8,505 research outputs found

    Scratchpad Sharing in GPUs

    Full text link
    GPGPU applications exploit on-chip scratchpad memory available in the Graphics Processing Units (GPUs) to improve performance. The amount of thread level parallelism present in the GPU is limited by the number of resident threads, which in turn depends on the availability of scratchpad memory in its streaming multiprocessor (SM). Since the scratchpad memory is allocated at thread block granularity, part of the memory may remain unutilized. In this paper, we propose architectural and compiler optimizations to improve the scratchpad utilization. Our approach, Scratchpad Sharing, addresses scratchpad under-utilization by launching additional thread blocks in each SM. These thread blocks use unutilized scratchpad and also share scratchpad with other resident blocks. To improve the performance of scratchpad sharing, we propose Owner Warp First (OWF) scheduling that schedules warps from the additional thread blocks effectively. The performance of this approach, however, is limited by the availability of the shared part of scratchpad. We propose compiler optimizations to improve the availability of shared scratchpad. We describe a scratchpad allocation scheme that helps in allocating scratchpad variables such that shared scratchpad is accessed for short duration. We introduce a new instruction, relssp, that when executed, releases the shared scratchpad. Finally, we describe an analysis for optimal placement of relssp instructions such that shared scratchpad is released as early as possible. We implemented the hardware changes using the GPGPU-Sim simulator and implemented the compiler optimizations in Ocelot framework. We evaluated the effectiveness of our approach on 19 kernels from 3 benchmarks suites: CUDA-SDK, GPGPU-Sim, and Rodinia. The kernels that underutilize scratchpad memory show an average improvement of 19% and maximum improvement of 92.17% compared to the baseline approach

    Performance Analysis of a Novel GPU Computation-to-core Mapping Scheme for Robust Facet Image Modeling

    Get PDF
    Though the GPGPU concept is well-known in image processing, much more work remains to be done to fully exploit GPUs as an alternative computation engine. This paper investigates the computation-to-core mapping strategies to probe the efficiency and scalability of the robust facet image modeling algorithm on GPUs. Our fine-grained computation-to-core mapping scheme shows a significant performance gain over the standard pixel-wise mapping scheme. With in-depth performance comparisons across the two different mapping schemes, we analyze the impact of the level of parallelism on the GPU computation and suggest two principles for optimizing future image processing applications on the GPU platform

    Fine-sorting One-dimensional Particle-In-Cell Algorithm with Monte-Carlo Collisions on a Graphics Processing Unit

    Full text link
    Particle-in-cell (PIC) simulations with Monte-Carlo collisions are used in plasma science to explore a variety of kinetic effects. One major problem is the long run-time of such simulations. Even on modern computer systems, PIC codes take a considerable amount of time for convergence. Most of the computations can be massively parallelized, since particles behave independently of each other within one time step. Current graphics processing units (GPUs) offer an attractive means for execution of the parallelized code. In this contribution we show a one-dimensional PIC code running on Nvidia GPUs using the CUDA environment. A distinctive feature of the code is that size of the cells that the code uses to sort the particles with respect to their coordinates is comparable to size of the grid cells used for discretization of the electric field. Hence, we call the corresponding algorithm "fine-sorting". Implementation details and optimization of the code are discussed and the speed-up compared to classical CPU approaches is computed

    An INTRODUCTION TO CUDA Programming

    Get PDF
    The graphics boards have become so powerful that they are usded for mathematical computations, such as matrix multiplication and transposition, which are required for complex visual and physics simulations in computer games. NVIDIA has supported this trend by releasing the CUDA (Compute Unified Device Architecture) interface library to allow applications developers to write code that can be uploaded into an NVIDIA-based card for execution by NVIDIA's massively parallel GPUs. This paper is an introduction to the CUDA programming based on the documentation from [2] and [4].cuda programming

    Simulating spin models on GPU

    Full text link
    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.Comment: 5 pages, 4 figures, elsarticl

    Solving Lattice QCD systems of equations using mixed precision solvers on GPUs

    Full text link
    Modern graphics hardware is designed for highly parallel numerical tasks and promises significant cost and performance benefits for many scientific applications. One such application is lattice quantum chromodyamics (lattice QCD), where the main computational challenge is to efficiently solve the discretized Dirac equation in the presence of an SU(3) gauge field. Using NVIDIA's CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector product that performs at up to 40 Gflops, 135 Gflops and 212 Gflops for double, single and half precision respectively on NVIDIA's GeForce GTX 280 GPU. We have developed a new mixed precision approach for Krylov solvers using reliable updates which allows for full double precision accuracy while using only single or half precision arithmetic for the bulk of the computation. The resulting BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations until convergence, perform better than the usual defect-correction approach for mixed precision.Comment: 30 pages, 7 figure
    corecore