9,739 research outputs found

    Skeletal representations of orthogonal shapes

    Get PDF
    Skeletal representations are important shape descriptors which encode topological and geometrical properties of shapes and reduce their dimension. Skeletons are used in several fields of science and attract the attention of many researchers. In the biocad field, the analysis of structural properties such as porosity of biomaterials requires the previous computation of a skeleton. As the size of three-dimensional images become larger, efficient and robust algorithms that extract simple skeletal structures are required. The most popular and prominent skeletal representation is the medial axis, defined as the shape points which have at least two closest points on the shape boundary. Unfortunately, the medial axis is highly sensitive to noise and perturbations of the shape boundary. That is, a small change of the shape boundary may involve a considerable change of its medial axis. Moreover, the exact computation of the medial axis is only possible for a few classes of shapes. For example, the medial axis of polyhedra is composed of non planar surfaces, and its accurate and robust computation is difficult. These problems led to the emergence of approximate medial axis representations. There exists two main approximation methods: the shape is approximated with another shape class or the Euclidean metric is approximated with another metric. The main contribution of this thesis is the combination of a specific shape and metric simplification. The input shape is approximated with an orthogonal shape, which are polygons or polyhedra enclosed by axis-aligned edges or faces, respectively. In the same vein, the Euclidean metric is replaced by the L infinity or Chebyshev metric. Despite the simpler structure of orthogonal shapes, there are few works on skeletal representations applied to orthogonal shapes. Much of the efforts have been devoted to binary images and volumes, which are a subset of orthogonal shapes. Two new skeletal representations based on this paradigm are introduced: the cube skeleton and the scale cube skeleton. The cube skeleton is shown to be composed of straight line segments or planar faces and to be homotopical equivalent to the input shape. The scale cube skeleton is based upon the cube skeleton, and introduces a family of skeletons that are more stable to shape noise and perturbations. In addition, the necessary algorithms to compute the cube skeleton of polygons and polyhedra and the scale cube skeleton of polygons are presented. Several experimental results confirm the efficiency, robustness and practical use of all the presented methods

    Waltz User Manual

    Get PDF
    This Document describes relevant information to understand and control the Waltz Visualization System. Waltz is a tool to visualize three dimensional data and reads special reference files containing details of the data file, path name, dimensions and aspect ratios of the data. Waltz (as the name suggests) contains three parts: Generalization, Specialization and Abstraction. The Generalization Process splits the data into spatially connected groups. A specialization is formed from a subset (selection) of these groups. The results are displayed in multiple abstract views of the same data. These abstractions are formed by losing or augmenting the data to facilitate in the understanding of the data

    Generalizations of the Kolmogorov-Barzdin embedding estimates

    Full text link
    We consider several ways to measure the `geometric complexity' of an embedding from a simplicial complex into Euclidean space. One of these is a version of `thickness', based on a paper of Kolmogorov and Barzdin. We prove inequalities relating the thickness and the number of simplices in the simplicial complex, generalizing an estimate that Kolmogorov and Barzdin proved for graphs. We also consider the distortion of knots. We give an alternate proof of a theorem of Pardon that there are isotopy classes of knots requiring arbitrarily large distortion. This proof is based on the expander-like properties of arithmetic hyperbolic manifolds.Comment: 45 page
    • …
    corecore