59,890 research outputs found

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Frameworks: the future of formal software development?

    Get PDF
    It could be argued that the primary issue to be dealt with in software engineering today is re-use of software. Current software development rarely, if ever, starts from nothing. Unfortunately, the same cannot be said for the development of specifications. To overcome this problem, various works have attempted to show how specifications can be built using architectural principles. We discuss one such approach in particular, the Architectural Semantics of Open Distributed Processing. We show the limitations of this work with regard to the architecting of specifications and propose a new approach, based on frameworks. To highlight the approach we use the work currently being done in the TOSCA project in its development of a service creation and validation environment for telecommunication services

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed

    Linking Quality Attributes and Constraints with Architectural Decisions

    Get PDF
    Quality attributes and constraints are among the main drivers of architectural decision making. The quality attributes are improved or damaged by the architectural decisions, while restrictions directly include or exclude parts of the architecture (for example, the logical components or technologies). We can determine the impact of a decision of architecture in software quality, or which parts of the architecture are affected by a constraint, but the difficult problem is whether we are respecting the quality requirements (requirements on quality attributes) and constraints with all the architectural decisions made. Currently, the common practice is that architects use their own experience to design architectures that meet the quality requirements and restrictions, but at the end, especially for the crucial decisions, the architect has to deal with complex trade-offs between quality attributes and juggle possible incompatibilities raised by the constraints. In this paper we present Quark, a computer-aided method to support architects in software architecture decision making

    An Approach to Relate Viewpoints and Modeling Languages

    Get PDF
    The architectural design of distributed enterprise applications from the viewpoints of different stakeholders has been proposed for some time, for example, as part of RM-ODP and IEEE 1471, and seems now-a-days to gain acceptance in practice. However, much work remains to be done on the relationships between different viewpoints. Failing to relate viewpoints may lead to a collection of viewpoint models that is inconsistent, and may therefore lead to an incorrect implementation. This paper defines an approach that helps designers to relate different viewpoints to each other. Thereby, it helps to enforce the consistency of the overall design. The results of this paper are expected to be particularly interesting for Model Driven Architecture (MDA) projects, since the proposed models can be used for the explicit definition of the models and relationships between models in an MDA trajectory

    Framework for software architecture visualization assessment.

    Get PDF
    In order to assess software architecture visualisation strategies, we qualitatively characterize then construct an assessment framework with 7 key areas and 31 features. The framework is used for evaluation and comparison of various strategies from multiple stakeholder perspectives. Six existing software architecture visualisation tools and a seventh research tool were evaluated. All tools exhibited shortcomings when evaluated in the framework
    • …
    corecore