by solving for R̂ numerically.

Mathematics Subject Classification (2000) 60K25 · 60J80 · 60J10

1 Introduction

Queues with time-varying rates have been considered in the literature at least since 
Kolmogorov considered the waiting problem in a paper in 1931 [14, 15]. His ap-
proach was to set up the Chapman–Kolmogorov equations for the system. Gne-
denko and Kovalenko provide a brief treatment of time-varying customer streams 
[10, pp. 76–83] in their Introduction to Queueing Theory. Markovian single and mul-
tiple server queues with time-varying parameters have been analyzed by Leese and 
Boyd [19], Zhang and Coyle [29] and Margolius [22–24]. Recently, Alfa and Mar-
golius [2] have analyzed discrete time systems with time-varying periodic transition 
probabilities using matrix analytic methods.

Motivating applications for queues with time-varying parameters include airport 
congestion (Koopman [17], Daniel [5] and Peterson, Bertsimas and Odoni [27]), po-
lice calls for service, call centers [16], streaming and data traffic in a multiserver 
network (Delcoigne et al. [6]), traffic congestion, and many others.



In this paper, we focus on systems with time-varying periodic parameters.
Afanas’eva [3], Breuer [4], Koopman [17], Harrison and Lemoine [13] and others
have written about existence conditions for an asymptotic periodic solution when pa-
rameters are periodic. Zeifman et al. [28] have studied convergence of the transient
solution to the asymptotic solution for queues with time-varying periodic parameters.
Additional references are available from these sources. Green and Kolesar [11, 12]
study approximation methods for queues with time-varying parameters motivated ini-
tially by the police dispatching problem. Avi Mandelbaum [7, 16, 20, 21] and others
have written a series of papers related to queues with time-varying parameters. Call
centers are a primary motivation in several of the papers. A survey of the call center
literature based on mathematical queueing theory appears in [16].

In this paper, we consider quasi-birth-and-death processes with time-varying pe-
riodic rates. This extends results in [25] and puts the time-varying periodic QBD in
the context of matrix analytic methods [18, 26]. The approach requires the numerical
solution of an integral equation over one time period.

We consider a Markov chain {(Xt , Jt ), t ≥ 0} on the two-dimensional state space
{(n, i) : n ≥ 0,1 ≤ i ≤ m}. The first coordinate n is called the level, and the second
coordinate j is called the phase of the state (n, j). We shall also use the word level to
denote the whole subset �(n) = {(n,1), (n,2), . . . , (n,m)}. The number m of states
in each level is finite. We assume throughout this paper that the process is irreducible,
so that there exists a path between any two states.

The Markov chain is called a QBD if one-step transitions from a state are restricted
to states in the same level or in the two adjacent levels: it is possible to move in one
step from (n, j) to (n′, j ′) only if n′ = n,n + 1 or n − 1 (provided in the last case
that n ≥ 1).

The transition rates are assumed to be level-independent. Thus the infinitesimal
generator is block tri-diagonal and has the following form:

Q(t) =

⎡
⎢⎢⎢⎢⎢⎣

B(t) A1(t) 0 0 · · ·
A−1(t) A0(t) A1(t) 0 · · ·

0 A−1(t) A0(t) A1(t) · · ·
0 0 A−1(t) A0(t) · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

where A−1(t), A0(t), A1(t) and B(t) are square matrices of order m. We chose this
notation rather than the alternative notation for QBDs in which the Ai matrices are
numbered in descending order. The purpose of the notational scheme used in this
paper is to link the subscript to transitions among levels, so that, for example, the
(i, j) component of the matrix A−1(t) gives the rate at time t at which transitions
from phase i to phase j and down one level occur.

In this paper, we focus on the asymptotic periodic solution to the QBD. We
temporarily assume that the QBD is the solution of the system π̇(t) = π(t)Q(t),
π(t)1 = 1. The asymptotic periodic distribution will satisfy the condition π(s) =
π(s + nT ) where T is the period, and n is any integer. In what follows, we assume
that the period is of length 1 so our boundary condition becomes π(s) = π(s + n).

For each time s within the period, π(s) is the solution to an embedded discrete
time Markov chain. However, we do not have the transition probability matrix for



this chain available to us and if we did, computing the stationary distribution for the
chain would be challenging because the matrix would be dense, though entries distant
from the diagonal would be negligible. What we have available is the time-dependent
rate matrix.

We partition π(t) by levels into subvectors πn(t), n ≥ 0, where πn(t) has m com-
ponents. The defining system satisfies the Chapman–Kolmogorov forward equations

π̇0(t) = π0(t)B(t) + π1(t)A−1(t),

π̇n(t) = πn−1(t)A1(t) + πn(t)A0(t) + πn+1(t)A−1(t)

with the additional requirement that

∞∑
n=0

πn(t)1 = 1.

2 Random walk

We associate a generalized random walk to the QBD [25]. Consider the Markov chain
{(Lt , ζt ), t ≥ s} on the state space Z × {1,2, . . . ,m} with transition intensities de-
pending only on the second coordinate and the time t . The Chapman–Kolmogorov
forward equation for this generalized random walk is given by

ṗn(t) = pn−1(t)A1(t) + pn(t)A0(t) + pn+1(t)A−1(t) (1)

for all n ∈ Z. Define [φn(s, t)]ij = P {Lt = n + k, ζt = j |Ls = k, ζs = i} as the prob-
ability that the random walk traveled n more levels to the right than to the left during
the time interval (s, t) and changed from phase i to phase j . For example, when the
Al(t), l = −1,0,1, are scalar with

ṗn(t) = λ(t)pn−1(t) − (
λ(t) + μ(t)

)
pn(t) + μ(t)pn+1(t),

φn(s, t) =
( ∫ t

s
λ(u) du∫ t

s
μ(u)du

)n/2

× In

(
2

√∫ t

s

λ(u) du

∫ t

s

μ(u)du

)
e− ∫ t

s μ(u)du−∫ t
s λ(u)du

(2)

where In(·) is the nth modified Bessel function [23].
To see this, consider a Poisson process X(t). If X(t) is a homogeneous Poisson

process with rate λ,

Pr
{
X(t) = j + k|X(s) = k

} = (λ(t − s))j

j ! e−λ(t−s),

and for an inhomogeneous process with rate λ(t),

Pr
{
X(t) = j + k|X(s) = k

} = (
∫ t

s
λ(ν) dν)j

j ! e− ∫ t
s λ(ν) dν .



For an inhomogeneous random walk Z(t), with jumps to the right occurring accord-
ing to the process X(t) at rate λ(t) and jumps to the left occurring according to the
inhomogeneous process Y(t) at rate μ(t),

Pr
{
Z(t) = n|Z(s) = 0

} =
∞∑

j=0

Pr
{
X(t) = n + j

}
Pr

{
Y(t) = j

}

= e− ∫ t
s (λ(ν)+μ(ν)) dν

∞∑
j=0

(
∫ t

s
λ(ν) dν)n+j (

∫ t

s
μ(ν) dν)j

(n + j)!j !

for n ≥ 0. The expression is similar for n < 0. This is φn(s, t) from (2).
For an Em(t)/M(t)/1 queue [25],

A1(t) =

⎡
⎢⎢⎢⎣

. . . . . ν(t)

. . . . . . . .

...
...

...
...

. . . . . . . .

⎤
⎥⎥⎥⎦ ,

A0(t) =

⎡
⎢⎢⎢⎣

−ν(t) − μ(t) . . .

ν(t) −ν(t) − μ(t) . .

.
. . .

. . . .

. . ν(t) −ν(t) − μ(t)

⎤
⎥⎥⎥⎦ ,

A−1(t) =
⎡
⎢⎣

μ(t) . .

.
. . . .

. . μ(t)

⎤
⎥⎦ ,

where ν(t) is the rate at which a transition occurs from one phase of the arrival
process to the next. Arrivals have an Erlang (m,ν(t)) distribution where the tran-
sition rate ν(t) depends on time within the period for the QBD (Xt , Jt ). The service
distribution is exponential with time-varying rate μ(t). The generalized random walk
transition probabilities are then given by the Toeplitz matrix

φn(s, t) = e− ∫ t
s (μ(u)+ν(u)) du

×

⎡
⎢⎢⎢⎣

g(0)(n, s, t) g(−1)(n, s, t) . . . g(−j+1)(n, s, t)

g(1)(n, s, t) g(0)(n, s, t) . . . g(−j+2)(n, s, t)
...

. . .
. . .

...

g(j−1)(n, s, t) g(j−2)(n, s, t) . . . g(0)(n, s, t)

⎤
⎥⎥⎥⎦

where

g(l)(n, s, t) =
∞∑

m=0∨−k

(
∫ t

s
ν(u) du)j (m+n)+l (

∫ t

s
μ(u)du)m

(j (m + n) + l)!m!



for j > l ≥ 0, and

g(l)(n, s, t) =
∞∑

m=0∨1−l

(
∫ t

s
ν(u) du)j (m+n)−l (

∫ t

s
μ(u)du)m

(j (m + n) − l)!m!

for −j < l < 0.
For the M(t)/Em(t)/1 queue, the form of φn(s, t) is similar:

A−1(t) =

⎡
⎢⎢⎢⎣

. . . . . ν(t)

. . . . . . . .

...
...

...
...

. . . . . . . .

⎤
⎥⎥⎥⎦ ,

A0(t) =

⎡
⎢⎢⎢⎣

−ν(t) − λ(t) . . .

ν(t) −ν(t) − λ(t) . .

.
. . .

. . . .

. . ν(t) −ν(t) − λ(t)

⎤
⎥⎥⎥⎦ ,

A1(t) =
⎡
⎢⎣

λ(t) . .

.
. . . .

. . λ(t)

⎤
⎥⎦ ,

where ν(t) is the rate at which a transition occurs from one phase of the departure
process to the next. Departures have an Erlang (m,ν(t)) distribution where the transi-
tion rate depends on time within the period for the QBD (Xt , Jt ). The arrival distrib-
ution is Poisson with time-varying rate λ(t). The generalized random walk transition
probabilities are then given by the Toeplitz matrix

φn(s, t) = e− ∫ t
s (λ(u)+ν(u)) du

×

⎡
⎢⎢⎢⎣

g(0)(n, s, t) g(−1)(n, s, t) . . . g(−m+1)(n, s, t)

g(1)(n, s, t) g(0)(n, s, t) . . . g(−m+2)(n, s, t)
...

. . .
. . .

...

g(j−1)(n, s, t) g(m−2)(n, s, t) . . . g(0)(n, s, t)

⎤
⎥⎥⎥⎦

where

g(l)(n, s, t) =
∞∑

j=0∨−n

(
∫ t

s
ν(u) du)mj+l (

∫ t

s
λ(u) du)j+n

(mj + l)!(j + n)!

for l ≥ 0, and

g(l)(n, s, t) =
∞∑

j=0∨1−l

(
∫ t

s
ν(u) du)mj−l (

∫ t

s
λ(u) du)j+n

(mj − l)!(j + n)!

for l < 0.



φn(s, t) is the coefficient on zn for the function �z(s, t) which solves the differ-
ential equation

∂

∂t
�z(s, t) = �z(s, t)

(
zA1(t) + A0(t) + z−1A−1(t)

)
.

In most cases, an analytic expression for φn(s, t) will not be known. We discuss
how to approximate these matrix functions in Sect. 6.

The φn(s, t) satisfy the system of differential equations (1), so

∂

∂t
φn(s, t) = φn−1(s, t)A1(t) + φn(s, t)A0(t) + φn+1(s, t)A−1(t)

and

∂

∂s
φn(s, t) = −A1(s)φn−1(s, t) − A0(s)φn(s, t) − A−1(s)φn+1(s, t).

Furthermore, if E0(s, t) is the solution of the evolution equation given by ∂
∂t

E0(s, t) =
E0(s, t)A0(t) and ∂

∂t
E0(s, t) = −A0(s)E0(s, t), then

∂

∂t

[
φn(s, t)E0(t, u)

] = φn−1(s, t)A1(t)E0(t, u) + φn+1(s, t)A−1(t)E0(t, u)

and ∫ u

s

∂

∂t

[
φn(s, t)E0(t, u)

]
dt = φn(s, u) − φn(s, s)E0(s, u)

=
∫ u

s

(
φn−1(s, t)A1(t)E0(t, u)

+ φn+1(s, t)A−1(t)E0(t, u)
)
du.

φn(s, s) = 0 for n �= 0 and φ0(s, s) = I where I is the m × m identity matrix.
We need some additional definitions. For the functions φn(s, t), n ∈ Z, and any

function f (s, t) with s ≤ t , define φn 	 f (s, t) as

φn 	 f (s, t) =
∫ t

s

(
φn−1(s, u)A1(u) + φn+1(s, u)A−1(u)

)
f (u, t) du.

Define the functions fn(s, t) as solutions of the Volterra equations of the second kind:

fn(s, t) = φn−1(s, t)A1(t) + φn+1(s, t)A−1(t)

−
∫ t

s

fn(s, u)
(
φ−1(u, t)A1(t) + φ1(u, t)A−1(t)

)
du. (3)

Define φn 	φ	−1
0 	φm(s, t) = ∫ t

s
fn(s, u)φm(u, t) du. Let Hm = inf{τ |Lτ = m,τ > s}

be the first hitting time after s that the process enters �(m).



Lemma 1 For all integers n and m, the quantity[
φn 	 φ	−1

0 	 φm(s, t)
]
ij

= P {Lt = n + m + k, ζt = j, s < Hn+k < t |Ls = k, ζs = i}
yields the probability that given the random walk was in phase i and �(k) at time s,
that it hits �(k + n) before time t, and it is in �(n + m + k) and phase j at time t .

Proof Refer to [22] (Lemma 3, p. 72) for a proof of this result where the Ai (t) are
scalars. The matrix case is a direct generalization of the scalar case and the details
are omitted. �

Remark Note that if |m|+ |n| = |m+n|, then φn 	φ	−1
0 	φm(s, t) = φm+n(s, t) and,

in particular, φ0 	 φ	−1
0 	 φm(s, t) = φm(s, t) and φn 	 φ	−1

0 	 φ0(s, t) = φn(s, t).

Theorem 1 Let[
N(s, t)

]
ij

= P {Lt = n, ζt = j,Lu �= n − 1, s < u < t |Ls = n, ζs = i} ,

then

N(s, t) = φ0(s, t) − φ−1 	 φ
	(−1)
0 	 φ1(s, t).

Proof N(s, t) is a matrix of transition probabilities for which transitions to any level
lower than the initial level are taboo. These taboo transition probabilities for the QBD
and the generalized random walk are the same for levels greater than zero. Recall
that for the generalized random walk, φ0(s, t) gives the probability of returning to
or staying in the time s level by time t and remaining in that level until some time
after t . Some random walks which return to the time s level by time t will have
entered �(Ls − 1), a level lower than the time s level. By Lemma 1, the probability of
a transition from phase i, level n at time s to phase j , level n at time t with a visit to
level n−1 at some time u, s < u < t is given by [φ−1 	φ

	(−1)
0 	φ1(s, t)]i,j . Therefore,

the matrix of taboo probabilities of not entering a lower level than the initial one and
beginning and ending in the same level is given by φ0(s, t)−φ−1 	φ

	(−1)
0 	φ1(s, t). �

Theorem 2 Assume that the Markov process is irreducible. If an asymptotic periodic
distribution exists, then it satisfies the relation

πn+1(t) = lim
k→∞

∫ t+k

s

πn(u)A1(u)N(u, t + k) du

=
∫ t

t−1
πn(u)A1(u)N̂(u, t) du,

where N̂(s, t) = ∑∞
k=0 N(s, t + k). The matrix function N(s, t) is such that

[N(s, t)]ij (1 ≤ i, j ≤ m) records the probability the process is in phase j of �(n),
given the process was in phase i of �(n) at time s without entering �(n − 1) during



(s, t). This probability is independent of n ≥ 1.
∑∞

k=0 N(u, t + k) is equal to the
expected number of periods the process is in �(n) at time t within the period, given
that it started in �(n) at time s without having entered �(n − 1) since that time.

Proof The first equality follows from the fact that if an asymptotic periodic probabil-
ity vector exists, the associated random walk process will have a negative drift. If the
process reaches �(n + 1), then there is a last time when the process was in �(n). For
n > 0, the probability of not returning to �(n) during (s, t) is independent of level and
is given by N(s, t). The integrand gives the probability of being in �(n), then at the
time instant u making a transition to �(n+ 1), not returning to �(n) during (u, t + k),
and being in �(n + 1) at times u and t + k. During (u, t + k) the process may visit
levels greater than �(n + 1), but it does not visit �(k) for k ≤ n. The second equality
is proved algebraically in Theorem 7 in the Appendix.

We may also arrive at this result directly. If the process is in �(n+1) at time t , then
there is a last time, u, that it was in �(n). u may have been in the same period as t or
it may have been in any previous period k. We use a law of total probability argument
and sum over all periods k and integrate over all times u within the period. �

Consider a class of functions, R, such that if F(s, t) is in R then

1. F(s, t) = F(s + k, t + k) for all k ∈ Z.
2. If s > t , F(s, t) = 0.
3. For any function, F ∈ R, the functions defined by limn→∞

∑n
k=0 F(s, t + k) =

F̂ (s, t) converge.

Note that this implies limk→∞ F(s, t + k) = 0. Let A(t) be a periodic function with
period 1, so that A(t) = A(t + k) for k ∈ Z. In Theorem 7 in the Appendix, we prove
several identities related to these R functions.

Corollary 1 Assume that the Markov process is irreducible. If an asymptotic periodic
distribution exists, then it satisfies the relation

πn+j (t) = lim
k→∞

∫ t+k

s

πn(u)R(j)(u, t + k) du

=
∫ t

t−1
πn(u)R̂(j)(u, t) du

where R(j)(s, t) is given by

R(j)(s, t) =
∫ t

s

R(j−1)(s, u)R(u, t) du =
∫ t

s

R(s, u)R(j−1)(u, t) du

with

R(1)(s, t) = R(s, t) = A1(s)N(s, t),

and R̂(j)(u, t) = ∑∞
k=0 R(j)(u, t + k).



Using a straightforward generalization of Theorem 1, we may express the matrix
functions R(j)(s, t) in terms of the generalized random walk transition probabilities:

R(j)(s, t) = A1(s)
(
φj−1(s, t) − φ−1 	 φ

	(−1)
0 	 φj (s, t)

)
. (4)

Corollary 2

R̂(j)(s, t) = A1(s)

(
φ̂j−1(s, t) −

∫ t

t−1
f̂−1(s, u)φ̂j (u, t) du

)

where f−1(s, t) is the solution to the Volterra equation of the second kind given in (3).

We may evaluate these matrix functions using the identities in the Appendix. In
particular, identity 3 in Theorem 7 provides a means to compute f̂−1(s, t). Given
f̂−1(s, t) and the φ̂n(s, t), we may compute R̂(n)(s, t).

In Sect. 6 we discuss the use of the normal distribution in approximating the
φn(s, t).

3 R and G matrix functions

The matrices R and G of matrix analytic methods [18] have analogues in the form of
matrix functions in the case of QBDs with time-varying rates.

The matrix functions R and G satisfy the following equations:

R(s, t) = A1(s)N(s, t),

G(s, t) = N(s, t)A−1(t),

and

Theorem 3 (R and G)

R(s, t) = A1(s)E0(s, t) +
∫ t

s

R(s, u)

∫ u

s

R(u, ν)A−1(ν)E0(ν, t) dν du, (5)

G(s, t) = E0(s, t)A−1(t) +
∫ t

s

∫ u

s

E0(s, ν)A1(ν)G(ν,u) dνG(u, t) du, (6)

where E0(s, t) is the evolution operator corresponding to A0(t). We also have

R(s, t) = δs=tA1(s) +
∫ t

s

R(s, u)A0(u) du

+
∫ t

s

R(s, u)

∫ u

s

R(u, ν)A−1(ν) dν du, (7)

G(s, t) = δs=tA−1(t) +
∫ t

s

A0(u)G(u, t) du

+
∫ t

s

∫ u

s

A1(ν)G(ν,u) dνG(u, t) du, (8)

where δs=t is one if s = t , and zero otherwise.



Proof To prove (5), note that since R(s, t) = A1(s)N(s, t), if we can show

N(s, t) = E0(s, t) +
∫ t

s

N(s, u)

∫ u

s

A1(u)N(u, ν)A−1(ν)E0(ν, t) dν du, (9)

we are done. Recall the probabilistic interpretation of N(s, t) as a matrix of transition
probabilities for which transitions to any level lower than the initial level are taboo.
If the process is in �(n) at both time s and time t and has not entered �(n − 1) during
the time interval (s, t), then one of two events occurred: (1) no transition outside of
�(n) occurred, or (2) some transitions occurred and the last transition was a transition
from �(n+1) to �(n). The (i, j) component of (9) gives the probability of a transition
from phase i to phase j . The probability of the first event is given by the first term
on the right-hand side, and the second event is given in the second term. Equation (6)
may be proved in a similar manner.

We may also prove these equations algebraically by expressing N(s, t) in terms of
φn(s, t) and considering ∂

∂t
[N(s, t)E0(t, u)]. The details are omitted.

Equation (7) is obtained by differentiating R(s, t) with respect to t (with R(s, t)

expressed in terms of φn(s, t) as in (4)) and then integrating the result.
Equation (8) is obtained by differentiating G(s, t) with respect to s (with G(s, t)

expressed in terms of φn(s, t)) and then integrating the result. �

Corollary 3 (R̂ and Ĝ) The matrix functions R̂ and Ĝ satisfy similar equations:

R̂(s, t) = A1(s)N̂(s, t),

Ĝ(s, t) = N̂(s, t)A−1(t),

and

R̂(s, t) = A1(s)Ê0(s, t) +
∫ t

t−1
R̂(s, u)

∫ u

u−1
R̂(u, ν)A−1(ν)Ê0(ν, t) dν du, (10)

Ĝ(s, t) = Ê0(s, t)A−1(t) +
∫ t

t−1

∫ u

u−1
Ê0(s, ν)A1(ν)Ĝ(ν,u) dνĜ(u, t) du, (11)

where Ê0(s, t) = ∑∞
k=0 E0(s, t +k) and E0(s, t) is the solution of the evolution equa-

tion given by ∂
∂t

E0(s, t) = E0(s, t)A0(t).

Proof The proof follows by applying the identities in Theorem 7 of the Appendix, to
Theorem 3. �

Remark 1 The matrix function Ê0(s, t) is analogous to (I − A0)
−1 in matrix analytic

methods. The integral equations given in the corollary when discretized become ma-
trix equations for R and G which may be solved numerically using algorithms from
matrix analytic methods.

The matrix function G̃(s) is defined as follows:

G̃ij (s) = P
{
τ < ∞ and Xτ = (n − 1, j)|Xs = (n, i)

};



the matrix G̃(s) records the probability, starting from �(n) at time s of visiting
�(n − 1) in a finite time. The function G̃(s) is important in the proof of Theorem 6 in
Sect. 6. We may compute G̃(s) using the following integral in G(s, t):

G̃(s) =
∫ ∞

s

G(s, τ ) dτ =
∫ t

t−1
Ĝ(s, τ ) dτ. (12)

The matrix G(s, τ ) has the following probabilistic interpretation. During the time
interval (s, τ ) transitions occur governed by the block tri-diagonal infinitesimal gen-
erator ⎡

⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0 0 · · ·

A−1(t) A0(t) A1(t) 0 · · ·
0 A−1(t) A0(t) A1(t) · · ·
0 0 A−1(t) A0(t) · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The process is in level �(n) at time s and again (or still) in �(n) at time τ−, and at the
instant τ , a transition occurs to level �(n− 1). The integral of this quantity then gives
the probability that at some time τ a transition occurs to �(n − 1). By integrating
over all τ , we get the probability that eventually there is a transition to �(n − 1). The
second equality in (12) follows from identity 1 in Theorem 7.

4 Boundary distribution

In order to more completely specify the stationary distribution, one needs to deter-
mine the subvector π0(t). The subvector π0(t) for a positive recurrent QBD will
satisfy the following integral equation:

0 =
∫ t

t−1
π0(u)B(u) du1 +

∫ t

t−1
π1(u)A−1(u) du1. (13)

The equation simply states that over the course of a single period, if the system is
in its asymptotic periodic equilibrium, then the flow into �(0) will equal the flow out.

This leads to the following theorem:

Theorem 4 (Boundary condition) A QBD with periodic rates will satisfy the follow-
ing equations:

0 =
∫ t

t−1
π0(u)

(
B(u) +

∫ u

u−1
R̂(u, ν)A−1(ν) dν

)
du1

and ∫ t

t−1
π0(u)

∞∑
j=0

R̂(j)(u, t) du1 = 1.



Proof The first term in the first equation is the first term in (13). For the second term,
we apply Corollary 1 and change the order of integration. The second equation is
equivalent to

∑∞
j=0 π j (t)1 = 1. �

We note that

Ŝ(s, t) =
∞∑

j=1

R̂(j)(s, t) du

is the solution of the following Volterra equation of the second kind:

Ŝ(s, t) = R̂(s, t) +
∫ t

t−1
R̂(s, u)Ŝ(u, t) du,

so given R̂(s, t), we can compute Ŝ(s, t) and then normalize our subvector π0(t)

using

π0(t)1 +
∫ t

t−1
π0(u)Ŝ(u, t) du1 = 1.

The function Ŝ(s, t) is analogous to R(I − R)−1 of matrix analytic methods.
When B(t) = A−1(t) + A0(t), we may adapt Lemma 6.3.2 from [18] to the case

of QBDs with time-varying parameters, and we have

Lemma 2 Assume that the QBD is irreducible, that it is positive recurrent, and that
B(t) = A−1(t) + A0(t). Then

πn(t) =
∫ t

t−1
α(u)

(
R̂(n)(u, t) − R̂(n+1)(u, t)

)
du

where α(u) is the asymptotic periodic solution of the finite state Markov chain with
generator A(t).

The proof is a straightforward generalization of the results in [18] and the details
are omitted.

5 Stability condition

Theorem 5 (Stability condition) If the QBD is irreducible, if m is finite, and if the
infinitesimal generator A−1(t) + A0(t) + A1(t) = A(t) is irreducible, then the QBD
is positive recurrent if and only if

μ̄ =
∫ T

0
α(u)

(
A1(u) − A−1(u)

)
du1 < 0,

where α(u) is the periodic asymptotic probability vector of A(t). The QBD is null
recurrent if μ̄ = 0, and it is transient if μ̄ > 0.



Proof The proof is based on the approach taken in [18, Theorem 7.2.3, p. 157]. La-
touche and Ramaswami consider a discrete time QBD and associate with it a random
walk. We consider a continuous time periodic QBD, and associate with it a continu-
ous time generalized random walk [25], and then we associate a family of embedded
discrete time random walks for each time s within the period.

The generalized random walk {(ηt , ζt , t − 
t�), t ≥ 0} is the process governed by
the Chapman–Kolmogorov forward equations:

ṗn(t) = pn−1(t)A1(t) + pn(t)A0(t) + pn+1(t)A−1(t), n ∈ Z,

with state space Z ×{1, . . . ,m}× [0,1) with transition rates depending on the phase,
ζt , and the time within the period, t − 
t�, but not on the level ηt . The steps of the
random walk are the levels but, for the generalized random walk, we also associate a
phase with each step. Observe that the QBD and the generalized random walk have
the same behavior until the first visit to �(0).

We define ε
(s)
n = ηs+n − ηs+n−1 and consider the family of embedded discrete

Markov chains, {(ε(s)
n , ζs+n), n ∈ N}, s ∈ [0,1), with state space Z × {1, . . . ,m}, ob-

tained by observing the generalized random walk at the end of each period. Transition
probabilities[

φk(s, s + 1)
]
ij

= P
{
ε
(s)
n+1 = k, ζs+n+1 = j |ε(s)

n , ζs+n = i
}
, k ∈ Z,

depend only on the second coordinate. Examples of the matrix functions φk(s, t)

are given in Sect. 2. Their more complete description is available in [25]. Defin-
ing Ln+s = Ls + ∑

1≤ν≤n ε
(s)
ν , we have {Ls+n, ζs+n}, n ∈ N, on the state space

Z × {1, . . . ,m} and Ls+n constitutes a random walk on the integers with increments
{ε(s)

n } to Ls+n controlled by the Markov chain {ζs+n}. Let γ = inf{n ≥ 1 : Ls+n ≤ 0}
be the first passage time of the discrete Markov chain {Ls+n, ζs+n} to the negative
half-line. Note that the generalized random walk may have reached the negative half-
line some time earlier than the discretized process.

If we choose ζs according to the stationary distribution α(s), then

Lemma 3 (Mean drift) The process εn is stationary with

E
[
ε(s)
n

] = μ̄ =
∫ T

0
α(u)

(
A1(u) − A−1(u)

)
du1.

Proof The expectation of the level for the generalized random walk is given by dif-
ferentiating the generating function �y(s, s + T ) (for rates periodic with period T )
with respect to y, setting y = 1, pre-multiplying the resulting matrix by α(s), the ini-
tial distribution vector, and post-multiplying by the column vector 1. This yields (see
[25] for details):

α(s)

∫ s+T

s

V(s, u)
(
A1(u) − A−1(u)

)
V(u, s + T )du1

where V(s, t) is an evolution operator such that ∂
∂t

V(s, t) = V(s, t)A(t), V(t, t) = I.
V(s, t) is a probability transition matrix for the generator A(t) = A−1(t) + A0(t) +



A1(t), so α(s)V(s, u) = α(u) and V(u, s + T )1 = 1. Hence the mean drift is

α(s)

∫ s+T

s

V(s, u)
(
A1(u) − A−1(u)

)
V(u, s + T )du1

=
∫ s+T

s

α(u)
(
A1(u) − A−1(u)

)
du1

=
∫ T

0
α(u)

(
A1(u) − A−1(u)

)
du1. �

We consider the case when the period T = 1.
The process {Ln+s} has stationary increments. The Markov chain {(ε(s)

n , ζs+n)}
has a stationary distribution, β(s), with the j th component of subvector βk(s) =
α(s)φk(s, s + 1) corresponding to the probability that ε

(s)
n = k and ζs+n = j .

The states of the Markov chain {(ε(s)
n , ζs+n)} are positive recurrent, so they form an

ergodic process and {ε(s)
n } is itself ergodic. We then apply the strong law of large num-

bers for ergodic processes and conclude that limn→∞ Ls+n/(s +n) = μ̄ a.s. Since the
limit holds for each s, we conclude that limt→∞ Lt/t = μ̄, for t > 0.

If μ̄ > 0, this implies that limt→∞ Lt = +∞, P [γ < ∞] < 1, and therefore G(s)

is substochastic, so there must be at least one index j such that (G(s)1)j < 1, so
that starting from (1, j), there is a strictly positive probability of never reaching �(0).
Hence, the QBD is transient.

If μ̄ < 0, this implies that limt→∞ Lt = −∞, a.s., so γ is finite a.s., and there-
fore G(s) is stochastic. To prove that E[γ ] is finite, we define the sequence of re-
newal epochs k0 = s, ki+1 = inf{n+ s > ki : ε(s)

n = ε
(s)
0 , ζn+s = ζs}, when the process

{(ε(s)
n , ζs+n)} returns to its initial state. Furthermore, we define Li = Lki

as the state

of the process (Ls+n, ζs+n) at the ith return to (ε
(s)
0 , ζs). We have suppressed the

dependence of the Li on s in the notation.
By the strong Markov property, the increments {Li+1 − Li} are i.i.d. and {Li}

is a regular random walk with independent increments. Since the difference Li+1 −
Li = ∑

ki+1≤n≤ki+1
ε
(s)
n , we find that E[Li+1 − Li] = μ̄E[k1] for all initial states

and is strictly negative. Thus, the random walk {Li} is transient, limi→∞ Li = −∞,
and E[ν] < ∞, where ν = inf{i > 0 : Li < 0}. Since γ ≤ kν , this proves E[γ ] ≤
E[k1]E[ν] is finite when μ̄ < 0. This result holds for each s ∈ [0,1). Hence we
conclude that for μ̄ < 0, the QBD is positive recurrent.

The proof for μ̄ = 0 proceeds as in Latouche and Ramaswami [18] with the ran-
dom walk {Li} replacing the one used in their proof. �

6 Conclusion

In this section we provide some initial ideas as to how these formulas might be used
for computation.

The random walk transition probabilities, φk(s, t), and expected number of visits
to level k at time t within the period, φ̂k(s, t), are important in many of the formu-



Fig. 1 Normal density approximation of [φ0(0, t)]1,1 for the M/E4/1 queue with λ(t) = 2 + 2 cos(2πt)

and ν(t) = 9. The thicker, dashed line is the approximation

las given in the preceding sections. We can use the following result to approximate
φk(s, t) with a normal density:

Theorem 6 Consider a generalized random walk process with mean drift during the
time interval [s, t + n) equal to μ(s, t + n) and variance σ 2(s, t + n). Let znk =
k−μ(s,t+n)
σ (s,t+n)

. The relation

σ(s, t + n)pk(t) − 1√
2π

e− z2
nk
2 → 0

as n → ∞ holds uniformly with respect to k ∈ Z.

Figure 1 illustrates this convergence for the M/E4/1 queue with λ(t) = 2 +
2 cos(2πt) and ν(t) = 9. The generalized random walk associated with the M/E4/1
queue, has μ(s, t) = ∫ t

s
(λ(u) − ν(u)

4 ) du and σ 2(s, t) = 5
32 + 5

16

∫ t

s
ν(u) du −

1
32e−2

∫ t
s ν(u) du − 1

8e− ∫ t
s ν(u) du cos(

∫ t

s
ν(u) du). The normal approximation is shown

by the dashed line. Note that the approximation is very good for larger values of t

but not as good for t close to zero. When we increase the rates, we get more rapid
convergence as can be seen in Fig. 2.

The proof of this result is based on the proof of a local limit theorem for the sum of
n independent, identically distributed lattice random variables as presented in Gne-
denko and Kolmogorov [9, Sect. 49]. The details will be presented in a subsequent
paper focusing on computation and estimation. A key point in the proof is that the
variance of the levels for the generalized random walk is asymptotically linear.

We consider the Mt/Mt/1 queue.
There are several possible approaches that we can use to compute the idle proba-

bility for the Mt/Mt/1 queue. We may apply Theorem 3 in [25] which provides the
following formula for π0(t):

π0(t) =
∫ t

t−1
π0(ν)μ(ν)

(
φ̂0(ν, t) − φ̂1(ν, t)

)
dν.



Fig. 2 Normal density approximation of [φ0(0, t)]1,1 for the M/E4/1 queue with
λ(t) = 20 + 20 cos(2πt) and ν(t) = 90. The thicker, dashed line is the approximation

We truncate the infinite series φ̂0(ν, t) and φ̂1(ν, t). We compute the first two terms
of the series directly and use the normal density approximation given by Theorem 6
for the next several terms φ0(ν, t + k) and φ1(ν, t + k) of the series. The resulting
numerical estimate for π0(t) must then be normalized. We can do this using the re-
lation μ̄ − λ̄ = ∫ t

t−1 π0(ν)μ(ν) dν where μ̄ = ∫ 1
0 μ(u)du and λ̄ = ∫ 1

0 λ(u)du are the
average number of steps to the left and steps to the right, respectively, during a period
for the generalized random walk corresponding to the Mt/Mt/1 queue.

An alternative approach is to compute the R̂(s, t) function for s, t ∈ [0,1] using
the formula (10) given in Corollary 3 to Theorem 3. After discretization for numeri-
cal integration, this formula is simply a matrix quadratic equation, and any algorithm
that solves matrix quadratic equations may be employed. We apply Lemma 2 to esti-
mate π0(t).

A third alternative is to compute the R̂(s, t) function for s, t ∈ [0,1] using for-
mula (4).

Given π0(t), we compute the expected number in the queue using the formula
[25, p. 191]:

E
[
X(t)

] = λ̄

μ̄ − λ̄
+ μ̄ − λ̄

2
+

∫ t

t−1 μ(ν)π0(ν)
∫ t

ν
(λ(ξ) − μ(ξ)) dξdν

μ̄ − λ̄
.

Using any of these approaches for the Mt/Mt/1 example given in [28] with λ(t) =
1 + sin(2πt) and μ(t) = 4 + 2 cos(2πt) with a mesh of n = 500, we obtain the same
result as Zeifman et al. for the average expected number in the queue over the period
to three decimal places of accuracy. The idle probability and expected number in the
queue are shown in Fig. 3.

This paper places continuous time quasi-birth-and-death processes with time-
varying periodic rates in the framework of matrix analytic methods. In this section,
we have provided some indications as to how these formulas might be used for com-
putation. Future work will explore computation and numerical considerations more
fully.



Fig. 3 Mt/Mt/1 queue with λ(t) = 1 + sin(2πt) and μ(t) = 4 + 2 cos(2πt). The idle probability is
shown in gray, and the expected number in the queue is shown in black

Appendix: Class R function integral identities

Let F , G and H be functions in R, and t − s < 1, then

Theorem 7 (Identities) The following identities are valid:

1.

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)F̂ (u, t) du.

2. If F(s, t) = ∫ t

s
G(s,u)H(u, t) du, then

F̂ (s, t) =
∫ t

t−1
Ĝ(s, u)Ĥ (u, t) du.

3. If

F(s, t) = G(s, t) +
∫ t

s

F (s, u)H(u, t) du,

then

F̂ (s, t) = Ĝ(s, t) +
∫ t

t−1
F̂ (s, u)Ĥ (u, t) du.

4. If F(s, t) = ∫ t

s
G(s,u)H(u, t) du, then

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)

∫ t

t−1
Ĝ(u, ν)Ĥ (ν, t) dν du.



5.

F̂ (s + k, t) = F̂ (s, t)

for k = 0,1,2, . . . .

6.

F̂ (s, t + k) = F̂ (s, t) −
k−1∑
j=0

F(s, t + j)

for k = 0,1,2, . . . .

Proof 1. Since
∫ b

a
f (u)du = ∫ c

a
f (u)du + ∫ b

c
f (u)du,

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du

= lim
n→∞

[∫ t

s

A(u)F (u, t + n)du +
∫ t+n

t

A(u)F (u, t + n)du

]
.

Note that limn→∞ F(u, t + n) = 0, so limn→∞
∫ t

s
A(u)F (u, t + n)du = 0 also and

we have

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du = lim
n→∞

∫ t+n

t

A(u)F (u, t + n)du.

We apply
∫ b

a
f (u)du = ∫ c

a
f (u)du + ∫ b

c
f (u)du repeatedly and obtain

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du = lim
n→∞

n∑
j=1

∫ t+j

t+j−1
A(u)F (u, t + n)du.

Changing variables yields

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du = lim
n→∞

n∑
j=1

∫ t

t−1
A(u + j)F (u + j, t + n)du.

Since F(·, ·) ∈ R and A(t) is periodic, we have

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du = lim
n→∞

n∑
j=1

∫ t

t−1
A(u)F (u, t + n − j) du.

Let k = n − j ,

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du = lim
n→∞

n−1∑
k=0

∫ t

t−1
A(u)F (u, t + k) du,



interchange the order of integration and summation, and bring the limit inside the
integral; then we have

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)

∞∑
k=0

F(u, t + k) du.

Finally, applying the definition of F̂ (·, ·), we have

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)F̂ (u, t) du.

2. If F(s, t) = ∫ t

s
G(s,u)H(u, t) du, then by definition, we have

F̂ (s, t) =
∞∑

j=0

∫ t+j

s

G(s,u)H(u, t + j) du.

Since
∫ b

a
f (u)du = ∫ c

a
f (u)du + ∫ b

c
f (u)du,

F̂ (s, t) =
∞∑

j=0

∫ t

s

G(s,u)H(u, t + j) du +
∞∑

j=0

∫ t+j

t

G(s,u)H(u, t + j) du

=
∫ t

s

G(s,u)Ĥ (u, t) du +
∞∑

j=0

j∑
k=1

∫ t+k

t+k−1
G(s,u)H(u, t + j) du.

A change of variables yields

F̂ (s, t) =
∫ t

s

G(s,u)Ĥ (u, t) du +
∞∑

j=0

j∑
k=1

∫ t

t−1
G(s,u + k)H(u + k, t + j) du.

Since H(·, ·) is in R, we may write

F̂ (s, t) =
∫ t

s

G(s,u)Ĥ (u, t) du +
∞∑

j=0

j∑
k=1

∫ t

t−1
G(s,u + k)H(u, t + j − k) du.

We change first the order of summation, and then the index of summation, letting
l = j − k to yield

F̂ (s, t) =
∫ t

s

G(s,u)Ĥ (u, t) du +
∞∑

k=1

∞∑
j=k

∫ t

t−1
G(s,u + k)H(u, t + j − k) du

=
∫ t

s

G(s,u)Ĥ (u, t) du +
∞∑

k=1

∞∑
l=0

∫ t

t−1
G(s,u + k)H(u, t + l) du.



Changing the order of integration and summation, and using the definition of Ĝ(·, ·)
and Ĥ (·, ·), gives

F̂ (s, t) =
∫ t

s

G(s,u)Ĥ (u, t) du +
∫ t

t−1
Ĝ(s, u + 1)Ĥ (u, t) du,

and finally, since G(s,u) = 0 for u < s,

F̂ (s, t) =
∫ t

t−1
Ĝ(s, u)Ĥ (u, t) du.

3. By assumption,

F(s, t) = G(s, t) +
∫ t

s

F (s, u)H(u, t) du,

so

F(s, t + j) = G(s, t + j) +
∫ t+j

s

F (s, u)H(u, t + j) du.

Summing from j = 0 to infinity, we have

F̂ (s, t) = Ĝ(s, t) +
∞∑

j=0

∫ t+j

s

F (s, u)H(u, t + j) du

from the definition of F̂ (s, t) and Ĝ(s, t). From part 2,

F̂ (s, t) = Ĝ(s, t) +
∫ t

t−1
F̂ (s, u)Ĥ (u, t) du.

4. From part 1 of this theorem, we have

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)F̂ (u, t) du.

By definition of F̂ (s, t),

lim
n→∞

∫ t+n

s

A(u)F (u, t + n)du =
∫ t

t−1
A(u)

∞∑
j=0

∫ t+j

u

G(u, ν)H(ν, t + j) dν du.

Now from part 2, ∫ t

t−1
A(u)

∞∑
j=0

∫ t+j

u

G(u, ν)H(ν, t + j) dν du

=
∫ t

t−1
A(u)

∫ t

t−1
Ĝ(u, ν)Ĥ (ν, t) dν du.

5. For F(s, t) ∈ R, F(s+k, t) = 0 for k = 1,2,3, . . . . By assumption, F(s, t) ∈ R.
6. This is direct from the definition of F̂ (s, t). �
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