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Transient and periodic solution to the time-inhomogeneous
quasi-birth death process

B.H. Margolius

Abstract We derive the transient distribution and periodic
family of asymptotic distributions and the transient and pe-
riodic moments for the quasi-birth-and-death processes with
time-varying periodic rates. The distributions and moments
are given in terms of integral equations involving the related
random-walk process. The method is a straight-forward ap-
plication of generating functions.

Keywords Quasi-birth-and-death process ·
Time-inhomogeneous Markov chain · Queueing model

Mathematics Subject Classification (2000) 60J10 ·
60J80 · 60K25

1 Introduction

Quasi-birth-and-death processes are used to model a wide
variety of applications. Among those covered in the litera-
ture are assemble to order systems [9], production lines [2],
wireless communications [10] and a variety of queueing sys-
tems [14, 19]. Latouche and Ramaswami have shown that
M/G/1 and GI/M/1 queues can be encompassed within
the class of QBDs with infinite blocks [14, Chap. 13], thus
vastly extending the class of problems that can be modelled
with QBDs.

In many quasi-birth-and-death processes, transition rates
vary periodically. For quasi-birth-and-death processes with
time-varying periodic rates which meet certain stability con-
ditions, periodic asymptotic probabilities pij (t) exist. That

is, the distribution limn→∞ Pl,k;i,j (s, nT + t) = pij (t) ex-
ists for t ∈ [0, T ) where Pl,k;i,j (s, nT + t) is the probability
of the system being in level i, phase j at time nT + t given
that it was in level l and phase k at time s, where T is the
length of the period. We present a method for computing
these probabilities for level independent QBDs that requires
working with integral equations over only one time period.
We also derive formulae for the moments of the process as a
function of time within the period. This is an extension and
generalization of results obtained for the transient solution
for the time-dependent Poisson queue with exponential ser-
vice given in [17] and the asymptotic periodic number in an
Mt/Mt/ct queue in [18].

As noted in [22] and references cited there, computa-
tional methods and approximation techniques involved in
time-inhomogeneous queueing problems have long been re-
garded as challenging. In their recent paper on estimating the
convergence rate of queues with nonstationary arrival and
service rates, Zeifman, et al., note that “it is extremely diffi-
cult to obtain general results for arbitrary forms of the birth
and death rates and therefore we must content ourselves in
obtaining various types of approximations” [24]. Because of
these difficulties work on queues with time-varying parame-
ters often involves estimation schemes. See references cited
in [8, 22, 24], and [23] for a sampling of these approxima-
tion strategies.

In this paper, we present a relatively simple method for
finding expressions for the transient distribution and its mo-
ments for quasi-birth-and-death (QBD) processes with time-
varying rates. For those processes with periodically varying
rates, we also obtain formulae for the asymptotic periodic
distribution and its moments. These quantities may be com-
puted via the numerical solution of integral equations cover-
ing only one time period. The integral equations are in terms
of the quasi-birth-and-death process’s related random walk



process. The integral equations are exact, but obtaining per-
formance measures from the formulae requires numerical
solution of the integral equations and approximating or find-
ing explicit formulae for the transition probabilities for the
quasi-birth-and-death process analog of the random walk.
It is hoped that these formulae will prove useful compu-
tationally in some instances, and in other cases will serve
as a means for generating new approximation schemes,
for confirming existing approaches and for gaining insight
into the time-varying quasi-birth-and-death processes being
studied.

In Sect. 2 we define a family of generating functions and
state and prove our theorems for the transient case and in
Sect. 2.1 for the asymptotic periodic case. In Sect. 3 we
provide three examples. In Sect. 4, we describe how to nu-
merically solve a quasi-birth-and-death process that does not
have a special structure, and finally Sect. 5 is a brief conclu-
sion.

2 The family of generating functions

Consider the continuous time Markov chain {X(t), J (t)}
with state space {{0,1,2, . . .} × {1,2, . . . ,K}} where K is
a finite positive integer. X(t) is referred to as the level and
J (t) is the phase. K represents the number of phases within
each level. Let us define Pl,k;i,j (s, t) = P {X(t) = i, J (t) =
j |X(s) = l, J (s) = k}. The infinitesimal generator for this
Markov chain may be written as

Q(t) =

⎡
⎢⎢⎢⎣

B(t) A1(t)

A−1(t) A0(t) A1(t)

A−1(t) A0(t) A1(t)
...

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (1)

where each block represents transition within levels. For
example, if we define level Li = {X(t) = i, J (t) = 1,2,

. . . ,K} then A−1(t) is a matrix that represents transi-
tions from level Li to level Li−1. This Markov chain
has skip-free properties in that a transition from level
Li to level Li+k , k > 1, will have to go through levels
Li+1,Li+2, . . . ,Li+k−1 before reaching level Li+k . The
off-diagonal elements of Q(t) are nonnegative. Its diago-
nal elements are all strictly negative and B(t)1+A1(t)1 = 0
and A−1(t)1 + A0(t)1 + A1(t)1 = 0 where 1 is a column
vector of appropriate dimension whose components are all
ones, and 0 is the zero vector of the same dimension. For
ease of exposition, we consider the case where the period,
T , is equal to one.

We are interested in the quantities

pi,j (t) = lim
n→∞Pl,k;i,j (s, t + n), 0 ≤ t < 1, n integer.

For each t in [0,1), pi,j (t), i = 0,1,2, . . . , j = 1,2, . . . ,K

is the periodic asymptotic distribution for that time within
the period. In what follows, we will associate with each
QBD a generalized random walk process. The periodic as-
ymptotic distribution will exist when this associated random
walk process has a negative drift.

Let pi (t) = [pi,1(t),pi,2(t), . . . , pi,K(t)]. Following Kol-
mogorov’s approach to queues with time-varying rates, we
begin with the Chapman–Kolmogorov equations [12, 13].
We can write the Chapman–Kolmogorov forward differen-
tial equations as

ṗ0(t) = p0(t)B(t) + p1(t)A−1(t),
(2)

ṗi (t) = pi−1(t)A1(t) + pi (t)A0(t) + pi+1(t)A−1(t).

We use the same system of differential equations to solve
the transient problem. In this case pj (t) represents the so-
lution to the transient problem, but we suppress the depen-
dence on the initial condition in the notation.

Periodic solutions to the Chapman–Kolmogorov equa-
tions will satisfy the integral equations:

0 =
∫ t

t−1
(p0(ν)B(ν) + p1(ν)A−1(ν))dν,

0 =
∫ t

t−1
(pi−1(ν)A1(ν)

+ pi (ν)A0(ν) + pi+1(ν)A−1(ν))dν

for all i ≥ 1 and all t . To prove this result, simply inte-
grate (2) and use periodicity. This result is a generalization
of Theorem 1 in [17] and (1.7.3) in [19].

Recall that for a non-negative random variable, X with
probability distribution pj = P {X = j}, j = 0,1, . . . ,

∞∑
k=0

P {X > k} =
∞∑

k=1

∞∑
j=k

pj

=
∞∑

j=1

pj

j∑
k=1

1 =
∞∑

j=1

jpj = E[X].

This result holds more generally. Define q(m)
i (t) =∑∞

j=i q(m−1)
j (t) for m = 0,1,2, . . . and i = 0,1,2, . . .

with q(0)
i (t) = pi (t), then it turns out that q(1)

0 (t) =
[E[1J (t)=1], . . . ,E[1J (t)=K ]], q(2)

0 (t) = E[X(t)1J (t)=1, . . . ,

X(t)1J (t)=K ]+[E[1J (t)=1], . . . ,E[1J (t)=K ]] and more gen-

erally, (m − 1)![q(m)
0 (t)]j = E[(X(t) + 1)(X(t) + 2) · · ·

(X(t) + m − 1)1J (t)=j ]. To prove this, we require some
definitions: the rising factorial [11] is given by the formula

xm = x(x + 1) · · · (x + m − 1),

and the (signed) Stirling numbers of the first kind [20] are
given by:



s(k, j) = s(k − 1, j − 1) − (k − 1)s(k − 1, j), k, j ≥ 1;
s(k,0) = s(0, j) = 0;
s(0,0) = 1.

Note that this implies s(k, k) = 1 for k = 1,2, . . . as well.
The function m!q(m+1)

0 (t)1 = E[(X(t) + 1)m], gives the
expectation of the rising factorial of X(t) + 1, which we
shall refer to as the mth rising factorial moment. For m ≥ 1,
we have the following theorem:

Theorem 1 (Rising factorial moments) The rising factorial
moments are given by

m!q(m+1)
0 (t)1 = E[(X(t) + 1)(X(t) + 2) · · · (X(t) + m)]

=
m∑

k=0

(−1)m−ks(m + 1, k + 1)E[Xk(t)]

for m = 1,2, . . . .

Proof The proof is by induction. From the definition for
q(m)

0 we have

q(m)
0 (t) =

∞∑
km=0

∞∑
km−1=km

· · ·
∞∑

k2=k3

∞∑
k1=k2

pk1(t).

Assume that

∞∑
km−1=km

· · ·
∞∑

k2=k3

∞∑
k1=k2

pk1(t)

=
∞∑

k1=km

pk1(t)

(
k1 − km + m − 2

m − 2

)
.

Clearly this result holds for m = 2. Now we show that if the
result is valid for some m, it must hold for m + 1. To prove
this result, we change the order of summation, re-index, and
use Pascal’s second identity [7]:

∞∑
km=km+1

∞∑
k1=km

pk1(t)

(
k1 − km + m − 2

m − 2

)

=
∞∑

k1=km+1

pk1(t)

k1∑
km=km+1

(
k1 − km + m − 2

m − 2

)

=
∞∑

k1=km+1

pk1(t)

k1−km+1∑
km=0

(
m − 2 + km

m − 2

)

=
∞∑

k1=km+1

pk1(t)

(
k1 − km+1 + m − 1

m − 1

)
.

It follows that q(m+1)
0 (t) = ∑∞

k=0 pk(t)
(
k+m
m

)
or

m!q(m+1)
0 (t) =

∞∑
k=0

pk(t)(k + 1)(k + 2) · · · (k + m)

and the result follows from the definition of the Stirling
number of the first kind. �

The functions q(m)
i (t) satisfy systems of differential

equations similar to those for q(0)
i (t) = pi (t) given in (2).

For m ≥ 0 we have:

q̇(m)
0 (t) = p0(t)B(t) +

m∑
r=1

q(r)
0 (t)A1(t)

+
m∑

r=1

q(r)
1 (t)A0(t) + q(m)

1 (t)A−1(t),

(3)
q̇(m)

i (t) = q(m)
i−1(t)A1(t) + q(m)

i (t)A0(t)

+ q(m)
i+1(t)A−1(t),

where we interpret the sum
∑0

r=1 to equal zero. Since

q(r)
0 (t) = ∑∞

j=0 q(r−1)
j (t) = q(r−1)

0 (t)+q(r)
1 (t) equivalently,

we may write:

q̇(m)
0 (t) = p0(t)(B(t) − A0(t))

+
m∑

r=1

q(r)
0 (t)A1(t) + q(m)

0 (t)A0(t)

+ q(m)
1 (t)A−1(t). (4)

We define a family of generating functions P
(m)
z (t) =∑∞

i=0 q(m)
i (t)zi . Using (3) and (4) we obtain the following

differential equation for P
(m)
z (t):

Ṗ (m)
z (t) = P (m)

z (t)(zA1(t) + A0(t) + z−1A−1(t))

+ p0(t)(B(t) − A0(t)) − z−1q(m)
0 (t)A−1(t)

+
m∑

r=1

q(r)
0 (t)A1(t).

This differential equation has the solution,

P (m)
z (t) =

∫ t

s

[
p0(ν)(B(ν) − A0(ν)) − z−1q(m)

0 (ν)A−1(ν)

+
m∑

r=1

q(r)
0 (ν)A1(ν)

]
�z(ν, t)dν

+ P (m)
z (s)�z(s, t), (5)

where �z(s, t) is an evolution operator such that �z(t, t) =
I and ∂

∂t
�z(s, t) = �z(s, t)(zA1(t) + A0(t) + z−1A−1(t)).



The Péano series representation [5] for �z(s, t) is

�z(s, t) =
∞∑

k=0

�(k)
z (s, t), (6)

where �
(0)
z (s, t) = I and

�(k)
z (s, t)

=
∫ t

s

∫ uk

s

· · ·
∫ u2

s︸ ︷︷ ︸
k integrals

(zA1(u1) + A0(u1) + z−1A−1(u1))

· · · (zA1(uk) + A0(uk) + z−1A−1(uk))du1 · · ·duk (7)

for k ≥ 1, (cf. Breuer, [1] p. 70 or Gikhman and Skorokhod,
[3], pp. 317–319).

Let φk(s, t) be the coefficient on zk , such that

�z(s, t) =
∞∑

k=−∞
φk(s, t)z

k.

A general formula for the φk(s, t) is

φk(s, t) =
∞∑

j=1

∑∫ t

s

∫ uj−1

s

· · ·
∫ u2

s︸ ︷︷ ︸
j integrals

(Ai1(u1)Ai2(u2)

· · ·Aij (uj ))du1 · · ·duj

where the inner sum is taken over all j -tuples such that∑j

m=1 im = k. This follows from the fact that the Ai (t) are
coefficients on zi in (7) above. Note that φk(s, t) is defined
for all integers k.

The φk(s, t) have a probabilistic interpretation. φk(s, t)

is a K × K matrix. Recall that K is the number of phases in
each level. The row i, column j component of φk(s, t) is the
probability of travelling k levels to the right and from phase
i to phase j during the time interval from time s to time t

for a quasi-birth-and-death process with no boundary con-
ditions. This is a generalized time-dependent random walk
in which location is defined both in terms of the level and
the phase. Think of a tiled stairway which extends both up
and down without end. Each step has a row of K uniquely
colored tiles. The walker wanders aimlessly along the stair-
case. When the walker takes a step at time t , he either stays
on the same step, moves up one step or moves down one
step. At the same time, he can move to any of the K tiles
on each of the three steps, for a total of 3K − 1 possible
transitions. His movements along the staircase are governed
by the rate matrices A−1(t), A0(t), and A1(t). Suppose that
at time t he is on a tile of color j and that the j th row
of the A−1(t) matrix is given by [α(−1)

j,1 (t), . . . , α
(−1)
j,K (t)];

the j th row of A1(t) is [α(1)
j,1(t), . . . , α

(1)
j,K(t)]; and the

j th row of A0(t) is [α(0)
j,1(t), . . . , α

(0)
j,K(t)] where α

(0)
j,j (t) =

−∑K
i=1(α

(1)
j,i (t) + α

(−1)
j,i (t)) − ∑

i �=j α
(0)
j,i (t). Given that he

takes a step at time t , the probability that it is a step up is
−∑K

i=1 α
(1)
j,i (t)/α

(0)
j,j (t). The probability that he goes down

is −∑K
i=1 α

(−1)
j,i (t)/α

(0)
j,j (t). Otherwise he remains on the

same step. We may compute the probability that a transition
is made to a tile of particular color on any of the three steps
in a similar fashion.

In most cases explicit formulae are not available for the
φk(s, t). For the Mt/Mt/1 queue, with arrival rate λ(t) and
service rate μ(t), the φk(s, t) are scalar functions and are
given by

φk(s, t) =
∞∑

j=0

(
∫ t

s
μ(u)du)j (

∫ t

s
λ(u)du)j+k

(j + k)!j !

× e− ∫ t
s λ(u)du−∫ t

s μ(u)du

for k ≥ 0 and

φk(s, t) =
∞∑

j=0

(
∫ t

s
μ(u)du)j−k(

∫ t

s
λ(u)du)j

(j − k)!j !

× e− ∫ t
s λ(u)du−∫ t

s μ(u)du

for k < 0 and the random walk generating function is

�z(s, t) = e(z−1)
∫ t
s λ(u)du+(z−1−1))

∫ t
s μ(u)du.

Figure 1 shows the relationship between the normal den-
sity with mean

∫ t

s
(λ(u) − μ(u))du and variance

∫ t

s
(λ(u) +

μ(u))du and the φk(s, t) for
∫ t

s
λ(u)du = 2 and

∫ t

s
μ(u)du

= 8, perhaps providing some insight as to why the Mt/Mt/1
queue behaves like a reflected Brownian motion with that
mean and variance [16].

We explore the Mt/Mt/1 example in more detail in
Sect. 3 and provide additional examples for which explicit
formulae exist. In Sect. 4 we illustrate the solution of a gen-
eral QBD for which explicit formulae for the φk(s, t) are not
available. Part of the difficulty in finding explicit formulae
comes from the fact that matrix multiplication is not com-
mutative except for matrices with special structure.

Given φk(s, t), and the distribution pk(s) for some initial
time s, we may solve for p0(t) numerically by solving the
following Volterra equation of the second kind:

p0(t) =
∫ t

s

[
p0(ν)

(
(B(ν) − A0(ν))φ0(ν, t)

− A−1(ν)φ1(ν, t)
)]

dν

+
∞∑

k=0

pk(s)φ−k(s, t). (8)



Fig. 1 Graph of φk(s, t) for an
Mt/Mt/1 queue with∫ t

s
λ(u)du = 2 and∫ t

s
μ(u)du = 8 shown with a

normal density function with
mean equal to∫ t

s
(λ(u) − μ(u))du = −6 and

variance equal to∫ t

s
(λ(u) + μ(u))du = 10

This equation has the following interpretation: pk(s), k =
0,1,2, . . . , gives the initial distribution at time s < t . The
expression,

∑∞
k=0 pk(s)φ−k(s, t), gives the probability that

the system started in some level k at time s and during the
time interval from s to t travelled according to the proba-
bility law of the associated generalized random walk k lev-
els to the left of where it started at time s (this probabil-
ity is given by φ−k(s, t)). Although the random walk can
travel below level zero, the quasi-birth-and-death process
cannot, so we subtract from the previous expression the
probability of travelling below level zero. This is given by
p0(ν)A−1(ν)φ1(ν, t)dν where p0(ν) is the probability of
being in level zero at time ν given the system started ac-
cording to the initial distribution. The matrix A−1(ν) is
a matrix of rates at which transitions occur down a level
at time ν, and φ1(ν, t) is the probability that the general-
ized random walk has transitioned up one more level than
it has transitioned down during the time interval (ν, t), so
p0(ν)A−1(ν)φ1(ν, t)dν may be thought of as the probabil-
ity of being in level zero at some time ν ∈ (s, t), and at the
instant ν making a downward transition, then over the time
interval from ν to t rising back up one level. The integral
from s to t of this quantity is not a probability since the
same sample path may dip below zero and return more than
once. The expression p0(ν)((B(ν)−A0(ν))φ0(ν, t)dν gives
the probability of arriving at level zero at some time prior
to ν and then at the instant ν making a transition within
the level zero to a different phase. Transitions within level
zero occur at the rates given in the matrix B(ν) and not
at the rates given in the matrix A0(ν) so we add the for-
mer matrix and subtract the latter. The expression yields
p0(t) by adding all sample paths (weighted by their prob-
ability) that go to zero at some point prior to t and follow

the laws of the generalized random walk, but do not go be-
low zero before time t , plus all sample paths that follow-
ing the laws of the generalized random walk do go below
zero prior to time t , but for which Z(t)− infu∈(s,t) Z(u) = 0
where Z(t) is the level of the generalized random walk
process.

When the φk(s, t) are known, we may compute the entire
distribution of the quasi-birth-and-death process and also
obtain the rising factorial moments. These results are sum-
marized in the following theorem.

Theorem 2 (Time-inhomogeneous QBD transient solu-
tion) The transient distribution for the time-inhomogeneous
quasi-birth-and-death process with the infinitesimal gener-
ator given in (1) is given by

pj (t) =
∫ t

s

[
p0(ν)

(
(B(ν) − A0(ν))φj (ν, t)

− A−1(ν)φj+1(ν, t)
)]

dν

+
∞∑

k=0

pk(s)φj−k(s, t). (9)

The rising factorial moments of the QBD satisfy the equa-
tions

(m − 1)!q(m)
0 (t)

= (m − 1)!
∫ t

s

[
p0(ν)(B(ν) − A0(ν))φ0(ν, t)

− q(m)
0 (ν)A−1(ν)φ1(ν, t)



+
m∑

r=1

q(r)
0 (ν)A1(ν)φ0(ν, t)

]
dν

+ (m − 1)!
∞∑

k=0

q(m)
k (s)φ−k(s, t) (10)

and

m!q(m+1)
0 (t)

= m!
∫ t

s

[
p0(ν)(B(ν) − A0(ν)) − q(m)

0 (ν)A−1(ν)

+
m∑

r=1

q(r)
0 (ν)A1(ν)

]
U(ν, t)dν

+ m!q(m+1)
0 (s)U(s, t), (11)

where U(s, t) is an evolution operator such that U(t, t) = I
and ∂

∂t
U(s, t) = U(s, t)A(t) and A(t) = A1(t) + A0(t) +

A−1(t).

Proof Equation (9) is obtained from the generating func-
tion P

(0)
z (s, t), (5) with m = 0 , by taking the coefficient

of zj . Equation (10) is obtained from the generating func-
tion P

(m)
z (s, t) by taking the coefficient of z0. Equation (11)

is obtained from the generating function P
(m)
z (s, t) by set-

ting z = 1. �

With the solution obtained from (8), we may use (11) to
solve for each of the rising factorial moments, recursively.

2.1 The periodic problem

If we set s = t − 1 in (5), we obtain the generating function
for the asymptotic periodic solution to the QBD. Recall that
Ai (t), i = −1,0,1 are each periodic with period one. Then
we have

P (m)
z (t) =

∫ t

t−1

[
p0(ν)(B(ν) − A0(ν)) − z−1q(m)

0 (ν)A−1(ν)

+
m∑

r=1

q(r)
0 (ν)A1(ν)

]

× �z(ν, t)dν[I − �z(t − 1, t)]−1. (12)

Given p0(t), and φk(s, t), k = 0,1,2, . . . we may find the
asymptotic periodic distribution of the QBD and its rising
factorial moments. The functions φk(s, t) for k < 0, do not
appear in the formulae for the coefficients of zk , k ≥ 0 and
so are not required for finding the asymptotic periodic dis-
tribution or its moments.

Theorem 3 (Time-inhomogeneous QBD asymptotic peri-
odic solution) The asymptotic periodic distribution for the
time-inhomogeneous quasi-birth-and-death process with the
infinitesimal generator given in (1) is given by

pj (t) =
∫ t

t−1
p0(ν)

[
(B(ν) − A0(ν))

∞∑
n=0

φj (ν, t + n)

− A−1(ν)

∞∑
n=0

φj+1(ν, t + n)

]
dν. (13)

The rising factorial moments are given by

(m − 1)!q(m)
0 (t)

= (m − 1)!
∫ t

t−1

[
(p0(ν)(B(ν) − A0(ν))

+
m∑

i=1

q(i)
0 (ν)A1(ν))

∞∑
n=0

φ0(ν, t + n)

− q(m)
0 (ν)A−1(ν)

∞∑
n=0

φ1(ν, t + n)

]
dν. (14)

Proof Equation (13) is obtained from the generating func-
tion P

(0)
z (s, t), (12), by taking the coefficient of zj . Equa-

tion (14) is obtained from the generating function P
(m)
z (s, t)

by taking the coefficient of z0. We have also used the fol-
lowing identities for �(ν, t):

[I − �z(t − 1, t)]−1 =
∞∑

k=0

�k
z(t − 1, t) =

∞∑
k=0

�z(t − k, t),

�z(ν, s)�z(s, t) = �z(ν, t)

and

�z(t − 1, t)�z(ν, t) = �z(ν, t + 1) = �z(ν − 1, t). �

Let us pause to consider the expression
∑∞

n=0 φj (ν, t +
n). Suppose that we are investigating a periodic generalized
random walk process with daily period and that ν is 3:00
in the afternoon and t is midnight, then

∑∞
n=0 φj (ν, t + n)

gives the expected number of days (for all time) that the
process is in level j + k at midnight given that the process
started in level k at 3:00 one afternoon.

An alternative formula for the rising factorial moments is
given in the following theorem.

Theorem 4 The rising factorial moments for the periodic
QBD are given by



m!q(m+1)
0 (t)

= m!
∫ t

t−1

[
(p0(ν)(B(ν) − A0(ν))

+
m∑

i=1

q(i)
0 (ν)A1(ν))

∞∑
n=0

∞∑
j=0

φj (ν, t + n)

− q(m)
0 (ν)A−1(ν)

∞∑
n=0

∞∑
j=1

φj (ν, t + n)

]
dν. (15)

Proof Use the generating function, (12), to find q(m)
j (t) and

sum these to obtain q(m+1)
0 (t). �

The asymptotic periodic distribution will exist if the as-
sociated generalized random walk has a leftward drift, i.e. if∑∞

n=0
∑∞

j=0 φj (ν, t + n) < ∞.

Note that q(m+1)
0 (t) = limz→1 P

(m)
z (t), so we might

naïvely write

q(m+1)
0 (t) =

∫ t

t−1

[
p0(ν)(B(ν) − A0(ν)) − q(m)

0 (ν)A−1(ν)

+
m∑

r=1

q(r)
0 (ν)A1(ν)

]

× U(ν, t)dν[I − U(t − 1, t)]−1,

but I − U(t − 1, t) is singular. When the process is stable
and q(m+1)

0 (t) is finite, this implies that

∫ t

t−1

[
p0(ν)(B(ν) − A0(ν)) − q(m)

0 (ν)A−1(ν)

+
m∑

r=1

q(r)
0 (ν)A1(ν)

]
U(ν, t)dνadj(I − U(t − 1, t))

is the zero vector. We may apply l’Hôpital’s rule to obtain an
alternative expression for the rising factorial moments that
requires p0(t), but does not require a knowledge of the func-
tions φj (ν, t + n). We summarize this result in the theorem
that follows, but first we need some definitions:

�(s, t) = d

dz
�z(s, t)

∣∣
z=1

f (t) = d

dz
|I − �z(t − 1, t)|∣∣

z=1

G(t) = d

dz
adj(I − �z(t − 1, t))

∣∣
z=1.

An integral equation for �(s, t) is

�(s, t) =
∫ t

s

U(s, ν)(A1(ν) − A−1(ν))U(ν, t)dν.

This equation was obtained by differentiating �z(s, t) as
given in (7) by z and setting z = 1. The functions f (t) and
G(t) may be expressed in terms of the components of the
matrices U(t −1, t) and �(t −1, t). For example, if we have
2 × 2 blocks indexed from 0 to 1, then

f (t) = −ψ00(t − 1, t) − ψ11(t − 1, t)

+ ψ00(t − 1, t)u11(t − 1, t)

+ ψ11(t − 1, t)u00(t − 1, t)

− ψ01(t − 1, t)u10(t − 1, t)

− ψ10(t − 1, t)u01(t − 1, t)

and

G(t) =
[−ψ11(t − 1, t) ψ01(t − 1, t)

ψ10(t − 1, t) −ψ00(t − 1, t)

]
.

Theorem 5 The rising factorial moments for the periodic
QBD (with f (t) �= 0) are given by

m!q(m+1)
0 (t)

= m!
f (t)

[∫ t

t−1
q(m)

0 (ν)A−1(ν)U(ν, t)dν

× adj(I − U(t − 1, t)) +
∫ t

t−1

(
p0(ν)(B(ν) − A0(ν))

− q(m)
0 (ν)A−1(ν) +

m∑
r=1

q(r)
0 (ν)A1(ν)

)

× (�(ν, t) adj(I − U(t − 1, t)) + U(ν, t)G(t))dν

]
.

(16)

Proof Apply l’Hôpital’s rule to limz→1 P
(m)
z (t) and multi-

ply both sides of the equation by m!. �

3 Examples

3.1 The Mt/Mt/1 queue

For early work on the exact transient solution (up to an inte-
gral equation) of the single-server queue with time-varying
rates see [15]. Other references include [17, 25] (transient
case), and [18] (periodic asymptotic). We derive formulae
for the idle probability, the mean and the variance for the
general time-varying single server Poisson queue and then
apply them to an example used in the recent paper by Zeif-
man et al. [24].

For this example, the Ai (t), i = −1,0,1 and B(t) are
scalars; A1(t) = λ(t), A0(t) = −λ(t)−μ(t), A−1(t) = μ(t)



and B(t) = −λ(t). Then

φk(s, t) =
∞∑

j=0

(
∫ t

s
μ(u)du)j (

∫ t

s
λ(u)du)j+k

(j + k)!j !

× e− ∫ t
s λ(u)du−∫ t

s μ(u)du

for k ≥ 0 and

φk(s, t) =
∞∑

j=0

(
∫ t

s
μ(u)du)j−k(

∫ t

s
λ(u)du)j

(j − k)!j !

× e− ∫ t
s λ(u)du−∫ t

s μ(u)du

for k < 0. This is the probability of k more steps to the right
than to the left during the time interval from s to t for a
time-dependent random walk with rates λ(t) for steps to
the right and μ(t) for steps to the left. To see this, recall
that for a Poisson process, Z(t), with constant parameter λ,

P {Z(t) = j} = e−λt (λt)j

j ! . If the rates are time-varying with

parameter λ(t), then P {Z(t) = j} = e− ∫ t
0 λ(u)du (

∫ t
0 λ(u)du)j

j ! .
If we have two such independent processes, the first giving
the distribution of the number of steps to the right, and the
second with time-varying rate μ(t) giving the distribution of
the number of steps to the left, then the distribution for the
net number of steps travelled to the right is given by φk(0, t),
k integer.

The function φk(s, t) may be expressed in terms of mod-
ified Bessel functions [6]:

φk(s, t) =
( ∫ t

s
λ(u)du∫ t

s
μ(u)du

)k/2

× Ik

(
2

√(∫ t

s

λ(u)du

)(∫ t

s

μ(u)du

))

× e− ∫ t
s λ(u)du−∫ t

s μ(u)du.

The rising factorial moments for the transient solution are

m!q(m+1)
0 (t) = m!

∫ t

s

[
p0(ν)μ(ν) − q

(m)
0 (ν)μ(ν)

+
m∑

r=1

q
(r)
0 (ν)λ(ν)

]
dν + m!q(m+1)

0 (s).

In particular, for pi(s) = 1 (when there are known to be i in
the system at some initial time s), q

(0)
0 (t) is the solution of

the Volterra equation of the second kind:

q
(0)
0 (t) = p0(t)

=
∫ t

s

[
p0(ν)μ(ν)

(
φ0(ν, t) − φ1(ν, t)

)]
dν

+ φ−i (s, t).

Furthermore,

q
(1)
0 (t) = 1,

E[X(t)] =
∫ t

s

p0(ν)μ(ν)dν +
∫ t

s

(λ(u) − μ(u))du + i,

and

Var[X(t)] = 2q
(3)
0 (t) − q

(2)
0 (t) − [q(2)

0 (t)]2

= (−2i − 1)

∫ t

s

p0(ν)μ(ν)dν

+
∫ t

s

(λ(u) + μ(u))du

+ 2
∫ t

s

[
p0(ν)μ(ν)

(∫ ν

s

(μ(u)−λ(u))du

)]
dν

−
[∫ t

s

p0(ν)μ(ν)dν

]2

.

Define μ̄ = ∫ t

t−1 μ(u)du and λ̄ = ∫ t

t−1 λ(u)du. The as-
ymptotic periodic moments are given by the formula:

q
(m+1)
0 (t)

= 1

μ̄ − λ̄

∫ t

t−1

[
μ(ν)q

(m)
0 (ν) +

(
μ(ν)(p0(ν) − q

(m)
0 (ν))

+ λ(ν)

m∑
r=1

q
(r)
0 (ν)

)(∫ ν

t−1
(λ(u) − μ(ν))du

)]
dν.

(17)

We apply (13) to find p0(t) and also use the fact that
q

(1)
0 (t) = 1.

The idle probability satisfies the integral equation

p0(t) =
∫ t

t−1
μ(ν)p0(ν)

×
∞∑

n=0

(φ0(ν, t + n) − φ1(ν, t + n))dν.

We can solve this integral equation numerically by discretiz-
ing the function μ(ν)

∑∞
n=0 (φ0(ν, t + n) − φ1(ν, t + n)),

applying numerical integration weights and finding the
eigenvector of the resulting matrix that corresponds to the
eigenvalue 1. This will yield p0(t) up to a constant multiple.
We substitute this eigenvector into the equation for q

(1)
0 (t)

to scale the eigenvector properly. For q
(1)
0 (t), (17) becomes

q
(1)
0 (t) = 1 = 1

μ̄ − λ̄

∫ t

t−1
μ(ν)p0(ν)dν.

We illustrate this with an example from Zeifman et al.
[24]. Let λ(t) = 1 + sin(2πt) and μ(t) = 4 + 2 cos(2πt).



(a) The idle probabilities for the queue

(b) The expected number in the queue

Fig. 2 An Mt/Mt/1 queue with arrival rate λ(t) = 1 + sin(2πt), ser-
vice rate μ = 4+2 cos(2πt). Transient and asymptotic cases are shown

Figure 2a shows the asymptotic periodic probability that the
queue is idle, and the transient probability given that it was
idle at t = 0.

The asymptotic periodic expected number in the system
is

E[X(t)] = q
(2)
0 (t) − 1

= λ̄

μ̄ − λ̄
+ μ̄ − λ̄

2

+
∫ t

t−1 μ(ν)p0(ν)
∫ t

ν (λ(ξ) − μ(ξ)) dξdν

μ̄ − λ̄
.

This is shown in Fig. 2b. For queues with constant rates,
the last two terms cancel one another. The graph shows the
asymptotic periodic expected number in the queue, and the
transient expected number in queue given that it was idle at
t = 0. The expectation for the constant rate case with λ̄ = 1
and μ̄ = 4 is 1/3. For this time-varying queue, the mean
is approximately 0.383. This is the same result obtained
by Zeifman et al. [24] to three decimal places of accuracy.
These computations were done using 3rd order Newton–

Gregory integration weights with a mesh size of 0.00125 for
the periodic solution. A mesh of 0.0025 was used for the
transient problem. The Newton–Gregory quadrature rules
are a convenient numerical method for solving Volterra
equations of the second kind [21] such as the equations
that arise in solving the transient problem. Any quadrature
method with equally spaced nodes will work for obtaining
the asymptotic periodic distribution and its moments.

3.2 The Mt/Mt/c queue

For the Mt/Mt/c queue,

φk(t)

=

⎡
⎢⎢⎢⎣

Ĩkc(s, t) Ĩkc+1(s, t) · · · Ĩkc+c−1(s, t)

Ĩkc−1(s, t) Ĩkc(s, t) · · · Ĩkc+c−2(s, t)
...

. . .
. . .

...

Ĩkc−c+1(s, t) Ĩkc−c+2(s, t) · · · Ĩkc(s, t)

⎤
⎥⎥⎥⎦ ,

where

Ĩk(s, t) =
∞∑

j=0

(c
∫ t

s
μi(u)du)j (

∫ t

s
λi(u)du)j+k

(j + k)!j !

× e− ∫ t
s λi (u)du−c

∫ t
s μi (u)du

for k ≥ 0 and

Ĩk(s, t) =
∞∑

j=0

(c
∫ t

s
μi(u)du)j−k(

∫ t

s
λi(u)du)j

(j − k)!j !

× e− ∫ t
s λi (u)du−c

∫ t
s μi (u)du

for k < 0 give the transition probabilities for a random walk
with time-varying transition rates λ(t) for a step to the left
and cμ(t) for a step to the right. The ith component of the
vector p0(t) will give the probability of i − 1 in the sys-
tem for i = 1, . . . , c, and more generally, the ith component
of the vector pk(t) will give the probability that there are
ck + i − 1 in the system (waiting or in service). The ith
component of the vector q(1)

0 (t) gives the probability that
the number in the system is equal to ck + i for some non-
negative integer k. Solving for performance measures for
the time-varying multi-server queue can be done more ef-
ficiently using methods outlined in [17] and [18] which in-
volve scalar integral functions, but we provide a numerical
example for the Mt/Mt/2 queue using the method of this
paper for the purpose of illustration.

Consider the Mt/Mt/2 queue with λ(t) = 1 + sin(2πt)

and μ(t) = 4+2 cos(2πt). The average expected number in
the queue is found to be 0.2946 using numerical integration
as described in the previous example. This equals the result
given in the Zeifman paper [24] to four decimal places of ac-
curacy. The probability that there are no customers in service



(a) The idle probabilities for the queue

(b) The expected number in the queue

Fig. 3 An Mt/Mt/2 queue with arrival rate λ(t) = 1 + sin(2πt), ser-
vice rate μ = 4+2 cos(2πt). Transient and asymptotic cases are shown

is graphed in Fig. 3a and the expected number in the queue
for both transient and asymptotic periodic cases is graphed
in Fig. 3b.

3.3 PHt/Mt/1 queue with j -Erlang interarrival times

We consider a time-varying parameter version of an Ej/M/1
queue, (see pp. 12–15, [14]). For this example,

B(t) =

⎡
⎢⎢⎢⎣

−ν(t) . . .

ν(t) −ν(t) . .
...

. . .
. . .

...

. . ν(t) −ν(t)

⎤
⎥⎥⎥⎦ ,

A1(t) =

⎡
⎢⎢⎢⎣

. . . . . ν(t)

. . . . . . . .

...
...

...
...

. . . . . . . .

⎤
⎥⎥⎥⎦ ,

A0(t)

=

⎡
⎢⎢⎢⎣

−ν(t) − μ(t) . . .

ν(t) −ν(t) − μ(t) . .

.
. . .

. . . .

. . ν(t) −ν(t) − μ(t)

⎤
⎥⎥⎥⎦,

A−1(t) =
⎡
⎢⎣

μ(t) . .

.
. . . .

. . μ(t)

⎤
⎥⎦ ,

and

�z(s, t)

= e
∫ t
s ((z−1−1)μ(u)−ν(u))du

×

⎡
⎢⎢⎢⎢⎣

f
(0)
z (s, t) f

(−1)
z (s, t) . . . f

(−j+1)
z (s, t)

f
(1)
z (s, t) f

(0)
z (s, t) . . . f

(−j+2)
z (s, t)

...
. . .

. . .
...

f
(j−1)
z (s, t) f

(j−2)
z (s, t) . . . f

(0)
z (s, t)

⎤
⎥⎥⎥⎥⎦ ,

where

f (n)
z (s, t) =

∞∑
m=n

zm(
∫ t

s
ν(u)du)jm−n

(jm − n)!

for n < 0 and

f (n)
z (s, t) =

∞∑
m=0

zm(
∫ t

s
ν(u)du)jm−n

(jm − n)!

for n ≥ 0. The related random walk transition probabilities
are then given by the Toeplitz matrix

φk(s, t)

= e− ∫ t
s (μ(u)+ν(u))du

×

⎡
⎢⎢⎢⎣

g(0)(k, s, t) g(−1)(k, s, t) . . . g(−j+1)(k, s, t)

g(1)(k, s, t) g(0)(k, s, t) . . . g(−j+2)(k, s, t)
..
.

. . .
. . .

..

.

g(j−1)(k, s, t) g(j−2)(k, s, t) . . . g(0)(k, s, t)

⎤
⎥⎥⎥⎦,

where

g(n)(k, s, t) =
∞∑

m=0∧−k

(
∫ t

s
ν(u)du)j (m+k)+n(

∫ t

s
μ(u)du)m

(j (m + k) + n)!m!

for n ≥ 0 and

g(n)(k, s, t) =
∞∑

m=n−j

(
∫ t

s
ν(u)du)j (m+k)−n(

∫ t

s
μ(u)du)m

(j (m + k) − n)!m!

for n < 0.



4 Estimating φk(s, t) using the product integral
approach

The description of the product integral presented here is
based upon the overview by Richard Gill for biostatis-
ticians [4]. The product integral was developed by Vito
Volterra as a tool in the solution of a differential equation
of the form

∂

∂t
F(s, t) = F(s, t)A(t) (18)

with F(s, s) = I or equivalently, the integral equation

F(s, t) = I +
∫ t

s

F(s, u)A(u)du (19)

where the unknown F(s, t), and the known A(t) are matrix
valued functions. Ordinary integration may be thought of as
summation of very many mostly very small terms. In a simi-
lar way, product integration may be thought of as the product
of very many terms. For scalar product integration the terms
will be very close to one. For matrix product integration, the
terms will be very close to the identity matrix.

The generating function for the generalized random walk
satisfies an integral equation of this form:

�z(s, t) = I +
∫ t

s

�z(s, u)Az(u)du

where Az(t) = z−1A−1(t) + A0(t) + zA1(t). In Sect. 2, we
expressed �z(s, t) as a Péano series and in terms of the co-
efficients on zk for k integer. We can also express �z(s, t)

as a product integral and this representation can be used to
compute �z(s, t) numerically.

Define Y(t) = ∫ t

s
Az(u)du. Each component of Y is right

continuous with left hand limits. The product integral of Y
over [s, t] is defined as

∏t

s
(I + dY(u)) = lim

max |ti−ti−1|→0

n∏
i=1

(I + Y(ti) − Y(ti−1))

= lim
max |ti−ti−1|→0

n∏
i=1

(
I +

∫ t

ti−1

Az(u)du

)
,

where the limit is taken over ever finer partitions s = t0 <

t1 < · · · < tn = t of the time interval [s, t]. For the limit
to exist, Y must be of bounded variation. The generalized
random walk generating function may be expressed as the
product integral

�z(s, t) =
∏t

s
(I + dY(u)).

If we approximate the solution of a system of differential
equations of the form given in (19), then this product inte-
gral approach is just an application of the first-order Euler

method for solving a system of differential equations. For
the random walk generating function, we must obtain the
solution of the differential equation in the form of estimates
of the coefficient matrices for each power of z.

The generator for the generalized random walk is given
by

Q(t) =

⎡
⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . · · · ·
· A−1(t) A0(t) A1(t) · · ·
· · A−1(t) A0(t) A1(t) · ·
· · · A−1(t) A0(t) A1(t) ·
· · · · . . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦,

where its block rows and columns are indexed from minus
infinity to infinity and row i is identical to row i + 1 except
that it is shifted one block to the right.

The product integral formula, cannot be applied directly
since the matrix Q(t) is infinite; however, if we apply the
product integral formula to the finite matrix Az(t), the co-
efficient on zk will be the component in block (j, j + k) of
the transition probability matrix for the generalized random
walk, (i.e. it will be equal to φk) .

We work with the matrices

Ai (t) =

⎡
⎢⎢⎢⎢⎣

α
(i)
0,0(t) α

(i)
0,1(t) · · · α

(i)
0,K−1(t)

α
(i)
1,0(t) α

(i)
1,1(t) · · · α

(i)
1,K−1(t)

...
...

...
...

α
(i)
K−1,0(t) α

(i)
K−1,1(t) · · · α

(i)
K−1,K−1(t)

⎤
⎥⎥⎥⎥⎦

for i = −1,0,1. The probability that a transition occurs in
the time interval (t, t + h) from level j to level j + i and
from phase k to phase m is approximately

∫ t+h

t
α

(i)
k,m(u)du.

The probability that no transition occurs is approximately
1 − ∑K−1

l=0

∫ t+h

t
α

(−1)
l (u)du − ∑K−1

l=0

∫ t+h

t
α

(1)
l (u)du −∑

l �=k

∫ t+h

t
α

(0)
l (u)du.

We store our approximation for �z(s, t) in a vector of
coefficient blocks. If the matrices Ai (t) are continuous and
the mesh is fairly fine �z(tj−1, tj ) ≈ z−1hA−1(tj ) + I +
hA0(tj )+ zhA1(tj ) where h = tj − tj−1. If the Ai (t) matri-
ces have jumps and the mesh is fairly coarse, we may prefer
to use the approximation �z(tj−1, tj ) ≈ z−1

∫ tj
tj−1

A−1(u)du

+ I + ∫ tj
tj−1

A0(u)du + z
∫ tj
tj−1

A1(u)du = I + ∫ tj
tj−1

Az(u)du.

Given �z(tm, tn) ≈ ∑n−m
k=−(n−m) z

kCk(tm, tn), we may
compute the approximation

�z(tm, tn+1) ≈
n−m+1∑

k=−(n−m+1)

zk(Ck+1(tm, tn)C−1(tn, tn+1).

+ Ck(tm, tn)C0(tn, tn+1)

+ Ck−1(tm, tn)C1(tn, tn+1)).

We approximate the random walk transition probability
φk(tm, tn) with the matrix Ck(tm, tn).



5 Conclusion

This method provides general formulae for the quasi-birth-
death process with time-varying rates. When the rates are
periodic, numerical estimates may be calculated using one
period of data. Specific examples are given for which ex-
plicit formulae for integral kernels are available. A product
integral approach can be used to estimate these kernels when
explicit formulae are not known. Future work will extend
the R and G functions of matrix analytic methods to a time-
inhomogeneous setting [14, 19].
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