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It could be argued that the primary issue to be dealt with in software 
engineering today is re-use of software. Current software development 
rarely, if ever, starts from nothing. Unfortunately, the same cannot be said 
for the development of specifications. To overcome this problem, various 
works have attempted to show how specifications can be built using 
architectural principles. We discuss one such approach in particular, the 
Architectural Semantics of Open Distributed Processing. We show the 
limitations of this work with regard to the architecting  of specifications and 
propose a new approach, based on frameworks. To highlight the approach 
we use the work currently being done in the TOSCA project  in its 
development of a service creation and validation environment for 
telecommunication services.  
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1.0  Introduction 

The development of software for open distributed systems is a complex activity. 
There are a multitude of issues that have to be addressed to ensure that the 
subsystems of the system under development interwork correctly to achieve their 
goals. Remoteness of software, potential for partial failure, concurrency, language 
and system heterogeneity are just some of the many direct problems facing 
distributed systems developers. 

Whilst current technologies such as CORBA [Corba]  have addressed many of the 
issues in remoteness and heterogeneity of languages and systems, such 
technologies fall short of being the final solution to building truly open distributed 
systems. To justify this, it is worth noting exactly what is meant by an open 
system since numerous interpretations of this term exist in the context of 
distributed systems. Leopold et al. [Leopold]  identify several definitions that can 
be considered as correctly interpreting the term open as found in distributed 
systems literature: 

   



 

•an environment and its model are easily obtainable and well 
documented; 

•the model and environment exist on many operating systems and 
work with many programming methodologies and languages;  

• several manufacturers support and control the market; 

• the environment and its model are developed after open debating.  

We regard the openness of a distributed system as the extendability of that system. 
That is, how new resource-sharing systems can be added to a system without 
disrupting existing services. Typically this is achieved through making available 
the descriptions of specific entry points (interfaces) into the system. From these, it 
should be possible to add new (possibly heterogeneous) hardware and software to 
the system. 

Recent areas of research [Ansa, OdpRm1] into open distributed systems are 
replacing the notion of interconnectivity of computers by interworking of 
enterprises. We note the distinction between these two concepts as they pertain 
here. Interconnectivity of computers can be regarded as the ability of computers to 
communicate successfully with one another. This might be realised, for example, 
through ensuring that they use similar communication protocols as might be found 
in the Open System Interconnection (OSI) reference model [OsiRm]. Interworking 
is wider in scope than message passing capabilities though. That is, whilst 
communication is essential for the successful interworking of separate enterprises, 
it is only a basis on which the interworking can be established. Interworking may 
thus be regarded informally as the integration of enterprises to achieve some 
commonly agreed goal. 

The fundamental problem that must be overcome to develop truly open distributed 
software is one of semantics. Current technologies such as CORBA, are limited by 
the fact that their openness is defined largely in terms of syntactic aspects of 
systems, namely by interface definition languages (IDL). Whilst this allows the 
issues of implementation language and system heterogeneity to be overcome, the 
approach does not lend itself to building truly open systems according to the 
above definition. Rather, the approach lends itself to interconnectivity as opposed 
to interworking issues. 

To overcome this problem it is essential that behavioural aspects of systems are 
dealt with.1 Formal modelling languages offer a means whereby behaviour can be 
expressed both precisely and concisely. Unfortunately such techniques are not 
widely exploited throughout the software engineering community, or at least not 
as much as we would advocate. There are numerous arguments put forward to 
reject such techniques - although proposals for improved techniques for 
expressing behaviour and semantics as precisely or concisely are rare. One of the 
these that we try to address in this paper, is the actual difficulty in developing 
specifications. 
                                                           
1 Also non-functional aspects of systems such as timeliness, cost or resource capacities are 
essential considerations for successful interworking [RosPhd]  but they are outside the scope of 
this paper. 

   



 

Various works have been proposed and investigated to overcome this difficulty. 
One of these was the Reference Model for Open Distributed Processing (ODP-
RM) [OdpRm2,OdpRm3]. These documents describe semantics in a rigorous 
although informal manner using stylised natural language. Natural language is 
limited for specifying semantics though, especially when complexity increases. 
ODP recognised this and advocated the use of formal description techniques. The 
Architectural Semantics [OdpRm4,OdpRm4a] was the result of this endorsement. 
The initiators of the Architectural Semantics identified numerous potential 
advantages for the work which we briefly discuss in section 2.1. One of these was 
that it would allow a structured (architectural) approach to developing 
specifications of open distributed systems. Whilst this idea of architecture based 
specification is an appealing one [RosKjt1,RosKjt2,Kjt], the Architectural 
Semantics work fell short of completely fulfiling this goal. We discuss the issues 
related to this shortcoming in section 2.1 and then propose a similar but more 
prescriptive approach based on the idea of frameworks. In particular we focus on 
the development of frameworks based on the Telecommunications Information 
Networking Architecture (TINA) in the context of the TOSCA project. 

The rest of the paper is structured as follows. Section 2 gives an overview of the 
architectural semantics and its advantages and, especially with regard to this 
paper, its limitations. Section 3 introduces the concept of a framework and argues 
that they offer a means whereby the intention of the architectural semantics in 
terms of specification development can be realised.  Section 4 looks at the 
requirements placed upon formal languages if they are to be used to successfully 
model frameworks. Section 5 highlights how this approach is being adopted in the 
TOSCA project. Finally section 6 draws some preliminary conclusions on the 
viability of frameworks as a mechanism for producing software in a formal 
manner.  

2.0  Introduction to the ODP-RM  

The ODP-RM is an architecture developed for creating standards for distributed 
systems. Here the term architecture implies that it consists of a collection of 
concepts with associated structuring rules that can be used for modelling and 
reasoning about distributed systems and the standards used to describe them. The 
ODP-RM itself is divided into four parts: 

Part 1: Overview and Guide to Use  - As its title suggests, this document 
provides introductory material on the ODP-RM framework family of standards.  
Part 2 : Foundations   - This document contains the definition of concepts and 
gives the framework for descriptions of distributed systems. It also introduces 
the principles of conformance and the way they may be applied to ODP. In 
effect this document provides the basic vocabulary with which distributed 
systems may be reasoned about and developed, i.e. it is used as the basis for 
understanding the concepts contained within Part 3 of the ODP-RM.  
Part 3: Architecture  - This document contains the  specification of the 
required characteristics that qualify distributed system as open, i.e. constraints 

   



 

to which ODP systems must conform. The main features of this document 
include transparencies, functions, conformance issues and viewpoint 
languages. Functions and transparencies aid in overcoming (masking) aspects 
of distribution, e.g.the potential remoteness of components. 
ODP uses the notion of a viewpoint as it recognises that it is not possible to 
capture effectively all aspects of design in a single description. Each viewpoint 
captures certain design facets of concern to a particular group involved in the 
design process. In doing so it is argued that the complexity involved in 
considering the system as a whole is reduced. ODP recognises five basic 
viewpoints, each with its own associated language. These are the enterprise, 
information, computational, engineering and technology viewpoints. Each of 
these viewpoint represent a different abstraction of same original system; 
however, there is likely to be common ground between them. 
Part 4: Architectural Semantics -This document [OdpRm4,OdpRm4a] 
contains a formalisation of a subset of the ODP concepts and structuring rules. 
The formalisation is achieved through interpreting  these concepts and 
structuring rules in terms of the constructs of formal languages. The formal 
languages applied so far have been Estelle [Estelle], LOTOS [Lotos], SDL’92 
[Sdl92]  and Z [Zstandard]. 

2.1   Introduction to the ODP Architectural Semantics  

The architectural semantics is divided into two areas. One part focusing on some 
of the basic ODP-RM Foundation concepts [OdpRm4] and one part focusing on 
(certain of) the viewpoint languages of the ODP-RM Architecture [OdpRm4a]. 
The effort involved in developing an architectural semantics has many 
advantages. These are discussed in detail in [RosKjt1,RosKjt2,RosKjt3,Kjt]. 
Amongst these are: 

•  it provides clear and concise statements in a given formal language - 
a formalisation of concepts which then acts as a more precise 
definition of the given concepts. In doing so it requires a more in-
depth consideration of the textual definition of each concept than 
might otherwise have been achieved. In doing so it helps improve the 
text of the architecture itself. 

•  it offers the basis for comparison of different formal languages 
when used to provide formal descriptions of the same standard, i.e. it 
helps in identifying which language is most suitable for a given 
problem domain. 

•  it offers a basis for dealing with conformance, consistency and 
compliance. 

•  it allows the limitations of the formal languages used to be 
identified and documented for use by language developers. 

•  it offers a more structured approach to specification development so 
that reuse can be achieved.   

This latter bullet point is the most directly relevant with regard to this paper. The 
intention is that by specifying the lower level concepts and the rules about how 

   



 

they may be structured with one another to form more complex structures, the 
development of specifications is made easier. The analogy here would be an 
electronic engineer who works at an architectural level. The engineer does not 
have to re-specify the most basic of components such as flip-flops and NAND 
gates, but rather may use these as building blocks to create more complex 
components. An approach using LOTOS to do exactly this may be found in 
[RosMsc,RosKjt4]. 

Unfortunately, it was not the case that the architectural semantics supported this 
notion fully. The problem was one of prescription. Whilst precise 2, the concepts 
found in the Foundations document [OdpRm2] are largely non-prescriptive. As a 
result the formalisation of the concept is largely non-prescriptive. A representative 
example is the concept of communication. This is defined in X.902  as: 

The conveyance of information between two or more objects as a 
result of one or more interactions, possibly involving some 
intermediate objects.   

The formalisation of this concept in LOTOS is given in [OdpRm4] as: 

The conveyance of information (via value passing) between two or 
more interacting objects. It is not possible to write directly, cause and 
effect relationships. It should also be pointed out that the 
synchronisation itself may be construed as communication.   

As can be seen, such formalisations whilst useful do not lend themselves to re-use 
directly. We note here that this lack of prescription is only natural since the ODP-
RM is not an architecture for any particular system. It is an architecture for a 
multitude of systems and hence does not prescribe explicit  behaviours (or 
communications).  

The Architecture document [OdpRm3] is more prescriptive especially in the 
computational viewpoint. Unfortunately, the level of prescription is given in such 
a way that it is not directly usable. For example, many of the concepts and rules 
are based on syntactic aspects of interfaces, e.g. operational interfaces should have 
uniquely named operations in the context of that interface. Whilst useful and 
important for writing specifications, such information is not in itself usable in 
terms of specification fragments that can be used directly in a specification. 
Similarly, the computational viewpoint explicitly denotes the kinds of actions that 
can be associated with (computational) objects and interfaces. Unfortunately, this 
information is also not directly usable for developing specifications since the 
ordering of these actions and their effects is not given, i.e. the behaviour. Rather, 
the focus is placed more on providing well-defined concepts and constructs to 
create and compose such fragments, as opposed to providing real specification 
fragments. 

From these discussions it is apparent that the goal of developing specifications 
through an architectural approach based on ODP is somewhat limited. Despite the 
                                                           
2 Although we note here that some problems have been found through the architectural semantics 
work. 

   



 

problems of ODP prescription, the goal of architectural specification is still a 
desirable one. We propose that an approach based on frameworks is more likely to 
succeed. 

3.0  Introduction to the Concept  of Frameworks  

The concept of framework based software engineering has been developed to help 
to realise the holy grail of software engineering: re-use. Frameworks are a natural 
extension of object-oriented techniques. Whilst object technology provides a basis 
for re-use of code, it does not provide features to capture the design experience as 
such. Frameworks have developed to fulfil this need. 

A framework can be regarded as a collection of pieces of software (or 
specification3 fragments) that have been developed to produce software of a 
certain type or niche [ToscaD6]. A framework is only partially complete. 
Typically, they are developed so that they have holes or flexibility points in them 
where service4 specific information is to be inserted. This filling in of the holes is 
used to develop a multitude of services with (slightly) differing characteristics. Of 
course, the number of holes in a framework is directly proportional to the amount 
of work required to complete the service. A framework might be all but complete 
except for one hole, e.g. where an isolated choice of behaviours that the service 
can exhibit is possible. Typically though there are likely to be numerous holes in 
frameworks that have to be filled. It might be the case that the holes are in some 
way dependent upon one another. For example, a framework might have holes left 
to deal with costing and performance issues of the service, e.g. a higher cost 
means a higher throughput or picture resolution. From this we can classify 
different models of framework based on the type of holes they leave. 

3.1  Framework Classification  

Frameworks can be classified in many ways. Most obviously they can be 
classified based on the expected services to be generated from them, e.g. 
multimedia conference services, multimedia on demand services, telephony 
services, ... Another more abstract way in which frameworks can be classified is 
based on their types of holes. We consider this way since it opens up some 
discussions on what frameworks really are as well as the issues in their (formal) 
modelling. Frameworks can be classified into: 

•  frameworks with holes that can only be filled by certain (well-
defined) behaviours. These behaviours are determined in advance, i.e. 
when the hole was left. This corresponds to the service framework 
offering several non-deterministic choices of behaviour and the filling 
in of the hole corresponds to selecting one of these possible choices. 
This approach is very direct but unlikely to be the norm. Having such 
a degree of prescription goes against the nature of frameworks to a 

                                                           
3 We note here that the term specification might equally apply to business or system specifications. 
4 In the following we use service to mean both software and/or specifications. 

   



 

certain extent, i.e. they are intended to be abstract models of numerous 
services as opposed to models of a service with different possible 
behaviours that have to be selected. Nevertheless such an approach 
allows validation of the services created from frameworks to be 
achieved most straightforwardly. 

• frameworks with holes based on delegating behaviour. Thus a hole 
here might consist of a behaviour that accepts a message and redirects 
it (if necessary) to some framework specialising component. Thus 
potentially complex systems can be decomposed into less complex 
sub-systems thereby enabling unnecessary information, and associated 
semantics, to be abstracted from (hidden). The principles of 
abstraction and decomposition are presented in Part 2 of the ODP-RM 
[OdpRm2]. In terms of framework validation, this model is simplest to 
validate since the detailed processing associated with (certain) inputs 
can be omitted. 

•  frameworks with holes left where the detailed modelling of the 
service behaviour has not been done. This type of hole requires a 
certain amount of engineering to be filled. This model of a hole is 
more likely to represent the true nature of frameworks as discussed 
above. Several potential problems with this model of a framework 
have to be addressed. Firstly, checks are required to ensure that the 
holes left are filled in correctly. The level of checking can be done in 
several ways depending upon how the hole itself is represented. 

- it might be the case that the checks are done on a syntactic 
level, e.g. through ensuring that the inserted behaviour is 
syntactically compatible with the hole it fills in (ala C++ and 
virtual functions). This model is likely to be relatively easy to 
achieve, however, this level of checking is unlikely to be 
sufficient to achieve interworking, i.e. this approach only 
supports interconnectivity issues. 
- it might be the case that holes have abstract models of the 
behaviours that can be inserted into them. This is arguably the 
most useful (and probable) model of a hole but it raises several 
complex issues that have to be addressed for such an approach to 
be realised.   

We discuss these approaches and their SDL representations in sections 4 and 5. 

3.2  Development of Frameworks  

Frameworks can be developed in numerous ways. Perhaps the most obvious of 
ways is to take an existing service and extract its generic features so that classes 
of similar services can be produced. This notion of taking a developed service and 
producing a framework is termed generalisation .  

Generalisation may be regarded as capturing the main features of a given 
application (or system or enterprise or ...) in such a way that the design experience 
can be re-used. This can be at many levels of abstraction. It might be the case for 

   



 

example that certain objects that comprise a service are common to a collection 
(class) of similar services. It might be the case that certain interfaces or operations 
contained within an interface are common to a class of services. For example, in a 
multimedia conference system there are likely to be common operations to start, 
stop, suspend and resume the conference session say. Having a generic model of a 
basic service enables a potentially broad class of services dealing with multimedia 
conferencing to be created, e.g. where different policies apply regarding the 
existence of conference chairmen say, or how invitations are handled. 

If generalisation can be regarded as developing a general model of a class of 
services and embodying them in a framework, then specialisation can be regarded 
as taking the abstract framework and making it less abstract. Typically this is 
likely to be through supplying behaviours at flexibility points. Just as 
generalisation can be made in several stages to result in more and more abstract 
frameworks, so specialisation can be done in several stages; each stage resulting 
in a more deterministic framework and hence a narrower set 5 of services that can 
be created from the framework. 

A framework only has a finite number of holes. Each specialisation of a 
framework fills in one or more of these holes either completely or partially. It 
might well be the case that the user can instantiate a framework without having to 
supply all of the holes associated with that framework. This can be achieved for 
example through having default hole behaviours, e.g. this service behaviour is not 
yet implemented, comments might be supplied when the user wishes to see what 
the behaviour of a particular service instance actually is at a particular stage of  
the specialisation process. 

There are many other issues that are associated with frameworks. For example, the 
modification of existing frameworks, i.e. re-use of a framework where the 
intended level of re-use was not initially identified. These modifications might be 
through extending or reducing the functionality of the framework. Similarly, 
combination of frameworks is likely to be an important aspect in the success of 
frameworks. We note here that ODP provides the basic conceptual concepts for 
addressing these issues, e.g. behavioural compatibility, conformance, refinement, 
incremental modification, subtyping, and composition. For brevity we do not 
focus on these issues but consider features of the formal language SDL that can be 
used for modelling frameworks. 

4.0 Formal Languages for Modelling Frameworks  

The previous discussions have introduced a broad idea of frameworks in terms of 
the approaches of generalisation and specialisation. We consider now how these 
aspects impose requirements on formal languages used to model frameworks. 
Given the strong relation between frameworks and object orientation, languages 
used to formally describe frameworks should support object orientation. Whilst 

                                                           
5 In the sense of the services being more similar. 

   



 

numerous formal languages have encompassed aspects of object orientation to 
varying degrees, few have had such investments or done as much to incorporate 
object oriented modelling approaches as SDL [Sdl92]. Our focus in the following 
sections is thus on the extent that SDL supports framework modelling and usage. 

4.1  Aspects of SDL for Dealing with Generalisation  

It could be argued that generalisation requires two features in a language. Firstly, 
there is the need for modelling the behaviour identified as being generic. Without 
being more prescriptive on the form of this behaviour it is difficult to state 
precisely what features a language is expected to possess. Different formal 
languages have their own advantages and disadvantages for specifying different 
kinds of behaviours. Secondly there is the need for the selected omission of 
behaviours identified as service specific,    i.e. the language should have features 
for modelling holes. SDL has several concepts that are applicable to the modelling 
of holes. We discuss some of these briefly. 

4.1.1  Generic Types and Formal Context Parameters 

Generic types are types that refer to names not bound to complete definitions. 
These names are termed the formal context parameters of the type. They are 
enclosed in angled brackets and specified immediately after the type declaration. 
Examples of generic types include: system types; block types; process types; 
service types; procedures; signals and sorts. Formal context parameters can be 
processes, procedures, remote procedures, signals, variables, remote variables, 
timers and sorts. 

To use a generic type requires that actual context parameters are supplied that 
satisfy any constraints associated with the context parameters. These constraints 
can include signature constraints, e.g. the actual parameter must possess a 
particular operation, or by an atleast constraint which is a requirement on any 
actual context parameter to be a subtype of the type stated in the constraint. An 

example of a generic type is: 

Process Type InvHandler
         < SIGNAL setUp(InvPolicy)
              newtype InvPolicy
                  operators
                      getMinforStart: InvPolicy -> Integer;
              endnewtype >  

   



 

This process type can be used to represent different kinds of invitation handling 
policies for the starting up of services. All of these invitation handling policies 
should support a check on the minimum number of accepted invitations before 
that service can be started. We note that the semantics associated with this 
operation is established when the generic type is actualised which is itself 
dependent upon the logic of the service itself, e.g. two people at least are required 
for a multimedia conference, nobody (zero) required for starting up a chatline 
service. 

4.1.2  Virtual Types 

Perhaps the most direct mapping of flexibility points into SDL is through virtual 
types. These are types in a supertype that may be redefined by a subtype. It is 
possible that a subtype may also allow virtual types of the supertype to be 
redefined. Where this is the case the virtual types of the subtype are prefixed with 
redefined.  

There are some constraints on the redefinitions of virtual types. The minimum 
(and default) constraint is that any redefinition of a virtual type must be a 
specialization of the virtual type itself. Virtual types thus represent concepts in 
SDL where specific behaviours can be inserted. An example of a virtual type is 
given by: 

  v ir tu a l p r o c e ss  ty p e   S e rv ic e S e ssio n C o n tro l

 se ss io n S ta rte d

v ir tu a l
su sp e n d S e ssio n

 v ir tu a l
 re su m e S e ssio n

 v ir tu a l
 e n d S e ssio n

             o th e r b e h a v io u rs  g o  h e re

F ig u re  1 : V irtu a l T y p es  in  S D L

Here the transitions related to suspending, resuming and ending a session are 
made virtual so that the behaviour of the (virtual) process type can be modified 
(redefined). 

4.1.3  Packages  

Packages are used for collecting together types that can re-used by systems. This 
is achieved through a use-clause. It is likely that the package construct can be 
used to re-use basic (generic) models of services. This might include having 
specific process types representing the objects that are common to the class of 
services that can be generated from that framework. 

   



 

4.1.4 Addressing of Delegated Components  

If the hole is based on the delegation of behaviour, then this implies that 
components in the framework send signals to and get signals from the 
environment (of the framework) whenever service specific behaviour is required. 
The components the behaviour is delegated to may or may not be explicitly 
labelled in SDL. Requirements can be placed on the recipient of the delegated 
behaviour, e.g. the receiving process set is named or certain channels are used to 
transfer the message.  An example of how delegation can be achieved is shown in 
Figure 2. For brevity we do not show any checking on the delegation of 
behaviour. 

 dcl delRef PId;

 Idle

 delRef

 register(params...)

 normal (default)
      behaviour

 null else

someInv(params ...)
TO delRef

    -

   
*

 someInv(params ...)

 delRef := Sender

    -

Figure 2: Delegation in SDL
 

Here if the process identifier has not been set, i.e. it is null then the basic process 
behaviour occurs, otherwise invocations redirected to the relevant (delegated) 
process. 

4.2  Aspects of SDL for Dealing with Specialisation 

From the previous sections, it is apparent that SDL has certain features that can be 
applied to model the generic features of services, i.e. it allows for behaviour to 
modelled and for unspecified aspects of the behaviours to be left. The next 
question is how can these unspecified behaviours be filled in. 

4.2.1  Actualisation of Formal Context Parameters  

Supplying actual types that satisfy the constraints given by formal context 
parameters of generic types can be used to specialise a framework. This model of 
framework specialisation makes specific the abstract types that could be inserted 
into the framework. It should be noted that it is quite possible for a generic type to 
be only partially actualised, i.e. not all formal context parameters required for 
making that higher order type a first order type have been supplied. An example 
of actualisation of formal context parameters is given by: 

process type IH1 inherits InvHandler < setUp1, InvPolicy1 > 

   



 

For brevity we assume the signal setUp1 and data type InvPolicy1 are defined in 
some surrounding scope. 

4.2.2  Specialization of Virtual Properties  

A type may be specified as a specialization of another type. A subtype may have 
properties in addition to the properties of the supertype and it may redefine virtual 
local types and transitions (see section 4.1.2). Subtypes are specified through 
prefixing the supertype with inherits. As discussed previously, it is possible for 
subtypes of types containing virtual types themselves to be supertypes of other 
types through redefinitions. This approach to layering of the type hierarchy is 
conducive to having multi-levels of framework specialisations. An example of the 
specialisation of virtual properties is given by: 

 Block Type ExtSSM Inherits BasicSSM

[endMyParticipation,
suspendMyParticipation,
resumeMyParticipation ]

 C          REDEFINED
    ServiceSessionControl

Figure 3: Specialization of Virtual Types  in SDL
 

 

 

 

 

 

Here the virtual process type defined in section 4.1.2 is extended to allow for the 
suspending, stopping and resuming the usage of services by individual users. For 
brevity we do not show the detailed representation of the extension (and the 
redefinition of the virtual transitions) or blocks where the virtual process is 
defined. 

4.2.3  Existence of Delegated Components 

Specialisation of a framework that uses delegation requires that the components 
are supplied that receive the signals that have been delegated from the framework 
component. These delegated components should satisfy any constraints that have 
been established, e.g. be a member of the appropriate process set. 

   



 

5.0  Application of Frameworks in the TOSCA Project  

The TOSCA project is concerned with the creation and validation of services 
based on the Telecommunications Information Networking Architecture (TINA). 
This architecture is based on the principles of ODP, e.g. it considers viewpoint 
languages and objects having potentially more than one interface. TINA is more 
prescriptive than ODP however in that explicit IDL and textual descriptions of the 
expected behaviour of many of the architectural components have been identified. 

TINA itself is decomposed into four main parts: Service, Network, Management 
and Computing Architectures. In TOSCA,  the main focus is on the Service 
Architecture [TinaSA].  The Service Architecture introduces the underlying 
concepts and provides information on how telecommunication applications and 
the components they are built from, have to behave. Central to the Service 
Architecture is the concept of a session. This is defined as:  

the temporary relationship between a group of resources that are 
assigned to fulfil collectively a task or objective for a time period.  

Three sessions are identified: 

•  access session: this represents mechanisms to support access to 
services (service sessions) that have been subscribed to.  

•  service session: includes the functionality to execute and control 
and manage sessions, i.e. it allows control of the communication 
session.  

• communication session: controls communication and network 
resources required to establish end to end connections.  

TINA has identified certain components that one would expect to find in these 
sessions and prescribed IDL to describe them. The TOSCA project is considering 
how frameworks can be created based on the access and service session 
components. The relation between TINA sessions and some of the components are 
shown in Figure 4.  

 
 asUAP

 PA

 ssUAP

  access session

  service session

 asUAP

 PA

 ssUAP

 IA

 UA

 IA

 UA

 SF

 USM
 SSM

 USM

 communication session

 user domain user domain  provider domain

IA: Initial Agent 
UA:User Agent 
PA: Provider Agent 
SF: Service Factory 
USM: User Service Session Manager 
SSM: Service Session Manager 
asUAP: Access Session User 
Application 
ssUAP: Service Session User 
Application 

 

   



 

Figure 4: TINA Service Architecture and Associated Components  

As discussed previously in section 4, there are several ways in which aspects of 
frameworks can be represented in SDL. All of these approaches are currently 
being invesitgated in TOSCA. The underlying model for all of them is based on 
the IDL from the Service Architecture. In TOSCA, tools have been developed that 
allow IDL (and the TINA Object Definition Language ODL) to be mapped into 
SDL [Y.sce]. As with other CORBA language bindings, the mapping produces 
client stubs and server skeletons. These then form the basis for the behavioural 
description of the service components. Unlike other tools, the mapping of IDL to 
SDL within Y.SCE allows for the handling of exceptions: an essential feature in 
object-oriented distributed systems. 

We note here that the availability of an IDL to formal language mapping is unique 
to SDL. Other mappings are likely to prove difficult if not impossible to achieve 
due to the lack of support for interface references as first class citizens, i.e. they 
can be passed around as parameters. In SDL they are represented by process 
identifiers. 

As discussed though, IDL is only a (syntactic) basis for understanding systems: 
semantics are essential if truly open systems as defined in section 1 are to be 
developed. Whilst arguably, not as rigourous as other formalisms, SDL does allow 
behaviour to be modelled in an intuitive way. It is often the case though that even 
with intuitive representations of behaviour, the complexity of the systems being 
described result in specifications that become unwieldy (and hence complex). 
TOSCA has recognised this and developed an approach whereby frameworks can 
be specialised in a user-oriented manner. This is achieved through a graphical user 
interface (paradigm tool [Cadenza]) that allows for frameworks to be specialised 
(and subsequently services to be created) in a graphical and intuitive manner. This 
user interface is designed for usage by potentially non-technical people to develop 
services in a rapid fashion. The output of this user interface is SDL that specialises 
the framework. Once specialised, the framework can then be validated using 
appropriate SDL tools. Currently TOSCA is investigating the exact role of this 
validation. Two main ways are being considered: on-line and off-line validation. 
On-line validation is likely to be in the form of animation showing the user in a 
graphical way what happens when a specialised framework (service) is simulated. 
This can only be regarded as a partial validation though since it does not check all 
behaviours of the specification. Nevertheless it serves as a useful guide for the 
service designer to see that the service does what they actually want. Off-line 
validation is likely to entail checking for specific properties of the specification. 
One example of such as property is deadlock freedom (implicit signal 
consumption).  

6.0  Conclusions  

This paper has attempted to show how specifications can be architected using an 
approach based on frameworks. Whilst initial results in terms of the general 

   



 

principles behind frameworks and their modelling in SDL have been encouraging, 
the next major test is - as with formal methods generally - one of scalability. The 
services that TOSCA wishes to model and validate are real world software 
engineering activities, requiring the modelling of numerous complex objects 
interacting in non-trivial ways, e.g. where services might influence the behaviour 
of one another in potentially undesirable ways. Currently different techniques for 
addressing such complexity are being investigated in the context of service 
validation, i.e. avoiding the well known problem of state space explosion. Initial 
ideas to avoid this are based around partial validation techniques, where 
framework components and their specialisations are validated in isolation, i.e. 
where only environment interactions are modelled and not the complete 
environment. 

The question might be asked as to whether SDL is the best language to be used for 
expressing semantics or behaviour more generally. The language has an intuitive 
representation but can sometimes be verbose. The language lacks features such as 
invariants ala Z.  The aim of this paper was not to decide upon which language is 
best suited for expressing behaviour though - as the Architectural Semantics work 
has shown6, different languages have their own advantages and disadvantages in 
terms of abstraction, decideability, tractability etc. Rather our intention was to 
show how specifications might be engineered. We believe that the concept of 
frameworks and their modelling using the features of SDL are one such approach 
to achieving this. 

More information about the current status of the work in TOSCA can be found at: 
http://www.teltec.dcu.ie/tosca/   
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