488 research outputs found

    New Results on Edge-coloring and Total-coloring of Split Graphs

    Full text link
    A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. A connected graph GG is said to be tt-admissible if admits a special spanning tree in which the distance between any two adjacent vertices is at most tt. Given a graph GG, determining the smallest tt for which GG is tt-admissible, i.e. the stretch index of GG denoted by σ(G)\sigma(G), is the goal of the tt-admissibility problem. Split graphs are 33-admissible and can be partitioned into three subclasses: split graphs with σ=1,2\sigma=1, 2 or 33. In this work we consider such a partition while dealing with the problem of coloring a split graph. Vizing proved that any graph can have its edges colored with Δ\Delta or Δ+1\Delta+1 colors, and thus can be classified as Class 1 or Class 2, respectively. When both, edges and vertices, are simultaneously colored, i.e., a total coloring of GG, it is conjectured that any graph can be total colored with Δ+1\Delta+1 or Δ+2\Delta+2 colors, and thus can be classified as Type 1 or Type 2. These both variants are still open for split graphs. In this paper, using the partition of split graphs presented above, we consider the edge coloring problem and the total coloring problem for split graphs with σ=2\sigma=2. For this class, we characterize Class 2 and Type 2 graphs and we provide polynomial-time algorithms to color any Class 1 or Type 1 graph.Comment: 20 pages, 5 figure

    On the classification problem for split graphs

    Get PDF
    Abstract The Classification Problem is the problem of deciding whether a simple graph has chromatic index equal to Δ or Δ+1. In the first case, the graphs are called Class 1, otherwise, they are Class 2. A split graph is a graph whose vertex set admits a partition into a stable set and a clique. Split graphs are a subclass of chordal graphs. Figueiredo at al. (J. Combin. Math. Combin. Comput. 32:79–91, 2000) state that a chordal graph is Class 2 if and only if it is neighborhood-overfull. In this paper, we give a characterization of neighborhood-overfull split graphs and we show that the above conjecture is true for some split graphs

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    On the recognition and characterization of M-partitionable proper interval graphs

    Get PDF
    For a symmetric {0, 1, ⋆ }-matrix M of size m, a graph G is said to be M-partitionable, if its vertices can be partitioned into sets V1, V2, . . . , Vm, such that two parts Vi, Vj are completely adjacent if Mi,j = 1, and completely non-adjacent if Mi,j = 0 (Vi is considered completely adjacent to itself if it induces a clique, and completely non-adjacent if it induces an independent set). The complexity problem (or the recognition problem) for a matrix M asks whether the M-partition problem is polynomial-time solvable or NP-complete. The characterization problem for a matrix M asks if all M-partitionable graphs can be characterized by the absence of a finite set of forbidden induced subgraphs. These forbidden induced subgraphs are called obstructions to M. In the literature, many results were obtained by restricting the input graphs. In this thesis, we survey these results when the questions are restricted to the class of perfect graphs. We then study the recognition problem and the characterization problem when the inputs are restricted to proper interval graphs. The recognition problem can be solved by an existing algorithm, but we simplify its proof of correctness. As our main result, we prove that all the matrices of size 3 and size 4 with constant diagonal, have finitely many minimal proper interval obstructions. We also obtain partial results about matrices of arbitrary size if they have a zero diagonal
    corecore