We consider several ways to measure the `geometric complexity' of an
embedding from a simplicial complex into Euclidean space. One of these is a
version of `thickness', based on a paper of Kolmogorov and Barzdin. We prove
inequalities relating the thickness and the number of simplices in the
simplicial complex, generalizing an estimate that Kolmogorov and Barzdin proved
for graphs. We also consider the distortion of knots. We give an alternate
proof of a theorem of Pardon that there are isotopy classes of knots requiring
arbitrarily large distortion. This proof is based on the expander-like
properties of arithmetic hyperbolic manifolds.Comment: 45 page