Linking Quality Attributes and Constraints with
Architectural Decisions

David Ameller and Xavier Franch
Universitat Politecnica de Catalunya
Barcelona, Spain
{dameller, franch}@essi.upc.edu

June 22, 2012

Abstract

Quality attributes and constraints are among the principal drivers in
architectural decision making processes. Quality attributes are improved
or damaged by architectural decisions, while constraints directly include
or exclude parts of the architecture (e.g., logical components or tech-
nologies). We may determine the impact of an architectural decision in
the software quality, or which parts of the architecture are affected by
a constraint, but the hard problem is to know if we are respecting the
quality requirements (requirements over the quality attributes) and the
imposed constraints with all the architectural decisions made. Currently,
the most usual approach is that architects use their own experience to
produce software architectures that comply with the expected quality re-
quirements and imposed constraints, but at the end, especially for crucial
decisions, the architect has to deal with complex tradeoffs between quality
attributes and juggle with possible incompatibilities raised by the imposed
constraints. To facilitate this task and make architect’s decision making
processes more reliable and effective, in this paper we present the Quark
method to guide the architects in the software architecture design. Quark
relies on a specialized ontology, Arteon, which is in charge of managing the
architectural knowledge. The decisional part of Arteon is also presented
in this paper.

1 Introduction

In the last decade, software architecture has become one of the most active
research areas in software engineering. As a significant trend in this community,
many researchers have stated that architectural decisions are the core of software
architecture [25, 19]. Under this view, software architecture has evolved from
a simple structural representation to a decision-centric viewpoint [19]. Along
this way, several methodological approaches for architecture design and analysis

had been proposed, e.g., ADD, TOGAF, ATAM, CBAM. These are heavyweight
methods that offer a significant gain in the reliability of the architecture design
process but require large-scale projects to achieve a balance between what the
method offers and the effort that supposes for the architects to use it. This
balance is hard to achieve when projects are low- or medium-scale. Lighter
methods that apply for not so large projects are required [23].

In this context, we present Quark (Quality in Architectural Knowledge), a
decision-centric lightweight method for architecture design. Quark builds upon
the management and reuse of Architectural Knowledge (AK) [20] represented
as an ontology called Arteon. Arteon includes knowledge about architectural
decisions, including their rationale and their link to quality attributes and con-
straints. In this paper we present Quark and the decisional part of Arteon.

The rest of this paper is divided in the following sections: the Quark method
(Section 2), the representation of AK using Arteon (Section 3), an example of
use of Quark and Arteon (Section 4), analysis of the presented work (Section 5),
and finally conclusions and future work (Sections 6 and 7).

2 The Quark Method

Quark aims at providing means to facilitate and making more reliable architects’
decisions with regard to quality attributes. The method starts from the software
requirements, and ends with a set of architectural decisions and the overall
evaluation of the quality attributes.

The design of Quark has been driven from a critical observation gathered
from two empirical studies we have recently conducted': software architects may
be receptive to new design methods as far as they still keep the control on the
final decisions. In other words, architectural decision making should not be an
automatic process, but just computer-assisted, therefore still architect-driven.

As a consequence, the architect plays the central role in Quark. There are
two tasks where the architect role takes special relevance. First, the archi-
tect iteratively defines the quality requirements and constraints relevant to the
software architecture. Second, the architect chooses the most convenient archi-
tectural decisions and decides when the decisions made are sufficient to end the
process.

In the same direction, Quark does not pretend to be intrusive. It notifies
about possible incompatibilities and possible actions to solve them, but the
method does not require resolving an incompatibility to continue with the de-
sign, it is up to the architect to decide.

The Quark method delivers an iterative process divided in four differentiated
activities (see Figure 1): first, specification of the quality requirements and the
imposed constraints; second, inference of architectural decisions according to
existing AK; third, decision making; and fourth, architectural refinement (if
necessary). Whenever the solution is refined, activities 1-3 should be repeated.
In the following subsections we give details on each activity.

INot available as publication yet.

Decision
inference

- Prioritization
{Constraints - Guidance

and QRs}
Q

“\,

Architectural

' specification

- Constraints
- QRs
Software

requirements {mmh

and QRs}

Decision
making '
Architectural

{ Decisions and
decisi . :
{decisions} quality evaluation
refinement

- Dependencies
- Restrictions

Figure 1: Quark overview.

2.1 Architectural Specification

In the first activity, the architect specifies the quality requirements and con-
straints that will drive the architecture design. They represent the architect
interpretation of the software requirements that are relevant for the architec-
ture design. For example, a quality requirement could be “performance should
be high” (in other words, more a goal than a requirement) or something more
concrete as “loan processing response time should not be higher than two sec-
onds 95% of the times”. Constraints are typically referring to technologies,
e.g., “the database management system (DBMS) must be MySQL 57, but may
also refer to architectural principles, patterns or styles, as in “the architectural
style must be Service-Oriented Architecture (SOA)”. More details on how this
specification can be done are given in Section 3.

Due to Quark’s incremental nature, the specification of these quality require-
ments and constraints does not need to be complete. The architect has freedom
to decide if s/he wants to start from a very short specification and then make
the architecture grow in each refinement or if s/he wants to provide a more
complete specification and see if the expected quality calculated by the method
matches the expected quality requirements, and then refine till the architecture
complies with the requirements.

2.2 Decision Inference

In the second activity, the Quark method uses the AK available to generate a
list of decisions. Since the expected amount of decisions is large, the decisions
should be ordered by priority using some criteria (e.g., the decisions that satisfy

more constraints and better comply with the stated quality requirements are
top priority).

Decisions need to be informative. This means that, beyond their name, deci-
sions must include information about: why the decision was offered?, what is the
impact in the overall architecture quality?, and what other implications involve
making the decision? More complete descriptions of decisions are available in
the literature (e.g., [25]).

For example, for the decision “data replication” we could answer the above
questions as follows: “the decision to have data replication is offered because
there is a requirement about having high performance”, “by making this de-
cision, the overall performance will increase but will affect negatively to the
maintenance, and can damage the accuracy”, “also, by selecting this decision,
the used DBMS is required to be able to operate with data replication.”

2.3 Decision Making

In the third activity, the architect decides which decisions wants to apply from
the ones obtained in the previous activity. When the architect makes a decision,
two things may happen: First, there could be incompatibilities with previous
decisions (e.g., we are selecting the “data replication” decision, but we already
selected a DBMS that does not support data replication), and second, there
could be one or more quality requirements that do not hold by the decisions
made (e.g., the decisions made indicate that maintainability will be damaged
while there is a quality requirement that says that maintainability is very im-
portant for this project).

In both cases, the architect will be informed about which decisions are the
most conflictive, but at the end s/he will decide if the actual set of decisions
is satisfactory or not (e.g., there may be external reasons, beyond requirement
satisfaction, that have higher priority).

When the architect ends the decision making, s/he has the opportunity to
conclude the process by accepting the current set of decisions and their impact
in the quality attributes. As mentioned in [25], we understand the software
architecture as a set of architectural decisions. Alternatively, the architect may
choose to make a new iteration. A new iteration starts in the refinement activity.

2.4 Architectural Refinement

The objective of the refinement activity is to make actions that will resolve the
detected issues in the next iteration. We identified three possible outcomes from
the decision making activity: incompatibilities, dependencies, and suggestions
for quality requirements. Incompatibilities may be translated into conditions
over the attributes of the architectural elements (see Section 3.4). For example,
there must be an attribute that indicates if the DBMS supports data replication.
Dependencies occur when some decision requires other parts in the architecture.
For example, when the architect decides to use SOA, several related decisions
are needed: service implementation (e.g., SOAP, REST), service granularity

—>| Reg-module |—>| R-module I:I SE-module |—>| MDD-moduIe|—>

Software Constraints and Architectural Selection of Architecture
requirements quality requirements decisions transformations implementation

Figure 2: Arteon modules.

(e.g., service composition, single service), etc. And last, we may infer that some
quality attribute is of special relevance due to the selected decisions, e.g., most
of the decisions have positive impact on security. In that case we may suggest to
the architect to consider including a quality requirement about security. Doing
this we help architects making quality requirements explicit.

Incompatibilities and dependencies can be translated into constraints, while
the third outcome will generate new quality requirements. In the specification
activity the architect will decide which of these outcomes will be included in the
next iteration. At this point, the architect can also add or modify the constraints
and quality requirements. For example, the architect may have noticed in the
last iteration that one quality requirement in particular is very difficult to meet
and decide to soften it.

3 Managing and Reusing
Architectural Knowledge

Central to Quark is the management and reuse of the AK that supports the deci-
sion making process. Among other alternatives, we have chosen to use ontologies
to represent the AK. Ontologies have been successfully used for knowledge rep-
resentation in other domains (e.g., software engineering, artificial intelligence,
semantic web, biomedicine, etc.) and they offer other advantages such as rea-
soning and learning techniques ready to be applied (e.g., we could add new
decisions using case-based reasoning techniques).

We have designed Arteon (Architectural and Technological Ontology) to
manage and reuse AK. A first overview of Arteon appears in [3]. In that paper,
the focus was on the part of the ontology related to the structural elements
(i.e., components and their relationships). In this paper, we focus on a different
part of the ontology, the part related to architectural decisions. Arteon fol-
lows to the ontology design principles stated by Gruber [11], Guarino [12] and
Evernmann [8]: clarity, coherence, extendibility, minimal encoding bias, mini-
mal ontological commitment, identity criterion, basic taxonomy, and cognitive
quality.

Most of the concepts that appear in this ontology are adopted from the
software architecture community. They are defined carefully, and whenever
possible we simply adhere to the most widely-accepted definition (according to
the minimal ontological commitment design principle).

One particularity of this ontology is that it has been diagramed using UML
class diagrams. The principal reason is that UML class diagrams are optimal as

communication means. On the other hand, UML has not been a limitation to
express any concept or relationship, thus the minimal encoding bias principle
has not been jeopardized. We also found in the literature many approaches that
use UML, or UML variations, to diagram the ontologies (e.g., [13, 5]) and there
is also the possibility to convert the UML representation of the ontology into
OWL [9].

The typical benefits of materializing AK are sharing and reusing this knowl-
edge in different software projects and/or communities of architects. But in this
paper we go one step forward. We propose to use AK to guide and facilitate the
architects’ decision making process and, eventually, bring more reliability to this
process by surfacing new alternatives that were not initially considered by the
architect. To apply the learning and reasoning techniques necessary to walk this
step, we need to be able to formalize this knowledge. In this section we provide
some examples of formalizations of this knowledge to show its feasibility.

Arteon is divided into four modules: Req-module, representing software re-
quirements knowledge; R-module, reasoning and decision making knowledge
(the module presented in this paper); SE-module, structural elements, views
and frameworks knowledge (presented in [3]); and MDD-module, Model-Driven
Development (MDD) related knowledge. Although interconnected (see Fig-
ure 2), the four modules are loosely coupled and highly cohesive enough to
be reused separately. In the particular, the Req-module is related to the R-
module through a relationship between software requirements (functional and
non-functional) and constraints. The relationship between the R-module and
the SE-module is done through a specialization of the Decisional Element con-
cept (see Section 3.1) into a full classification of these elements. The relationship
between the SE-module and the MDD-module consists on the selection of the
correct MDD transformations to apply. The last link is necessary for our vision
in software architecture design [4], which is out of the scope of this paper.

In Figure 3 we show the principal concepts of the R-module and their rela-
tionships. The rest of the section provide details of R-module.

3.1 Decisional Element

A Decisional Element is an elemental part of an architecture the architect can
decide upon, i.e., the object of decisions. This concept is specialized in the
SE-module, so it is left unrefined in the R-Module. The different types of
Decisional Element proposed in the SE-module are: architectural styles (e.g., 3-
layers), style variations (e.g., 3-layers with data replication), components (e.g.,
persistence layer), and implementations (e.g., Hibernate). Of course, this is not
the unique possible specialization of this concept. Being a modular ontology
makes it is easy to design and use a different specialization hierarchy for the
Decisional Element, which is aligned with the extendibility principle.

Constraint condition Attribute
* * A
impose { disjoint, { disjoint,
complete } complete }

Restriction Condition | | QualityAttribute | [ElementAttribute

impose | _Effect |Effect
DecisionalElement Actllon Decision
" ’ | Value
Action |
Value]

Figure 3: Arteon R-module.

3.2 Decision

According to RUP [18], software architecture is the “selection of the structural
elements and their interfaces by which a system is composed, behavior as speci-
fied in collaborations among those elements, composition of these structural and
behavioral elements into larger subsystem, architectural style that guides this or-
ganization”. This definition is about making architectural decisions, structural
and behavioral, both classified as existence decisions by Krutchen et al. [20].

In Arteon, the decision concept is very similar to the existence decision
concept. Decisions are actions over Decisional Elements where the action deter-
mines the effect of the decision. Due to the extendibility design principle, we
have not closed the ontology to a predefined set of actions, but possible actions
could be, for example, the ones proposed in [20]: use, the Decisional Element
will be in the architecture, and ban, the Decisional Element will not be in the
architecture.

3.3 Constraint

Constraints can be imposed by software requirements or by decisional elements
(the concept of requirement belongs to the Req-module of Arteon). Constraints
coming from requirements are normally described in natural language (e.g.,
“the system shall be developed in C++"), sometimes using templates (e.g.,
Volere [22]) or a specialized language (e.g., temporal logic, the NFR Frame-
work [6], etc.). Constraints coming from Decisional Elements are formalized as
part of the AK (e.g., when the architect uses a technology that is only available
for a particular platform, s/he is restricting the architecture to this platform).

RestrictionSet -» Restriction (LogicOp Restriction)*
Restriction » Action [DecisionalElement]

Action » <use> | <ban>

ConditionSet - Condition (LogicOp Condition)*
Condition -» ComparativeCond | ConjuntiveCond
ComparativeCond - [Attribute] CompOp [Value]
ConjunctiveCond - [Attribute] ConjOp [Value]+
LogicOp - <and> | <or>

CompOp - <greater_than> | <lower_than> | <equal_to>
ConjoOp -» <includes> | <excludes>

Figure 4: CFG to formalize constraints.

Independently from the origin of the constraint, we distinguish between two
kinds:

Restriction A constraint that directly imposes one or more decisions. For
example, “SQL Server” DBMS needs “Windows” operating system.

Condition A constraint that specifies the expected values for some attributes.
An example of condition could be that we need to limit the valid licenses in
an Open-Source Software (OSS) project: the element attribute “license”
must be equal to any of these values “GPL”, “LGPL”, “BSD”, etc..

From the point of view of a reasoning system, constraints are used to reduce
the amount of valid solutions, or as it happens in Quark, to give lower priority
to the decisions that do not comply with the constraints.

In order to be able to reason with these constraints they must be formalized
as evaluable expressions. Again, the ontology does not commit to any particular
proposal, but we provide an example expressed as a Context Free Grammar
(CFG) [21] (see Figure 4). For simplification, we included extra notation in
the CFG: [concept] mean one valid instance of the concept and jsymbol; mean
a terminal symbol. Also, for simplification, we did not include semantic rules
(e.g., “the data type of the value should be the same of the data type of the
attribute”). Depending on the expressiveness of the formalization, constraints
could contain logic, comparative and conjunctive expressions, but expressiveness
impacts negatively on the complexity of the reasoning system.

3.4 Attribute

An Attribute is an “inherent property or characteristic of an entity that can be
distinguished quantitatively or qualitatively by human or automated means” [17].
In Arteon we differentiate two kinds of attributes:

Element Attribute An attribute of a type of decisional element. For example,
AK about technologies will include the name of their license as value for

the element attribute “license” whenever this information is considered
relevant for making decisions.

Quality Attribute An attribute that characterizes some aspect of the soft-
ware quality. For example, ISO/IEC 9126-1 [16] defines a hierarchy of
quality attributes (named “characteristics” in the standard: functionality,
reliability, usability, efficiency, maintainability, and portability).

In this case, we also followed the extendibility principle by leaving the at-
tributes customizable. Initially, we thought to propose a set of attributes, the
most generic and independent of domain, but when we tried we found out that
domain specific quality models may be more adequate in each situation (e.g., the
S-Cube quality model [10] is specific for SOA) and that the element attributes
are uncountable, and even worse, the same information can be modeled with
different attributes (e.g., for the license information, we may have a boolean
attribute, true when is a OSS license and false otherwise, or as before have an
attribute with a list of licenses). We finally opted to let the domain expert
decide which attributes are more convenient in each case, but we acknowledge
that more research is needed in order to make this knowledge reusable between
different projects.

4 Example

Since the complete architectural decision making process of a software architec-
ture is too big to be included in a paper, the present example will focus only in
one aspect of the architecture, the DBMS. The example is mostly about tech-
nologies, but the same idea can be also applied, for example, to the selection of
architectural patterns.

Following the Quark method, first the architect should revise the software
requirements and identify the ones that are relevant to the architecture. For
this example, the requirements are: (R1) the software system shall keep the
information about clients and providers, (R2) the software system shall be de-
veloped using OSS whenever possible, and (R3) the software system shall have
backup systems for reliability.

4.1 Specification Activity

Once software requirements are selected, the software architect should translate
them into quality requirements and constraints. From the R1 the architect may
deduce that the project is an information system, so a DBMS will be required.
R2 sets a constraint on the technologies used to be OSS. R3 sets constraints for
backup facilities, and also mentions that reliability is a desired quality attribute.
Using the formalization presented in Section 3 the specification will be: Use
DBMS, “License” includes “GPL”, “LGPL”, “BSD”, etc., “Backup facility”
equal “yes”, and “Reliability” greater than “average”.

4.2 Decision Inference Activity

Next, depending on the AK we have in the knowledge base and using prioriti-
zation criteria, an ordered list of decisions will be generated. In this example,
the prioritization criteria is to give high priority to decisions that include tech-
nologies to implement the DBMS architectural component and the decisions
that satisfy more constraints. We propose the following decisions, using as the
AK base the information published in the Postgres Online Journal [15]. The
decisions are described as mentioned in Section 2.2:

1. The decision to use MySQL 5 is offered because it is OSS. There is no
information available about backup facilities in MySQL. MySQL is pre-
ferred because it supports more OSS technologies. Using MySQL has
neutral impact in reliability because ACID compliance depends on the
configuration.

2. The decision to use PostgreSQL 8.3 is offered because it is OSS. There is
no information available about back-up facilities in PostgreSQL. There are
few OSS technologies with support for PostgreSQL. Using Postgre-SQL
improves reliability because it is ACID compliant.

3. The decision to use SQL Server 2005 is offered because it satisfies the
backup facility condition. SQL Server is not OSS. There are few OSS
technologies with support for SQL Server. SQL Server will require a Win-
dows operating system. Using SQL server improves reliability because it
is ACID compliant.

4.3 Decision Making Activity

In the decision making activity, the architect, for example, will decide to use
MySQL 5 (the decision with higher priority) as the implementing technology
for the DBMS component. But as said before in this paper, the architect may
prefer to use PostgreSQL, even it is not the top decision, because s/he is more
familiar to it (or any other reason). The important point is that the architect
is able to make informed decisions, and, eventually, new decisions that were
unknown to her/him are taken into consideration.

4.4 Architectural Refinement Activity

After the decision making activity the architectural design will continue with
new iterations, where the decisions to use MySQL will impact, for example,
in the selection of other technologies that are compatible with MySQL. This
information will appear during the refinement activity as dependencies and in-
compatibilities.

10

5 Analysis

Hofmeister et al. [14] compared five software architecture design methods and
came out with a general model of architectural design method composed of three
activities:

Architectural analysis “serves to define the problems the architecture must
solve.”

Architectural synthesis “is the core of architecture design. This activity
proposes architecture solutions to a set of architectural significant require-
ments, thus it moves from the problem to the solution space.”

Architectural evaluation “ensuresthat the architectural design decisions made
are the right ones.”

In Quark architectural analysis is covered with the specification activity,
architectural synthesis is covered with the decision inference activity, and archi-
tectural evaluation is covered with the decision making activity, but there are
two differences between Quark and the general approach of architectural design
proposed by Hofmeister. First, the general approach does not consider iterative
methods, which is why we have an extra activity in our method. The second dif-
ference is that Hofmeister’s general approach deals with complete architectural
solutions, while Quark works at decisional level. In our exploratory studies we
have detected that architects will not trust a support system that generates full
architectural solutions without their intervention.

We have compared Arteon with Kruchten’s taxonomy of architectural deci-
sions [20], which has three kinds of decisions:

Existence decisions “states that some element / artifact will positively show
up, i.e., will exist in the systems’ design or implementation.”

Property decisions “states an enduring, overarching trait or quality of the
system. Property decisions can be design rules or guidelines (when ex-
pressed positively) or design constraints (when expressed negatively), as
some trait that the system will not exhibit.”

Executive decisions “do not relate directly to the design elements or their
qualities, but are driven more by the business environment (financial),
and affect the development process (methodological), the people (educa-
tion and training), the organization, and to a large extend the choices of
technologies and tools.”

Existence decisions, as mentioned in Section 3.2, are represented as the De-
cision concept of Arteon. The two other kinds of decisions are also represented
in the ontology, but not in an evident way. Property decisions are represented
in Arteon as the resulting decisions from conditions over quality attributes or
element attributes, for example, all the decisions made because of the condition

11

to have OSS license. Executive decisions are represented in Arteon as the result-
ing decisions imposed by restrictions that come from the software requirements,
in particular the requirements unrelated to the software quality, for example, a
software requirement says that the DBMS should be Oracle, because the com-
pany has a deal with Oracle.

There are other works that propose methods (e.g., [24]) and conceptual mod-
els of AK (e.g., [1, 7]), but there is not enough space in the present paper to
properly comment on the commonalities and differences between approaches.
As a general comment we would say that each one is designed with particular
objectives in mind, some focus on management and the actors that take part in
architectural design, others are oriented to document decisions, etc.

6 Conclusions

One of the most known Kruchten’s statements is “the life of a software architect
is a long (and sometimes painful) succession of suboptimal decisions made partly
in dark”. The lack of knowledge is one of the reasons to produce suboptimal
decisions. For example, the architect may not know all the effects of using
some technology or architectural pattern: it may need of other components to
work correctly (e.g., some of them may be incompatible with other architectural
decisions), it may have unexpected effects in the overall evaluation of some
quality attributes (e.g., lowers the resource utilization efficiency). Also, the
lack of knowledge may cause a worse situation when some alternative is not
considered because it is unknown to the architect.

To improve this situation we presented in this paper the Quark method, a
lightweight method based in the Arteon ontology to support architects during
the architectural decision making.

7 Future Work

Quark can work as standalone method for a decision making support system
for architectural design, but we envisioned the conversion of the resulting set
of decisions into architectural views and/or models, and then into the actual
software architecture implementation [4].

We are implementing an Eclipse-based tool, ArchiTech [2], which will become
a proof of concept for the Quark method. This same tool is already capable to
manage the AK as it is defined in Arteon. One of the key features of this tool
will be the ability to monitor the quality attributes at the very moment that an
architectural decision is made.

AK acquisition and maintenance is the “elephant in the room”. Neither
this nor other works done around AK will become more than toy tools if this
issue is not resolved. Our position is that the only way to acquire and maintain
such amount of information is making architects active participants. We started
conducting several empirical studies based on interviewing software architects

12

to acquire this knowledge, but large networks of knowledge are required (e.g.,
Stack Overflow had been a successful knowledge base for developers). We should
look forward and propose knowledge networks that allow reasoning beyond text
searches.

8

Acknowledgments

This work has been partially supported by the Spanish MICINN project TIN2010-
19130-C02-02. Thanks to Oriol Collell for his comments.

References

1]

2]

A. Akerman and J. Tyree. Using ontology to support development of soft-
ware architectures. IBM Syst. J., 45:813-825, 2006.

D. Ameller, O. Collell, and X. Franch. Reconciling the 3-layer architectural
style with a plug-in-based architecture: the Eclipse case. In TOPI (ICSE),
2011.

D. Ameller and X. Franch. Ontology-based Architectural Knowledge rep-
resentation: structural elements module. In ITWSSA (CAiSE), 2011.

D. Ameller, X. Franch, and J. Cabot. Dealing with Non-Functional Re-
quirements in Model-Driven Development. In RE, 2010.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML Class
Diagrams. Artificial Intelligence, 168(1-2):70-118, 2005.

L. Chung, B. Nixon, and E. Yu. Non-functional requirements in software
engineering. Kluwer Academic, 2000.

R. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, and A. Jansen.
Architectural Knowledge: Getting to the Core. In QoSA, 2007.

J. Evermann and J. Fang. Evaluating ontologies: Towards a cognitive
measure of quality. Information Systems, 35(4):391-403, 2010.

D. Gasevic, D. Djuric, V. Devedzic, and V. Damjanovi. Converting UML
to OWL ontologies. In WWW Alt., pages 488-489, 2004.

A. Gehlert and A. Metzger. Quality Reference Model for SBA, 2009.

T. R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43:907-928, 1995.

N. Guarino. Some Ontological Principles for Designing Upper Level Lexical
Resources. CoRR, cmp-1g/9809002, 1998.

13

[13]

[14]

[15]

G. Guizzardi, G. Wagner, and H. Herre. On the Foundations of UML as
an Ontology Representation Language. In FKAW, 2004.

C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. Amer-
ica. A general model of software architecture design derived from five
industrial approaches. JSS, 80(1):106-126, 2007.

L. Hsu and R. Obe. Cross Compare of SQL Server, MySQL, and
PostgreSQL http://www.postgresonline.com/journal/archives/
51-Cross-Compare-of-SQL-Server, -MySQL, ~and-PostgreSQL.html,
2008.

ISO/IEC. Product quality — Part 1: Quality model, 2001.

ISO/IEC. Software product Quality Requirements and Evaluation
(SQuaRE), 2005.

P. Kroll and P. Kruchten. The rational unified process made easy: a prac-
titioner’s guide to the RUP. Addison-Wesley, 2003.

P. Kruchten, R. Capilla, and J. C. Duenas. The Decision View’s Role in
Software Architecture Practice. IEEE Soft., 26:36-42, 20009.

P. Kruchten, P. Lago, and H. van Vliet. Building Up and Reasoning About
Architectural Knowledge. In QoSA, 2006.

A. Nijholt. Context-Free Grammars: Covers, Normal Forms, and Parsing.
LNCS. Springer, 1980.

J. Robertson and S. Robertson. Volere: Requirements Specification Tem-
plate. Technical report, Atlantic Systems Guild, 2010.

A. Tang, M. Babar, I. Gorton, and J. Han. A survey of architecture design
rationale. JSS, 79(12):1792-1804, 2006.

A. Tang, J. Han, and R. Vasa. Software Architecture Design Reasoning: A
Case for Improved Methodology Support. IEEE Soft., 26(2):43-49, 2009.

J. Tyree and A. Akerman. Architecture decisions: demystifying architec-
ture. IEEFE Soft., 22:19-27, 2005.

14

