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Abstract

The objective of this study is to model operations at an airport passenger terminal

to determine the optimal service capacities at each station given estimated passenger

flow patterns and service rates. The central formulation is an open Jackson queueing

network useful to any USAF AMC terminal regardless of passenger type mix and

flow data. A complete methodology for analyzing passenger flows and queue perfor-

mance of a single flight is produced appropriate to be embedded in a framework to

analyze the same for multiple departing flights. Queueing network analysis (QNA)

is used, as compared to discrete-event computer simulation (DES), because no spe-

cial software license or methodological training is required, results are obtained in

a spreadsheet model with computational response times that are instantaneous, and

data requirements are substantially reduced. However, because of the assumptions of

QNA, additional research contributions were required. First, arrivals of passengers

are time-dependent, not steady-state. Theoretical results for time-dependent queue

networks in the literature are limited, so a method for using DES to adjust for ar-

rival time-dependency in QNA is developed. Second, beyond quality of service in

the network, a key performance measure is the percentage of passengers who do not

clear the system by a fixed time. To populate the QNA mean value system sojourn

time, DES is used to develop a generic sojourn time probability distribution. All DES

computations have been pre-calculated off-line in this thesis and complete a hybrid

DES/QNA analytical model. The model is exercised and validated through analysis

of the facility at Hickam AFB which is currently undergoing redesign. For larger

flights, adding a server at the high-utilization queues, namely the USDA inspection

and security screening stations, halve system congestion and dramatically increase

iv



throughput. The policy of forcing arrival in advance with controlled release to the

input queue has very little improvement over the policy of allowing passengers to

arrive freely as in a civilian airport.
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USING HYBRID SIMULATION/ANALYTICAL QUEUEING NETWORKS TO

CAPACITATE USAF AIR MOBILITY COMMAND PASSENGER TERMINALS

I. Introduction

1.1 Background

Queues (more commonly called waiting lines in the US) are a societal element of

interest to individuals and organizations alike. Because providing infinite amounts

of service—staff, computer workstations, lanes on a highway, etc.—is physically and

economically infeasible, lines of customers awaiting service inevitably form and dis-

sipate over time. The adventure of queueing is then a exercise of patience, futility,

hope, competition, politeness, avoidance, community, duress, resignation, frustration,

requirement and myriad other mentionable (and vulgarly inappropriate) adjectives.

It can also be quite expensive when long waits lead to lost customers, high costs, and

poor perceptions of an organization by investors or executives.

Airports experience such issues in three dimensions as demand on its facilities come

from the air as well as the ground. Over the last 50 years, researchers have taken

many approaches to quantify the impact of increasing demand and changing policies

in the aviation industry. Aviation professionals generously fund and eagerly adopt

developments in computer science, mathematics, sociology, and management science

that engender safer operations, higher quality service, and more robust processes.

The US Air Force has analogous interests to those in the civilian air industry, and

can equally benefit from those analytical advancements. A particular interest is the

performance in their air passenger terminals.

1



The United States Air Force’s 735th Air Mobility Squadron (735th AMS) oper-

ates the Joint Base Hickam-Pearl Harbor’s Air Mobility Command (AMC) passenger

terminal. The terminal is not open to the public, only serving military and other

Department of Defense (DoD) authorized personnel as detailed in regulation DoD

4545.13–R [24]. Though differing in some key aspects, functions and policies at AMC

terminals are similar to typical civilian terminals. Preparing to remodel major por-

tions of the facility, the commander and staff of the 735th are interested in exploring

new processes and establishing policies, which could enhance their organization and

better serve their customers. If regulatory guidance is a main cause for bottlenecks,

quantitative evidence may effect policy change for other AMC passenger terminals

as well.

1.2 The Airport Terminal

The terminal is a principle element of airport infrastructure that performs three

main tasks. It accommodates the passengers’ movement from one aircraft to another,

since few air trips are made directly from origin to destination. Through various

facilities, it also provides controlled processing of passengers and their belongings.

Lastly, terminals provide holding space for arriving and departing passengers awaiting

processing or transportation. A successfully designed terminal performs all of these

tasks while meeting the needs and expectations of those using them, which includes at

minimum: passengers, their accompanying well-wishers, air carriers, and the terminal

staff. Multiple facilities are required to provide smooth movement, timely processing,

and adequate waiting space for transiting passengers.[5]

Airport functions are classified as either airside or landside operations. The air-

side is described as including runways, taxiways, and all air traffic control systems

(e.g., navigation and landing systems, etc.) used by aircraft and pilots, whereas the
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landside consists of those facilities and services used by passengers (e.g., gates, ter-

minal buildings, parking structures, etc.) [1]. Within the context of the research

presented here airside operations are considered peripheral.

1.3 Definition of Terms and Notation

The following is a summary of terms and symbolic notation used throughout this

paper, which will facilitate understanding of the analysis presented.

1.3.1 Definitions.

Airside—Any passenger terminal facilities located beyond security screening.

AFB—Air Force Base

AMC Terminal—Air Mobility Command (AMC) is responsible for all trans-

portation missions in the Air Force, which including military air passenger terminals.

Thus, this is a common term used for an Air Force passenger terminal.

IID—Independent and identically distributed, referring to conditions on a random

variable.

Landside—Includes all portions of an airport terminal before and including the

security inspection. In general this may include additional facilities, such as bag-

gage claim, and sometimes gates, however these are excluded from the scope of this

research.

LOS—Level of Service. Entails either server utilization or processing time for a

passenger.

Passenger Terminal—Also referred to as a Pax Terminal, is the facility of an

airport in which passenger processing holding, and transit occur to and from aircraft

as well as to and from ground transportation. Used synonymously with air terminal

or simply terminal.
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PSC—Passenger Service Center is the hub of passenger processing at the 735th

AMS.

Utilization—Measure of relative usage of a particular facility as a function of the

arrival rate and available service.

1.3.2 Symbols.

ci ≡ Number of servers at process i.

CV ≡ Coefficient of variance. The ratio of the standard deviation,σ̂, to the mean,

x̄, value of a random variable, σ
x̄

(i.e., waiting or processing time).

L ≡ Mean number of passengers in system.

Lq,i ≡ Mean number of passengers awaiting service at process i.

p0,i ≡ Empty system probability for process i.

ri ≡ Offered load, λi
µi

or equivalently ciρi, at node i. Not to be confused with ri0

or rij

ri0 ≡ Probability that a passenger leaves the system from process i.

rij ≡ Probability that (or proportion of) passengers leaving process i and entering

process j.

R ≡ Matrix of routing probabilities excluding ri0’s.

Ttot(t) ≡ Adjusted mean total time spent in system by time t.

W ≡ Mean total time in system.

Wi ≡ Mean total time in process i.

Wi(ADJ) ≡ Adjusted mean total waiting time.

Wi(M/M/c) ≡ Analytical mean total waiting time.

Wq,i ≡ Mean waiting time in queue at process i

γ ≡ Vector of exogenous arrivals into the system.

γi ≡ Mean rate of exogenous passengers arriving to the system at process i.
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λ ≡ Vector of passenger flow rates.

λi ≡ Mean passenger flow rates from process i.

µ ≡ Vector of service rates.

µi ≡ Mean service rate at process i.

ρi ≡ Utilization at process i.

τ ≡ Delays through a system due to traveling between nodes

1.4 Problem Statement

A passenger terminal can be described as a stochastic system involving a non-

stationary, terminating, arrival distribution. Of interest here is the ability to take ad-

vantage of limited available data—average service times and a general arrival profile—

to estimate the average passenger throughput time, as well waiting times at individual

facilities.

1.5 Research Objective and Scope

The objective of this study is to model the current operations of a passenger termi-

nal, the 735th AMS’s passenger terminal in particular, using a hybrid of simulation

and analytical methods. The challenge, then, is to determine the optimal capacity

given estimated passenger flow patterns and service rates for each processing sta-

tion (node) in the system when processing passengers for a single flight. A proposed

framework for modeling performance for loading multiple flights is also presented.

Insight into optimal manning levels, given the stochastic nature of arrivals, enables

decision makers to make informed decisions regarding the design and staffing of the

735th’s terminal as well as other passenger terminals throughout AMC.
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II. Review of Related Literature

Air transportation industry planners have heavily invested in studies focused on

how best to improve customer service quality for decades. Increases in demand, physi-

cal land constraints, inadequate investment, uncertainty towards future requirements,

among many other factors [11] drew the attention (and funding) of academic insti-

tutions, private organizations and government agencies alike. What resulted were a

succession of approaches to identify airport landside concerns, adopt standard mea-

sures of performance, and develop assessment method. Several issues encountered by

all approaches are:

• Airport terminals are complex systems with interdependent subsystems.

• The number of customers arriving to a terminal is random, but may have sea-
sonality.

• System performance is measured, in general, by customer perceptions of comfort
and timeliness.

Accounting for such characteristics, analysts have taken various avenues to model

of landside operation. Earlier models, particularly prior to the mid-1980’s, were

primarily analytical. As computing technology advanced and became more widely

accessible, simulation became the dominant practice. Analytical methods, however,

continued to persist, particularly as inputs to, or modules within, larger integrated

models and simulations.

2.1 Deterministic Modeling Approaches

Deterministic methods generally follow an approach detailed by Newell [23], who

treated customer flows as a fluid with deterministic arrival and departure rates. Park

used this approach, relating passenger flows from one facility into another through

functions dependent on empirical arrival patterns, service times, and distributions of
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intervening activities (restaurants, shops, etc.) [26]. His approach partially follows,

but did not fully utilize the results of stochastic open networks available in queueing

theory.

The Simple Landside Aggregate Model (SLAM) was created to provide estimates

of capacity and delays as affected by altering airport configurations. This model uses

basic equations to relate passenger flow, service time, and physical size of a given

facility to a predefined Index of Service (IOS) for a given facility [3].

2.2 Simulation

Simulation is a flexible tool for modeling airport operations, which has made the

method a staple for airport systems analysts. Animation features of some simulations

also provides researchers and managers a visual tool that enhances analyses and

facilitates communication regarding the process under study. Mumayiz reviewed 20

models developed prior to 1990, which were mainly the FORTRAN language-based

predecessors to today’s modern applications [22]. He noted that models produced

by (US and foreign) academic institutions, private firms, and government agencies

that found success at many airports including John F. Kennedy, Dallas Fort-Worth

Regional, Denver Stapleton, and many other airports of the time.

Gatersleben and van der Weij applied simulation methods to identify and solve

problems of logistic bottlenecks in passenger handling through European airport ter-

minals [10]. Their use of simulation was motivated by several aspects common to

many airports. First, they observed that interdependencies among processes due to

competing objectives amongst process owners, thus inadvertently causing bottlenecks

elsewhere in the passenger flow. Congestion also arose during peak periods caused by

airlines scheduling arrivals and departures closely to minimize connection times, thus

flooding the terminal with passengers. Simulation was preferable in assessing future
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developments as well since scenarios and combinations of scenarios could be assessed.

It also offered them a useful method to compare strategies and quantitatively estimate

the robustness of a given course of action. Lastly, simulating provided insight into

current methods, which could enable organizational growth by routing out obsolete

processes and poor performance measures.

Hafizogullari et al. discussed how analysis via simulation was useful in reducing

the number of passengers who miss connecting flights by analyzing a then planned

design Delta Airlines facility at John F. Kennedy International Airport [13]. Their

method determined the minimum time between connections for a passenger itinerary,

which then translated into minimizing the cost associated with missed flights.

The Optimization Platform for Airports [including] Landside (OPAL) concept

sought to develop a model that could evaluate and optimize airside and landside

airport operations simultaneously, as well as provide a common platform to utilize

different performance models within a single integrated facility [36].

Manataki and Zografos Asserted that many modeling techniques are over-simplistic

and that simulation platforms are often overly detailed or too macroscopic. They

proposed a system dynamics-based “mesoscopic model” to strike a balance between

flexible features and useful performance measures [17]. They validated the model’s

capabilities by analyzing Athens International Airport’s terminal. Suryani et al.’s

system dynamics model developed was used to forecast passenger demand as well

as explore how various policy scenarios (e.g., changes in airfare, etc.) and proposed

terminal expansion passenger affect demand [32].

Mumayiz opines that“no set of equations can be derived to define the character-

istics of the airport terminal and describe the nature of the systems [sic] operation”,

which makes discrete event simulation a preferable tool [22]. The volatile input or

service mechanisms in the real world, the complexity of large scale systems, difficulty
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in mathematically quantifying queue discipline, or any combination of these factors

can make analytical models highly difficult (or near impossible)to solve [12]. Gross

et al., however, argue that simulation “is not in itself a panacea.” In simulation, ana-

lysts must be concerned with assumptions regarding run length, replicates, statistical

significance, and other limitations comparable to that of analysis by experimenta-

tion. This does not dispute the practicality and credibility of simulation, since a

system must be simplified in some way to develop analytical models as well. It is the

aim of this research to demonstrate that acceptable estimates of performance can be

achieved using closed form expressions (i.e. queueing theory) by making reasonable

assumptions regarding the nature of a system.

2.3 Queueing

The value of queueing theory has not been completely ceded in favor of simulation.

McKelvey [20] used the framework provided by the FAA’s Airport Landside Model

queueing networks to analyze terminal performance at Palm International and Fort-

Lauderdale-Hollywood International airports. This study assessed the impacts of

proposed physical and operational modifications on service quality. However, the

study assumed peak-hour demand at each processing facility and (admittedly) did

not adequately consider the impact of delays on processors downstream. Similarly,

Mehri et al. used node–by–node M/M/c analysis and linear programming to analyze

the passenger ticketing process at Monastir Habib Bourguiba International Airport

in Monastir, Tunisia to determine the trade-offs between waiting costs and level of

service [21]. This system decomposition method, however, disregards the effects of

network structure on performance measures.

Real-life processes do not operate always as solitary systems, but interact with

others to form complex networks. Queueing networks have received great interest in
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various fields such as manufacturing, computer science, transportation, medicine and

communication. Gross et al. [12] explain that networks of queues can be understood

as interconnected elements (nodes) , which can be any facility, station or location

where customers receive a service. Each node will contain some number of servers

who impart a delay on each customer before the customer proceeds to the next node

or leaves the system.

Decomposing an entire system, by node, into individual queues can . This ap-

proach, however, carries two risks: (1) it may yield invalid results and (2) it may not

properly account for interactions among queues [27]. In cases where customers are

not contained within the system, but rather enter at least one node from an external

source, traverse some number of nodes, then eventually leave the system is referred

to as an open network.

2.3.1 Open Jackson Networks.

A particularly useful class of queueing networks have service times that are inde-

pendently and exponentially distributed, all external arrivals are Poisson with mean

rate γi, and customers leaving upon completion of service at node i will instanta-

neously enter node j with probability rij or leave the system with probability ri0 .

Networks of this class are called Open Jackson Networks (OJN) as result of Jackson’s

work in queue performance of multi-server, complex networks with stochastic flows

[14, 15]. Details regarding the solutions for performance measures are provided in

Section 3.2.

2.3.2 Multiclass Open Networks.

In some cases, it is more accurate to disaggregate customers into separate types,

referred to as classes. Each class may traverse the system differently than the others.
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The simplest modification to represent such an adjustment is to solve Equation (3.1a)

for each class using separate routing matrices for each class. A two class system, for

instance, will have routing matrices R(1) and R(2) that produce flow vectors λ(1)

and λ(2), which correspond to class 1 and class 2 customers respectively. It is a

straight forward task to then calculate relative and overall performance measures for

the system using Little’s formulas.[12]

Whitt investigated transient behavior of open queueing networks with multiple

customer classes by varying the open queue discipline and initial conditions. Specifi-

cally, he studied a D/D/1, two-node, four-class system with unlimited capacity, and

first–in–first–out (FIFO) service discipline. He found that transient behavior his

highly susceptible to initial conditions and large fluctuations in queue–length occur

when large batches of short-service time customers build up in the queues. He also

found that service discipline heavily influences the critical utilization and hence queue

stability even when long–service time customer classes are given priority. [39]

2.3.3 Time Dependent Queueing.

Steady-state conditions are rare in real world processes. System arrival rates, cus-

tomer behavior, service times, and other conditions tend to depend on an observed

interval (e.g., hourly, daily, etc.) rather than being probabilistically identical in all

points in time. Airports certainly fit this class of systems. Many studies have iden-

tified a particular pattern of passenger arrivals in relation to their flight departure

time. Regrettably, whereas analytical solutions are readily available for stationary

queuing systems, non-stationary (also called time–dependent or non–homogeneous)

queues a more problematic since the rates of arrivals and/or service rates change over

“large” time intervals.
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Some approaches have used differential equations to approximate performance

measures for complex time–dependent systems. Kleinrock’s well cited technique de-

scribs the behavior of M(t)/M(t)/c(t) using differential–difference equations, Equa-

tion 2.1,

dp0(t)

dt
= −λ(t)p0(t) + µp1(t)

dpn(t)

dt
= −(λ(t) + nµ(t))pn(t) + λ(t)pn−1(t) + (n+ 1)µ(t)pn+1(t) for 0 < n < c(t)

dpn(t)

dt
= −(λ(t) + c(t)µ(t))pn(t) + λ(t)pn−1(t) + c(t)µ(t)pn+1(t) for c(t) ≤ n (2.1)

where λ(t) is the arrival rate at time t, µ(t) is the service rate at time t, c(t) is

the number of servers at time t, and pn is defined as the probability of n customers

in the system at at time t [6, 30, 31]. The drawback of this method, however, is

that such systems can be difficult to solve, sometimes requiring long computation

times particularly for high utilization systems [30]. Zhang and Coyle used similar

equations to study transient behavior of time dependent M/M/1 systems. They

developed a method to solve for boundary conditions using Runge-Kutta algorithms

on a Volterra-type equation to find expected queue sizes [40].

Mandelbaum and Massey, derived “period dependent, pathwise asymptotic ex-

pansions” to approximate queue length in an asymptotic analysis of M/M/1 queues

“within the framework of strong approximations.” Their work determined that these

systems operate in one of three “exhaustive asymptotic” regions—underloaded, criti-

cally loaded or overloaded—at a given time t. In terms of a “traffic intensity function”

defined by Equation 2.2a these regimes are ρ∗(t) < 1, ρ∗(t) = 1,and ρ∗(t) > 1, respec-

tively. [18] Stolletz used their results and modified their equation to included time

a varying number of servers in M/M/c queueing systems, Equation 2.2b, which was
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useful in his approximation methods explained later in this section [30].

ρ∗(t) = sup
0≤s<t

∫ t
s
λ(r)dr∫ t

s
µ(r)dr

(2.2a)

ρ∗(t) = sup
0≤s<t

∫ t
s
λ(r)dr∫ t

s
c(r)µ(r)dr

(2.2b)

Alternatively, one can approximate transient effects using stationary techniques

such as Stationary Independent Period by Period (SIPP) and Stationary Backlog

Carryover (SBC), which are analytically less rigorous than differential equations. [6]

In SIPP, the time frame of interest is divided into independent intervals with constant

intra-period arrival and service rates. Performance measures are then calculated for

each period using the stationary M/M/ci/∞ queueing model for each period i. In this

manner, performance during any period is independent of periods preceding it. This

approach assumes that time periods are independent, each period achieves steady-

state performance, and the system is never saturated (i.e., ρi < 1). [30]

Stolletz developed the SBC approach to estimate queue performance for the pas-

senger check-in process when arrival rates vary over time, assuming stationary arrival

rates and service rates during small independent time intervals, but adjusts for a

backlog of customers from previous periods [31, 30]. This technique, approximates

performance in period i + 1 by estimating its arrival rate adjusted for backlogged

arrivals from the period i (equation 2.3) [30]

λ̃i+1 = λi+1 + λ̃i · Pi(B) (2.3)

where λ̃i is the effective arrival rate for period i with initial value λ̃1 = λ1 and where

Pi(B), blocking probability, is found by applying a stationary M/G/ci/ci loss formula

which generates the customer backlog bi = λ̃i · Pi(B)[12]. The expected utilization
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for each period i having ci servers with average service rate µ is then

ρi =
λi + bi−1 − bi

ciµ
. (2.4)

Using the expected utilization, SBC derives a modified arrival rate which serves as the

input to the stationary M/M/ci/∞ method to approximate expected waiting time,

Wq, and Lq.

Another approach is the Pointwise Stationary Approximation (PSA), which com-

putes queueing performance measures during a particular period for the arrival rate

associated with that interval [30]. PSA approximates nonstationary performance

measures to a instantaneously stationary M/M/c model where λ = λ(t), µ = µ(t),

c = c(t), and where the traffic is strictly less than 1 (i.e., ρ < 1) over the entirety of

each interval. They found that this model performs well for low ρ, but worsens as

ρ→ 1. Wang et al. [38] improved upon this method with their Pointwise Stationary

Fluid Flow Approximation (PSFFA), which has a general equation derived from the

relationship between the flow rate of change to the flows in and out of the system

(see Equation 2.5).

dx

dt
= −fout(t) + fin(t)

= −µρ(t) + λ(t)

= −µ
(
G−1

1

(
x(t)

))
+ λ(t) (2.5)

In 2.5, x(t) represents the average number of customers in the system at time t

and
(
G−1

1

(
x(t)

))
= ρ(t), the average server utilization. Table 2.1 summarizes the

formulations developed for single–server PSFFA models. For the time–dependent
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arrival models, σ is a ”unique real root in the range 0 < σ < 1” of the equation

σ = f ∗
a (s)|s=µ(1−σ). (2.6)

The final listed formula is the Interrupted Poisson Process, which is a 2-state (state

1 ≡ ON and state 2 ≡ OFF), special case of the Markov–modulated Poisson Process

with arrival rate λ and generator matrix

Q =

−σ1 σ1

σ2 −σ2

 .

Table 2.1. PSFFA Models [38]

Queueing System PSFFA Equation σ

M/D/1 dx
dt

= −µ
[
(x+ 1)−

√
x2 + 1

]
+ λ

M/Ek/1 dx
dt

= −µ
[
k(x+1)
k−1

− k2x2+2kx+k2

k−1

]
+ λ

M/M/1 dx
dt

= −µ
(

x
x+1

)
+ λ

D/M/1 dx
dt

= −µx(t)(1− σ) + λ(t) σ = e
µ
λ

(σ−1)

Ek/M/1 dx
dt

= −µx(t)(1− σ) + λ(t) σ =
(

kλ
kλ+µ−µσ

)k
IIP/M/1 dx

dt
= −µx(t)(1− σ) + λ(t) σ = λ(µ−µσ+σ2)

(µ−µσ)2+(λ+σ1+σ2)(µ−µσ)+σ2λ

Stolletz reviewed several other methods, which also approximate system perfor-

mance assuming stationarity over short intervals. The simple stationary approxi-

mation (SSA) uses the average arrival rate over the entire interval of interest, thus

ignoring nonstationarity. The average stationary approximation (ASA) compromises

between the PSA and ASA by averaging arrival rates over an interval proportional to

the mean service time then computing average performance using M/G/c equations.
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Lastly, the effective arrival rate (EAR), derives expected waiting time, E[Wq], from

the SSA, and then derives effective arrival rates assuming deterministic service rates.

Each of these techniques are relatively successful for light traffic systems, but cannot

be applied accurately when the system under study is even temporarily overloaded.

[30]

2.4 Non-stationary Arrival Distributions

A challenging task in characterizing non-stationary queueing systems is to de-

termining arrival distributions. In 1982, Newell published methods which form the

basis for many future efforts in analyzing time-dependent stochastic behavior [23].

These effectively a graphical methods used empirical data to create arrival, A(t), and

departure, Dq(t), curves based on customer flow times through a queue where

A(t) = the cumulative number of arrivals to the queue by time t

Dq(t) = the cumulative number of departures from the queue by time t

and their respective inverses are

A−1(x) = the ordered arrival time of customer x

D−1
q (x) = the ordered departure time from the queue of customer x.

The results are curves such as those in Figure 2.1, which can be used to estimate

delay patterns. Brunetta et al. incorporated this approach to approximate passenger

arrivals and wait times in their SLAM model [3, 4, 7]. Rather than using general

curves as described in [37], the authors approximated profiles using piece-wise linear

functions of time to estimate the number of arriving passengers during a particular

period. Figure 2.1 is a representation of how passenger arrival and processing may

evolve for a single flight at a particular processing counter using this method.
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Figure 2.1. Cumulative arrival, A(t), and dwell, D(t), functions for a single processing
facility. [37]

Upton and Tripathi employed a technique to analyze transient behavior inM(t)/M/1

queues by applying an M/M/1/K approximation to the M/M/1 system and lever-

aging a few basic facts:

• “Over a finite interval, only a limited number of arrivals can occur;
hence providing infinite buffer capacity is unnecessary.

• “Few real systems have unlimited buffer space and consequently do
not exhibit true M/M/1 behavior.

• “Arrival rates equal to or exceeding the service rate can be accom-
modated.” [35]

2.4.1 Arrivals as Renewal Processes.

An individual passenger’s time between visits to an airport certainly could not be

described with any accuracy by an exponential distribution. It is perfectly reasonable,

then, to assume that intervals between that passenger’s visits are independently and

identically distributed (IID). The technical term for such a process is a renewal
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process. Collectively, the associated interarrival times of a group of passengers, then,

is a superposition of renewal processes.

Thise proposition forms the the basis of a powerful theorem in queueing, Khint-

chine’s theorem, which states that the superposition of a sufficiently large number

of IID renewal processes will produce a Poisson process regardless of the actual dis-

tributions of the individual processes. This theorem is similar to the Central Limit

Theorem. Instead of describing sums of random numbers being normally distributed,

the collection of processes become approximately exponentially distributed. [27]

This property applies to airport arrivals since, in the limit, the arrivals for a

particular flight, or even successive flights, can be approximated as exponentially

distributed arrivals.

2.4.2 Distribution of Arrivals to a Commercial Terminal.

Arrival pattern models produced to address attributes specific to air travelers has

been widely published. The distribution of such arrival rates is dependent on many

factors including, but not limited to [31]:

• scheduled departure time

• the flight destination (e.g., long-haul or short hops)

• time of day (e.g., peak hours vs. off-peak)

• type of passengers (e.g., business or leisure)

• season (e.g., major holidays or summer travel).

Proposed methods of approximating passenger arrival profiles have included several

innovative techniques. Vandebona and Allen [37] classified available passenger flow

models into three categories: descriptive, analogy, and regression. The descriptive

model simply characterizes an arrival pattern as a density distribution that begins

as a generally increasing function, describing the interval when the passenger flow
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Figure 2.2. Descriptive model of passenger arrival and departure distributions. [37]

rates slowly build to a maximum. This is followed by a generally decreasing function

with a slope much steeper in magnitude than that of the increasing period, describing

how the arrival rate tapers off. Figure 2.2 illustrates a sample distribution for both

enplaning and deplaning passengers (the former of which is simply the arrival-type

pattern reflected over the y-axis). .

Analogy methods apply water runoff models to passenger flow distributions and

exploit tools such as the unit hydrograph. These methods assumes that passenger can

be approximated by the physical characteristics of water flowing over terrain (e.g.,

passenger arrivals is to storm runoff as a check-in queue is to a drainage ditch).

The next category, regression models, applies curve-fitting to determine arrival

profiles. Vandebona and Allen noted that the beta distribution is often over-looked,

but is appropriate for describing passenger arrival patterns. The advantage of the

beta distribution is that it can assume any desirable shape by changing the values

of α and β, and it has definite upper and lower bounds (see Figure 2.3a), unlike

the more commonly applied gamma and log-normal distributions. The disadvantage,

however, is that integrating the density function to calculate the cumulative distribu-

tion function is labor intensive compared to polynomial distributions. The polynomial

method suggested by the authors attempts to satisfy the descriptive pattern and pro-
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(a) (b)

Figure 2.3. (a) Beta Distributed Arrival Pattern. The values of α and β can be adjusted
to achieve a form adequate to model passenger flows. (b) Polynomial Arrival Pattern.
The products of y1(t) and y2(t) produce R(t). [37]

vide mathematical simplicity as compared to the beta distribution. The proposed

density function, R(t), is the product of two quadratic functions y1(t) and y2(t) (see

Figure 2.3b). Integrating R(t) produces the cumulative distribution of arrivals given

by equation 2.7.

A(t) = a1t
3(a2αn=5 − b2βn=4) + b1t

2(a2αn=4 − b2βn=3) (2.7)

where

αn =
t2

n
− 2Tt

n− 1
+

T 2

n− 2

and

βn =
t

n
− T

n− 1

2.4.3 Distribution of Arrivals to an AMC Terminal.

Suppose, for a single departing flight, that passengers do not enter a queueing

system to begin immediate processing upon arrival. Instead passengers arrive at a

specified time prior to departure and begin entering the first queue at a more–or–less
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constant rate. This is the case of an AMC terminal. Instead of the increasing–

decreasing arrival pattern of civilian airports, the effective arrival pattern is roughly

uniform over an interval as passengers are called by name to initiate processing for

their flight. This resulting queueing system is well approximated by a D/M/c model

for the first queue.

2.4.4 Performance of an Non-stationary Queueing Model.

Measures of performance of non-stationary queuing models are highly problem-

atic. In general, mean value measures are estimated using approximations to simpler

queueing models, but transient behavior is difficult to described since the user–friendly

product form equations do not exist. Convolution methods and differential equations

are often the next best available techniques. With the loss of Markovian behavior,

estimates of transient behavior can be accomplished via numerical methods, since

closed form-solutions are unavailable. Also sojourn times are not available to the an-

alyst. To resolve these issues, inputs retrieved from statistical methods may assist in

understanding the missing measures and allow for adjustments to a base Markovian

case.

2.5 Quality of Service

2.5.1 Landside QoS Studies.

Studies have also been undertaken to explicitly define and develop measures for

customer service aspects of airport terminals. In 1988, the Federal Aviation Ad-

ministration (FAA) funded a study, conducted by the Transportation Review Board

(TRB), to “develop guidelines for assessing the landside capacity of individual air-

ports” [16]. The results formed the foundation of landside studies with respect to

[1]:
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• general guidelines for assessing an airport’s landside capacity,

• basic definitions,

• a generic assessment process and a description of community factors, which
influence landside performance (i.e., airport users and stakeholders in addition
to passengers), and

• a collection of basic analytic methods.

Lemer concluded in his review of this study that “the effort represented a valuable

first step toward definitive guidelines for capacity assessment, but much remains to

be done” [9].

To identify landside issues in general and to characterize specific capacity and

service capabilities/constraints, quality of service (in some literature, level of ser-

vice) evaluations were conducted in many airports utilizing a variety of methods [9].

Martel and Seneviratne [19] conducted surveys of departing passengers at Montreal

International Airport at Dorval to determine which factors most influence quality

of service within terminal buildings. They found that, although factors differ from

one element of a building to the next, in general the availability of space is a dom-

inant concern; however for drop–off, pick–up and other ”circulating elements,” the

availability of information was most influential. Similarly, in waiting areas, under-

standably, the availability of seats was most important, whereas waiting time was the

main criteria in processing areas (such as ticketing and security). The authors fur-

thered their research by developing a set of quality of service indices, marrying their

original approach with the Airport Associations Coordinating Council/International

Air Transport Association (AACC/IATA) framework in Table 2.2 [29].

Omer and Khan applied utility and cost-effectiveness theories to develop a frame-

work to study “the interrelationship between space/service standards, user perceived

value or utility of service, and cost” [25]. Applying this method at Montreal’s Dorval

as well as Toronto’s Pearson International Airports, they produced composite utility
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Table 2.2. IATA level of service standards [7]

LOS Level Description

A Excellent Free flow, no delays, excellent comfort level
B High Stable flow, very few delays, high comfort level
C Good Stable flow, acceptable delays, good comfort level
D Adequate Unstable flow, passable delays, adequate comfort level
E Inadequate Unstable flow, unacceptable delays, inadequate comfort level
F Unacceptable Cross-flow, system breakdown, unacceptable comfort level

equations for each of the airports’ terminal processing facilities again utilizing the

AACC/IATA criteria. This method, however, received much criticism for various

fundamental flaws [9].

In addition to the research of influential factors and qualitative/statstical ap-

proaches presented above, analysts have employed many other approaches to char-

acterize quality of service to include, but not limited to perception-response (PR)

curves, fuzzy set theory, data envelopment analysis (DEA), and methods to evaluate

human orientation (ability to locate destinations) within terminals.

The methods presented here, as well as the works of many others are reviewed by

Correia and Wirasinghe [9]. The common results of the aforementioned studies seems

to verify the intuitive conclusion that customers’ perceptions of service is influenced by

the value of their time spent in and awaiting service, which is dependent on the type

of service being received. When awaiting service, customers prefer to be comfortable

and intend to have as short of a wait as possible.

2.5.2 Capacitating Queues.

Providing customer service adequate service can be approached as in integer pro-

gramming problem. From the OJN methodology, given the calculated utilization,

wait times, etc., achieving target service can be achieved by simply adding servers

iteratively until target performance measures are reached. Such a method is the
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“One–up, One–Down” was used in by Burdick et al. [8] in a study of hospital emer-

gency department using QNA to reduced patient length of stay.

Alternatively, especially in systems having large numbers of servers, Gross et al.

[12] offer a more direct calculation

2.5.3 Summary.

Considering the literature, several points seemed clear. The problem has been

of interest at many levels and continues to be studied. Simulation, though useful,

is not necessarily portable or widely available and incurs considerable requirements.

Queueing has been utilized but, the time–dependent nature of airport arrivals makes

analytical modeling quite difficult. The unique aspect of this research is utilizing the

tractability of simulation, and the ease of use of queuing network analysis to develop

a simple hybrid method.
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III. Methodology

3.1 Research Methodology

This research proposes a technique to estimate performance measures for a pas-

senger terminal using a hybrid of analytical results and discrete event simulation.

Measures of an analogous steady state system are computed using Open Jackson

Network (OJN) methods as indicated in Figure 3.1. A simulation of the first node

estimates the coefficient of variance (CV ) associated with the passenger arrival pat-

tern and service distribution. This factor is used to modify the average wait calculated

using steady–state equations for the first queue, which, when combined with average

waits for down–stream, produces reasonable estimates for the average total processing

time per passenger.

Figure 3.1. Diagram depicting general Sim-QNA hybrid methodology.
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3.2 Basic Open Jackson Network Design

To analyze an air terminal as an OJN, appropriate arrival rates, service rates and

passenger routing must be established. Considering reasonable assumptions for each

regarding passenger and server behavior, the basic network model can be analyzed as

if the system was in steady state.

3.2.1 Arrival Patterns.

Consideration of passenger arrival patterns assumes the system is never saturated

(ρ � 1). This allows the system to be analyzed as an OJN. Interarrival times be-

tween passengers are also assumed independent and exponentially distributed with a

stationary mean rate.

Equations 3.1a and 3.1b, provide the relative passenger flows for the terminal

given arrival rates into the system and passenger flow probabilities to each node.

This method finds the mean flow of traffic into each node using the system of linear

equations known as the traffic equations, as follows:

λi = γi +
k∑
j=1

λjrji. (3.1a)

Or in matrix form

λ = γ + λR, (3.1b)

where λ and γ are vectors of internal and exogenous flows, respectively, and R is

referred to as the routing matrix. [12]
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3.2.2 Service Patterns.

As with arrivals, all service times are assumed independently and exponentially

distributed and stationary, though the number of servers may change over large in-

tervals in accordance with staffing policy. The service discipline is assumed to be

first–come–first–serve (or first–in–first–out, FIFO). The current staffing schedule at

the terminal specifies three 8-hour shifts; day, swing and night shifts. The Passenger

Service Center (PSC) check-in counter staff varies by shift with usually 2–3 operat-

ing during days, 2 for swings and 1–2 at night. The terminal has a total of 5 kiosks

for check-in processing. At any point, and only when required, only one station is

available to USDA inspection. Similarly, only one station is available for passenger

security screening.

Average service times were estimated from a survey conducted from 1–10 Sept

2010 in support of a customer service analysis conducted by Air Force Smart Op-

erations for the 21st Century (AFSO21). For the survey, a total of 100 random

passengers, 10 per day over the 10 consecutive days, chosen from near the “mid-

dle” of their processing group were observed and timed as they traveled through the

terminal from sign-up to security. The data is assumed to be identically and expo-

nentially distributed though, admittedly, the true distribution may be Erlangian or

even Normal. However, the intention for using this data was only to determine a

point estimate of the mean given limited data, rather than to characterize the full

nature service distribution.

The average service time for security screening was used as a sufficient estimate for

passengers processing through the USDA inspection, since they are generally similar

processes. Kiosks times were assumed to have the same average service time as the

counter. The characteristics for the base case at each facility are summarized in
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Table 3.1. Appendix C contains an example of the data forms as well as a summary

of the data used to estimate service time averages.

Table 3.1. Base service values.

Facility # Servers 1/µ

Ag Inspection 1 1.85 min
Kiosk 5 2.74 min
Counter 3 2.74 min
Security 1 1.85 min

The actual staffing schedule will not be determined by this analysis, but, rather,

the number needed to maintain a specified level of service. In fact, as airside processes

take priority, staff may be drawn away from processing passengers to take on flightline

tasks to the point where operations within the terminal are sparsely manned. These

extenuating circumstances will not be directly addressed here, in this research, but

their impact can be easily demonstrated by varying the number of servers.

3.2.3 Passenger Routing.

In general terms, passenger terminals process travelers in a feed–forward system

since revisits to queues are negligibly rare. Of course passengers may re–enter the

landside for a number of reasons (e.g., using a nearby restroom, retrieving a forgotten

item, visiting concessions, etc.) and will then require re–processing through security.

Such instances are not the norm, since necessary concessions, restrooms and even

customer service are typically available post–security. This will also be treated as

negligible at the Hickam terminal for analysis purposes. The terminal’s current layout,

however, requires passengers to exit the airside for such facilities. Ideally, passengers

would have a relatively short wait before being ferried to their aircraft, and new design

considerations may alleviate this concern altogether.
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Ticketing can be accomplished in either one or two stages. Passengers may receive

their boarding passes at the counter where they can also check baggage and then

proceed to security. Alternatively, a passenger can receive a boarding pass at a

kiosk, then either check baggage with an agent or proceed directly to security. Thus

a small complexity is introduced. For longer flights, passengers are more likely to

check baggage than those on short trips, who may only possess carry–on bags. The

probability of proceeding directly from a kiosk to security is then, in part, dependent

on the type of flight a passenger will board. The general routing matrix for a terminal

is then

ROCONUS =


0 rbags 1− rbags

0 0 1

0 0 0

 (3.2)

where rbags = proportion of passengers checking baggage at the counter. For pas-

sengers departing from Hawaii to the US Mainland (see section 4.1.3.3) the matrix

routing matrix has the form

RCONUS =



0 rkiosk 1− rkiosk 0

0 0 rbags 1− rbags

0 0 0 1

0 0 0 0


(3.3)

where rkiosk = the proportion of passengers who use the kiosk after processing at the

USDA inspection.

Figure 3.2 illustrates the 735th AMS’s passenger terminal in an expanded schematic

form, showing all service channels. Processing facilities are represented by annotated

boxes following the notation:
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RC Arrivals from roll call

Ag USDA inspection

KL Kiosks located in the main lobby

KP Kiosks located in the PSC

T/B Ticketing counter/baggage check-in

Sec Security screening

Queues are represented by circles lined up to enter the facility. Arrows represent

routing of passengers to each facility.

3.2.4 Performance Measures.

Processes in an Open Jackson Network effectively perform as if each queue were

an independent M/M/c. In fact, so long as the described system is feed–forward; that

is, no path exists allowing a passenger to revisit a process, ensuring flows between

processes follow a true Poisson process. With flow rates, λi, to each process found

using Equation 3.1b and with mean service times at each process, 1/µi, performance

measures at each process can be derived by first computing the probability of that

the processing station is empty, p0,i, Equation 3.4:

p0,i =

(
ci−1∑
n=0

rni
n!

+
rcii

ci!(1− ρi)

)−1

. (3.4)

Measures for individual queues can be calculated directly using p0,i, λi, and µi, or

(more efficiently) using iterative computations. Equations 3.5–3.7 provide these mea-
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sures:

Lq,i =

(
rcii ρi

ci!(1− ρi)2

)
p0,i (3.5)

Wq,i =
Lq,i
λi

(3.6)

Li = Lq,i + ri (3.7)

Wi =
1

µi
+Wq,i (3.8)

which are the average number of passengers awaiting service, average waiting time in

queue, average total passengers, and average total time spent at node i, respectively.

Then using Little’s formula, Equation 3.9, for the entire system provides the overall

average passenger processing time.

W =

∑
Li∑
γi

(3.9)

where γi’s are the average arrival rates at node i from outside the system.

3.3 Departure From Jacksonian Assumptions

In reality, an airport terminal is a non–steady–state system on a per–flight ba-

sis. Passenger flows at civilian airports follow typically follow a rather triangular

or normal (sometimes skewed) pattern described in Section 2.4.2. Passengers for

several flights arrive in overlapping patterns with separate and similar, but indepen-

dent arrival distributions. Customer flows terminate when a flight is fully processed.

Figure 3.3a shows sample paths of two such arrival patterns and their associated em-

pirical cumulative distributions, while 3.3b illustrates the superposition of those two

patterns.
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Figure 3.3. Sample paths of passenger arrivals during an arbitrary period of time with
empirical CDFs. Arrivals (here shown over 15 minute intervals) discretely increase,
then quickly decrease as time approaches, say, boarding time. Figure 3.3a Illustrates
two separate departing flights while Figure 3.3b shows the superposition of those two
flights as experienced by a check-in counter. It’s CDF is approximately a convolution
of the distributions of the individual flights.

The nonstationary pattern (wherein arrival rates rise fall, then terminate) renders

many of the closed form solutions invalid, and inhibits transient analysis. However

approximations are still possible. As shown previously, the departure process from

the first queue becomes Markovian as traffic increases for so long as ρ < 1. In order to

account for the first queue, statistical methods can be employed to estimate a factor,

by which to scale Wq from the analytical model.

3.3.1 Departure Process with Low Utilization.

The fact that departures from an M(t)/G/∞ queue is M(t) [12, 28, 35] is a prop-

erty useful for developing multi–server models and approximating their performance.

The interpretation is that when a queue never forms, the distribution of the departure

process is the same as the arrival process. For time–dependent processes, this is of

particular interest, since in such cases customers experience no wait. The concept

can be easily visualized using a simulation, which is simple to build in Arenar using
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a create/process/dispose process flow. Figure 3.4 illustrates the model with addi-

tional logic to collect and record statistics omitted. A contains complete figures of

analysis computed using JMPr. Several figures are reproduced in this section for

convenience.

Figure 3.4. Simulation Flowchart View Model

By increasing the average service rate (thereby, decreasing utilization), a reason-

able approximation for an infinite server model can be achieved without creating a

large number of individual service resources. Several scenarios were run, each with

a different utilization value, but only four pertinent models are shown for simplic-

ity (additional models only reaffirmed the same conclusion demonstrated by those

included here). To reduce run bias, but remain economical, the simulation was run

with 10 replicates, each randomized by the internal programming logic. Both models

assume 40 passengers total will be processed for a single flight.

Two arrival profiles, one with time–dependent Markovian arrivals and one with

constant inter-arrival patterns, were run. The Markovian pattern assumes passenger

interarrival times over 15-min intervals are stationary and sampled from an expo-

nential distribution. The interarrival rates slowly increase over the first 60 minutes

(first 4 intervals), quickly decreases for 15 minutes, then goes to zero when all 40

passengers have arrived. The schedule module built to model such a pattern is shown

in Figure 3.5. The rate values chosen give the desired pattern of arrivals for each

period (3, 6, 10, 13, then 8). It is unclear why a factor of 6 was necessary to achieve

the appropriate mean arrival rate for each period, but the results are unaffected by
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Figure 3.5. Simulation Schedule Module

this Arenar–specific nuance. The constant rate pattern assumes passengers arrive

exactly 5 seconds apart (12 per minute) until all 40 have entered the system, then

arrivals terminate.

For the M(t) arrivals, observed server utilizations decrease from ρ = 0.8325 when

service time of 1/µ = 1.85 mins to ρ = 0.0014 with 1/µ = 0.00185 mins. The result is

an evolution of the departure process away from the exponential distribution. Clearly,

the distribution in Figure 3.6b is far different than that of the arrivals, Figure 3.6a, but

the distribution in Figure 3.6d is nearly indistinguishable from the arrival distribution

in Figure 3.6c. This is of course expected per the proposed performance.

Analyzing the deterministic service model produces the same result. At an ob-

served utilization, ρ = 0.0000, the departure distribution in Figure 3.6h matches the
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(a) Simulation 1: M(t) Arrivals (b) Simulation 1: Departures, ρ̂1 = 0.8325

(c) Simulation 3: M(t) Arrivals (d) Simulation 3: Departures, ρ̂3 = 0.0014

(e) Simulation 4: Deterministic Arrivals (f) Simulation 4: Departures, ρ̂4 = 0.8624

(g) Simulation 7: Deterministic Arrivals (h) Simulation 7: Departures, ρ̂7 = 0.0000

Figure 3.6. Simulation Results
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arrival distribution, Figure 3.6g, with little error, while the distributions for the model

with high utilization, Figures 3.6e and 3.6f, are wholly dissimilar. Reasonably, the

character of the arrival and departure distributions would continue to converge as

ρ→ 0 and c→∞. Thus, the simulation results are in agreement with the theoretical

proposition.

3.3.2 Time-Dependent Arrival Pattern.

As described in Section 2.4, the arrival pattern to airport terminals is well studied

and, in general, can be visualized graphically as a curve with an initially slowly

increasing slope, which recurves to a maximum, then quickly decreases. This behavior

corresponds to passenger behavior as a function of time relative to the flight departure

time. That is, there is a tradeoff between a passenger’s (increasing) sense of urgency

to leave early to avoid missing a flight and their (decreasing) degree of liberty in

avoiding long wait times within the terminal prior to departure [37]. The true shape

of this curve depends on the characteristics of the flight of interest as well as the

behavioral tendencies of individual travelers.

Now consider any interval of this curve, say, 5, 10, 15 mins, or the length of a

service time 1/µ. As discussed in Section 2.4.2, reasonable approximations for a non-

stationary arrival process can be found by adequately partitioning the distribution

assuming constant arrival times for that time period.

3.3.3 First Queue adjustment to G(t)/M/c.

An approximation for general arrival queuing systems takes a bit of finesse. Vari-

ous approximations are available, but deferring to statistical methods provides reason-

able results. Data collection can be arranged; however, simulation (when available),
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especially for a relatively simple system, provides an acceptable degree of accuracy in

a timely manner.

The factor of interest some constant scaling factor, SF , by which to multiply

the analytical value for average wait in queue by, Wq(M/M/c that will provide a

reasonable approximation for the time dependent result. A suspected value is the

coefficient of variance, CV , associated with the waiting time in the first queue, given

ρ1 < 1. The proposed method is to determine W
(ADJ)
q,1 where

Wq,1(ADJ) = SF ·Wq,1(M/M/c). (3.10)

This differs from other methods of approximation, such as scaling Wq by the

the squared coefficient of variation (SCV ) or using the Pollaczek–Khintchine (PK)

formula. Figure 3.7 shows the relative values for CV , SCV , and the factor associated

with the PK formula, SCV+1
2

for Wq,1(M/M/c) = 1. For an exponentially distributed

wait, σ = µ and thus CV = SCV = PK = 1 whereas for a deterministic distribution

CV = SCV = 0 and PK = 0.5.
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3.3.4 Waiting Time Adjustment.

Having obtained Wq,1(ADJ), the total processing time can be modified. Adding

the service times and the average queue waits for the down-stream nodes and a

constant estimate of facility–to–facility travel time, τ , the final equation is

Ttot(t) = SF ·Wq,1(ADJ) +
3∑
i=1

Wq,i(M/M/c) +
∑

µi + τ. (3.11)

where Wq,1(ADJ) is the adjusted wait in queue time at the first node, Wq,i(M/M/c)

are the analytically computed waits at the remaining queues.

3.4 Identifying Optimal Manning

As demonstrated in Section 3.3.1, reducing the overall utilization of a server re-

sults in lower waiting times for customers. In the ideal case (the infinite server

system), enough service is available to eliminate any waiting at all. However, this

is rarely achievable, or even feasible, due to manning, policy, workspace or financial

constraints. Realistically, identifying a specified server utilization that provides an

achievable quality of service by reducing wait times to an acceptable level. Utiliza-

tion can be controlled by a number of means, which can be grouped into one of three

methods: controlling arrivals, reducing service time, or adjusting staffing.

Controlling the arrivals is least preferable, since doing so with consistency may

not be an option. In general, implementing policies which require passengers to show

at various times would be the only manageable option to limit utilization in this way.

Doing so may negatively impact customers’ perceptions of service, however, since an

earlier show may simply cause a longer lobby wait time. Additionally, with multiple

large-capacity flights scheduled in close proximity, overcrowding would become an

issue as passengers for each flight must wait stagnantly together.
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In some cases, reducing service time is a viable option. However, this too can be

problematic, as there could exist a lower limit to the speed of a process as imposed by

computer/machine capabilities or the number of required steps. Rushing a process

may make servers more error prone, thus increasing processing time variability and

waiting time thus, inevitably, frustrating passengers and staff alike. Thus a reduction

in speed may not produce practically significant results. Adjusting the staffing level

is the most feasible option compared. Assuming that rate of service is independent

of the capability of an individual server, adding a server will reduce the utilization

proportional to the offer load . That is if c is the number of servers, ρ the utilization,

λ the rate of arrivals and 1/µ the average service time then. Staffing, is a relative

term, since a particular server can be human, machine, or could also pertain to a

team of individuals acting as a single entity.

3.5 Other Assumptions and Limitations

Although the equations utilized assume steady state behavior, the system itself

never goes to steady state. Once all passengers have been rotated through a facility,

that facility is effectively closed. In fact, even though the Markovian property (also

called the memoryless property) is assumed for arrivals in the model, the true system

exhibits no such behavior in the long run due to the shrinking source of passengers.

However, assuming relative stationarity over short intervals still allows for reasonably

valid approximations.

Additionally, the model can be extended to include non-Markovian service, but

only exponentially-distributed service times are assumed for this research. Service

times are also assumed time–independent, though the methodology can be extended

to time variant service (i.e., c(t) and µ(t)) as proposed by Mandelbaum and Massey

[18]. Since it is the more constrained model, with a high utilization node at the
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very beginning of the process, this research will focus on CONUS–destined flights.

A similar technique, however, can be employed for the passengers to OCONUS

locations. The queue adjustment, would then be applied both to the ticket kiosk and

PSC check–in counter. The system would only consist of the kiosks, counter and

security screening processes, since the Ag Inspection is not required.

Multiple flights will also not be modeled directly, but the technique would be

similar, as the simulation would simply have to account for a greater number of

passengers. In such cases, it is assumed that flights are coincident. That is they are

overlapping, adjacent or separated by a reasonably small margin of time.
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IV. Findings and Analysis

4.1 Case Study

The case study deals with describing the capacity of a terminal, given the stochas-

tic nature of passenger arrivals, which are dependent on several factors. The foremost

is the schedule of departing flights. Next, the number of seats released by a flight

determines the maximum number of passengers that will be processed for the flight.

Any remaining never enter the system for the sake of this study. Third, the flight

destination determines how passengers are processed, as the USDA inspection is re-

quired for only those passengers processing for flights to the US mainland or Guam

[34].

4.1.1 Scenario Development.

Only portions of landside operations are of interest, which differ slightly from

their civilian counterparts. In particular these are 1) Roll Call 2) US Department

of Agriculture (USDA) inspection, 3) ticketing/baggage check-in, and 4) security

screening (x-ray). The following sections discuss the layout and functions of each

processing station transited by departing passengers at the 735th AMS. The and

passenger flow is depicted in Figure 4.2 as system layout and in Figure 4.1 in simplified

flow chart form.

4.1.2 Passenger Characteristics.

The FAA categorizes air travelers into two basic groups with distinct charac-

teristics: business travelers and leisure travelers [2]. Military flights, on the other

hand, have different classifications, referred to as Space–Required (or Space–R) and

Space–Available (or Space–A) [24].
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4.1.2.1 Space–R Passengers.

Space–R passengers meet the eligibility criteria to be considered “mission essen-

tial” by the DoD as described in Chapter 5 of DoD 4515.13–R, which includes

travel for Permanent Change of Station (PCS), travel for temporary duty (TDY)

or Temporary Additional Duty (TAD), or for any other authorized travel [24]. Any

mission–specific passenger processes temporarily implemented to load Space–R pas-

sengers in a manner different than described within this work is beyond the scope of

this study. For example, the research presented here examines routine day–to–day

operations of the terminal rather than performance during mass troop deployment.

However, it should be noted that the methodology, in general, would still hold in that

case as well, though arrival patterns may differ.

4.1.2.2 Space–A Passengers.

Those travelers who are not mission-essential, but who meet the criteria in Chap-

ter 6 of the same regulation, are considered Space–A and may fly on DoD aircraft

as a privilege and at no cost [24]. Space–A passengers are always stand-by and are

allowed to travel if any seats remain for their use. Additionally, Space–A travelers

are not served according to their arrival, but are ticketed depending on specific hi-

erarchy criteria. The ordering of passengers according to this hierarchy is conducted

automatically when a passenger arrives to the terminal and checks in, which means

a passengers time of arrival, then, is only pertinent to other passengers within the

same category. Service performance experienced by a specific category of passenger,

is beyond the scope of this work. Thus all Space–A passengers are considered for the

sake of this study.
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4.1.2.3 Have Bags, Will travel.

An over-arching group are those passengers who need to check luggage. Even

though kiosks are available for processing passengers, all those possessing baggage

other than just carry–on must still enter the line at the ticketing counter to check their

bags. Due to the isolated locale of Hickam AFB and sparsity of viable destinations

nearer than Travis AFB (≈ 2500 miles and about 5 hours flying away). It is reasonable

to assume that an overwhelming majority of passengers will have to process through

the counter rather than proceeding to security from the kiosk.

4.1.2.4 Summary.

Since passengers are prioritized prior to entering the queue, there is virtually no

concern over the impact of priority within the queue discipline. The vast majority

passengers will check luggage, but an allowance can be made for the few who may

only require carry–on bags. Thus, modeling passengers as a single class with a routing

probability assigned for those entering the system, but not checking bags, is reasonable

and parsimonious in the given case.

4.1.3 Passenger Processing.

This section discusses each facility/process that passengers transit from arrival to

the terminal until they enter the gate lobby. Figure 4.2 is an annotated architectural

layout provided as a visual reference.

4.1.3.1 Passenger Arrival/Roll Call.

All passengers flow for a departing flight comes through roll call. Passengers, who

were all assigned a priority upon marking themselves present at arrival, are assigned

seats according to their during roll call (counter shown in Figure 4.3b). Any remaining
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Figure 4.2. 735th AMS Terminal Floor Plan showing pertinent facilities: 1) roll call
counter, 2) sign–up counter, 3) main lobby area, 4) agricultural inspection machine,
5) check–in counter, 6) security screening (x–ray), and 7) outbound gate lobbies. The
path through the system from the waiting in the lobby to moving to the gate lounge is
shown.

when all seats are filled will await the next flight, which may be several days or weeks

away or, frustrated, may remove themselves from the listing (renege). A passenger

could conceivably wait quite a while to begin their trip. Passengers are required to

arrive at the terminal in accordance with AMC guidelines, which specifies two hours,

twenty minutes prior to the departure of a given flight [33], although in practice

passengers typically arrive 30 minutes prior. If necessary, such as during peak travel

times, managers may adjust required show–times accordingly.

4.1.3.2 The Passenger Service Center.

The Passenger Service Center (PSC) serves as the central hub for passenger pro-

cessing containing the PSC counter (Area 2 in Figure 4.2) while agriculture inspection

station and the, and passenger ticketing/baggage counter. For Space–A passengers,
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(a) (b)

Figure 4.3. (a) Main lobby and (b) roll call counter—two of the five available kiosks
are on either side of the counter, terminal entrance is just on the opposite side of the
curved partition (unseen).

a visit to the PSCsign–up counter initiates their travel. A passenger’s eligibility

for Space–A travel and their destination are entered into the database, which ranks

him/her according to priority category and date of sign-up.

4.1.3.3 US Department of Agriculture (USDA) Inspection [34].

The USDA mandates that all travelers from Hawaii to either the US mainland—

which includes the contiguous United States (CONUS) and Alaska—or the US island

territory of Guam must undergo an inspection prior to departure. This inspection is

intended to scan for agricultural items which may contain pests which can potentially

become invasive species deleterious to US agriculture, and as such are restricted from

transport from Hawaii to those locations—namely certain fruits, plants and other

specified items. No inspection is required for passengers destined to locations outside

CONUS (OCONUS) . The USDA inspection is located at area 4 in Figure 4.2.

4.1.3.4 The Passenger Check-in [33].

The check-in process ensures that passengers have all required documents for

travel and that travelers are properly manifested for their assigned flight. This in-
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(a) (b)

Figure 4.4. (a) Sign–up counter and (b) USDA inspection station

cludes verifying travel documents, issuing boarding passes, assigning seats, checking

baggage, collecting applicable charges (e.g., meals, pet fees, excess baggage, etc.), and

identifying any potential problems prior to boarding. By policy, additional counters

are opened (if available) if waiting times exceed 15 mins. Passengers may use ticket

kiosks to begin the check-in process, but any necessary further processing must be

completed at the counter. Kiosks, in practice, are under utilized by passengers, which

puts the greater load of traffic on the counter. Though, its impact is assumed to be

negligible for the purposes of this research, the fact that the kiosks are actually shared

resources could add complexity when many travelers are processing. Passengers ar-

riving to the terminal must also use the kiosks to mark themselves present. Thus in

the case of multiple departures with dual use kiosks (rather than kiosks dedicated to

one process or the other), the utilization of the kiosks would be higher.

4.1.3.5 Security Screening.

The passenger and baggage security screening is conducted in the same manner

as at civilian airports per Transportation Security Administration (TSA) guidelines

[33:49-51]. Just as in any other terminal, passengers remove outer garments and

footwear, empty pockets, place carry–on baggage on the conveyor belt and proceed
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through an x–ray machine operated by a security team, then proceed to the outbound

gates to await transportation to awaiting aircraft. Within the scope of this analysis,

once passengers have cleared security they have entered the airside, having departed

the landside system. The security area is located in area 6 in Figure 4.2 with outbound

gates designated by area 7.

(a) (b)

Figure 4.5. (a) Check–in counter and (b) security station (seen through double doors).

4.1.4 Aircraft Have Finite Size.

The number of Space–R passengers on a flight are effectively random. Sometimes

a flight will be completely devoid of duty passengers, whereas some flights are com-

pletely oriented to flying a unit of Space–R passengers to a particular location. The

number of Space–A passengers who arrive for a flight is random, but the number who

are processed depend on the number of seats released minus the number of Space–R

passengers ticketed for the flight. In either case, the total number of passengers that

are processed for flight is no more than the number of seats released for that particular

flight. This depends on a number of factors.

Intuitively, the number of seats released by the aircraft commander will be limited

by the size of the aircraft. Furthermore, the number of seats available for passengers
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will be limited by restrictions imposed by the aircraft’s mission. The cargo load,

presence of hazardous or restricted cargo, number of through-manifested passengers

already aboard, and the size of the aircrew will place limitations on the space available

for additional passengers. These concerns are accounted for, however, during roll

call. No more passengers will be processed than there is room on the plane. Any

remaining will either remain in the lobby for the next flight if one will arrive soon, or

leave and return at the next opportunity. Since we are only modeling the processing

of passengers who will board the flight, these rejected passengers are not included in

this model since they never enter the system.

4.2 Analysis

4.2.1 Steady State OJN Analysis.

Assuming steady state arrival rates for a particular spread of cases provides a

system parameters that can be adjusted to approximate the performance of a non-

stationary system. Table 4.1 shows the flow rates for chosen arrival rates for which

ρ < 1. Traffic flows for each node are obtained from Equation 3.1b. Node indices for

this and all tables and charts follow the notation 1 = USDA Inspection, 2 = Ticket

Kiosks, 3 = PSC Counter, and 4 = Security Screening.

Table 4.1. CONUS steady state arrival rates and effective passenger flows.

γ1 λ1 λ2 λ3 λ4

4/hr 4.000 0.200 3.998 4.000
8/hr 8.000 0.400 7.996 8.000

12/hr 12.000 0.600 11.994 12.000
16/hr 16.000 0.800 15.992 16.000
20/hr 20.000 1.000 19.990 20.000
24/hr 24.000 1.200 23.988 24.000
28/hr 28.000 1.400 27.986 28.000
32/hr 32.000 1.600 31.984 32.000
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Calculated node-by node utilizations are presented in Table 4.2 for the base case

(no superscript), the case where all facilities have one additional server than base (i.e.,

“One-Up” scenario, +), and the case where each facility has at most one fewer server

but at least one sever (i.e., “One-Down” scenario, −) [8]. The impact of an additional

server is dramatic, especially for cases with high arrival rates. For example, observe

that when γ = 32/hr, ρ+
1 ≈ 1

2
ρ1 while virtually no difference is seen in ρ−1 . Likewise,

the empty probabilities are greatly impacted by service capacity, Table 4.3.

Table 4.2. CONUS steady state average passengers in queue and in process for base
number of servers, one added server per process (+), and less one server (−) down to
a single server.

γ1 ρ1 ρ2 ρ3 ρ4 ρ+
1 ρ+

2 ρ+
3 ρ+

4 ρ−1 ρ−2 ρ−3 ρ−4

4/hr 0.123 0.002 0.061 0.123 0.062 0.002 0.046 0.062 0.123 0.002 0.091 0.123
8/hr 0.247 0.004 0.122 0.247 0.123 0.003 0.091 0.123 0.247 0.005 0.183 0.247

12/hr 0.370 0.005 0.183 0.370 0.185 0.005 0.137 0.185 0.370 0.007 0.274 0.370
16/hr 0.493 0.007 0.243 0.493 0.247 0.006 0.183 0.247 0.493 0.009 0.365 0.493
20/hr 0.617 0.009 0.304 0.617 0.308 0.008 0.228 0.308 0.617 0.011 0.456 0.617
24/hr 0.740 0.011 0.365 0.740 0.370 0.009 0.274 0.370 0.740 0.014 0.548 0.740
28/hr 0.863 0.013 0.426 0.863 0.432 0.011 0.320 0.432 0.863 0.016 0.639 0.863
32/hr 0.987 0.015 0.487 0.987 0.493 0.012 0.365 0.493 0.987 0.018 0.730 0.987

Table 4.3. CONUS steady state average empty node probabilities for base number of
servers, one added server per process (+), and less one server (−) down to a single
server.

γ1 p0,1 p0,2 p0,3 p0,4 p+
0,1 p+

0,2 p+
0,3 p+

0,4 p−0,1 p−0,2 p−0,3 p−0,4

4/hr 0.877 0.991 0.833 0.877 0.884 0.991 0.833 0.884 0.877 0.991 0.833 0.877
8/hr 0.753 0.982 0.694 0.753 0.780 0.982 0.694 0.780 0.753 0.982 0.691 0.753

12/hr 0.630 0.973 0.578 0.630 0.688 0.973 0.578 0.688 0.630 0.973 0.570 0.630
16/hr 0.507 0.964 0.480 0.507 0.604 0.964 0.482 0.604 0.507 0.964 0.465 0.507
20/hr 0.383 0.955 0.398 0.383 0.529 0.955 0.401 0.529 0.383 0.955 0.373 0.383
24/hr 0.260 0.947 0.329 0.260 0.460 0.947 0.334 0.460 0.260 0.947 0.292 0.260
28/hr 0.137 0.938 0.270 0.137 0.397 0.938 0.277 0.397 0.137 0.938 0.220 0.137
32/hr 0.013 0.930 0.220 0.013 0.339 0.930 0.230 0.339 0.013 0.930 0.156 0.013

Thus, the number of servers on their own can greatly contribute to quality of

service. In this case we see for a (steady state) system with a passenger arrival rate,

say, of 28/hr will incur a mean queue wait at the Ag Inspection of 11.7 min while

an additional server there reduces the wait to less than 30 sec on average, Table 4.4.

Total process waits and average customers awaiting service are logically similarly and

a presented in Tables 4.5–4.7
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Table 4.4. CONUS steady state average waits in queue (minutes).

γ1 Wq1 Wq2 Wq3 Wq4 W+
q1 W+

q2 W+
q3 W+

q4 W−
q1 W−

q2 W−
q3 W−

q4

4/hr 0.260 2.89E-13 0.001 0.260 0.007 3.66E-16 2.90E-05 0.007 0.260 1.98E-10 0.023 0.260
8/hr 0.606 9.19E-12 0.007 0.606 0.029 2.33E-14 4.27E-04 0.029 0.606 3.15E-09 0.094 0.606

12/hr 1.087 6.94E-11 0.022 1.087 0.066 2.64E-13 0.002 0.066 1.087 1.59E-08 0.222 1.087
16/hr 1.801 2.91E-10 0.050 1.801 0.120 1.47E-12 0.006 0.120 1.801 4.99E-08 0.422 1.801
20/hr 2.976 8.83E-10 0.095 2.976 0.194 5.58E-12 0.013 0.194 2.976 1.21E-07 0.721 2.976
24/hr 5.265 2.18E-09 0.163 5.265 0.293 1.66E-11 0.026 0.293 5.265 2.50E-07 1.174 5.265
28/hr 11.687 4.70E-09 0.261 11.687 0.424 4.15E-11 0.046 0.424 11.687 4.62E-07 1.891 11.687
32/hr 136.900 9.10E-09 0.397 136.900 0.595 9.19E-11 0.074 0.595 136.900 7.85E-07 3.132 136.900

Table 4.5. CONUS steady state average process time (minutes).

γ1 W1 W2 W3 W4 W+
1 W+

2 W+
3 W+

4 W−
1 W−

2 W−
3 W−

4

4/hr 2.110 2.740 2.741 2.110 1.857 2.740 2.740 1.857 2.110 2.740 2.763 2.110
8/hr 2.456 2.740 2.747 2.456 1.879 2.740 2.740 1.879 2.456 2.740 2.834 2.456

12/hr 2.937 2.740 2.762 2.937 1.916 2.740 2.742 1.916 2.937 2.740 2.962 2.937
16/hr 3.651 2.740 2.790 3.651 1.970 2.740 2.746 1.970 3.651 2.740 3.162 3.651
20/hr 4.826 2.740 2.835 4.826 2.044 2.740 2.753 2.044 4.826 2.740 3.461 4.826
24/hr 7.115 2.740 2.903 7.115 2.143 2.740 2.766 2.143 7.115 2.740 3.914 7.115
28/hr 13.537 2.740 3.001 13.537 2.274 2.740 2.786 2.274 13.537 2.740 4.631 13.537
32/hr 138.750 2.740 3.137 138.750 2.445 2.740 2.814 2.445 138.750 2.740 5.872 138.750

Table 4.6. CONUS steady state average passengers in queue for base number of servers,
one added server per process (+), and less one server (−) down to a single server.

γ1 Lq1 Lq2 Lq3 Lq4 L+
q1 L+

q2 L+
q3 L+

q4 L−
q1 L−

q2 L−
q3 L−

q4

4/hr 0.017 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.017 0.000 0.002 0.017
8/hr 0.081 0.000 0.001 0.081 0.004 0.000 0.000 0.004 0.081 0.000 0.013 0.081

12/hr 0.217 0.000 0.004 0.217 0.013 0.000 0.000 0.013 0.217 0.000 0.044 0.217
16/hr 0.480 0.000 0.013 0.480 0.032 0.000 0.002 0.032 0.480 0.000 0.112 0.480
20/hr 0.992 0.000 0.032 0.992 0.065 0.000 0.004 0.065 0.992 0.000 0.240 0.992
24/hr 2.106 0.000 0.065 2.106 0.117 0.000 0.010 0.117 2.106 0.000 0.469 2.106
28/hr 5.454 0.000 0.122 5.454 0.198 0.000 0.021 0.198 5.454 0.000 0.882 5.454
32/hr 73.013 0.000 0.212 73.013 0.317 0.000 0.040 0.317 73.013 0.000 1.669 73.013

Table 4.7. CONUS steady state average passengers in process for base number of
servers, one added server per process (+), and less one server (−) down to a single
server.

γ1 L1 L2 L3 L4 L+
1 L+

2 L+
3 L+

4 L−
1 L−

2 L−
3 L−

4

4/hr 0.141 0.009 0.183 0.141 0.124 0.009 0.183 0.124 0.141 0.009 0.184 0.141
8/hr 0.327 0.018 0.366 0.327 0.250 0.018 0.365 0.250 0.327 0.018 0.378 0.327

12/hr 0.587 0.027 0.552 0.587 0.383 0.027 0.548 0.383 0.587 0.027 0.592 0.587
16/hr 0.974 0.037 0.744 0.974 0.525 0.037 0.732 0.525 0.974 0.037 0.843 0.974
20/hr 1.609 0.046 0.945 1.609 0.681 0.046 0.917 0.681 1.609 0.046 1.153 1.609
24/hr 2.846 0.055 1.161 2.846 0.857 0.055 1.106 0.857 2.846 0.055 1.565 2.846
28/hr 6.317 0.064 1.400 6.317 1.061 0.064 1.299 1.061 6.317 0.064 2.160 6.317
32/hr 74.000 0.073 1.672 74.000 1.304 0.073 1.500 1.304 74.000 0.073 3.130 74.000
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Results were compared to a simulation which closely represents the passenger flow

of a single, moderate capacity, CONUS-bound flight at the 735th AMS passenger

terminal. The simulation was run for a 40–passenger plane–load with 100 replica-

tions (4000 data points in all), using the service rates from Section 3.2.2 and arrival

rates from Table 4.1 assuming passengers arrive equally spaced. This amounts to a

terminating D/M/c–like system. These results compare favorably with a simulated

system for low utilizations, Figure 4.6. Utilizations diverge for high arrival rates due

to the termination of passenger flow for the simulated system.
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35

4/hr 8/hr 12/hr 16/hr 20/hr 24/hr 28/hr

Analytical 8.222 8.919 9.895 11.353 13.748 18.395 31.334

Simulation 8.295 8.927 9.846 11.090 12.737 14.427 16.556

0
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10

Analytical

Simulation

Figure 4.6. Results: M/M/c average waiting time vs. simulation
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4.2.2 First Queue Adjustment Results.

The coefficient of variance adjustment, CV ≈ 0.52, to adjust the first queue

waiting time produces a more accurate approximation than the steady state system.

Figure 4.7 shows mean total process times (in minutes) for all three models. The

adjusted model, practically comparable or better estimates. Table 4.8 provides the

relative error for each model as well as 95% confidence intervals about the simulated

means and CV values associated with each arrival rate to the first queue.

Table 4.8. Simulation total wait time statistics, relative approximation errors for ad-
justed and unadjusted analytical models and, CV ’s

γ x̄Sim σ̂Sim +95% CI −95% CI Rel Err Adj Rel Err Anl CV

4/hr 7.681 4.032 7.806 7.556 13% 7% 0.525
8/hr 7.870 4.088 7.996 7.743 14% 13% 0.520

12/hr 8.286 4.258 8.418 8.154 12% 19% 0.514
16/hr 8.964 4.606 9.107 8.821 9% 27% 0.514
20/hr 10.066 5.182 10.227 9.905 6% 37% 0.515
24/hr 11.793 6.163 11.984 11.602 3% 56% 0.523
28/hr 14.136 7.482 14.368 13.904 16% 122% 0.529
32/hr 16.908 8.924 17.184 16.631 475% 1561% 0.528

4.2.3 Waiting Time Distribution.

Finally, the waiting time distribution, Figure 4.8, is approximated using a sim-

ulation of the full model. The resulting distribution is skew-right owning to the

boundary at zero-waiting time on the left. Utilizing the central limit theorem, the

postulated distribution for the right-hand tail, is approximately normal. Thus, with

the CV = 0.52 (which is the ratio of the standard deviation and the mean), we have

TADJtot (t) ∼ Norm(T, 0.52T ), which is a reasonable fit to the simulated data. For

instance, the 90th percentile, assuming normal is 16.7, which compares to 16.99, from

the empirical quartiles in Figure 4.8.
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Simulation 7.681 7.870 8.286 8.964 10.066 11.793 14.136
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Figure 4.7. Results: Adjusted average waiting time vs. simulation

4.3 Conclusion

The USDA inspection station is limited by the scanning machine itself regardless of

the number of agents available to place parcels on the conveyor belt. The same is true

of the Security station. The kiosks are individual machines operated by the customer

aside for when staff assistance is necessary as when the customer has a question or

Figure 4.8. Results: Waiting Time Distribution
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a computer error occurs. The counter is operated by human staff members. The

server number is only limited by the number of workstations available for processing.

In terms of standards found in the literature, Table 2.2, the Hickam terminal is

currently operating at very high (A - B) level of service.
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V. Summary and Conclusions

5.1 Conclusions

This research has provided an approach to estimate the performance measures

of an airport terminal’s landside processing facilities. Using a hybrid simulation-

analytical methodology, a reasonable waiting time estimates for non-stationary queu-

ing networks with generally distributed arrivals were calculated. This approximation

required adjusting the waiting times by a factor equal to coefficient of variance of the

departure distribution from the first queue. Simulating the arrivals to the system, can

provide an adequate SF value. Using Open Jackson Networks, the remaining perfor-

mance measures were found. In this manner, a system can be effectively modeled with

limited information about a system, and without more data intensive requirements

of a full process simulation.

5.2 Limitations and Areas for Additional Research

Despite the usefulness of the methodology presented, some areas of study remain.

Expanded research to more accurate, generalized multi-flight research is required to

fully characterize the impacts of multiple-departures, particularly when passenger

arrivals do not overlap or coincide. More robust research could be conducted with

observations from multiple terminals. Also generalizing the service distributions and

studying impacts of time-varying, or state-dependent service may provide more com-

plete insight into quality of service performance.

Regarding the sign-up and roll-call processes, queueing analysis using balking or

retrial elements, would provide decision makers with valuable information regarding

how those policies ultimately impact customer service. Also, specifically studying
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flows through the lobby itself in order to characterize congestion and passenger com-

fort issues would enhance design considerations for future terminals.

Lastly, the methodology developed here, could be easily incorporated into a deci-

sion support tool for planners a and aerial port managers. considerably more analysis

must be conducted regarding the CV ’s, among other elements in order to properly

generalize these methods and support decision making. Study the case as a regener-

ating process for unequally spaced flights.

5.3 Recommendations

The major recommendation from this study is to explore policy options which

would alleviate congestion for CONUS-bound passengers caused by the Ag Inspection

and Security Screening. A second station of each roughly halves the waiting time for

passengers at each of those facilities.

58



Appendix A. M(t)/G/∞ Approximation Simulation Figures

The appendix contains large figures, which were presented in Section 3.3.1. The

histograms figures are organized with the arrival distributions on top and departure

distributions at the bottom. Figures A.1 through A.6 are output for M(t)/M/1

models, while Figures A.7 through A.14 show output for the D/M/1 simulations.

Mean, standard deviation and goodness–of–fit information are provided in all but

Models 6 and 7. Oneway ANOVA outputs illustrate the evolution of the departure

process towards mirroring the arrival process as the server utilization decreases. The

ANOVA for Model 7 deceptively concludes that the arrival and departure distributions

are different. However, there is no practical difference. Note that in Figure A.14 the

difference between means is only 2.0 × 10−7. The respective standard deviations

(2.4× 10−16 and 4.3× 10−7) are similarly negligible. The obvious conclusion is that

the distributions are truly indistinguishable.
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Figure A.2. Sim 1 Oneway ANOVA: M(t)/M/1 Simulation, ρ̂1 = 0.8325
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(Distributions Type=Ag Arriv;a;;;ls~======================= 
IValu& 

I [Mom&nts 

Mean 1.3467711 
StdDev 1.8487384 

Sid Err Mean 0.0924369 
Upper95%Mean 1.5284954 fh 

0 
I 

10 Lower95%Mean 1.1650468 
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- Exponential(1.34677) 

( Fitt&d Expon&ntial 

Param&t&r Estimat&s 

Type Parameter Estimate Lower 95% UPI)er 95% 
Scale o 1.3467711 12229752 1.4878546 

-21og(likelihood) = 1038.16795984247 

Goodn&ss-of-Fit Tttst 

Kolmo~orov's D 

D 
0.068977 < 

Prob>D 
0.0100' 

Note: Ho =The data is from the Exponential distribution. Small p
values reject Ho. 
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Note: Ho =The data is from the Exponential distribution. Small p
valuesrejedHo. 



Figure A.4. Sim 2 Oneway ANOVA: M(t)/M/1 Simulation, ρ̂2 = 0.4614
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(Distributions Type=Ag Arriv;a;;;l s~======================= 
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Note: Ho =The data is from the Exponential distribution. Small p
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Figure A.6. Sim 3 Oneway ANOVA: M(t)/M/1 Simulation, ρ̂3 = 0.0014
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(Distributions Type=Ag Arrivals 
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Figure A.8. Sim 4 Oneway ANOVA: D/M/1 Simulation, ρ̂4 = 0.8624
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(Distributions Type=Ag Arrivals 
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Figure A.10. Sim 5 Oneway ANOVA: D/M/1 Simulation, ρ̂5 = 0.6708
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Figure A.11. Sim 6 Distribution Results: D/M/1 Simulation, ρ̂5 = 0.6708

Figure A.12. Sim 7 Distribution Results: D/M/1 Simulation, ρ̂7 = .0000
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Figure A.13. Sim 6 Oneway ANOVA: D/M/1 Simulation, ρ̂5 = 0.6708
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Figure A.14. Sim 7 Oneway ANOVA: D/M/1 Simulation, ρ̂7 = .0000
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Appendix B. Results Summary Sent to 735th AMS

This is briefly summary of my findings. The main idea is that the performance of

the system is greatly dependent on the utilization of the servers (inspection stations,

counter agents, etc.). This information provided here is based on service time esti-

mates from the Passenger Services Survey collect in Sept 2010. The findings assume

that flights are boarded one at a time and that passengers “enter the system” when

their names are called at roll call. For now, I’ve only included the estimates for flights

leaving for CONUS locations.

The key to the analysis is the utilization value for each server which is simply

Utilization =
Ave Flow In ∗ Ave Service Time

# Servers

For instance if 30 passengers arrive per hour (0.5 per min) and it takes a counter

agent 1 min to process them and 2 counter agents are available, then the utilization

of the counter is 50In the table below have the utilization of each process, the average

observed system size and the average time processing time per passenger. This table

assumes

• 1x ag inspection station with average service time of 1.85 min/per pax

• 5x available kiosks with average service time of 2.74 min/per pax

• 3x counter agents with average service time of 2.74 min/per pax

• 1x Security station with average service time of 1.85 min/per pax

I also assume here that very few passengers use the kiosks to begin processing (only

5% of passengers) and that only 1% of passengers are able to use the kiosk and then

proceed to security without checking bags. Lastly, I built in about 2 min of travel

time from station to station for each passenger. So the total processing time is
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Ave Total Time = Total Ave Wait + Total Ave Service + Travel Time

The total number of passengers in the system (average system size) is then

Ave Sys Size = Ave Arrival Rate ∗ (Ave Total Wait + Ave Total Service)

Obviously those passengers who go through first will have shorter than average pro-

cessing times, whereas, those later will observe longer times as the line builds. The

target utilization for any system is usually around 75%, since above this, process

quickly lose the ability to handle the variance in arrival and service times very well.

Observe in Table B.1 that 86% utilization at the agriculture inspection station results

in an average total passenger processing time of over 30 minutes.

Table B.1. Results: Base Case

Pax
Load/Hr

Ag Insp
Utilization

Kiosk
Utilization

Check-in
Counter

Utilization

Security
Utilization

Average
Sys Size

Average
Processing

Time

4.0 12.3% 0.2% 6.1% 12.4% 0.716 10.741
8.0 24.7% 0.4% 12.2% 24.8% 1.510 11.326

12.0 37.0% 0.5% 18.3% 37.2% 2.429 12.147
16.0 49.3% 0.7% 24.3% 49.6% 3.567 13.376
20.0 61.7% 0.9% 30.4% 61.9% 5.133 15.400
24.0 74.0% 1.1% 36.5% 74.3% 7.738 19.344
28.0 86.3% 1.3% 42.6% 86.7% 14.213 30.457

Considering a loss of a server at each station (aside from security and ag) we have

the results in Table B.2. Adding a server at each station, Table B.3 on the other

hand can drastically reduce service times.

The previous two charts illustrate the “integer effect.” That is, a ±1 change in

the number of servers can dramatically change the complexion of a system. Notice

how much one additional ag station can affect utilization of the process. My over-

all impression is that more flexibility with the Ag Station could greatly improve the
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Table B.2. Results: -1 Server Per Station

Pax
Load/Hr

Ag Insp
Utilization

Kiosk
Utilization

Check-in
Counter

Utilization

Security
Utilization

Average
Sys Size

Average
Processing

Time

4.0 12.3% 0.2% 9.1% 12.4% 0.648 9.725
8.0 24.7% 0.5% 18.3% 24.8% 1.399 10.490

12.0 37.0% 0.7% 27.4% 37.2% 2.317 11.583
16.0 49.3% 0.9% 36.5% 49.6% 3.525 13.220
20.0 61.7% 1.1% 45.6% 61.9% 5.296 15.888
24.0 74.0% 1.4% 54.8% 74.3% 8.391 20.977
28.0 86.3% 1.6% 63.9% 86.7% 16.259 34.840

Table B.3. Results: +1 Server Per Station

Pax
Load/Hr

Ag Insp
Utilization

Kiosk
Utilization

Check-in
Counter

Utilization

Security
Utilization

Average
Sys Size

Average
Processing

Time

4.0 6.2% 0.2% 4.6% 6.2% 0.613 9.194
8.0 12.3% 0.3% 9.1% 12.4% 1.232 9.238

12.0 18.5% 0.5% 13.7% 18.6% 1.863 9.314
16.0 24.7% 0.6% 18.3% 24.8% 2.514 9.427
20.0 30.8% 0.8% 22.8% 31.0% 3.195 9.584
24.0 37.0% 0.9% 27.4% 37.2% 3.918 9.796
28.0 43.2% 1.1% 32.0% 43.4% 4.703 10.078

process, but I am unsure of the amount of control your organization has over that.

Increasing Kiosk utilization may benefit the middle part of the process, since passen-

gers will spend less time in line there, but that traffic will still impact the security

check. Similarly to the ag station, the ability to add service there for large flights will

also increase the level of service the terminal can provide.
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Appendix C. Process Flow Data and Service Distributions
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Table C.1. Security Service Times

Date Customer Service Time Date Customer Service Time

1-Sep-10 1 1 6-Sep-10 1 1
1-Sep-10 2 2 6-Sep-10 2 2
1-Sep-10 3 1 6-Sep-10 3 2
1-Sep-10 4 1 6-Sep-10 4 2
1-Sep-10 5 1 6-Sep-10 5 1
1-Sep-10 6 1 6-Sep-10 6 1
1-Sep-10 7 1 6-Sep-10 7 1
1-Sep-10 8 1 6-Sep-10 8 2
1-Sep-10 9 2 6-Sep-10 9 2
1-Sep-10 10 3 6-Sep-10 10 2
2-Sep-10 1 2 7-Sep-10 1 2
2-Sep-10 2 2 7-Sep-10 2 1
2-Sep-10 3 3 7-Sep-10 3 1
2-Sep-10 4 2 7-Sep-10 4 1
2-Sep-10 5 2 7-Sep-10 5 2
2-Sep-10 6 3 7-Sep-10 6 2
2-Sep-10 7 3 7-Sep-10 7 3
2-Sep-10 8 2 7-Sep-10 8 2
2-Sep-10 9 4 7-Sep-10 9 2
2-Sep-10 10 2 7-Sep-10 10 2
3-Sep-10 1 1 8-Sep-10 1 2
3-Sep-10 2 2 8-Sep-10 2 1
3-Sep-10 3 2 8-Sep-10 3 3
3-Sep-10 4 1 8-Sep-10 4 2
3-Sep-10 5 2 8-Sep-10 5 2
3-Sep-10 6 2 8-Sep-10 6 2
3-Sep-10 7 3 8-Sep-10 7 3
3-Sep-10 8 1 8-Sep-10 8 2
3-Sep-10 9 3 8-Sep-10 9 2
3-Sep-10 10 2 8-Sep-10 10 2
4-Sep-10 1 1 9-Sep-10 1 3
4-Sep-10 2 1 9-Sep-10 2 2
4-Sep-10 3 1 9-Sep-10 3 2
4-Sep-10 4 1 9-Sep-10 4 2
4-Sep-10 5 2 9-Sep-10 5 1
4-Sep-10 6 1 9-Sep-10 6 4
4-Sep-10 7 1 9-Sep-10 7 1
4-Sep-10 8 2 9-Sep-10 8 1
4-Sep-10 9 1 9-Sep-10 9 1
4-Sep-10 10 3 9-Sep-10 10 2
5-Sep-10 1 3 10-Sep-10 1 2
5-Sep-10 2 1 10-Sep-10 2 3
5-Sep-10 3 2 10-Sep-10 3 1
5-Sep-10 4 1 10-Sep-10 4 1
5-Sep-10 5 2 10-Sep-10 5 2
5-Sep-10 6 1 10-Sep-10 6 3
5-Sep-10 7 1 10-Sep-10 7 3
5-Sep-10 8 2 10-Sep-10 8 2
5-Sep-10 9 1 10-Sep-10 9 3
5-Sep-10 10 3 10-Sep-10 10 2
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Table C.2. Check-in Service Times

Date Customer Service Time Date Customer Service Time

1-Sep-10 1 2 6-Sep-10 1 2
1-Sep-10 2 5 6-Sep-10 2 2
1-Sep-10 3 1 6-Sep-10 3 2
1-Sep-10 4 3 6-Sep-10 4 5
1-Sep-10 5 2 6-Sep-10 5 8
1-Sep-10 6 5 6-Sep-10 6 2
1-Sep-10 7 3 6-Sep-10 7 3
1-Sep-10 8 2 6-Sep-10 8 3
1-Sep-10 9 1 6-Sep-10 9 5
1-Sep-10 10 3 6-Sep-10 10 3
2-Sep-10 1 3 7-Sep-10 1 3
2-Sep-10 2 2 7-Sep-10 2 4
2-Sep-10 3 2 7-Sep-10 3 3
2-Sep-10 4 3 7-Sep-10 4 3
2-Sep-10 5 4 7-Sep-10 5 5
2-Sep-10 6 3 7-Sep-10 6 2
2-Sep-10 7 3 7-Sep-10 7 3
2-Sep-10 8 2 7-Sep-10 8 3
2-Sep-10 9 3 7-Sep-10 9 2
2-Sep-10 10 4 7-Sep-10 10 3
3-Sep-10 1 3 8-Sep-10 1 3
3-Sep-10 2 2 8-Sep-10 2 6
3-Sep-10 3 2 8-Sep-10 3 3
3-Sep-10 4 3 8-Sep-10 4 2
3-Sep-10 5 3 8-Sep-10 5 3
3-Sep-10 6 2 8-Sep-10 6 2
3-Sep-10 7 3 8-Sep-10 7 3
3-Sep-10 8 2 8-Sep-10 8 3
3-Sep-10 9 3 8-Sep-10 9 2
3-Sep-10 10 2 8-Sep-10 10 3
4-Sep-10 1 3 9-Sep-10 1 3
4-Sep-10 2 2 9-Sep-10 2 2
4-Sep-10 3 2 9-Sep-10 3 3
4-Sep-10 4 3 9-Sep-10 4 3
4-Sep-10 5 2 9-Sep-10 5 3
4-Sep-10 6 2 9-Sep-10 6 2
4-Sep-10 7 2 9-Sep-10 7 4
4-Sep-10 8 3 9-Sep-10 8 1
4-Sep-10 9 2 9-Sep-10 9 1
4-Sep-10 10 1 9-Sep-10 10 3
5-Sep-10 1 3 10-Sep-10 1 2
5-Sep-10 2 2 10-Sep-10 2 2
5-Sep-10 3 1 10-Sep-10 3 4
5-Sep-10 4 3 10-Sep-10 4 2
5-Sep-10 5 2 10-Sep-10 5 3
5-Sep-10 6 2 10-Sep-10 6 2
5-Sep-10 7 1 10-Sep-10 7 5
5-Sep-10 8 3 10-Sep-10 8 5
5-Sep-10 9 2 10-Sep-10 9 3
5-Sep-10 10 1 10-Sep-10 10 2
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Figure C.1. AFSO21 Process Flow Form Sample
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Appendix D. Quad Chart

The Quad Chart for this research is found below.
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