
On the Recognition and Characterization
of M-partitionable Proper Interval Graphs

by

Spoorthy Gunda

BS-MS, Indian Institute of Science Education and Research, Pune, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Spoorthy Gunda 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Spoorthy Gunda

Degree: Master of Science

Thesis title: On the Recognition and Characterization of
M-partitionable Proper Interval Graphs

Committee: Chair: Joseph G. Peters
Professor, Computing Science

Pavol Hell
Supervisor
Professor Emeritus, Computing Science

Binay Bhattacharya
Committee Member
Professor Emeritus, Computing Science

Ladislav Stacho
Examiner
Professor, Mathematics

ii



Abstract

For a symmetric {0, 1, ?}-matrix M of size m, a graph G is said to be M -partitionable,
if its vertices can be partitioned into sets V1, V2, . . . , Vm, such that two parts Vi, Vj are
completely adjacent if Mi,j = 1, and completely non-adjacent if Mi,j = 0 (Vi is considered
completely adjacent to itself if it induces a clique, and completely non-adjacent if it induces
an independent set). The complexity problem (or the recognition problem) for a matrix
M asks whether the M -partition problem is polynomial-time solvable or NP-complete.
The characterization problem for a matrix M asks if all M -partitionable graphs can be
characterized by the absence of a finite set of forbidden induced subgraphs. These forbidden
induced subgraphs are called obstructions to M .

In the literature, many results were obtained by restricting the input graphs. In this thesis,
we survey these results when the questions are restricted to the class of perfect graphs. We
then study the recognition problem and the characterization problem when the inputs are
restricted to proper interval graphs. The recognition problem can be solved by an existing
algorithm, but we simplify its proof of correctness. As our main result, we prove that all
the matrices of size 3 and size 4 with constant diagonal, have finitely many minimal proper
interval obstructions. We also obtain partial results about matrices of arbitrary size if they
have a zero diagonal.

Keywords: matrix partitions, graph partitions, homomorphism, interval graphs, proper
interval graphs, minimal obstructions, perfect graphs
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Chapter 1

Introduction

The vertex coloring problem is one of the most extensively studied problems in graph theory
and has wide applications over various fields. In the vertex coloring problem, the vertices
of a graph G have to be colored in such a way that no two adjacent vertices have the same
color. Alternatively, the vertex coloring problem can also be defined as finding a k-partition
V1, V2, . . . , Vk of the vertices of G, such that each Vi is an independent set, so the k-coloring
problem can be viewed as seeking such a partition.

When k = 1, finding whether a graph G is k-colorable or not is a trivial problem. When
k = 2, the k-coloring problem is equivalent to checking if the graph is bipartite. A graph G
is bipartite if and only if G does not have any odd cycle. Let us look at the algorithm for
recognizing a bipartite graph. We apply the breadth-first search algorithm on its vertices,
and if there is an edge between two vertices of the same layer in the BFS tree, this implies
that G has an odd cycle and hence not a bipartite graph. If there are no edges between the
vertices of the same layer, then we can color all the vertices of the even numbered layers
with one color and the vertices of the odd numbered layer with another. Therefore, the
2-coloring problem can be solved in linear time and can be characterized by the absence
of cycles of odd length. Notice that even though a bipartite graph is characterized by the
absence of infinitely many subgraphs, it can be recognized in linear time.

For k ≥ 3, the k-coloring problem is NP-complete, but sometimes k-coloring can be
solved in polynomial time when there are restrictions on the input graph. For example, the
4-coloring problem is NP-complete for a general graph, but if the input graph is planar,
then it is 4-colorable. Similarly, if we restrict the input graphs to the class of perfect graphs
which will be defined in later sections, the k-coloring problem is polynomial time solvable
and can be characterised by the absence of one induced subgraph.

A biclique or a complete bipartite graph is a bipartite graph with a condition that
every vertex of the first independent set must be adjacent with all the vertices of second
independent set. Alternatively, the biclique recognition problem asks whether or not the
vertices of a graph can be partitioned into two sets V1 and V2 such that V1, V2 are stable
sets and are completely adjacent to each other.
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The split graph recognition problem asks whether or not the vertices of a graph can be
partitioned into two sets X,Y , such that X is a clique, and Y is a stable or an independent
set. A graph G is called a split graph if and only if G does not have a C4, C5 or 2K2 as
induced subgraphs [17]. Here C4, C5 are cycles of length 4 and 5 respectively, and a 2K2 is
a graph on 4 vertices with two disjoint edges. Such a characterization allows us to see that
a split graph can be recognized in polynomial time, in fact split graphs can be recognised in
linear time [17]. An (a, b)-graph is a generalization of split graph which can be partitioned
into a-stable sets and b-independent sets. Recognising the (a, b)-graphs, when (a, b) ≤ 2
can be solved in polynomial time [28], and if (a, b) ≥ 3, then the recognition problem is
NP-complete [2, 4].

All the problems that we have seen can be visualized as finding partitions with some
constraints, such as some parts must induce cliques and some independent sets. Then there
may also be constraints on the adjacencies between the parts, such as two parts being com-
pletely adjacent or non-adjacent. Feder et al. in their paper "List Partitions" [10], formulated
the partition problem in which the constraints of a pattern are visualized using a matrix.
A partition V1, V2, . . . , Vk can be represented by a symmetric matrix M of size k, such that
the adjacencies within a set Vi is defined by the entry M(i,i) and adjacency between any
two sets Vi, Vj is defined by the entry M(i,j). If Vi is a stable set then M(i,i) = 0, if Vi is
a clique then M(i,i) = 1, and if there are no restrictions on Vi then M(i,i) = ?. Similarly, if
the sets Vi, Vj are completely adjacent then M(i,j) = 1, and if the sets Vi, Vj are completely
non-adjacent thenM(i,j) = 0, and if there is no restriction on adjacency between Vi, Vj then
M(i,j) = ?.

Refer to Figure 1.1, for examples of matrices that correspond to various partition prob-
lems that are discussed above. For the bipartite recognition problem and the 3-coloring
problem, we need a partition of size two and three respectively, such that each part is
independent. So the corresponding matrix has 0 on the main diagonal and ?′s on the off-
diagonal. In the biclique recognition problem, we need a partition of size two, such that
each part is independent and these two parts are completely adjacent. So, the correspond-
ing matrix has 0’s on the main diagonal and 1’s on the off-diagonal. Similarly, in the split
graph recognition problem, we require a partition into a clique and an independent set.
Hence, the corresponding matrix has one 0 and one 1 on the main diagonal and ?′s on the
off-diagonal.
Formally, we define the M -partitionability of a graph G as follows.

Definition 1.0.1. Let M be a {?, 0, 1}-symmetric matrix of size m. A graph G is said to
be M -partitionable, if its vertices can be partitioned into sets V1, V2, . . . , Vm, such that Vi is
a stable set if Mi,i = 0, and a clique if Mi,i = 1 and Vi, Vj must be completely adjacent if
Mi,j = 1 and completely non-adjacent if Mi,j = 0.

For a given {0, 1, ?}-symmetric matrix M , we are interested in finding
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[
0 ?
? 0

]

(a) Bipartite graphs

0 ? ?
? 0 ?
? ? 0


(b) 3-coloring

[
0 1
1 0

]

(c) Biclique

[
0 ?
? 1

]

(d) Split graphs

Figure 1.1: Matrices corresponding to the partition problems

1. if we can decide whether a graph G is M -partitionable or not in polynomial time.

2. if M -partitionable graphs can be characterized by the absence of a finite set of for-
bidden induced subgraphs.

Definition 1.0.2. A graph G is said to be a minimal obstruction to M , if G is not M -
partitionable but every proper subgraph of G is M -partitionable.

For a given matrix M , the number of minimal obstructions are finite if and only if any
M -partitionable graph G can be characterized by the absence of a finite set of forbidden
induced subgraphs. We have seen that any split graph can be characterized by the absence
of induced C4, C5 and 2K2. Hence, the matrix in Figure 1.1(d), has finitely many minimal
obstructions. For any graph G, we can check if there is an induced subgraph of size q in
O(nq) time. So, if a matrix M has finitely many minimal obstructions, then we can check
if any graph is M -partitionable or not in polynomial time. However, the converse is not
true. For example, bipartite graphs have infinitely many minimal obstructions but can be
recognized in polynomial time.

If there is a ? on the main diagonal of a matrixM , then any graph G isM -partitionable,
because all the vertices can be placed in that part. So, most of the time, we consider
those matrices that have only 0 or 1 on the main diagonal. Lets now look at some more
graph theoretic problems that can be viewed as M -partition problems but with some side
conditions.

A cutset of a connected graph G is subset of vertices C, such that G−C is a disconnected
graph. A clique cutset of a connected graph G is a complete subgraph C such G − C is
disconnected. The clique cutset problem can be viewed as partitioning the vertices of a
connected graph into three non-empty parts V1, V2, V3, such that V1 and V3 have no edges
between them and V2 is a clique. The matrix M that corresponds to the clique cutset
problem can be found in Figure 1.2. Note that if a graph G has a clique cutset then it is
M -partitionable, but the converse is not necessarily true, because theM -partition can have
one or more parts that are empty. So, we include a condition that in the M -partition we
must have at least one vertex in each part. Such a partition problem is called the surjective
M -partition problem which requires that all parts must be non-empty. Finding a clique
cutset of a graph can be solved in polynomial time [38, 41]. Analogously, a stable cutset

3



is defined as a stable subgraph C that disconnects the graph. Although the stable cutset
problem seems similar to the clique cutset problem, it is NP-complete [39]. This shows that
the matrix partition problem may behave very differently for two matrices, even if they
differ by just one entry.

A homogeneous set X of a graph G is defined as a subset of vertices, such that any vertex
from G−X is either adjacent to all the vertices of X or non-adjacent to all the vertices of
X. Finding a homogeneous set in a graph can be formulated as finding a partition V1, V2, V3

of its vertices, such that V1, V2 are completely adjacent and V2, V3 are completely non-
adjacent. Note that for V2 to be homogeneous set, V2 must have two vertices and V1, V3

must have at least one vertex each. Finding a homogeneous set helps in finding solutions
for several combinatorial problems on various graph classes, one such example is in the
recognition of comparability graphs [32].? 1 ?

1 ? 0
? 0 ?


(a) Homogeneous Set

? ? 0
? 0 ?
0 ? ?


(b) Stable Cutset

? ? 0
? 1 ?
0 ? ?


(c) Clique Cutset

Figure 1.2: Matrices representing the corresponding partitions with some side conditions.

To capture the condition that all the sets of the partition to be non-empty, we can
consider the surjective version of M -partition problem. Even more complex situations can
be captured by introducing lists. In the list M -partition problem, the input graph G has
lists L(v), for every v ∈ V (G), such that v can only be placed in a part from L(v). If the
version of the problem is not specified, then it is considered as the basic version. Notice
that in the surjective version or in the list version of the M -partition problems, having a ?
on the main diagonal is not a trivial case.

1.1 Scope of the Thesis

In this thesis, we study the recognition problem and the characterization problem when
the inputs are restricted to proper interval graphs. The set of proper interval graphs is a
subclass of interval graphs. The complexity problem for the list M -partition problem when
restricted to interval graphs was studied in [40]. The authors have shown that the list M -
partition problem when restricted to various graph classes like interval graphs, circular arc
graphs, and permutation graphs is polynomial time solvable. In Section 2.4.4, we discuss
few of the techniques from [40], and present a simplified proof for the complexity result
when restricted to proper interval graphs.

The M -partition problem restricted to chordal graphs was studied in [33]. The authors
have obtained a complete characterization of matrices of size ≤ 3 with finitely many minimal
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chordal obstructions. We discuss their results in Section 2.4.2. In particular, the authors
have shown that there are two matrices of size 3 that have infinitely many minimal chordal
obstructions. In Chapter 3, we prove that the above two matrices have only finitely many
minimal proper interval obstructions, thus completing the solution of the characterization
problem for matrices of size 3. In Sections 4.1 and 4.2, we extend the study to matrices of
size 4 and prove our characterization results for matrices with constant diagonal. In Section
4.3, we discuss some results for matrices of arbitrary size.

In Section 2.1, we give the preliminaries of various graph classes and in Section 2.4, we
survey the results of the M -partition problems when restricted to these graph classes. In
Section 2.2, we survey graph homomorphisms and its known results. We also discuss how
the M -partition problem generalizes the graph homomorphism problem. In Section 2.3, we
discuss some of the known results of the M -partition problem.
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Chapter 2

Background and Literature Survey

2.1 Preliminaries

A digraph G consists a set of vertices V and a binary relation E ⊆ V ×V . In other words, E is
a set of ordered pairs (u, v); each ordered pair is called an arc. An undirected graph or a graph
is a digraph whose binary relation is symmetric, i.e., (u, v) ∈ E if and only if (v, u) ∈ E. For
an undirected graph G, if (u, v) ∈ E, we say that uv is an edge and consequently represent
it as uv ∈ E or vu ∈ E. The arc (u, u) is called a loop and an undirected graph without
loops is known as a simple graph. Two different vertices u, v of a simple graph G are called
adjacent if there exists an edge uv ∈ E. The vertices that are adjacent to a vertex u are
called its neighbours, and the set of neighbours of u is denoted by N(u). In a graph G, the
set of vertices and edges are denoted by V (G) and E(G) respectively. The complement of a
graph G is the graph Ḡ with V (G) = V (Ḡ) such that any two vertices u, v are adjacent in
Ḡ if and only if they are non-adjacent in G.

A subgraph H of G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph H is
called an induced subgraph of G if V (H) ⊆ V (G) and E(H) is the set of all edges that have
endpoints in V (H). If S is a subset of vertices of a graph G, then the subgraph of G induced
by S is the induced subgraph H of G with V (H) = S, and is denoted by G[S]. A proper
induced subgraph of G is a subgraph induced by a proper subset of vertices.

A complete graph or a clique is defined as a graph G such that any two vertices of G
are adjacent. A clique on m vertices is denoted by Km. A maximal clique H of a graph
G is a subgraph of G, such that H is a clique and H ∪ {v}, for any v ∈ G − H, is not a
clique. A maximum clique of a graph G is a subgraph that is a clique and has the largest
size possible. The size of a maximum clique in a graph is known as the clique number and
is denoted by ω(G).

An independent set or a stable set is defined as a set of vertices in which no two vertices
are adjacent to each other. A maximum independent set of a graph G is the largest possible
subset of vertices that are independent. The size of a maximum independent set of a graph
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G is called the independence number, and is denoted by α(G). Observe that the complement
of an independent set is a clique and vice versa, therefore we have ω(G) = α(Ḡ).

A path is a graph on n vertices {v1, v2, v3, . . . , vn} such that E = {vivi+1 for 1 ≤ i ≤
n− 1}. Length of a path P is defined as the number of edges in the path. A path of length
` (path on `+ 1 vertices) is denoted by P`. A graph G is called connected if there exists a
path between any two vertices of G.

A cycle is a graph C on n vertices {v1, v2, v3, . . . , vn} such that E(C) = {vivi+1 for 1 ≤
i ≤ n − 1} ∪ {v1vn}. The length of a cycle C is defined as the number of vertices in the
cycle. A cycle of length n is denoted by Cn. Any connected graph G that does not contain
a cycle as a subgraph is called a tree.

2.1.1 Perfect Graphs

Recall from Chapter 1 that a k-coloring of a graph G is an assignment of colors to the
vertices of G in such a way that no two adjacent vertices get the same color. The minimum
number of colours required to properly color a graph is called the chromatic number of that
graph and is denoted by χ(G).

Since each vertex of a clique must be colored with a different color, it is easy to see that
ω(G) ≤ χ(G). We are interested in those graphs that have ω(G) = χ(G).

An undirected graph G is called a perfect graph, if every induced subgraph H of G
satisfies the following condition

ω(H) = χ(H)

Perfect graphs were introduced by Berge in 1961, and Berge posed two conjectures. The
first conjecture states that a graph is perfect if and only if its complement is perfect. This
conjecture was proved by Lovász in 1972 and is known by the Perfect Graph Theorem.

Theorem 2.1.1 (Perfect Graph Theorem [31]). A simple undirected graph G is perfect if
and only if the complement Ḡ is also perfect.

A hole is defined as a cycle without any chords. An antihole is defined as the complement
of a hole. A cycle with odd number of vertices and its complement is called an odd hole and
odd antihole respectively. Chromatic number of an odd hole is 3, but the clique number is
only 2. Hence, any graph that contains an odd hole is not a perfect graph. An odd antihole
on 2k + 1 vertices has clique number k and chromatic number k + 1, and hence an odd
antihole is not perfect. The second conjecture posed by Berge states that a graph is perfect
if and only if it does not contain any induced odd holes or odd antiholes. Chudnovsky et
al. proved this conjecture in 2003 and is known by the Strong Perfect Graph Theorem.

Theorem 2.1.2 (Strong Perfect Graph Theorem [5]). A graph G is perfect if and only if
it does not contain any induced odd hole or induced odd antihole.

7



Many NP-complete decision problems restricted to perfect graphs are polynomial time
solvable, for instance, k−coloring, finding a maximum independent set, and clique number
are polynomial time solvable when the input graph is perfect [20]. Lets look at a few graph
classes that are perfect and are of interest in this thesis.

2.1.2 Chordal Graphs

An undirected graph G is called a chordal graph if G does not contain any induced cycle
of length ≥ 4. If a graph G is chordal then every induced subgraph of G is also chordal,
because if G does not contain any induced cycle of length ≥ 4 then no induced subgraph
of G will contain cycles of length ≥ 4. A vertex v of a graph G is called a simplicial vertex
if the set of its neighbours N(v) induces a clique in G. A perfect elimination ordering is
an ordering of the vertices v1, v2, . . . , vn such that for any 1 ≤ i ≤ n, vi is simplicial in the
graph induced by the vertices vi, vi+1, . . . , vn of the ordering. In a connected graph G, a
subset of vertices S of V (G) is called a vertex separator for non-adjacent vertices a, b if the
removal of S from G disconnects a, b. The set S is called a minimal vertex separator if it is
a vertex separator for some non-adjacent vertices but no proper subset of S is a separator
for any pair of non-adjacent vertices. The following theorem shows a few characterizations
of a chordal graph.

Theorem 2.1.3 ([19]). For an undirected graph G, the following statements are equivalent.

1. G is a chordal graph.

2. G admits a perfect elimination ordering.

3. Every minimal vertex separator induces a clique in G.

We can now prove that chordal graphs are perfect.

Theorem 2.1.4 ([19]). All chordal graphs are perfect.

Proof. Let G be any connected chordal graph, to prove that G is a perfect graph we show
that for every induced subgraph H of G, we have ω(H) = χ(H). If G is a clique, then
the theorem clearly holds as complete graphs are perfect. So we assume that G is not a
clique. Any subgraph of G induced by a single vertex is perfect. Assume that every chordal
graph that is smaller than G is also perfect, we now prove that G is perfect. Let S be a
minimal vertex separator of G, and H1, H2, H3, . . . ,Hk be the components of G− S. Note
that the existence of a minimal separator follows from the fact that G is not a clique and
it implies that k > 1. From Theorem 2.1.3, we know that S is a clique and since each Hi is
disconnected from one another, we have the following

ω(G) = max
1≤i≤k

ω(G[S +Hi]) and,

χ(G) = max
1≤i≤k

χ(G[S +Hi])

8



From the induction hypothesis, each G[S+Hi] is perfect, since k > 1 implies that it has
fewer vertices than G. Hence, we have max

1≤i≤k
ω(G[S +Hi]) = max

1≤i≤k
χ(G[S +Hi]). Therefore,

G is a perfect graph.

Chordal graphs can be recognised in linear time [35, 21]. Given a graph, we first apply
the lexicographic breadth-first search algorithm given by Rose et al. [35], then check if the
ordering given by this algorithm is a perfect elimination ordering which can also be done
in linear time.

Chordal graph on n vertices has at most n maximal cliques [18]. All the maximal cliques
can be found using perfect elimination ordering. For every vertex v, find a clique containing
v and the vertices that occur after v in the ordering, then check if the clique is maximal.
Once all the maximal cliques are found, the maximum clique can be obtained from that.
Hence, finding a maximum clique is polynomial time solvable for chordal graphs. In the later
section, we will see that listing all maximal cliques of a chordal graph is used for recognizing
interval graphs.

2.1.3 Split Graphs

An undirected graph G is called a split graph if V (G) can be partitioned into two sets (C, I),
such that the vertices of C induce a clique and the vertices of I induce an independent set
in G. It is easy to observe that a graph G is a split graph if and only if Ḡ is a split graph,
because cliques and independent sets are complements of each other.

Theorem 2.1.5. For an undirected graph G, the following statements are equivalent.

1. G is a split graph.

2. G does not contain 2K2, C4, and C5 as induced subgraphs.

3. G and Ḡ are chordal graphs.

From this characterization, we conclude that all split graphs are chordal graphs. Because
the absence of an induced 2K2 implies that there are no induced cycles of length greater
than 6, and it does not have C4, C5 as induced subgraphs. Therefore, split graphs are chordal
and hence perfect.

Another characterization of split graphs is that a graph G is a split graph if and only
if both G and Ḡ are chordal. If G is a split graph then G and Ḡ are trivially chordal. Now
assume that G and Ḡ are chordal, in order to prove that G is a split graph we only have
to show that G does not contain a 2K2. If G contains an induced 2K2, then Ḡ will have an
induced C4 which is a contradiction.

9



Figure 2.1: Examples of asteroidal triples

2.1.4 Interval Graphs

Let F be a family of sets. The intersection graph of F is obtained by assigning a vertex for
each set of F and connecting two vertices by an edge if and only if the corresponding sets
intersect. An interval graph is an intersection graph of a family of intervals on a real line. In
other words, a graph G is called an interval graph, if its vertices can be associated by a closed
intervals on real line, so that two vertices u, v are adjacent if and only if their corresponding
intervals intersect. We will usually denote the interval associated with a vertex u by Iu. For
an interval Iu, we denote by l(u) and r(u) the left and right endpoints of the interval.

A subgraph of an interval graph is also an interval graph, and it is easy to see that
the interval representation of the vertices of a graph can also be used for the interval
representation of its subgraphs.

Theorem 2.1.6. Each interval graph is a chordal graph.

Proof. To prove that every interval graph is chordal, we show that for k ≥ 4, Ck is not an
interval graph. Consider that a Ck on vertices v1, v2, v3 . . . , vk has an interval representation.
Let Iv1 be the interval with the least right endpoint in the representation. The intervals Iv2

and Ivk
must not intersect, but both the intervals must intersect Iv1 . This cannot happen

unless one of them has the least right endpoint, which is a contradiction. Therefore, any
graph with an induced Ck is not an interval graph, and hence any interval graph does not
contain induced Ck, for k ≥ 4. Thus all interval graphs are chordal graphs.

An asteroidal triple is a set of three independent vertices of a graph such that there
exists a path connecting any two of these vertices which does not contain neighbours of the
third one. In Figure 2.1 we give three examples of asteroidal triple x, y, z. A graph without
an asteroidal triple is called an AT-free graph. If a graph contains an asteroidal triple,
then it cannot have an interval representation. This can be easily proved by considering an
asteroidal triple with independent vertices x, y, z and their interval representations Ix, Iy, Iz.
Without loss of generality, assume that Ix, Iy, Iz is the ordering of intervals on the real line
from left to right. The intervals of the vertices in the path connecting x, z must lie in between
Ix, Iz, this implies that there will be an interval intersecting Iy which is a contradiction that
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a b c d e 0 0 0 1 1
1 0 1 1 0
1 1 1 0 0


(a)



1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1


(b)

Figure 2.2: (a) Example of an interval graph and its corresponding clique matrix that has
the property of consecutive 1’s for the columns. (b) Clique matrix corresponding to the
hexagon graph which does not satisfy the property of consecutive 1’s for the columns.

it is an asteroidal triple. Lekkeikerker and Boland have also proved that any chordal graph
that is AT-free has an interval representation. Hence, we have the following characterization
for interval graphs.

Theorem 2.1.7 ([29]). An undirected graph G is an interval graph if and only if it is
chordal and AT-free.

Another characterization of interval graphs was given by Fulkerson and Gross [18].
All the maximal cliques of an interval graph G can be linearly ordered. For every vertex
v of G, the maximal cliques containing v occur consecutively. This characterization lead
to an interesting matrix formulation. A {0, 1} matrix M is said to have the property of
consecutive 1’s for the columns if its rows can be permuted such that 1’s in each column
occur consecutively. Let G be a graph on n vertices with m maximal cliques. The clique
matrix of G is a {0, 1}-matrix A, with m rows and n columns such that the entry Aij = 1
if the vertex vj is in the maximal clique ci and Aij = 0 otherwise. For example, refer to
the Figure 2.2 for constructing clique matrices of a graph. Booth and Lueker developed an
algorithm to test for the property of consecutive 1’s for the column in linear time [1].

Theorem 2.1.8 ([18]). An undirected graph G is an interval graph if and only its clique
matrix has the property of consecutive 1’s for the column.

One way to recognize an interval graph is to first check if it is chordal. If it is chordal, then
list all the maximal cliques and construct a clique matrix. Finally, check if the clique matrix
has the property of consecutive 1’s for the columns. There are many known algorithms to
recognize interval graphs in linear time [1, 6, 21].

For an interval graph G, a right end-point ordering is an ordering v1, v2, . . . , vn of its
vertices, such that r(vi) ≤ r(vi+1). Similarly, v1, v2, . . . , vn is a left end-point ordering if
l(vi) ≤ l(vi+1).

Let G be an interval graph. Let a, b, c be three ordered vertices from a right end-point
ordering of V (G), i.e., r(a) ≤ r(b) ≤ r(c). If ac ∈ E(G), then ab ∈ E(G). Because ac ∈ E(G)
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Figure 2.3: A claw

implies that r(c) ≤ l(a). Since r(b) ≤ r(c), we have r(a) ≤ r(b)ł(a). Therefore, ab is an edge.
This property of interval graphs is used in [40], to show that the list M -partition problem
when the input is restricted to interval graphs is polynomial time solvable.

2.1.5 Proper Interval Graphs

An interval graph is called a proper interval graph if there exits an interval representation
of G such that no interval is properly contained in another interval. Since every proper
interval graph is an interval graph, every proper interval graph must be AT-free. The graph
Ka,b is a complete bipartite graph with a partition V1, V2 such that |V1| = a and |V2| = b.
The graph K1,3 is called a claw. Refer to Figure 2.3

A claw is not a proper interval graph. Consider a claw with the vertex a being adjacent
to three independent vertices x, y, z. Let Ia, Ix, Iy, Iz be an interval representation of the
vertices. The intervals Ix, Iy must not intersect with each other but must intersect with the
interval Ia. Without loss of generality, assume that l(x) < l(a) < r(x) < l(y) < r(a) < r(y).
Since Iz must intersect with Ia but not with Ix and Iz we must have l(a) < r(x) < l(z) <
r(z) < l(y) < r(a) but this results in Iz being properly contained in Ia. Therefore, a proper
interval graph does not contain a claw. In [34], the authors have also shown that any interval
graph that is claw-free is a proper interval graph. Hence, we have the following theorem.

Theorem 2.1.9 ([34]). An interval graph is a proper interval graph if and only if it is a
claw-free graph.

Let u, v be two vertices of a proper interval graph G. Let Iu, Iv denote the intervals
corresponding to u, v in an interval representation of G. If r(u) ≤ r(v), then l(u) ≤ l(v).
Because if l(u) ≥ l(v), then the interval Iv is properly contained in the interval Iu, contra-
dicting that G is a proper interval graph. Therefore, for any proper interval graph, the right
end-point ordering and the left end-point ordering are same.

Corollary 2.1.9.1. Let G be any proper interval graph. In any proper interval representa-
tion of G, the right end-point ordering and the left end-point ordering of V (G) are same.

Another view of this fact is expressed in the following result from [30].
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Theorem 2.1.10 ([30]). A graph G is a proper interval graph if and only if there exists
an ordering of its vertices such that for any three ordered vertices a, b, c, if ac ∈ E(G), then
ab, bc ∈ E(G).

We will prove the easier part of the above theorem. Let G be a proper interval graph. Let
v1, v2, · · · vn be a right end-point ordering of V (G). Consider three ordered vertices a, b, c.
Assume that ac ∈ E(G), we will now show that ab, bc ∈ E(G). Because of the ordering,
we have r(a) ≤ r(b) ≤ r(c) and l(a) ≤ l(b) ≤ l(c). Since ac ∈ E(G), we have r(c) ≤ l(a).
Therefore, r(a) ≤ r(b) ≤ r(c) ≤ l(a) ≤ l(b) ≤ l(c). This implies that ab and bc are also
edges in G.

For a vertex v ∈ G, recall that N(v) denotes the set of neighbours of v in G. The closed
neighbourhood of v is the set N(v)∪{v}, and is denoted by N [v]. Two vertices u, v are said
to be equivalent if N [u] = N [v]. Each equivalence class of G is called a block in G. Observe
that each block is a homogeneous clique. Two blocks A, B are called neighbours if they are
completely adjacent. An ordering φ of the blocks in G is called a straight enumeration if for
any block B, its neighbours and B occur consecutively in φ.

Theorem 2.1.11 ([8]). A graph G is a proper interval graph if and only if G has a straight
enumeration.

There are many algorithms to recognize proper interval graphs in linear time [7, 8,
24, 30]. There are also many such algorithms to recognize interval graphs in linear time
[1, 6, 21].

2.2 Homomorphisms

In the introduction, we have seen the vertex coloring problem and introduced the matrix
partition problem as a generalization of it. In this section, we will be looking at graph ho-
momorphisms and some known results on graph homomorphisms. Graph homomorphisms
can be viewed as being in between vertex colorings and matrix partitions because homo-
morphisms generalize vertex colorings and matrix partitions generalize homomorphisms.

Definition 2.2.1. Let G and H be two simple graphs. A homomorphism of G to H is
defined as a mapping f : V (G) −→ V (H) such that, if the vertices u, v are adjacent in G,
then f(u), f(v) are adjacent in H.

We say that G is homomorphic to H or G is H-colorable, if there exists a homomorphism
of G to H.

Proposition 2.2.1. A homomorphism of G to Km is an m-coloring of G.

Let Sv be the set of vertices in G that are mapped to a vertex v ∈ H. If the vertex v
doesn’t have a self loop, then Sv must be stable. Therefore, if a graph G is homomorphic
to Km then it has at most m stable sets and hence m-colorable.
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Matrix partition of a graph generalizes graph homomorphisms

Let f : V (G) −→ V (H) be a homomorphism of a graph G to a graph H. Let v1, v2, . . . , vm

be the vertices of graph H. For any vi ∈ V (H), let Svi be the set of vertices f−1(vi) in
G. Homomorphism of G to H can be viewed as partitioning the vertices of G into sets
Sv1 , Sv2 , . . . , Svm such that, Svi is stable if vi doesn’t have a loop and if there is an edge
between the sets Svi , Svj in G, then vi, vj are adjacent in H.

For a fixed graph H, we denote the matrix MH as the matrix obtained by replacing 1’s
with ?’s from its adjacency matrix.

Proposition 2.2.2. An H-coloring of G is an MH-partition of G.

Conversely, let M be a {0, ?}-symmetric matrix with only 0’s on diagonal. The M -
partition of a graph G is equivalent to homomorphism to a graph H whose adjacency
matrix is obtained by replacing ?’s with 1’s inM . Hence, we can say that all theM -partition
problems whereM is a {0, ?}-matrix with only 0’s on the main diagonal are homomorphism
problems and vice versa.

The Pentagon Homomorphism Problem: The problem is to check if a graph G has a
homomorphism to a pentagon graph which is a cycle on 5 vertices v1, v2, v3, v4, v5. The
adjacency matrix of a pentagon graph and the matrix corresponding to the homomorphism
problem can be seen in Figure 2.4.

M =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


(a)

M ′ =


0 ? 0 0 ?
? 0 ? 0 0
0 ? 0 ? 0
0 0 ? 0 ?
? 0 0 ? 0


(b)

Figure 2.4: (a) Adjacency matrix corresponding to the pentagon graph. (b) Matrix partition
corresponding to the pentagon homomorphism obtained by replacing 1’s by ?’s

As with the matrix partition, in graph homomorphism, we are also interested, for a
graph H, in the following two problems:

1. can we deiced in polynomial time if an input graph G has homomorphism to H.

2. can H-colorable graphs be characterized by the absence of finitely many forbidden
induced subgraphs.

The complexity question for H-homomorphism problems was solved by Hell and Nešetřil
in [26] and is stated below.

Theorem 2.2.3 ([26]). If H is a bipartite graph, then H-homomorphism is polynomial time
solvable, else it is NP-complete.
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The above result is also known as the H-coloring dichotomy, we will not be getting into
the details of the proof here. For a shorter proof, refer to [37]. Let H be a simple graph with
at least one edge. If the H-homomorphism problem has finitely many minimal obstructions,
then it will be polynomial time solvable. However, because of Theorem 2.2.3 this would
mean P=NP. Hence, H-homomorphism problem for a non-bipartite graph is unlikely to be
characterized by the absence of finitely many minimal obstructions. We now formally prove
that it cannot be so characterized.

Proposition 2.2.4 ([27]). If there exists a homomorphism f : G −→ H, then χ(G) ≤ χ(H).

Proof. Let the chromatic number of H be k. This implies that there exists a homomorphism
h : H −→ Kk. Then h ◦ f is a homomorphism G to Kk. Therefore, G is k-colorable which
implies that χ(G) ≤ χ(H).

The girth of a graph G containing cycles is the minimum length of a cycle in G. Similarly,
the odd girth of a non-bipartite graph G is the minimum length of an odd cycle in G. We
have a similar result as Proposition 2.2.4 with the odd girth of the graph.

Proposition 2.2.5 ([27]). If there exists a homomorphism f : G −→ H, then odd girth(G) ≥
odd girth(H).

Let G and H be two graphs such that χ(G) ≥ χ(H) and odd girth(G) ≥ odd girth(H).
From Proposition 2.2.4 we know that G 6−→ H and from Proposition 2.2.5 we haveH 6−→ G.
The existence of graphs with high chromatic number and odd girth follows from the result
of Erdös.

Theorem 2.2.6 ([9]). For any positive integers k, ` there always exists a graph G with
chromatic number k, and with girth at least `.

Using these propositions and the theorem, we can solve the characterization problem
for the graph homomorphism problem.

Theorem 2.2.7 ([22]). If H is a graph with no edges then H-homomorphism problem has
finitely many minimal obstructions. Else, H-homomorphism problem has infinitely many
minimal obstructions.

Proof. If H has no edges then K2 is the only minimal obstruction for H-homomorphism
problem. Let H be a graph that has at least one edge. Assume that H-homomorphism
problem has finitely many minimal obstructions Gi, for 1 ≤ i ≤ n. Let ` be the largest girth
among these minimal obstructions and k be the chromatic number of H. From Theorem
2.2.6, there exists a graph G with chromatic number greater than k + 1 and girth greater
than `. From Proposition 2.2.4, we know that G 6−→ H. We now have to show that G
does not have any Gi as an induced subgraph. If Gi is an induced subgraph of G, then
girth(G) ≤ girth(Gi) ≤ ` which is a contradiction with Proposition 2.2.5. Hence, we have
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proved that H-homomorphism problem has infinitely many minimal obstructions if H has
edges.

2.3 Matrix Partitions

In this section, we will look at few known results for matrix partition problems. For a more
extensive survey on the matrix partition problems, refer to [23]. Recall that we only consider
{0, 1, ?}-symmetric matrix with no ? on diagonal because if there is a ? on the diagonal,
then all the vertices can be placed in that part. For the rest of the thesis, we will assume
that the matrix M has k rows with 0 on diagonal and ` rows with 1 on diagonal where
k+` = m. Also, when a graph G isM -partitionable, the parts are denoted by V1, V2, . . . , Vm.
Let M be a {0, 1, ?}-symmetric matrix with k diagonal 0′s and ` diagonal 1′s such that the
first k rows have 0′s on diagonal and next ` rows have 1′s on diagonal. Then M can be
represented by a (A,B,C)-block structure with A as the submatrix containing the rows
and the columns 1, 2, 3, . . . , k with 0′s on diagonal and, B as the submatrix containing the
rows and the columns k + 1, k + 2, . . . , k + ` with 1′s on diagonal and C as the submatrix
containing the rows 1, 2, . . . , k and the columns k + 1, k + 2, . . . , k + `.

M =
[
A C

CT B

]

The matrix obtained from M by replacing all the 0′s by 1 and all the 1′s by 0 is called the
complement of M and is denoted by M̄ . We have the following result.

Theorem 2.3.1. Let M be a {0, 1, ?}-symmetric matrix and M̄ be its complement. A graph
G is M -partitionable if and only if Ḡ is M̄ -partitionable.

As seen in the introduction, list M -partition problems have a list of parts associated
with each vertex. The goal is to find a partition where each vertex is placed in one of the
parts mentioned in its list. Observe that if a list M -partition problem can be solved in
polynomial time then the general M -partition problem can also be solved in polynomial
time, because we can assume that the list contains all the parts. On the other hand, if
a list M -partition problem is NP-complete, then we cannot conclude anything about the
M -partition problem without lists.

2.3.1 Matrix without ?′s

In Section 2.2, we have seen that homomorphism problems correspond to matrix partitions
without 1′s. From Theorem 2.3.1, we conclude that for any matrix without 0′s similar results
hold. We will now prove that the M -partition problems are all polynomial time solvable
when M does not contain ?′s.
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Theorem 2.3.2 ([12]). If a matrix M does not contain any asterisk entry, then there are
only finitely many minimal obstructions.

Proof. In order to prove that M has only finitely many minimal obstructions it is sufficient
to prove that the number of vertices in any minimal obstruction to M is upper bounded.
Let M be a {0, 1}-matrix with k-rows of 0 diagonal entries and ` rows of 1 diagonal entries;
without loss of generality we can assume that ` ≤ k because we can instead focus on
the complement of M . We will prove that any minimal obstruction to M has at most
2(k + 1)(k + `) + 1 vertices. Assume that there is a minimal obstruction G with more than
2(k + 1)(k + `) + 1 vertices. Let x be any vertex in G then G− x is M -partitionable. From
the pigeon hole principle, there exists at least one part S that contains more than 2(k + 1)
vertices in any partition of G−x. Since M has no ?′s, the set S is a homogeneous clique or
stable set in G − x i.e., the vertices of S have the same neighbours and non-neighbours in
G− x.

At least k + 2 vertices of S are either adjacent to x or non-adjacent to x. Let C be the
subset of vertices of at least k + 2 vertices in S that have the same adjacency with x i.e.,
C is a homogeneous set in G. We will consider the case of C being a stable set or a clique
separately.

First, lets assume that C is a clique. Let y be a vertex from C, we know that G − y is
M -partitionable. Note that the set C − y is a homogeneous set and has a cardinality of at
least k+ 1. Since any partition has only k independent parts, at least one vertex u of C − y
will belong to a clique in the partition. Since u, y belong to a homogeneous set in G, y can
also be placed in that part which is a contradiction that G is a minimal obstruction.

Now, lets assume that C is a homogeneous stable set in G. Let y be a vertex in C, then
G− y is M -partitionable and has at least k + 1 vertices that are independent. Since ` < k,
it implies that at least one vertex u from C − y will belong to an independent set in the
partition. Since C is a homogeneous set, y can be placed in that part, contradicting the
fact that G is a minimal obstruction. Hence, we have proved that any minimal obstruction
to M has at most 2(k + 1)(k + `) + 1 vertices. Therefore, M has finitely many minimal
obstructions.

A tighter bound for the maximum number of vertices in a minimal obstruction for
matrices without ? was obtained by Feder et al.

Theorem 2.3.3 ([12]). If M is a matrix without any asterisk entry, then all the minimal
obstructions to M have at most (k + 1)(` + 1) vertices. There are at most two minimal
obstructions with exactly (k + 1)(`+ 1) vertices.

A special case of matrices called friendly matrices were considered in [15]. A matrixM is
called unfriendly if M(i, i) = M(j, j) 6= ? and M(i, j) = M(j, i) = ?, for some i, j, and it is
called friendly otherwise. Note that from the block representation ofM ,M is called friendly
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if the block A and B does not contain a ?, and is unfriendly otherwise. The following two
theorems show the properties of friendly and unfriendly matrices.

Theorem 2.3.4 ([15]). If M is an unfriendly matrix, then the M -partition problem has
infinitely many minimal obstructions.

Theorem 2.3.5 ([15]). Assume that block C of a matrix M contains either only ?′s or no
?′s. Then the M -partition problem has finitely many minimal obstructions if and only if M
is a friendly matrix.

In their paper [15], Feder et al. have also shown that if M is a friendly matrix in which
neither the block A nor the block B has three identical rows then M -partition problem is
polynomial time solvable.

2.3.2 Small Matrices

In this section, we will discuss the matrices of size at most 5. It is easy to see that any
matrix of size 1 has exactly one minimal obstruction, either K2 or K̄2.

Matrices of size 2

If M is a matrix of size 2, then the M -partition problem is polynomial time solvable. To
prove this, we construct an equivalent instance of 2-SAT problem with polynomially many
clauses. For every v ∈ V (G), introduce a clause variable xv whose value corresponds to the
part it belongs to, i.e., if xv = 0 then v will be placed in V1 and if xv = 1 then v will be
placed in V2. Clauses are constructed as follows. For every uv ∈ E(G), ifM(1, 1) = 0 we add
the clause (xu ∨ xv), if M(2, 2) = 0 then add the clause (x̄u ∨ x̄v), and (xu ∨ x̄v)∧ (x̄u ∨ xv)
when M(1, 2) = 0. Similarly, for every non-edge uv /∈ E(G), we add the clause (xu ∨ xv) if
M(1, 1) = 1, (x̄u ∨ x̄v) if M(2, 2) = 1, and (xu ∨ x̄v) ∧ (x̄u ∨ xv) if M(1, 2) = 1. For every
edge or non-edge, we add at most 3 clauses. Therefore, the constructed 2-SAT problem has
at most polynomially many clauses. A 2-SAT problem is polynomial time solvable, hence
we can conclude that the M -partition problem of size 2 is polynomial time solvable.

Matrices of size m with 3 ≤ m ≤ 5

Recall that the matrices corresponding to the 3-coloring problem and its complement are
as follows

M =


0 ? ?

? 0 ?

? ? 0

 M̄ =


1 ? ?

? 1 ?

? ? 1

 .
Since the 3-coloring problem is NP-complete, we can conclude that theM -partition and the
M̄ -partition problems are NP-complete. We now prove that if a 4 × 4 matrix contains M
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as a principal submatrix, then it is NP-complete [10]. Let M ′ be a 4× 4 matrix containing
M as a principal submatrix.

M ′ =


0 ? ? x1

? 0 ? x2

? ? 0 x3

x1 x2 x3 x4


Let G be simple graph, and G′ be the union of two disjoint copies of G. It is easy to
observe that if G is 3-colorable, then G′ is M ′-partitionable. We will now prove that if G′

is M ′-partitionable then G is 3-colorable. First, let us assume that x4 = 1. Observe that
the vertices from different copies in G′ cannot be placed in part 4 of the partition. So, all
the vertices of one copy must be partitioned in the first three parts. Therefore, if G′ is
M ′-partitionable then G is 3-colorable. The same argument holds even if one of x1, x2, x3 is
equal to 1. Let us now consider the case when x4 = 0. If additionally any of x1, x2, x3 is 0,
say x1 = 0, then the vertices of V1 ∪V4 will form a stable set, and any vertex in V4 can also
be placed in V1 and hence parts V1 and V4 can be combined. In this case, the M ′-partition
is the same as the 3-coloring problem. If all of x1, x2, x3 are equal to ?, then it is equivalent
to 4-coloring problem. Therefore, G′ is M ′ partitionable if and only if G is 3-colorable and
this implies that the M ′-partition problem is NP-complete.

Feder et al. also proved that for a matrix of size at most 4 that does not contain M

or M̄ as principal submatrix, the partition problem is polynomial time solvable. Thus, we
have the following theorem.

Theorem 2.3.6 ([10]). Suppose M is a {0, 1, ?}-symmetric matrix of size at most four.
Then theM -partition problem is NP-complete if there is a principal submatrix corresponding
to 3-coloring or its complement, and is polynomial time solvable otherwise.

Recall that a matrix is called friendly, if the blocks A and B has ? entries, and unfriendly

otherwise. It is easy to observe that a matrix is unfriendly if it either has
[
0 ?

? 0

]
or

[
1 ?

? 1

]
as a diagonal submatrix. The authors of [16] have systematically examined all small friendly
matrices and verified the following fact.

Theorem 2.3.7 ([16]). Suppose M is a friendly matrix of size at most 5, then the M -
partition problem has finitely many minimal obstructions.

From the Theorem 2.3.4 and 2.3.7, we can deduce the full characterization of matrices
of size up to 5 as mentioned in the following corollary.

Corollary 2.3.7.1. For a matrix M of size at most 5, the M -partition problem has finitely
many minimal obstructions if and only if M is friendly.
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0 ? ?
? 1 ?
? ? 1



Figure 2.5: Matrix and the corresponding minimal perfect obstruction.

2.4 Matrix Partitions Restricted to Graph Classes

2.4.1 Perfect Graphs

In the previous sections, we have seen a few results for matrix partitions on general graphs.
The characterization problem was solved for small matrices, of size up to 5 [15]. In this
section, we will look at some results for the matrix partition problem when restricted to
perfect graphs. This problem was first considered in [11], where the authors have shown
that it is hard to classify the complexity of a matrix partition problem on perfect graphs.
Therefore, we will now look at characterizations.

Recall that a perfect graph is a graph with the clique number equal to the chromatic
number. Therefore, any perfect graph with clique number k is k-colorable, but not (k− 1)-
colorable. Hence, we have the following theorem.

Theorem 2.4.1. A perfect graph is k-colorable if and only if it does not have an induced
Kk+1.

The analogue of Theorem 2.3.1 holds also when restricted to perfect graphs, because
the complement of a perfect graph is also perfect. Let (A,B,C) be the block structure
representation of M . Let E(A) denote the set of off-diagonal entries in A, E(B) denote the
set of off-diagonal entries in B, and E(C) denote the set of entries in C. A subset of the
set {0, 1, ?} is called normal, if it is either subset of {0, 1} or {?}. A matrix M is called
a normal matrix, if the sets E(A), E(B), E(C) are all normal. The following theorems are
about finite minimal perfect obstructions to normal matrices.

Any matrix without a ? is a normal matrix. Theorem 2.3.3 states that, any minimal
obstruction to a normal matrix with E(A), E(B), E(C) subset of {0, 1} has at most (k +
1)(`+ 1) vertices. When we consider only perfect graphs, we can extend this result to other
cases of normal matrices.

Theorem 2.4.2 ([11]). Let M be a normal matrix with E(C) = {0} or {1}. Then any
minimal perfect obstruction to M has at most (k + 1)(`+ 1) vertices.

When E(C) = {?}, the size of a minimal perfect obstruction need not have the bound
given in the above theorem. For example, consider the matrix in Figure 2.5 from [11], where
(k+ 1)(`+ 1) = 6. There exists a minimal perfect obstruction with 7 vertices. Let us prove
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that the graph G in Figure 2.5 is a minimal obstruction. Since the size of the maximum
clique of G is 2, the parts 2, 3 can have at most two vertices each. This implies that part 1
must have at least 3 vertices. There are two maximal independent sets of size greater than 3
in G, namely the set {b, d, f, g} and the set {a, c, e}. So, even if we place any 3 independent
vertices in the 1st part, there will be at least three more independent vertices remaining that
cannot be partitioned to two cliques. If we remove any vertex from G, it is partitionable. A
tighter bound for the size of a minimal obstruction for this class of matrices is not known,
but an exponential bound is known. Note that an exponential bound is also sufficient to
prove that there are only finitely many minimal perfect obstructions.

Theorem 2.4.3 ([11]). Let M be a normal matrix with E(C) = {?}, and assume that
` ≤ k. Any minimal perfect obstruction to M has at most 2(k + 1)(2k`+1) vertices.

Theorem 2.4.4 ([11]). Let M be a normal matrix with E(C) = {0, 1}, and assume that
` ≤ k. Any minimal perfect obstruction to M has at most 2(2k + 1)(2k`+1) vertices.

2.4.2 Chordal Graphs

In this section, we will look at matrix partition problems restricted to the class of chordal
graphs. Recall that a graph G is called chordal, if it does not have any induced cycle of
length ≥ 4. The complement of a chordal graph is not necessarily a chordal graph, and
therefore, the analogue of Theorem 2.3.1 does not hold. Since chordal graphs are perfect
graphs, the results mentioned in the section 2.4.1 also holds true for chordal graphs.

For a 0-diagonal matrix with all off-diagonal entries ?, there is only one chordal minimal
obstruction, namely Kk+1. Any 1-diagonal matrix with all off-diagonal entries ?, has only
one minimal chordal obstruction, namely K̄`+1. Hell et al [25], showed that there is only
one chordal minimal obstruction for partitioning a graph into k cliques and ` independent
sets. This problem corresponds to a matrix partition problem with k 0-diagonal entries, `
1-diagonal entries and all the off-diagonal entries ?.

Theorem 2.4.5 ([25]). A chordal graph can be partitioned into k independent sets and `
cliques, if and only if it does not contain (`+ 1)Kk+1.

Partitioning into k independent sets and ` cliques is known to be NP-complete for general
graphs unless k ≤ 2 and ` ≤ 2 [3]. However, for a chordal graph, such a partition can be
found in linear time using the perfect elimination ordering [25]. We call a matrix 0-diagonal
if every entry on the main diagonal is equal to 0. Similarly, we call a matrix 1-diagonal if
every entry on the main diagonal is equal to 1.

Theorem 2.4.6 ([13]). Assume that M is either a 0-diagonal or a 1-diagonal matrix. Then
the list M -partition problem is polynomial time solvable for chordal graphs. Moreover, if the
matrix M is 0-diagonal, then the list M -partition problem can be solved in linear time.
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Figure 2.6: Family of minimal chordal obstructions for M1 and M2

We will now look at a class of matrices known as crossed matrices. A matrix C is called
crossed, if each non-? entry of C belongs to row or a column without ?. In all the normal
matrices, the block C either contains only ? or no ?. Therefore, all normal matrices are
crossed.

From Theorem 2.3.6, we know that 3-coloring and its complement are NP-complete.
Since they are polynomial time solvable in the case of chordal graphs, for any matrix of
size at most 4, the M -partition problem is polynomial time solvable for chordal graphs.
Classifying the complexity ofM -partition problems for larger matrices, even when restricted
to the class of chordal graphs, is hard. However, we have the following theorem when we
consider crossed matrices.

Theorem 2.4.7 ([13]). Let M be a matrix in which the block C is crossed. Then the list
M -partition problem can be solved in polynomial time for chordal graphs.

We will now look at the minimal chordal obstructions for the matrix partition problem.
Minimal chordal obstructions for small matrices were first handled in [33], where the au-
thors have shown that even for small matrices there are infinitely many minimal chordal
obstructions.

Theorem 2.4.8 ([14]). Let M be a matrix of size m < 4. Then M has finitely many
minimal chordal obstructions except for the following two matrices.

M1 =


0 ∗ ∗
∗ 0 1
∗ 1 0

 M2 =


0 ∗ ∗
∗ 0 1
∗ 1 1


Figure 2.6, from [14], depicts an infinite family of minimal chordal obstructions to M1

and M2. In order to prove that the remaining 3 × 3 matrices have finitely many minimal
chordal obstructions, the authors used the technique of finding finitely many labeled minimal
obstructions. We will briefly show the technique of using labeled minimal obstructions.
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Figure 2.7: The labeled minimal chordal obstructions for M3

Theorem 2.4.9 ([14]). The matrix M3 =


1 0 ∗
0 1 0
∗ 0 1

 has finitely many minimal chordal

obstructions.

Proof. LetG be a chordal graph with independence number α. If α = 2,G can be partitioned
using the first and the third parts V1, V3. Since K̄4 is a minimal obstruction, any graph with
α ≥ 4, is not partitionable. This leaves us the case when α = 3.

Let v1, v2, v3 be a fixed set of independent vertices in G. We place the vertices v1, v2, v3

in the parts V1, V2, and V3 respectively, and show that there are finitely many minimal
chordal obstructions. These obstructions are called labeled minimal obstructions. For M3,
the labelled minimal chordal obstructions are shown in Figure 2.7. If each labelled minimal
obstruction has at most N vertices, then any minimal obstruction can only have at most 6N
vertices. The vertices v1, v2, v3 can be placed in three parts in 6 ways bijectively, so for each
such labelling, there can only be N vertices preventing them to be partitioned. Therefore,
each minimal obstruction can have at most 6N vertices.

By assuming that the vertices v1, v2, v3 are placed in V1, V2, V3 respectively, we obtain
a bound for N . Let S(v1) denote the set of vertices that are adjacent only to the vertex
v1, and the sets S(v2), S(v3) denotes the set of vertices adjacent only to vertex v2 and v3

respectively. The set S(v1, v2) denotes the set of vertices adjacent to both v1, v2, but not
v3. The sets S(v2, v3) and S(v1, v3) are also defined in the similar fashion. Finally, the set
S(v1, v2, v3), denotes the set of vertices adjacent to all the three vertices.

Assume that the graph G does not have the three labelled minimal obstructions shown
in Figure 2.7. It is easy to see that S(v1, v2, v3) = ∅, because of the first obstruction. Due
to the second obstruction, we have S(v1, v2) = ∅ and S(v2, v3) = ∅. Since G is a chordal
graph, there will be no induced cycle of length ≥ 4. This implies that the vertices of the set
S(v1, v3) must induce a clique. Since we also assumed that the independence number of G
is 3, the vertices of the sets S(v1), S(v2), S(v3) must induce a clique.

Due to the third minimal obstruction, we can claim that every vertex of S(v1, v3) is
either adjacent to all the vertices of S(v1) or adjacent to all the vertices of S(v3). Let X be
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the set of vertices of S(v1, v3), that are adjacent to every vertex of S(v1), and Y be set of
vertices of S(v1, v3), that are adjacent to every vertex of S(v3). Then the graph G can be
partitioned with V1 = S(v1) ∪ X, V2 = S(v2) and V3 = S(v3) ∪ Y. Hence, we proved that
M3 has finitely many labeled minimal chordal obstructions, which in turn proves that there
are finitely many minimal chordal obstructions.

2.4.3 Split Graphs

Recall that a graph G is called a split graph, if its vertices can be partitioned into two
sets (C, I) such that C induces a clique and I induces an independent set. Matrix partition
problem restricted to split graphs is considered in [36]. The authors showed that for any
matrix M there are only finitely many minimal split obstructions. It is interesting to note
that even for a matrix of size 3, there are infinitely many minimal chordal obstructions, but
for any matrix M there are only finitely many minimal split obstructions. Let (A,B,C)

be the block structure of M , if C has a ? entry then the matrix M will have
[
0 ?

? 1

]
as a

principle submatrix. Hence, any split graph will be partitionable. In the remaining of this
section, we will assume that C has no asterisk entry. If C has no ?, then it is a crossed
matrix, therefore from Theorem 2.4.7, the M -partition problem is polynomial time solvable
for split graphs. We will now look at some results concerning the finiteness of the set of
minimal split obstructions.

Theorem 2.4.10 ([36]). LetM be a 0-diagonal matrix of size k. Let G be anyM -partitionable
split graph. Then in any part P in the M -partition of G, there exists a homogeneous set of
size at least |P |−1

2k−1 .

Proof. Let (C, I) be a split partition of G, where C induces a clique and I an independent
set. Let P1, P2, . . . , Pk be an M -partition of G. Since each Pi is an independent set, we have
|Pi∩C| ≤ 1. Lets assume that |Pi∩C| = 1 and Pi∩C = {ui}. Note that, P1∩I = P1−{u1}.
The vertices of P1−{u1} are non-adjacent to all but these k−1 vertices, u2, u3, . . . , uk. For
2 ≤ i ≤ k, ui is either adjacent to at least |P1|−1

2 vertices or non-adjacent to at least |P1|−1
2 .

So, we have a homogeneous set of size at least |P1|−1
2k−1 in the part P1. The same argument

can be applied to any other part, hence we proved that every part has a homogeneous set
of size at least |P |−1

2k−1 .

The complement of a split graph is also a split graph, therefore we have the same result
for 1-diagonal matrices.

Corollary 2.4.10.1 ([36]). Let M be a 1-diagonal matrix of size `. Let G be any M -
partitionable split graph. Then for any part P in the M -partition of G, there exists a ho-
mogeneous set of size at least |P |−1

2`−1 .
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Theorem 2.4.11 ([36]). Let M be a matrix with k ≥ `, where k is the number of 0’s on
the diagonal and ` is the number of 1’s on the diagonal. Any minimal split obstruction to
M has at most 2k−1(k + `)(2k + 3) + 1 vertices.

Proof. Let (A,B,C) be the block structure of M . Assume that G is a minimal split ob-
struction to M with at least 2k−1(k+ `)(2k+ 3) + 2 vertices. For any vertex v ∈ G, G− v is
M -partitionable. Since there are k+` parts, there exists a part P with at least 2k−1(2k+3)+1
vertices in the M -partition of G− v. The block C does not have any asterisk entry, so from
the above theorem and corollary, we know that there exists a homogeneous set of G− v in
P with at least |P |−1

2k−1 = 2k + 3 vertices. The vertex v will have the same adjacency with at
least k+ 2 vertices of P i.e., there will be a homogeneous set of size at least k+ 2 in G, say
H. The part P can either induce a clique or an independent set, so H will either be a clique
or an independent set. Let w be a vertex in H, lets now consider the partition of G− w.

Case 1: First, assume that H induces a clique. In any M -partition of G−w, at least one
vertex, say u, of H − w must be part of a clique, because k + 1 ≥ `. Since u,w belong to a
homogeneous set and are adjacent to each other, w can also be placed in the same part as
u, contradicting the fact that G is a minimal obstruction.

Case 2: Now assume that H induces an independent set. In any M -partition of G − w
at least one vertex, say u, of H − w must be part of an independent set. Since u,w belong
to a homogeneous set and are non-adjacent to each other, w can also be placed in the same
part as u, contradicting the fact that G is a minimal obstruction.

2.4.4 The Complexity Problem for Geometric Graph Classes

List M -partition problems restricted to various graph classes like interval graphs, circular
arc graphs that represent geometric structures were studied in [40]. Interesting techniques
were developed by exploiting the geometric structure of these graph classes. In this section,
we will solve the complexity problem for proper interval graphs by adopting the algorithm
from [40] for interval graphs, but presenting a simplified correctness proof for proper interval
graphs. We denote the index set {1, 2, 3 . . . ,m} by [m], and the set of all subsets of [m] by
2[m].

Recall that an instance I = (G,L) of a list M -partition problem includes a graph G,
and a list function L of V (G). Let m be the size of M . An M -partition f of G is a valid
solution for I, if for every v ∈ V (G), f(v) ∈ L(v). For a set D ⊆ V (G), (G[D], L) denotes a
sub-instance induced by the vertices of D, with the same lists. If a vertex v is placed in the
part i, we say that the color i is assigned to v. Let f be a solution of listM -partition problem
for the sub-instance (G[D], L)(when no matrix is mentioned, we assume that the solution
f of (G[D], L), is for the list M -partition problem). If c is the color assigned to a vertex
v ∈ D by f , then any neighbour of v must be assigned a color i such thatM(c, i) 6= 0, where
M(c, i) is the entry in row c and column i of the matrix M . Similarly, any non-neighbour
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of v must be assigned a color i such that M(c, i) 6= 1. A color i assigned to u conflicts with
f(v) if M(i, f(v)) = 0, when uv is an edge or M(i, f(v)) = 1, when uv is not an edge. In
order to find a solution for (G,L), we first find all possible solutions for certain sub-instances
(G[D], L) and extend it to (G,L).

To make sure that we store the necessary information to extend a solution f of (G[D], L)
to (G,L), we introduce a pair of functions P f

D, P̄
f
D : V (G)−D −→ 2[m].

• P f
D(v) = {f(u) : u ∈ D and uv ∈ E(G)}, i.e., P f

D(v) stores the set of colors assigned
to the neighbours of v in D by f .

• P̄ f
D(v) = {f(u) : u ∈ D and uv /∈ E(G)}, i.e.,P̄ f

D(v) stores the set of colors assigned
to the non-neighbours of v in D by f .

The pair P = (P f
D, P̄

f
D), is called the profile corresponding to the M -partition f of G[D].

Note that for every vertex in V (G) −D, the profile stores all the colors that would cause
a conflict with some f(u), where u ∈ D. We say that a color c assigned to a vertex v ∈
V (G) − D conforms with the profile P , if for every i ∈ P f

D(v), M(c, i) 6= 0 and for every
i ∈ P̄ f

D(v), M(c, i) 6= 1.
Let v1, v2, . . . , vn be an ordering of V (G), the set Di denotes the set of first i vertices in

the ordering.

Theorem 2.4.12 ([40]). Let I = (G,L) be any instance of list M -partition problem. Given
an ordering v1, v2, . . . , vn of V (G), let ni denote the total number of profiles of the solutions
of (G(Di), L) for the list M -partition problem. Then there exists an algorithm to solve the
list M -partition problem for I in O(n ·∑n

i=0 n
2
i ) time.

Proof. Let P̃i denote the set of all profiles for (G[Di], L). Note that, when i = 0, D is
empty, and hence P̃0 has only an empty profile. When i = 1, all the possible solutions for
(G[D1], L) are all the colors present in the list L(v1). For every solution f of (G[D1], L),
the corresponding profile can be constructed trivially. We will now show how to construct
the set of profiles P̃i+1 from P̃i. First consider a profile Pf = (P f

Di
, P̄ f

Di
) corresponding to a

partition f of (G[Di], L) that is present in P̃i.

1. For c ∈ L(vi+1), check if assigning c to vi+1 conforms with the profile Pf . Checking
if a color conforms or not can be done in O(1) time and there are O(1) choices for
selecting a color. If there is no color in the list L(vi+1) that conforms with Pf , then
we drop that profile. For every color c that conforms with Pf , perform the following
step.

2. Let f ′ denote the solution obtained for (G[Di+1], L) by assigning c to vi+1. Construct
the profile Pf ′ from the profile Pf = (P f

Di
, P̄ f

Di
) as follows. Add the color c to P f

Di
(v)

if vi+1 is adjacent to v, and to P̄ f
Di

(v) if it is non-adjacent to v. Once the profile is
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constructed, check if it is already present in the set P̃i+1 and add it. Comparing two
profiles can be done in O(n) time. Since the total number of profiles already present
in P̃i+1 is at most ni+1, the time to check if a profile is already present can be done
in O(n · ni+1).

To construct P̃i+1, iterate the above steps for every profile in P̃i. The total number of profiles
in P̃i is ni. Therefore, iterating over all the profiles would take O(n ·ni+1 ·ni) time. To find
the solution for I, we have to repeat the above process till we construct P̃n. For 0 < i < n,
if any of P̃i = ∅, then it implies that there is no solution for I. If P̃n−1 is non-empty, it
implies that there is a solution f for (G[Dn−1], L). From f , it is trivial to check if there a
color in the list L(vn) that conforms with the corresponding profile. If such a color exists,
then it will be a solution of I as there are no other vertices remaining to be colored.

To obtain a solution for I, we can keep track of the colors assigned to every vertex while
constructing the profiles. Since we are repeating the above process till Dn, it would take
O(n ·∑n

i=0 n
2
i ) time.

In order to prove that the list M -partition problem is polynomial time solvable, it is
sufficient to prove that there are only polynomially many profiles for each Di.

A sequence of sets S1, S2, . . . , Sn is called an inclusive sequence, if S1 ⊆ S2 . . . ,⊆ Sn. If
each Si ⊆ [m], then the total number of different inclusive sequences is upper bounded by
(n+1)m. This can be easily checked by defining a function f : {1, 2 . . . ,m} −→ {1, 2, . . . , n+
1}, such that f(c) is the smallest index i for which c ∈ Si. If c does not appear in any set,
then f(c) is set to n+ 1. For each c ∈ [m], there are n+ 1 choices for f(c). Therefore, the
total number of inclusive sequences is at most (n+ 1)m.

We show that for any proper interval graph G, there exists an ordering of its vertices
such that there are only polynomially many profiles for each Di.

Theorem 2.4.13. Let I = (G,L) be any instance of a list M -partition problem, where G is
a proper interval graph. Then there exists an ordering of V (G) such that the total number
of profiles for any Di is at most n2m.

Proof. Let v1, v2, . . . , vn be a proper interval ordering of G. From Theorem 2.1.10, if a vertex
vj is adjacent to vi, then vi must also be adjacent to all the vertices that are present between
vi and vj of the ordering, i.e., if i < j then vi is adjacent to vi+1, vi+2, . . . , vj−1. This implies
that N(vn) ∩Di ⊆ N(vn−1) ∩Di ⊆ · · ·N(vi+1) ∩Di. Refer to Figure 2.8.

Now, consider anM -partition f of Di. Recall that P f
Di

(v) is the set of colors assigned to
the neighbours of v in Di. Therefore, we have P f

Di
(vn) ⊆ P f

Di
(vn−1) ⊆ · · ·P f

Di
(vi+1), which

is an inclusive sequence. Each set P f
Di

(wi) is a subset of [m], so the total number of such
inclusive sequences is at most (n− i+ 1)m. This implies that the total number of possible
functions for P f

Di
is at most (n − i + 1)m. Similarly, we can argue that the total number

of possible functions for P̄ f
Di

is at most (n − i + 1)m. Hence, the total number of profiles
P = (P f

Di
, P̄ f

Di
) is at most (n− i+ 1)2m.
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Figure 2.8: Explanation for inclusive sequence for P f
Di

and P̄ f
Di

Corollary 2.4.13.1 ([40]). For any M , the restriction of the M -partition problem to in-
stances (G,L) where G is a proper interval graph, can be solved in polynomial time.

Proof. From Theorem 2.4.13, we know that there exists an ordering of V (G) such that the
number of profiles for each Di is bounded by n2m. From Theorem 2.4.12, we can conclude
that the list M -partition for interval graphs can be solved in O(n ·∑n

i=0((n− i+ 1)2m)2) =
O(n4m+1) time.

The proof of Theorem 2.4.13 can be generalized to more graph classes by defining the
following. For a graph G, an ordering v1, v2, . . . , vn of V (G) is called a t-bounding ordering,
if for any 1 ≤ i ≤ n, the set V (G)−Di can be partitioned into at most t parts, such that for
any two vertices u, v from the same part we must have one of N(u)∩Di, N(v)∩Di to be the
subset of the other, i.e., for all vertices w from the same part the sets N(w)∩Di must form
an inclusive sequence. Observe that, proper interval graphs have a 1-bounding ordering as
seen in the proof of Theorem 2.4.13. The following theorem states that t-bounding ordering
is a sufficient condition to have polynomially many profiles for each Di.

Theorem 2.4.14 ([40]). Let (G,L) be any instance of listM -partition problem. If G admits
a t-bounding ordering, then the number of profiles for each Di is at most n2mt.

In [40], it was shown that various graph classes admit a t-bounding ordering, which can
be found in polynomial time. For example, permutation graphs have a 1-bounding ordering,
and circular arc graphs have a 2-bounding ordering.
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Chapter 3

Minimal PI Obstructions for 3× 3
Matrices

Recall that a graph G is called a proper interval graph, if G is an interval graph such that
in some interval representation of G, no interval is properly contained in any other interval.
There exists an ordering v1, v2, . . . , vn of vertices of a proper interval graph G, such that if
vi, vj are adjacent, then all the vertices that appear between vi, vj in the ordering are also
adjacent to each other.

In this chapter, we will prove that all matrices of size 3 have only finitely many minimal
proper interval obstructions (minimal PI obstructions). In Section 2.4.2, Theorem 2.4.8,
states that there are only finitely many minimal chordal obstructions for any matrix of size
3 except for the following two matrices.

M1 =


0 ∗ ∗
∗ 0 1
∗ 1 0

 M2 =


0 ∗ ∗
∗ 0 1
∗ 1 1


Every proper interval graph is a chordal graph. Therefore, to prove that all matrices of size
3 have finitely many minimal PI obstructions, it is sufficient to prove that M1 and M2 have
finitely many minimal PI obstructions.

3.1 Minimal Obstructions to M1

Before showing that M1 has only finitely many minimal PI obstructions, we prove an inter-
esting result which states that any proper interval graph that is M1-partitionable cannot
have more than 9 vertices. We note that bipartite graphs of any size are M2-partitionable.

Proposition 3.1.1. Let G be any connected proper interval graph that is not bipartite. If
G is M1-partitionable then G has at most 9 vertices.

Proof. Let V1, V2, V3 be an M1-partition of G. Since G is not bipartite, it must contain a
C3, because a proper interval graph cannot have any cycle of length ≥ 4. Thus, the parts
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V1, V2, V3 will have at least one vertex each. The graph induced by the vertices of parts
V2, V3 must be a complete bipartite graph. Hence, at least one of the parts must contain
only one vertex, else G will have an induced C4, contradicting that G is an interval graph.
Without loss of generality, assume that V3 has only one vertex. Observe that V2 can have
at most two vertices, else there will be an induced claw. So V2 ∪ V3 can have at most 3
vertices. Each vertex of V2, or V3 can have at most two neighbours in V1. Therefore, the
total number of vertices in G is at most 9.

Figure 3.1: Minimal PI obstructions to M1.

Note that Proposition 3.1.1 implies that all minimal PI obstructions for M1 have fewer
than 10 vertices, and hence there are only finitely many. We now explicitly describe these
obstructions: they are depicted in Figure 3.1.

Theorem 3.1.2. The matrix M1 has 5 minimal PI obstructions, shown in Figure 3.1.

Proof. All the minimal PI obstructions to M1 are shown in Figure 3.1. Consider a proper
interval graph G. If G has no C3, then G is a bipartite graph, and hence can be partitioned
into parts V1 and V2. Thus, assume that G has at least one C3 induced by the vertices
a, b, c. Considering that G does not have any minimal obstruction shown in Figure 3.1, we
will find an M1-partition of G. Now consider the following sets

• Let W be the set of vertices that are not adjacent with any of a, b, c. The set W must
be an independent set, else an edge in W along with a, b, c will induce a minimal
obstruction shown in Figure 3.1(b).
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(a) The sets X,Y are non
empty, corresponds to Case 1

(b) The set X is non-empty,
then A can be non-empty one
of B or C can be non-empty.

(c) The sets A,B are non-
empty.

Figure 3.2

• Let A be the set of vertices that are adjacent to a but not with b and c. The vertices
of A must induce a clique, because if there are two vertices u, v in A that are not
adjacent, then u, v, b, a will induce a claw.

• Let B be the set of vertices that are adjacent to b but not with a and c. The vertices
of B must induce a clique, else there will be an induced claw.

• Let C be the set of vertices that are adjacent to c but not with b and a. The vertices
of C must induce a clique, else there will be an induced claw.

• Let X be the set of vertices that are adjacent to b and c but not with a. The vertices
of X must induce a clique, else there will be an induced claw. Moreover, if X has two
vertices then G will have an induced K4 which is a minimal obstruction. Thus, X
cannot have more than one vertex.

• Let Y be the set of vertices that are adjacent to a and c but not with b. The set Y
cannot have more than one vertex.

• Let Z be the set of vertices that are adjacent to b and a but not with c. The set Z
cannot have more than one vertex.

• Let S be the set of vertices that are adjacent to a, b, and c. The set S must be empty,
else there will be an induced K4.

We consider various cases based on the cardinality of X,Y, Z. The sets X,Y, Z cannot
be all non-empty, because it will form an asteroidal triple contradicting the fact that G is a
proper interval graph. In Case 1, we assume that exactly two of X,Y, Z are non-empty, in
Case 2, we assume that exactly one of X,Y, Z is non-empty, and in Case 3 we assume that
all the sets X,Y, Z are empty.
Case 1: Exactly two of X,Y, Z are non-empty.

Without loss of generality, assume that X and Y are non-empty. Let x be a vertex in
X and y be a vertex in Y . Consider the set A which has vertices that are adjacent to a but
not b or c. Let a1 be a vertex in A. Then a1 must be adjacent to y else the vertices a, y, b, a1
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induces a claw. If a1, y are adjacent then the graph induced by the vertices a, b, c, x, y, a1 is
same as the minimal obstruction in 3.1(e). This implies that the set A must be empty. Due
to symmetry, the set B must also be empty. Finally, assume that the set C is non-empty.
Let c1 be a vertex C. If c1 is not adjacent to x or y, then G will have the claws c, c1, x, a and
c, c1, y, b respectively, but if c1 is adjacent to x andy, then G will have the cycle c1, x, b, a, y.
Thus, the sets A, B, and C are all empty.

Now consider the set W which contains the vertices that are not adjacent to any of
a, b, c. A vertex from W cannot be adjacent to both x and y at the same time, because
it will induce a cycle with the vertices y, a, b, x. If there are two vertices in W such that
one vertex is adjacent to x and the other with y then G will have the minimal obstruction
shown in Figure 3.1(d). Therefore, all the vertices of W are adjacent to either x or y but
not both. Without loss of generality, assume that the vertices of W are adjacent to x.

In this case, G is M1-partitionable with V1 = W ∪ {b, y}, V2 = {x, a}, V3 = {c}.

Case 2: Exactly one of X,Y, Z is non-empty.
Without loss of generality, assume that X is non-empty. Let x be a vertex in X. Any

vertex of B must be adjacent with x, else it will form a claw with the vertices b, a, x.
Similarly, any vertex from C must also be adjacent with x, else it will form a claw with the
vertices c, a, x. If both B and C are non-empty, say b1 ∈ B and c1 ∈ C, then it will result in
an asteroidal triple a, b1, c1. Without loss of generality, assume that only C is non-empty.
Since C ∪X induces a clique, C has only one vertex. Recall that the set A induces a clique.
If a vertex in A is either adjacent to x or c1 then G will have an induced C4. Moreover,
if A has more than one vertex then the edge in A along with the triangle c, x, c1 will be a
minimal obstruction. This implies that A can only have one vertex.

Observe again that W must be an independent set. No vertex in W can be adjacent to
a1 and c1 as it will result in a cycle of length greater than 4. No vertex inW can be adjacent
only with a1, because it will result in the minimal obstruction with the triangle c, x, c1. No
vertex in W can be adjacent only with c1 because it will result in the minimal obstruction
shown in Figure 3.1(d). Finally, no vertex in W can be adjacent only with x because it will
result in an asteroidal triple. Now we can give a partition of G.

In this case, G isM1-partitionable with V1 = W ∪{b, a1, c1}, V2 = {a, x} and V3 = {c}. If
C is empty the the vertices ofW can be adjacent with x in which case G isM1-partitionable
with V1 = W ∪ {b, a1}, V2 = {a, x} and V3 = {c}

Case 3: All the sets X,Y, Z are empty.
Observe that the sets A,B,C cannot be all non-empty, else the graph G will have an

asteroidal triple. Recall that these sets induce cliques, therefore, the cardinality of these
sets is at most 2. Now, lets consider the following subcases
Case 3a: Exactly two of A,B,C are non-empty.
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Without loss of generality, assume that A and B are non-empty. Recall that the sets A
and B induce cliques. Vertices of A cannot be adjacent with any vertex from B as it will
induce a C4. Both A and B cannot have more than one vertex at the same time because if
a1, a2 are the vertices in A and b1, b2 are the vertices in B. The edge b1, b2 along with triangle
a, a1, a2 induce a minimal obstruction, and the edge a1, a2 along with the triangle b, b1, b2

also induce a minimal obstruction. Thus, only one of A,B can have more than one vertex.
Without loss of generality, assume that B has one vertex, b1. Observe that the vertices of
W cannot be adjacent with b1 and with some vertex in A at the same time, because it will
result in a C4. If there is a vertex in W that is adjacent to b1 it will induce an minimal
obstruction along with the triangle a, a1, a2. The vertices of W cannot be adjacent with
both a1 and a2 at the same time because then G will again have a minimal obstruction with
the edge bc. Therefore, all vertices of W can only be adjacent with one vertex in A, let that
vertex be a1.

In this case, G is M1-partitionable with V1 = W ∪{b1, c, a2}, V2 = {a1, b} and V3 = {a}.
Case 3b: Exactly one of A,B,C is non-empty.

Without loss of generality, assume that A is non-empty and let a1, a2 be the vertices in
A. The vertices of W cannot be adjacent with both a1 and a2 at the same time, because
if there is such a vertex u ∈ W , then the triangle a1, a2, u and the edge b, c will result in
a minimal obstruction. Therefore,any vertex from W can only be adjacent with one vertex
in A, let that vertex be a1. In this case, G is M1-partitionable with V1 = W ∪ {c, a2},
V2 = {a1, b} and V3 = {a}.
Case 3c: All the sets A,B,C are empty. In this case, G is not a connected graph and
it has a independent set W and a triangle(a, b, c). Thus, G is M1-partitionable with the
vertices of W in V1 and the vertices a, b, c in three different parts.

3.2 Minimal Obstructions to M2

For any graph G, the size of a maximum clique is called the clique number, and is denoted
by ω. Recall the matrix

M2 =


0 ∗ ∗
∗ 0 1
∗ 1 1

 .
Proposition 3.2.1. Let G be any connected proper interval graph that is M2-partitionable.
If G has more than ω + 5 vertices, then it is either a split graph or a bipartite graph.

Proof. Assume that G is a proper interval graph that is not a bipartite or a split graph.
Assume that G is M2-partitionable; we will show that it cannot have more than ω + 5
vertices. Let V1, V2, V3 be an M2-partition of G. The sets V1, V2, V3 will be non-empty. Note
that the parts V1 and V2 are independent sets and the part V3 a clique, and the sets V2, V3

are completely adjacent.
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The set V2 cannot have more than two vertices, because if it has three or more vertices,
then these vertices will induce a claw with some vertex from V3. Furthermore, if V2 has
exactly one vertex, then that vertex can be placed in V3. This implies that G is a split
graph, contradicting our assumption. Therefore, in the M2-partition of G, the set V2 will
have exactly two vertices, say u, v.

We can now prove a bound on the number of vertices in V1. The set V1 cannot have
vertices that are adjacent to some vertex in V3 but not adjacent to u or v, as this will
result in a claw. The vertices u, v can have at most two neighbours each in V1, else a claw
is present. Therefore, V1 can have at most 4 vertices.

The vertices in V3 along with one vertex, say v in V2, induces a clique. The set V2 has
another vertex u, and V1 has at most 4 vertices. Therefore, G has at most ω+5 vertices.

Theorem 3.2.2. The matrix M2 has three minimal PI obstructions, depicted in Figure
3.1(b), (c), (d).

Proof. Assume that G is a proper interval graph without any of these minimal obstructions.
If G is a split graph, then it can be partitioned into parts 1 and 3. If it is a bipartite graph,
then it can be partitioned into parts 1 and 2. So consider that G is neither a split graph
nor a bipartite graph.

First, consider that G is connected. Let v1, v2, . . . , vk be a maximum clique in G. In
any proper interval ordering, the vertices of a maximum clique must occur contiguously.
Without loss of generality, assume that in any proper interval ordering, v1, v2, . . . , vk is the
order in which they appear, and we denote it by C. Since G is not a bipartite graph it must
have a C3, therefore, k ≥ 3. Recall that in any proper interval ordering, if a vertex u is
adjacent to v, then u is also adjacent to every vertex that is present between u and v in the
ordering.
Case 1: Four or more vertices cannot occur before or after C
Let a, b, c, d, v1 . . . , vk be a proper interval ordering of G. The vertex b cannot be adjacent
with the vertices vk−2, vk−1, vk, else the size of the maximum clique will be greater than k.
This implies that the edge ab and the triangle vk−2, vk−1, vk induces a minimal obstruction
shown in Figure 3.1(b). We can argue the same for vertices that occur after C. Therefore, it
is not possible to have four or more vertices either before or after the vertices of a maximum
clique in the ordering.
Case 2: Three vertices before C and two vertices after C cannot occur
Let an ordering of the vertices be a, b, c, v1, v2, . . . , vk, d, e. The vertex b must be adjacent
to the vertex vk−2, else the edge ab and the triangle vk−2, vk−1, vk induces a minimal ob-
struction. Now, observe that the triangle b, c, v1 and the edge de will induce a minimal
obstruction, because v1 cannot be adjacent to d. Therefore, this case cannot occur.

Proposition 3.2.1 states that any M2-partitionable proper interval graph that is neither
a split nor a bipartite graph cannot have more than k+ 5 vertices. This can also be proved
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from the above two cases. We can now assume that G has at most k + 5 vertices. Upto
symmetry, we may assume that either exactly 3 vertices precede C or exactly 2 vertices
precede C.
Case 3: Exactly three vertices precede C
Case 3a: No vertex occurs after C
Let an ordering of the vertices be a, b, c, v1, v2, . . . , vk. The vertex b must be adjacent to the
vertex vk−2 else the edge ab, and the triangle vk−2, vk−1, vk induces a minimal obstruction.
If the vertices a, c are not adjacent to each other then it is easy to see that G can be
partitioned with V1 = {a, c, vk}, V2 = {b, vk−1} and V3 = {v1, v2, . . . , vk−2}. Now if a, c
are adjacent to each other then c must also be adjacent to vk−1 else the edge vk−1, vk and
the triangle a, b, c induces a minimal obstruction. In this case, G can be partitioned with
V1 = {a, vk}, V2 = {b, vk−1} and V3 = {c, v1, v2, . . . , vk−2}.
Case 3b: One vertex occurs after C
Let a, b, c, v1, v2, . . . , vk, d be an ordering of the vertices. The vertex bmust be adjacent to the
vertex vk−2, else the edge ab and the triangle vk−2, vk−1, vk induce a minimal obstruction.
Note that the vertex c cannot be adjacent to vk. So if a, c are adjacent, then the triangle
a, b, c and the edge vkd will be a minimal obstruction. Therefore, a, c cannot be adjacent.
Similarly, d cannot be adjacent to vk−1 because of the edge ab and triangle vk−1, vk, d. If the
vertex c is adjacent with vk−1, the path on vertices a, b, c, vk−1, vk, d along with a vertex vi

will induce the minimal obstruction shown in the Figure 3.1(d). The existence of the vertex
vi follows from the fact that k ≥ 3. Hence, c, vk−1 are not adjacent to each other. We can
partition G with V1 = {a, c, vk−1, d}, V2 = {b, vk} and V3 = {v1, v2, . . . , vk−2}.
Case 4: Two vertices precede C and two vertices succeed C

Let a, b, v1, v2, . . . , vk, c, d be the ordering of vertices. The vertex b must be adjacent to vk−1

and the vertex c must be adjacent to v2, else there will be a minimal obstruction shown in
Figure 3.1(c). The vertices a, v1 cannot be adjacent to each other, else a, b, v1 and the edge
c, d will be a minimal obstruction. Similarly, the vertices d, vk cannot be adjacent. Therefore,
G can be partitioned with V1 = {a, v1, vk, d}, V2 = {b, c} and V3 = {v2, v3, . . . , vk−1}.

Now, consider that G is not connected. Since we assumed that G is not a bipartite graph,
there must exist a C3. Let X be a connected component in G that contains C3. No other
connected component can have an edge, because it will result in a minimal obstruction shown
in Figure 3.1(b). This implies that G can only have one connected component with edges,
the remaining vertices must form an independent set. Therefore, G is M2-partitionable if
and only if X is M2-partitionable. Hence, we proved that M2 has finitely many minimal PI
obstructions.
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Chapter 4

Minimal PI Obstructions for 4× 4
Matrices

In this chapter, we will look at minimal PI obstructions for matrices of size 4. There are too
many {0, 1, ?}-symmetric matrices of size 4 that are possible, so as a first step we considered
those matrices that have a constant diagonal. We call a matrix 0-diagonal, if all the entries
on the main diagonal are 0. Similarly, we call a matrix 1-diagonal, if all the entries on the
main diagonal are 1. In Section 4.1, we will look at 0-diagonal matrices of size 4 and in
Section 4.2, we will look at 1-diagonal matrices of size 4.

4.1 0-diagonal Matrices

We divide all the 0-diagonal matrices into three subsections based on the off-diagonal en-
tries. If the set of off-diagonal entries is a subset of {0, 1} or {?}, then the matrix will be
a normal matrix. In Section 2.4.1, we have seen that any normal matrix has finitely many
minimal perfect obstructions and hence finitely many minimal PI obstructions. From The-
orem 2.4.1, we know that any perfect graph with clique number k can be partitioned into
k independent sets, and Kk+1 is the only minimal obstruction. As we are only looking at
0-diagonal matrices, K5 will be an obstruction to every such matrix.

4.1.1 Off-diagonal Entries Subset of {1, ?}

In this section, we will look at 0-diagonal matrices of size 4 with no off-diagonal entry equal
to 0.

If all the off-diagonal entries are equal to ?, then the partition problem is same as
the vertex coloring problem. Hence, there is only one minimal PI obstruction, K5. Before
proving that there are only finitely many minimal PI obstructions for other matrices, we
will first look at a result that is very useful. We denote by Kp +Kq the disconnected graph
consisting of Kp and Kq.
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Theorem 4.1.1. Let G be any proper interval graph with clique number p, and let q ≤ p.
If G does not contain an induced Kp +Kq, then there is a set S of at most 3p+ 2q vertices
such that G− S contains no Kq. Furthermore, the vertices of S occur consecutively in any
proper interval ordering of G.

Proof. Assume that v1, v2, . . . , vn is a proper interval ordering of G. Let vi, vi+1, . . . , vi+p−1

be a fixed Kp in G. Let S be the set of vertices, vj with i− p− q ≤ j ≤ i+ 2p+ q− 1. Note
that S has 3p+ 2q consecutive vertices. Since the clique number is p no vertex in G−S can
be adjacent to vk, where i ≤ k ≤ i+ p− 1. Thus, any Kq in G− S would yield a Kp +Kq

in G.

In the above theorem, even if the clique number of G is r instead of p, with r > p and
G is a (Kp +Kq)-free graph, we have an upper bound of 3r+ 2q for the number of vertices
in S.

Let us look at the case of exactly one off-diagonal entry equal to 1. Up to symmetry
there is only one such matrix, M1

M1 =


0 ? ? ?

0 ? ?

0 1
0


Theorem 4.1.2. The matrix M1 has finitely many minimal PI obstructions.

Proof. We know that K5 is a minimal obstruction to M1. Another minimal obstruction to
M1 is K4 +K3. Each vertex of K4 or K3 must go to a different part and the vertices of parts
3 and 4 must be completely adjacent, therefore K4 + K3 is an obstruction. If one vertex
is removed from K4, then it will be 3-colorable and hence M1-partitionable. If a vertex
is removed from K3 we have a K4 + K2 which is M1-partitionable. Note that any other
minimal obstruction to M1 cannot contain a K5 or K4 +K3. If a graph does not have a K4,
then it is 3-colorable, and hence M1-partitionable. Thus, any obstruction to M1 must have
a K4. Assume that there is a minimal PI obstruction G of size 19 and let v1, v2, . . . , v19 be
a proper interval ordering of V (G). From Theorem 4.1.1, any clique larger than K2 belongs
to a set of at most 18(= 3 × 4 + 2 × 3) consecutive vertices, so either v1 or v19 will only
have one neighbour. Without loss of generality, assume that v1 has only one neighbour v2.
Since G is a minimal obstruction, G − v1 is M1-partitionable and let V1, V2, V3, V4 be its
M1-partition. Note that the vertex v1 can also be placed in one of V1 or V2 based on where
its neighbour v2 is present. This contradicts the fact that G is a minimal obstruction. Hence,
we have proved that any minimal PI obstruction to M1 has at most 18 vertices which in
turn implies that they are finitely many minimal PI obstructions to M1. Note that even if
K5, K4 +K3 are obstructions that are not necessarily minimal, the bound on the size of a
minimal obstruction is still valid.
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We will now look at the matrix M2 that has two off-diagonal entries equal to 1.

M2 =


0 ? ? ?

0 1 ?

0 1
0


Theorem 4.1.3. The matrix M2 has finitely many minimal PI obstructions.

Proof. It can be easily proved that K5, K4 + K1 and K3 + K2 are minimal obstructions
to M2, and any minimal obstruction must contain a K3, else it is 2-colorable and hence
M2-partitionable. We now claim that any minimal PI obstruction to M2 has at most 14
vertices. Assume that there is a minimal obstruction G with at least 15 vertices. We consider
two cases when the clique number of G is 4 and 3 respectively. First, lets consider that G
has a K4. Then from Theorem 4.1.1, G cannot have more than 14 vertices. Now, consider
that G has a K3 but not a K4. Then from Theorem 4.1.1, every edge of G belongs to a
set of at most 13 vertices. This implies that there are two vertices u, v in G that have no
neighbours. If G − u is M2-partitionable, then v can also be placed in the same part as u
which is a contradiction to our assumption that G is a minimal obstruction. In both the
cases we have proved that the number of vertices in any minimal PI obstruction of M2 is
bounded.

Using the techniques from Theorem 4.1.2 and 4.1.3, we can prove that every matrix of this
type has finitely many minimal PI obstructions by constructing 2 or 3 minimal obstructions.
In Table 4.1, we give the minimal obstructions to the remaining matrices that are sufficient
to prove that the number of vertices in any other minimal obstruction is also upper bounded.

4.1.2 Off-diagonal Entries Subset of {0, ?}

We say that a row i dominates a row j, if for each column k with 1 ≤ k ≤ m, eitherMi,k = ?

or Mi,k = Mj,k. Note that in a matrix M , if there is a row i that dominates row j, then
any vertex that can be placed in the part j can also be placed in the part i. Hence, we
can reduce the problem to an equivalent smaller size matrix by deleting the row j and the
column j.

Lets look at the matrices where off-diagonal entries are {0, ?}. From Table 4.1, we can
construct all such matrices by replacing all the 1’s by 0’s. All the cases have at least one
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Number off-diagonal entries 1 Matrix Minimal obstructions

1


0 ? ? ?

0 ? ?
0 1

0

 K5, K4 +K3

2


0 ? ? ?

0 1 ?
0 1

0

 K5, K4 +K1, K3 +K2

2


0 ? ? ?

0 ? 1
0 1

0

 K5, K4 +K2

3


0 ? ? ?

0 1 1
0 1

0

 K5, K3 +K2

3


0 1 ? ?

0 1 ?
0 1

0

 K5, K4 +K1, K3 +K2

3


0 ? ? 1

0 ? 1
0 1

0

 K5, K4 +K1

4


0 1 ? ?

0 1 1
0 1

0

 K5, K4 +K1, K3 +K2

4


0 1 ? 1

0 1 ?
0 1

0

 K5, K3 +K1

5


0 ? 1 1

0 1 1
0 1

0

 K5, K3 +K1

6


0 1 1 1

0 1 1
0 1

0

 K5, K2 = K1 +K1

Table 4.1: Minimal obstructions that are used to prove the upper bound on the number of
vertices in every other minimal obstruction.
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dominating row except the matrix below

M =


0 0 ? 0

0 0 ?

0 0
0


In this case, K3 is the only minimal PI obstruction, because any graph without K3 is 2-
colorable and hence M -partitionable(can be partitioned either between 1 and 3 parts or
between 2 and 4). Hence, we have the following result.

Theorem 4.1.4. Any 0-diagonal matrix of size 4 with no off-diagonal entry 1 has finitely
many minimal PI obstructions.

4.1.3 Off-diagonal Entries Include all of 0, 1, and ?

In this section, we will consider 0-diagonal matrices such that off-diagonal entries include
all of 0,1, and ?; all the other cases of 0-diagonal matrices have been considered in Sections
4.1.1 and 4.1.2. These matrices correspond to a partition into four independent sets. To
construct all such possible partitions, we consider four parts that are independent and
explore all the connections between them. A 1-connection between two parts denotes that
they are completely adjacent, a 0-connection denotes that they are completely non-adjacent
and a ?-connection denotes that there are no restrictions on the adjacency between the two
parts. Using this notation, we construct all possible partitions in the following proof.

Theorem 4.1.5. The M -partition problem for any 0-diagonal matrix of size 4 that includes
all of 0, 1 and ? as off-diagonal entries has finitely many minimal PI obstructions.

Proof. Consider four parts A,B,C,D that are independent. Since there exists at least one
0 in the off-diagonal entries, without loss of generality, we can assume that A has a 0-
connection to B in all the cases. Note that K4 is always an obstruction irrespective of the
other connections.

Consider the case where there are two 0-connections that are disjoint. Without loss of
generality, assume that there is a 0-connection between A,B and between C,D, refer to
Figure 4.1(a). Since there must exist at least one ?-connection, a graph is M -partitionable
if and only if it is bipartite. Thus K3 will be the only minimal obstruction.

We will now look at the cases where there are no disjoint 0-connections. First, assume
that a part is joined to three other parts with 0-connection. Assume that A has 0-connection
with B, C, and D. There must exist at least one 1-connection and a ?-connection between
B, C, and D, so one of the partitions from Figure 4.1(d),(e) will be present. In either case,
K3 +K2 will be an obstruction.
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Figure 4.1: Various possible cases for partitions when off-diagonal entries have at least one
0, 1, ?. A dotted line denotes 0-connection, single solid line denotes ?-connection, and a
double solid line denotes 1-connection.

Now, assume that a part is joined to two other parts with 0-connections. Without loss
of generality, assume that A has 0-connection to B and D. If either of B,C,D has a 0-
connection, we will either have a case with two disjoint 0-connections or the one shown in
Figure 4.1(c). Then K3 will be the only minimal obstruction. If there is no 1-connection
among B,C,D, then K4 will be the only minimal obstruction, refer to Figure 4.1(b). So,
this leaves the case where there is at least one 1-connection among B,C,D in which case,
K3 +K2 will be an obstruction.

Finally, if there is a part that is joined to one other part with 0-connection and two
parts with ?-connections, then that part will be dominating. Part A is also dominating if
it has a 0-connection to B, 1-connection to D, and ?-connection to C, as long as B and
D have a 1-connection as well. So we consider that B has a ?-connection to D and 1-
connection to C as all the other cases have already been considered. In this case, K3 +K2

is always an obstruction. If A has one 0-connection to B and two 1-connections, then based
on connections of B either we have a case where one of A, B dominates or the case that we
have previously considered.

In all the above cases, we either have K4 or K3 as the only minimal obstruction or the
case where K3 +K2 as an obstruction. From Theorem 4.1.1, we know that in a (K3 +K2)-
free proper interval graph every edge is contained in a set S of at most 16 vertices. Thus any
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proper interval graph with more than 17 vertices cannot be a minimal obstruction. Hence,
we have proved that there are only finitely many minimal PI obstructions.

4.2 1-diagonal Matrices

In this section, we will look at 1-diagonal matrices of size 4. If the set of off-diagonal entries
is a subset of {0, 1} or {?}, then the matrix will be a normal matrix, and hence will have
finitely many minimal PI obstructions. As in Section 4.1, we divide the discussion into
subsections based on the off-diagonal entries.

4.2.1 Off-diagonal Entries Subset of {0, ?}

From Theorem 2.4.1, we know that any perfect graph with clique number k is k-colorable,
i.e., can be partitioned into k independent sets. Recall that the independence number of a
graph G is the size of a maximum independent set. Since the complement of a perfect graph
is also a perfect graph, from Theorem 2.3.1, we can conclude that any perfect graph with
independence number k can be partitioned into k cliques.

Given an ordering of vertices of G, a clique is said to be contiguous, if it is induced by
a contiguous set of vertices in the ordering.

Lemma 4.2.1. Any proper interval graph with independence number k and a proper interval
ordering, can be partitioned to k contiguous cliques.

Proof. Let G be a proper interval graph with independence number k, and let O be a proper
interval ordering of its vertices. Let v1 be the first vertex in the ordering O, and let v′1 be
the rightmost neighbour of v1. All the vertices from v1 till v′1 in O induces a clique and we
place them in the clique C1. Note that C1 is a contiguous clique with respect to O. Let v2

be the vertex next to v′1 in O, and v′2 be the rightmost neighbour of v2, then all the vertices
between v2 and v′2 induces a clique and we place them in clique C2. We repeat the process
till there is no vertex remaining in the ordering. Let vi be the first vertex that is placed in
Ci and v′i be the rightmost neighbour of vi. Note that the vertices v1, v2, . . . , vi, . . . , vk are
independent. If the rightmost neighbour of vk is v′k, then there will not be any vertex after
v′k in O as the independence number is k. Hence, we proved that any proper interval graph
with independence number k can be partitioned into k contiguous cliques.

The sequence of contiguous cliques C1, C2, . . . , Ck obtained in the above proof is called
the canonical sequence of contiguous cliques, and the corresponding sequence of vertices
v1, . . . , v

′
1, v2, . . . , v

′
2, . . . , vk, . . . , v

′
k is called the canonical sequence of vertices. Note that Ci

is induced by the vertices vi, vi+1, . . . v
′
i of the ordering. The above proof also shows that any

proper interval graph with an independence number greater than k cannot be partitioned
into k cliques. Since we consider 1-diagonal matrices of size 4, K5 will be an obstruction to
every matrix considered in this section.
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Corollary 4.2.1.1. Any proper interval graph with independence number k, can be par-
titioned into k cliques C1, C2, . . . Ci, . . . Ck, such that for 1 < i < n, Ci−1 and Ci+1 are
completely non-adjacent.

Proof. Let G be a proper interval graph with independence number k, and a proper interval
orderingO. From Lemma 4.2.1, we know thatG can be partitioned into k contiguous cliques.
Let C1, C2, . . . , Ck be the canonical sequence of contiguous cliques and let the canonical
sequence of vertices be v1, ..., v

′
1, v2, ..., v

′
2, ..., vk, ..., v

′
k. A vertex u ∈ Ci−1 cannot be adjacent

to a vertex v ∈ Ci+1, this is because the rightmost neighbour of vi is v′i. Therefore, the
cliques Ci−1 and Ci+1 are completely non-adjacent. It is easy to observe that in the canonical
sequence of contiguous clique, any clique that is present before Ci is completely non-adjacent
to any clique that appears after Ci.

Lemma 4.2.2. Any connected proper interval graph with independence number at least 3
has an induced P5 or induced bull graph.

Proof. The bull graph is shown in Figure 4.2(c). Consider a proper interval graph G with
independence number 3. From Lemma 4.2.1, we know that G can be partitioned into 3
contiguous cliques. Let C1, C2, C3 be the canonical sequence of contiguous cliques, and let
a, . . . , a′, b, . . . , b′, c, . . . , c′ be the canonical sequence of vertices. Let x be a vertex in C1

that is adjacent to b, and let y be a vertex in C2 that is adjacent to c. If the vertices x
and y are non-adjacent, then a, x, b, y, c induces a path of length 5. If the vertices x and y
are adjacent, then a, x, b, y, c induces a bull graph. The existence of vertices x and y follows
from the fact that G is connected. Hence, we proved that any connected proper interval
graph with independence number at least 3 will have a P5 or a bull graph.

Lemma 4.2.3. Let G be any proper interval graph without an induced P3 +P3. Then G can
only have one connected component that is not a clique. Moreover, no connected component
can have an independence number greater than 3.

Proof. Any connected graph that is not a clique must have an induced P3, because there
exists two vertices that are not adjacent but are joined by a path. Hence, there will be an
induced P3. Now, consider a proper interval graph G that does not have an induced P3 +P3.
Assume that there are two connected components X,Y in G that are not cliques. We know
that both X and Y will have an induced P3, which will result in an induced P3 + P3 in G.
Therefore, G cannot have more than one component that is not a clique. Now, let us assume
that the connected component X in G has independence number 4. Let C1, C2, C3, C4 be
the canonical sequence of contiguous cliques and a, . . . , a′, b, . . . , b′, c, . . . , c′, d, . . . , d′ be the
canonical sequence of contiguous vertices. Let x be a vertex in C1 that is adjacent to b, and
y be a vertex in C3 that is adjacent to d. The existence of x and y follows from the fact that
X is connected. The vertices a, x, b and c, y, d must induce P3 + P3, because the vertices
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Figure 4.2: (a) K5 (b) P5 (c) Bull graph (d) P3 + P3

before b cannot be adjacent to any vertex after c. Hence, we proved that any connected
component cannot have independence number greater than 3.

Theorem 4.2.4. Any 1-diagonal matrix of size 4 with no off-diagonal entry 1 has finitely
many minimal PI obstructions.

We can obtain all the possible matrices by replacing 0’s with 1 and 1’s with 0 from Table
4.1. We will first consider the following four matrices.

M1 =


1 ? ? 0

1 ? ?

1 ?

1

 M2 =


1 ? 0 0

1 ? ?

1 ?

1

 M3 =


1 ? 0 ?

1 ? 0
1 ?

1

 M4 =


1 ? 0 0

1 ? 0
1 ?

1


Lemma 4.2.5. For matrices M1,M2,M3, and M4, K5 is the only minimal PI obstruction.

Proof. Let G be a K5-free proper interval graph. From Corollary 4.2.1.1, we know that G
can be partitioned into at most four cliques C1, C2, C3, C4, such that C1 is non-adjacent to
C3, C4 and C2 is non-adjacent to C4. Notice that such a partition is a valid partition for all
the four matrices.

M5 =


1 ? ? 0

1 ? 0
1 0

1

 M6 =


1 ? 0 0

1 ? 0
1 0

1


Lemma 4.2.6. The matricesM5 andM6 have two minimal PI obstructions, K5 and P3+P3.
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Proof. Let G be any proper interval graph that does not contain a K5 or a P3 + P3. From
Lemma 4.2.3, we know that all the connected components of G must be cliques except for
one. Let X be that component which is not a clique. We also know that the independence
number of X cannot be greater than 3. Assume that the independence number of X is
exactly 3. From Corollary 4.2.1.1, X can be partitioned into 3 cliques C1, C2, C3 such that
C1 and C3 are non-adjacent. Since G is K5−free, there can be at most one more component
Y , that is a clique. Note that C1, C2, C3, Y is a valid partition for both the matrices. Even
if the independence number of X is less than 3, a partition can be easily found because all
the other components are cliques.

M7 =


1 0 0 ?

1 0 ?

1 ?

1

 M8 =


1 ? 0 0

1 0 0
1 ?

1

 M9 =


1 0 0 0

1 0 0
1 ?

1


Lemma 4.2.7. The matrices M7,M8 and M9 have finitely many minimal PI obstructions.

Proof. The matrix M8 has three minimal PI obstructions, namely K5, P5 and the bull
graph. Let G be a proper interval graph that does not contain any of these obstructions.
The absence of a P5 and the bull graph guarantees that any connected component in G

cannot have an independence number greater than 2. In this case, it is easy to note that G
can be partitioned into four cliques such that one component can be partitioned into parts
1,2, and the other into parts 3 and 4.

The matricesM7,M9 have four minimal PI obstructionsK5, P5 and a bull graph and P3+
P3. Assume that G is as above and has no induced P3+P3. The minimal obstruction P3+P3,
guarantees that G has only one connected component that is not a clique. So we can have
one connected component with independence number 2 which can be partitioned between
the parts 3 and 4, and the remaining components which are cliques can be partitioned into
other parts.

4.2.2 Off-diagonal Entries Subset of {1, ?}

As in Section 4.1.2, there is only one matrix of this type where there is no dominating row.
The matrix is as follows

M =


1 1 ? 1

1 1 ?

1 1
1


We claim that M has only three minimal PI obstructions K5, P5 and the bull graph.
Absence of P5 and a bull graph implies that each connected component can only have at
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most two independent vertices and G cannot have more than 4 independent vertices because
there is no K5. Therefore, any proper interval graph without these three obstructions is M -
partitionable. This leads to the following theorem.

Theorem 4.2.8. Any 1-diagonal matrix of size 4 with no off-diagonal entry equal to 0, has
finitely many minimal PI obstructions.

4.2.3 Off-diagonal Entries Include all of 0, 1 and ?

In this section, we will consider 1-diagonal matrices that include all of 0,1 and ?. As in
Section 4.1.3, we consider four cliques and explore all the connections between them.

Theorem 4.2.9. Let P be any partition that corresponds to four cliques such that there
is at least one 0,1, and ?-connections among them, then it has finitely many minimal PI
obstructions.

Proof. Let A,B,C,D be four cliques. Since there must exist at least one 1-connection, with-
out loss of generality, assume that A has a 1-connection to B. A K4 cannot be partitioned
into 4 cliques such that at least two of them are completely adjacent. Therefore, K4 is an
obstruction.

Consider the case where there are two 1-connections that are disjoint. Without loss of
generality, assume that there is a 1-connection between A, B and between C, D. Since there
must exist a ?-connection, K3 is the only minimal PI obstruction. A K3 is not partitionable,
but any proper interval graph without K3 can be partitioned into two cliques. We will now
construct the cases where there are no disjoint 1-connections. We divide the discussion
into different cases based on the connections of A. Case 1 corresponds to A having three
1-connections which is solved in Lemma 4.2.10. Case 2 corresponds to A having exactly two
1-connections which is solved in Lemma 4.2.11. Finally, Case 3 corresponds to A having
exactly one 1-connection which is solved in Lemma 4.2.12.

Lemma 4.2.10. Assume that there is a part that has three 1-connections, then there are
only finitely many minimal PI obstructions

Proof. Without loss of generality, assume that A has 1-connection to B,C,D. If there is a
1-connection among B,C,D, then it will result in a disjoint 1-connections case. Therefore,
assume that there is no 1-connection among B,C,D. Since there must exist at least one
0-connection and one ?-connection we have two possible cases corresponding to Figure 4.3.
Case 1a: 0-connection between C,D; ?-connection between B,C and B,D.
We claim that K4 is the only minimal PI obstruction. From Theorem 4.2.1, any graph with
independence number at most 3, can be partitioned into three cliques. Let C1, C2, C3 be
the canonical sequence of contiguous cliques. From Corollary 4.2.1.1, the cliques C1 and C3

are completely non-adjacent. Note that this corresponds to a valid partition with C1 = B,
C2 = C and C3 = D. Therefore K4, is the only minimal PI obstruction.
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Figure 4.3: Partitions considered in Lemma 4.2.10.

Case 1b: 0-connection between B,C and C,D; ?-connection between B,D.
We claim that K4, P5 and the bull graph are the only minimal PI obstructions. If a graph
does not contain a K3, then it can be partitioned among B,D. Let G be a proper interval
graph with independence number 3, and let p, q, r be fixed independent vertices. Note that
in any partition of G, no vertex from p, q, r can be placed in A, as it must be completely
adjacent to B,C,D. Without loss of generality, assume that p is placed in B, q is placed in
C and r is placed in D. If there is a vertex in A, then G will have a claw. Therefore, A must
be empty. Since A must be empty it is easy to observe that P5 and bull graph are minimal
obstructions.

From Lemma 4.2.2, any graph that does not contain a P5 or a bull graph does not
have any connected component that has independence number greater than 2. Assume that
G has independence number at most 3 and two components X and Y , such that X has
independence number 2. Vertices of X can be partitioned into B,D, and the vertices of Y
can be placed in C.

Lemma 4.2.11. Assume that there is a part that has exactly two 1-connections, then there
are only finitely many minimal PI obstructions.

Proof. Without loss of generality, assume that A has 1-connection to B and D but not
to C. If there is a 1-connection among B,C,D, then K3 will be the only minimal PI
obstruction. If there is only ?-connection among B,C,D, then K4 will be the only minimal
PI obstruction. If there are two ?-connections among B,C,D, then either B or D dominates
A. Therefore, without loss of generality, assume that there is a ?-connection between B,C
and 0-connection between B,D and C,D We have the following two cases based on the
connection between A,C. Refer to Figure 4.4.
Case 2a: ?-connection between A,C.
We claim that K4 and P6 are the only minimal PI obstructions. Let G be a proper interval
graph that does not contain K4 or P6. If the independence number of G is 2, then it is parti-
tionable. So assume that the independence number of G is 3. If G is not connected then it is
partitionable between B,C,D. Therefore, assume that G is connected. Let B1, B2, . . . , Bn

be a straight enumeration of G, we denote it by φ.
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Figure 4.4: Partition considered in Lemma 4.2.11.

Figure 4.5: Labelled minimal obstruction for Case 2b

Let Bi be the rightmost block in φ that is adjacent to B1, and Bj be the rightmost block
in φ that is adjacent to B2. Let Bp be the first block in φ that is adjacent to Bn−1 and let
Bq be the first block in φ that is adjacent to Bn. Note that Bi < Bj and Bp < Bq. Then at
least one of the following statements must be true.

1. The block Bj+1 is adjacent to Bn.

2. The block Bp−1 is adjacent to B1.

If i + 1 = q − 1, then i + 1 = j = p = q − 1. This implies that both the above statements
are true. Therefore, assume that i+ 1 6= q − 1.

Assume that both the above statements are false. This implies that Bj+1 < Bq <

Bn and B1 < Bi < Bp−1 Consider the blocks B1 < B2 < Bi+1 < Bq−1 < Bn−1 <

Bn. The blocks Bi+1 and Bq−1 must be adjacent else G will have a K4 corresponding
to B1, Bi+1, Bq−1, Bn. Since Bi+1 is adjacent to Bq−1, G will have a P6 corresponding to
B1, B2, Bi+1, Bq−1, Bn−1, Bn. Therefore, at least one of the above statements must be true.

If statement 1 is true, then we partition G with D = B1, A = B2 ∪ B3 · · · ∪ Bi, B =
Bi+1 ∪ Bi+2 ∪ · · · ∪ Bj and C = Bj+1 ∪ · · · ∪ Bn. If statement 1 is false, then statement
2 must be true. Therefore, G can be partitioned with D = Bn, A = Bq ∪ · · · ∪ Bn−1,
B = Bp ∪ · · · ∪Bq−1, C = B1 ∪ · · · ∪Bp−1.

Case 2b: 0-connection between A,C
We denote this partition by P . Observe that P6 and K4 are minimal obstructions even for
this partition. The graph shown in Figure 4.5 is a labelled minimal obstruction, we denote
this graph by Z. We claim that any minimal PI obstruction for this partition has at most
10 vertices.
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Assume that G is a connected proper interval graph. Any connected proper interval
graph G has a unique straight enumeration up to reversal [8]. It is easy to observe that
in any P -partition of G, either B1 or Bn must be placed in D. This is because if a vertex
v ∈ Bi is colored D, then there cannot be a vertex colored B both in a block before and a
block after Bi. Suppose, without loss of generality, that it is a block after Bi that contains
colour B, then all vertices coloured A are also in blocks after Bi, and similarly for colour C.
Therefore all blocks before Bi, including B1, are coloured D. Therefore, either the vertices
of B1 or Bn must be colored D.

Applying the same analysis as in Case 2a produces either a P6,K4 or one of the following
partition

D = B1, A = B2 ∪B3 · · · ∪Bi, B = Bi+1 ∪Bi+2 ∪ · · · ∪BjC = Bj+1 ∪ · · · ∪Bn.

or
D = Bn, A = Bq ∪ · · · ∪Bn−1, B = Bp ∪ · · · ∪Bq−1, C = B1 ∪ · · · ∪Bp−1.

First, assume that it produces the first partition. If A and C are non-adjacent then we
are done. If A and C are adjacent, it implies that Bi must be adjacent to Bj+1, hence 2 6= i.
In this case, there is a Z corresponding to the blocks B1, B2, Bi, Bj , Bj+1 with B1 ∈ D.
Denote by U the set of these 5 vertices in Z. If the first partition is not a P -partition, then
consider the second partition. Similarly, we either find a valid P -partition or we identify a
set W of 5 vertices in a copy of Z if Bn is coloured D. Therefore we proved that if G is not
P -partitionable then it either has P6, K4, or Z with B1 ∈ D or Bn ∈ D.

Therefore, if G is a minimal PI obstruction, then either G is P6 or K4 or has Z with the
sets U and V . Therefore, G has at most |U ∪ V | vertices. Possibly there is overlap between
U and W , but the number of vertices is at most 10.

Lemma 4.2.12. Assume that each part has at most one 1-connection, then there are only
finitely many minimal PI obstructions.

Proof. Without loss of generality, assume that A has 1-connection to B. Since, each part
has at most one 1-connection, A and B cannot have 1-connections to C or D. If there is
a 1-connection between C and D, it will result in two disjoint 1-connections. Therefore,
assume that there is 1-connection only between A and B.

If A has ?-connection with C and D, then A dominates B. Similarly, if B has ?-
connection with C and D, then B dominates A. The part A also dominates B if its has
?-connection to C, 0-connection to D, as long as B has a 0-connection to D. Thus we assume
that B has a ?-connection to D and 0-connection to C. This corresponds to the partition
shown in Figure 4.6. We will show that K4 and the bull graph are the only minimal PI
obstructions for this partition. Consider a proper interval graph G that does not contain a
K4 or a bull graph.

49



Figure 4.6: Partition corresponding to Lemma 4.2.12.

If the independence number of a G is 2, then it is partitionable. Assume that the in-
dependence number of G is 3. If G is not connected, then it is easy to observe that G can
be partitioned among B,C,D. Now, assume that G is connected. From Lemma 4.2.1, we
know that G can be partitioned into three cliques. Let v1, . . . , v

′
1, v2, . . . , v

′
2, v3 . . . , v

′
3 be

the canonical sequence of vertices and C1, C2, C3 be the canonical sequence of contiguous
cliques. Let S(v1, v2) be the set of vertices that are adjacent to v1, v2 but not v3, and let
S(v2, v3) be the set of vertices that are adjacent to v2, v3 but not v1. If there is a vertex
a ∈ S(v1, v2) that is adjacent to a vertex b ∈ S(v2, v3), then the vertices v1, a, v2, b, v3 induce
a bull graph. Therefore, the sets (v1, v2) and S(v2, v3) are completely non-adjacent. We can
partition G as follows. A = C2 − S(v2, v3), B = C2 ∩ S(v2, v3), C = C1 and D = C3. Since
C1 and C3 are completely non-adjacent, C and D are also completely non-adjacent. Note
that A does not have any vertex that is adjacent to v3, therefore, A and D are completely
non-adjacent. If there is a vertex in C that is adjacent to a vertex b ∈ B, then v′1 must
also be adjacent to b, but this implies that there exits a vertex in S(v1, v2) that is adja-
cent to a vertex in S(v2, v3), which is a contradiction. Therefore, B and C are completely
non-adjacent.

4.3 Large Matrices

In this section, we consider 0-diagonal matrices of any size that have no off-diagonal 0’s.
Any such matrix can be expressed in the following block structure

P X Y

Xt Q Z

Y t Zt R


where P and Q are square matrices that have 0’s on the diagonal and ?′s on the off-diagonal,
R is a square matrix that has 0’s on the diagonal, the blocks X and Y (Xt and Y t) consists
only ?′s, and the block Z (Zt) consists of at least one 1 per row and column. To see this,
first identify all parts which do not have an entry 1 in their row (and column); these will
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form the blocks P , X, Y . From the remaining parts, find a square submatrix that does not
contain an entry 1; this will form the block Q, and also guarantees that the block Z will
have at least one 1 in a row/column. All the remaining parts form the block R.

The following matrix is an example of such a block structure where ’?’ can either be ?
or 1. 

0 ? ?

? 0 ?

? ? 0

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

0 ? ?

? 0 ?

? ? 0

1 ? ?
? 1 ?
? ? 1

? ? ?

? ? ?

? ? ?

1 ? ?
? 1 ?
? ? 1

0 ? ?
? 0 ?
? ? 0


In the theorems below, we assume that M is a symmetric 0-diagonal matrix without

off-diagonal 0’s, already expressed in the above block form.

Theorem 4.3.1. If the size of R is 1, then M has finitely many minimal PI obstructions.

Proof. Since R is a matrix of size 1, R = [0]. The block Z is a column matrix with all
entries equal to 1 because every row of Z must contain 1. Let the size of the block P be
p, and the size of the block Q be q. The graph Kp+q+2 is a minimal obstruction to M ,
because a Kp+q+2 cannot be partitioned into p+ q + 1 independent sets. Another minimal
obstruction to M1 is Kp+q+1 +Kp+1. Since each vertex of Kp+q+1 and Kp+1 must be placed
in different parts, there will be a vertex in Kp+1 that is placed in a part that has at least
one 1-connection to other parts. Therefore, Kp+q+1 +Kp+1 is an obstruction.

We claim that any minimal PI obstruction to M has at most t = 7p + 3q + 5 vertices.
Let G be a minimal PI obstruction to M with t + 1 vertices. The graph G must contain
a Kp+q+1, else it is (p+ q)-colorable and hence M -partitionable. Since G does not contain
an induced Kp+q+1 + Kp+1, from Theorem 4.1.1, there exists a set S of at most t − 2p(=
3(p+ q+ 1) + 2(p+ 1)) vertices such that G−S does not contain a Kp+1. Let v1, v2, . . . , vn

be a proper interval ordering of G. The vertices of S occur contiguously in the ordering.
Since G−S has 2p+ 1 vertices, at least p+ 1 of them must occur either before or after the
vertices of S in the ordering. Without loss of generality, assume that the first p+ 1 vertices
of the ordering are not in S. Therefore, v1 has at most p− 1 neighbours, else it will result
in a Kp+1 outside of S. Since G− v1 is M -partitionable, in any M -partition of G− v1 there
exists at least one part I from the block P , such that N(v1) ∩ I = ∅. This implies that v1

can also be placed in I contradicting that G is a minimal obstruction. Hence, any minimal
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obstruction to M has at most 5p+ 3q+ 6 vertices which in turn implies that M has finitely
many minimal PI obstructions.

Theorem 4.3.2. If all off-diagonal entries of R are 1 and the size of Q is 1, then M has
finitely many minimal PI obstructions.

Proof. Since the size of Q is 1, we have Q = [0], and Z must be a row matrix with all
entries equal to 1. Let the size of the block P be p, and the size of the block R be r. The
graph Kp+r+2 is a minimal obstruction to M . Observe that the parts corresponding to the
blocks Q and R are pair wise completely adjacent. Therefore, Kp+2 + Kp+1 is a minimal
obstruction to M .

We claim that any minimal PI obstruction to M has at most t = 7p + 3r + 5 vertices.
Let G be a minimal PI obstruction with t+1 vertices. Let v1, v2, . . . , vn be a proper interval
ordering of G. The graph G will not contain a Kp+2 + Kp+1, and the clique number of
G is at most p + r + 1. Therefore, from Theorem 4.1.1, there exits a set S of at most
t − 2p(= 3(p + r + 1) + 2(p + 1)) vertices, such that G − S does not contain a Kp+1. The
rest of the proof is same as the proof of Theorem 4.3.1.

In addition to these results, it can be shown that there are finitely many minimal PI
obstructions when the size of R is 2. We omit the technical proof.
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Chapter 5

Conclusions

In this thesis we discussed the recognition and characterization problems for matrices M
when the input graphs are restricted to be proper interval graphs.

We mostly focused on the characterization problem for small matrices. For matrices of
size 3, we proved that all have finitely many minimal PI obstructions. Moreover, we listed
all minimal PI obstructions for the special matricesM1 andM2, which have infinitely many
minimal chordal obstructions.

For matrices of size 4, we considered only those that have constant diagonal. The tech-
niques are markedly different for 0-diagonal matrices and for 1-diagonal matrices. The
technique developed for 0-diagonal matrices is also used to prove that some of the larger 0-
diagonal matrices have only finitely many minimal PI obstructions. For 1-diagonal matrices,
we developed two different techniques one based on the canonical sequence of contiguous
cliques and the other using straight enumeration of proper interval graphs.

Our work suggests many questions. Is there one universal technique that can be applied
to derive the result for all 1-diagonal matrices of size 4? Can we extend these results to
larger constant diagonal matrices? Can we extend these results to mixed diagonal matrices
of size 4?

Finally we conjecture that all constant diagonal matrices (of arbitrary size) have only
finitely many minimal PI obstructions; possibly this is so for all matrices.
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