
Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Seung In Park · Yong Cao · Layne T. Watson · Francis Quek

PerformanceAnalysis of a NovelGPUComputation-to-core
Mapping Scheme forRobust Facet ImageModeling

Received: date / Revised: date

Abstract Though the GPGPU concept is well-known
in image processing, much more work remains to be done
to fully exploit GPUs as an alternative computation
engine. This paper investigates the computation-to-core
mapping strategies to probe the efficiency and scalability
of the robust facet image modeling algorithm on GPUs.
Our fine-grained computation-to-core mapping scheme
shows a significant performance gain over the standard
pixel-wise mapping scheme. With in-depth performance
comparisons across the two different mapping schemes,
we analyze the impact of the level of parallelism on
the GPU computation and suggest two principles for
optimizing future image processing applications on the
GPU platform.

Keywords Facet image modeling, robust estimation,
GPGPU, computation-to-core mapping.

1 Introduction

A long standing challenge to the field of image processing
is achieving a real-time, interactive execution of applied
algorithms. It has been often the case that an image
processing algorithm is theoretically sound but not useful
for real-world applications due to the computational
resource and time requirements [13,19,25,31]. Given the
impressive advances in graphics processing unit (GPU)-
based architectures and programming environments, the

Seung In Park, Yong Cao, Francis Quek
Department of Computer Science,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA
E-mail: {spark80, yongcao, quek}@vt.edu

Layne T. Watson
Department of Computer Science,
Department of Mathematics,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA
E-mail: ltw@cs.vt.edu

application of general purpose computation on GPU
(GPGPU) in image processing is receiving increasing
attention.

GPUs are ideal implementation platforms for image
processing algorithms because they are inexpensive com-
monly available many-core processors capable of high
performance parallel computation and data throughput.
Many image processing tasks perform the same opera-
tion on each pixel of the input image, a typical data
parallel scenario. It is therefore conceptually simple
to map the processing of each pixel to the parallel
architecture of GPUs. In most cases, such simple
computation-to-core mapping can be effective [12,17,
31,35]. However, when an algorithm involves a large
linear system to solve, for example, robust facet image
modeling [9] and surface analysis [33,34] algorithms, the
amount of computation for each pixel is too heavy for a
single GPU core to execute efficiently. Sometimes, such
a mapping also results in a GPU resource deficit, which
makes the processing of large images impossible.

This paper provides a detailed illustration of the
disadvantages of a pixel-wise mapping scheme on a GPU
implementation of the robust facet image modeling
algorithm. We propose a computation-to-core mapping
scheme that realizes fine-grained parallelism by a
novel distribution of the processing requirements for
each pixel across multiple GPU cores. This type of
parallelism, called block-level facet processing, greatly
enhances the efficiency of GPU resource usage, resulting
in substantial performance gains, and outperforming the
standard pixel-level mapping scheme.

Our facet-based model involves a numerical method
known as QR decomposition. To better understand
the impact of parallelism granularity on numerically
oriented computation within image processing, we did
comparative implementation of the QR decomposi-
tion computation for both the pixel and block-level
approaches. We provide an in-depth performance com-
parison across these implementations.

The rest of the paper is organized as follows.
Section 2 describes the architecture and programming

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

model of GPUs. Several previous studies on image pro-
cessing using GPUs are reviewed in Section 3. Section 4
illustrates the robust facet image modeling algorithm
and analyzes the computational characteristics of the
algorithm. Section 5 explores two implementation de-
signs differing in the mapping of data elements to GPU
processing cores. Section 6 introduces an algorithmic
optimization for robust image modeling and how the
optimization affects the two implementations discussed
in the previous section. Section 7 discusses how the
mapping affects the performance and scalability, and
Section 8 summarizes what mapping strategy should
be taken depending upon computational profile and
purpose, and describes a limitation and future work.

2 GPU Architecture

GPUs have evolved from fixed function graphics
pipelines to fully programmable, massively parallel
architectures for general purpose computational appli-
cations. With the advent of NVIDIA’s Compute Unified
Device Architecture (CUDA) in 2007, developers were
liberated from need to frame computation within the
structure of shaders and graphics APIs. CUDA allowed
researchers from many disciplines to exploit the low-cost
massively parallel computational power of GPUs with
support for random memory access and C programming
SDK.

Our paper is about the use of modern GPUs with
the CUDA programming framework and instruction
set architecture for numerically-based computation and
image processing. We employed NVIDIA’s GT200-series
GPUs as our test platform. These GPUs are built as a
collection of streaming multiprocessors, each of which
consists of eight SIMT (single-instruction, multiple-
thread) stream processors. The SIMT architecture
allows each stream processor in a multiprocessor to run
the same instruction on different data independently,
making it ideal for data-parallel computing. This section
will discuss the thread organization of CUDA and the
GPU memory hierarchy. A detailed description of the
programming model and architectural specification for
CUDA can be found in [20] and [21].

2.1 Thread Organization

CUDA manages a large number of computing threads by
organizing them into a set of logical blocks. Each thread
block can be mapped onto one of the multiprocessors
for execution. The number of threads allowed in a block
depends on the hardware limitation of each specific
device and the computational resources required by
each thread in the block. Blocks are further organized
into grids. The threads within one grid all execute the
same kernel function, and the thread grids are scheduled
to run sequentially on the GPU.

In terms of scheduling, a group of 32 threads
forms a warp, which is the minimum thread set that
is scheduled independently to run on multiprocessors
in parallel. Since each multiprocessor has only one
instruction fetch unit, all threads in a warp must
execute the same instruction in a GPU clock cycle for
the best performance. If a branch instruction causes
the execution of diverged codepaths within a warp, all
different codepaths have to be executed sequentially,
which results in performance degradation.

2.2 Memory Hierarchy

Another important feature of CUDA is a memory
hierarchy to hide memory and pipeline latency. Figure 1
illustrates the memory resources available to CUDA,
and how each resource may be accessed. Each processing
core within a multiprocessor has its own local memory
(not shown in figure) that is allowed exclusively for
some automatic variables, and is not in programmatic
control of the developer. Each multiprocessor has a
set of shared memory and cache memory resources,
and a set of memory resources that is shared across
multiprocessors: global, constant, and texture memory.
The cache memory is closely related to texture memory.
Texture and constant memory are accessible as read-only
memory from within CUDA. These memory resources
may be written from the host CPU program, and serve
as a way to pass information into the multiprocessor
program of the GPU from the CPU. The difference, as
the name implies, is that texture memory also serves
the purpose of declaring image arrays to be used by the
GPU.

Multi-processor

Processing

core

Shared

Memory

Cache

Memory

Multi-processor Multi-processor

Global Memory

Texture Memory

Constant Memory

Fig. 1 Overview of the CUDA memory hierarchy [21].

The most flexible memory available to CUDA are the
shared and global memory, subject to size limitations.
Shared memory is on-chip memory with very fast access
that is shared among all the threads in the same block.
Global memory can be accessed by all threads across
all multiprocessors but is costly; global memory latency
is 400 to 600 cycles while shared memory latency is 10
cycles. Consequently global memory access should be
minimized as much as possible for the best performance.
However, only 16KB of shared memory is given per

3

multiprocessor, and if enough shared memory to process
the kernel function in at least one thread block is not
available, then the kernel launch will fail.

3 Related Work

Owens et al. [24] surveyed the latest developments and
trends in general purpose application of GPUs. The focus
here is on a subset of the work in image processing.
A GPU-based stereo matching technique combining
the sum of squared differences dissimilarity measure
and multiresolution approach was introduced in [37]
and [38]. Histogram equalization and tone mapping
using a vertex shader was presented in [30]. Sinha et
al. [31]. described the shader based implementation of
the Kanade-Lucdas-Tomasi feature tracking and SIFT
feature extraction algorithms on GPUs. GPUs were
designed to enhance the performance of graphics related
applications specifically, and significant efforts were
required to use them outside of a graphics rendering
context. Therefore, the focus of image processing on
GPUs was reformatting of the target algorithm to be
mapped to the computing of vertex transformation or
pixel illumination.

With the CUDA programming framework, using the
GPU for image processing has found its way into a
wide variety of applications. Just to name a few of
those studies, Mizukami and Tadamura [19] proposed
implementation of Horn and Schunck’s regularization
algorithm with a multiscale search method for optical
flow computation. They were able to achieve speedup of
approximately 16 on a NVIDIA GeForce 8800 GTX card
over a 3.2-GHz CPU. Bui and Brockman [5] presented
a 2-D rigid image registration algorithm using CUDA
and reported speedup of 90 with bilinear interpolation
and speedup of 33 with bicubic interpolation. They
profiled the data to identify performance bottlenecks
of the CUDA platform and emphasized the need to
manage memory resources carefully to obtain maximum
speedup. The general optimization strategies include
utilizing many threads and maximizing memory and
instruction throughput through a set of techniques such
as global memory coalescing, reducing shared memory
bank conflicts, and reducing divergent branching [21].
Both of [19] and [5] applied these strategies to achieve
optimal performance. However, they simply take the
processing of each pixel as a computation unit for
parallelization, none of them explored the influence of
level of parallelism on the optimization.

Focusing on program optimization aspects of CUDA,
Ryoo and his colleagues [27] demonstrate the significance
of the optimization principles by analyzing the relative
performance among different configurations on a suite of
applications. Because of the enormous computing power
of GPUs, orders of magnitude performance difference
can exist between well optimized and poorly optimized

codes of an application. In Ryoo’s experiment, speedups
between 10.5 and 457 were achieved by the code
optimization. Later, Ryoo et al. developed their ideas
further on efficient GPU program optimization, and
revealed that optimizing an application for maximum
performance goes beyond simply application of a set of
optimization techniques to code. The difficulty comes
from the fact that the interactions among the underlying
architectural and programming model constraints affect
performance in a non-linear fashion [28]. They modeled
GPU programming for maximum performance as a
multivariable optimization problem. The complete opti-
mization space consists of memory bandwidth, dynamic
instruction reduction, threads occupancy, instruction
level parallelism, memory latency hiding, and work
redistribution. To avoid inefficient empirical search of
the large optimization space, they proposed program
optimization carving that prunes those variables down
to a set of configurations that bring the best perfor-
mance. In order to do that, metrics that capture the
instruction efficiency of the kernel code and utilization
of the compute resources were developed and used to
reduce the search space.

Yixun [39] took a novel perspective on CUDA
program optimization. They presented how program
inputs affect the effectiveness on the optimization. Then
G-ADAPT (GPU adaptive optimization framework),
a compiler-based framework, was presented to help
decision making on the optimal code configuration. As
Yixun revealed, some GPU applications are affected by
certain optimization factors besides well-known ones.
In this work, we explore the influence of computation-
to-core mapping strategy on the image processing
applications.

4 Robust Facet Image Modeling

We selected facet image modeling (FIM) as the test
algorithm because it represents aspects of computation
that are both image oriented (and therefore naturally
replicated), and numerical (involving mathematical ap-
proaches that employ large computational arrays and
numerical optimization).

The concept of FIM was first introduced by Haralick
and Watson [9]. The basic idea is to divide images into
larger regions that are homogeneous with respect to
some high level criterion that allows these regions to be
handled similarly. For example, an image of a polyhedral
object may be best represented by a set of planes, each
describing a surface of the polyhedron that exhibits
the same surface normal (and hence similar shading
characteristics). Besl et al. [4] proposed a robust window
operator to yield good model estimates for facets when
the sample data are contaminated with more than one
statistical distribution. The algorithm applies robust
statistics to minimize the error between the underlying

4

gray level model and the observed data from the image.
We call this robust FIM.

FIM has been applied to many different applications
such as edge detection [11,18,26], background normal-
ization [16], and image segmentation [10]. The massive
amount of computation inhibits the algorithm from
being used more widely in real world applications.

In an earlier attempt to employ parallel computation
for FIM, Pathak et al. [25] focused on an efficient
implementation of quadratic facet modeling with al-
gorithm transformation. The optimized implementation
on a MediaStation 5000 improved the performance by
a factor of 7 over the direct implementation on a
SUN SparcStation 10/41 for quadratic facet modeling.
Our research applies parallelization on the more readily
available and faster GPU computational architecture.

4.1 Algorithm Overview

Facet-based modeling requires accurate parametric rep-
resentation of each image facet so that it reveals the
structure of the underlying whole image. As such,
precise parameter extraction is at the heart of the
algorithm. Since FIM employs numerical fitting of such
parametric models to the image data, it is essential that
the resulting parameters are not contaminated by image
outliers. Our algorithm employs a robust estimation
technique known as M-estimation. The results of the
M-estimation process is fed to an iterative reweighted
least squares algorithm that performs the actual pa-
rameter estimation. Because FIM employs polynomial
basis functions for the modeling, one needs to know
the order of the polynomial to apply to each facet.
Obviously, this cannot be known a priori. Hence the
algorithm employs a variable order approach where the
order of the polynomial is estimated through a series
of iterations beginning with lower order polynomials
and advancing to higher orders. We will discuss the
mathematics behind the algorithm, and flesh out the
details of the algorithm thereafter.

4.2 M-estimation

The robust window operator estimates the parameters of
the underlying facet model for a given two-dimensional
n×m window centered at the pixel with local coordinates
(0,0); the model function f(r, c) at pixel (r, c) located at
the rth row and the cth column is a linear combination
of (polynomial) basis functions φi,

f(r, c) =

p
∑

i=1

aiφi(r, c), (1)

where p is the dimension of the vector space generated
by the φi.

To find the coefficient vector a of the fitting function,
M-estimation minimizes the residual error

E(a) =

n′

∑

r=−n′

m′

∑

c=−m′

ρ

(

d(r, c)− f(r, c)

s

)

, (2)

n′ =
n− 1

2
, m′ =

m− 1

2
,

where d(r, c) is observed data, ρ is a symmetric,
monotone increasing function with ρ(0) = 0, and the
scaling factor s is evaluated using the Median Absolute
Deviation (MAD).

The optimal coefficient vector a is found by minimiz-
ing E(a). Choosing ρ so that its derivative is the Huber
minimax function [15], ∇E(a) = 0 can be written as

n′

∑

r=−n′

m′

∑

c=−m′

p
∑

k=1

w(r, c)φi(r, c)akφk(r, c) =

n′

∑

r=−n′

m′

∑

c=−m′

d(r, c)w(r, c)φi(r, c), i = 1, . . . , p,

(3)

where the weight w(r, c) is defined as ρ′
(

e(r, c)
)

/e(r, c),

e(r, c) =
(

d(r, c) − f(r, c)
)

/s. Equation (3) in matrix
form is

ΦtWΦ a = ΦtW d, (4)

which is a nonlinear equation in a because the weight
matrix W depends on these coefficients. Φ is a n ·m× p
matrix whose rows are φ1(r, c), . . ., φp(r, c). W is a
n ·m× n ·m diagonal matrix whose diagonal elements
are w(r, c), a is a p-vector whose entries are ai, and d is
a n ·m-vector whose entries are the observed image data.
Iteratively reweighted least squares (IRLS) is used to
solve this nonlinear matrix equation via the recurrence
formula

a(t+1) =
(

ΦtW (a(t))Φ
)−1

ΦtW (a(t))d, (5)

where t is the iteration number. Detailed derivation of
these equations can be found in [4].

4.3 Iterative Reweighted Least Squares (IRLS)

The IRLS process for polynomial models of each order
occurs iteratively. To initialize the iteration, an initial
fit coefficient vector a(0) is needed. a(0) for zeroth order
is the median value of the observed data, and is set with
the previous order fit coefficient vector for higher order,
e.g., the final planar fit initializes the quadratic fit.

IRLS uses the QR decomposition to solve Equa-
tion (5). A QR decomposition of an m×n matrix A is a
factorization A = QR, where Q is an m×m orthogonal
matrix and R is an m × n upper triangular matrix.

5

Among three major QR factorization algorithms—
modified Gram-Schmidt, Givens, and Householder—the
Householder transformation algorithm outperforms the
modified Gram-Schmidt algorithm in numerical sta-
bility, and requires fewer arithmetic operations than
the Givens rotation algorithm [7]. Therefore the QR
factorization is done with Householder transformations,
a series of orthogonal transformations applied to the
input matrix A to bring it into upper triangular form.
The product of these orthogonal transformations is the
matrix Qt giving QtA = R.

4.4 The Algorithm

Figure 2 outlines the algorithm for IRLS-based Robust
FIM. Given an n × m window, several different order
robust surface fits for a pixel are computed up to a
preselected maximum order. Here the highest degree of
the fitting polynomial function is set at 3 because the
complexity of this fitting function is adequate for the
most commonly used window size, which is 5× 5.

If the IRLS iteration yields a residual MAD below
some epsilon threshold, the fit is termed ‘good enough’
and the algorithm will be terminated with the estimated
coefficients for the fitting function. If the maximum
iteration limit is reached without convergence, the next
higher degree fit is computed. At the final step, the fit
quality for each degree polynomial model is evaluated,
and then the fitting function with the best fit quality
is chosen. Note that facet image modeling begins by
computing the median value of the window; the zero-th
order model (constant fit) is initialized with the median
value of the observed data without performing the IRLS
process. Then the first set of residual errors, scale factor,
and weights are computed from the zero-th order fit to
initialize the planar fit.

The pseudo code for the Robust FIM algorithm
in Algorithm 1 illustrates the IRLS estimation process
for a k-th degree fitting polynomial, which has p
coefficients, for a single pixel. Algorithm 1 maintains a
two-dimensional n × m observed data matrix window
for the pixel. The matrix E stores the residual error
between the observed data and the approximation for
each pixel in window. W is the weight matrix whose
values are assigned with ‘WeightFunction’ of the residual
error matrix E. A is a n · m × p matrix, which is the

multiplication of W
1

2 and the Gram matrix Φ of basis
function values φ(r, c), and b is a n ·m vector, which is

the multiplication of W
1

2 and window. Both A and b
are needed to rewrite Equation (4) as the least squares
problem Aa ≈ b. Then A is factored into Q and R
components, which are used to find coefficient vector a
by backward substitution. The function ‘House’ returns
the transformation vector v, and the Householder
reflection matrix H is computed from v. If x is an
arbitrary column vector of dimension q ≤ n · m, then

Constant fit:
Median value

m x n Window

Convergence
Coefficients,
Fit quality

Planar fit

Convergence
Coefficients,
Fit quality

Quadratic fit

Convergence
Coefficients,
Fit quality

Cubic fit

Convergence or
iteration limit

Coefficients,
Fit quality

IRLS

Choose the best fit, generate final coefficients

IRLS

IRLS

no

no

no

yes

yes

yes

yes

Fig. 2 Overview of the robust facet image modeling
algorithm.

with α = −sgn(x1)‖x‖, the first n ·m − q components
of v are zero, and the remaining components of v
are given by x−αe1

‖x−αe1‖
, where e1 is the canonical basis

vector (1, 0, . . ., 0)T and ‖ · ‖ is the Euclidean norm.
Transforming sequentially each column of A yields an
upper triangular matrix R. Details for the Householder
QR decomposition algorithm can be found in [14]. The
robust fit quality measure is given by the ‘FitQuality’
function whose parameters are E, p, and scale. The
process is repeatedly performed until MAD ≤ ǫ or the
maximum iteration limit has been reached.

Algorithm 1 k-th Degree Polynomial Fit for a Single
Facet.
Require: window[n][m] of image data, d[1 : n ·m] is vector

representation of window, p is number of coefficients
Ensure: coefficient vector ak[p]
1: E = |window − Φk−1ak−1| ; i = 0
2: while (scale! = 0 & i < MAXITERATION) do
3: W = WeightFunction(r, scale)

4: A = W
1

2 Φk; b = W
1

2 d; Q = I
5: for j = 1 to p do
6: v = House(A[j : n ·m, j])
7: H = I − 2vvt; Qt = HQt; A = HA
8: b = Hb
9: end for
10: R = A
11: ak[1 : p] = BackwardSubstitution(Rak = Qtb)
12: E = |window − Φkak|
13: scale = 1.4826Median(E)
14: i = i+ 1
15: end while
16: fit[k] = FitQuality(E, p, scale)
17: return ak[1 : p]

6

5 Approach

This section introduces two different computation-to-
core mapping schemes when implementing the robust
FIM algorithm on GPUs. These two mapping schemes
exhibit different levels of parallelism, thread-level facet
processing and block-level facet processing. Each of
the schemes has distinct memory requirements, posing
different hardware limitations with respect to the size
of input data and the order of the fitting function. As
a result, a substantial performance difference can be
found between these two GPU implementations.

We consider the thread-level facet processing scheme
first because it is a straightforward choice for im-
plementing image processing algorithms. Our results
show that the memory requirements of this thread-level
mapping scheme poses a significant limitation that may
be explained by the way in which memory resources in
GPUs are allocated and shared between threads. The
explanation of the limitation of the thread-level mapping
scheme motivates the block-level facet processing scheme
that provides an intuitive solution to the problem in-
troduced by memory limitation of the first scheme.
Performance analysis of the second mapping scheme
shows that it properly addresses memory limitation. We
further discuss an optimization strategy and block-level
facet scheme for multiGPU processing in Section 6.

5.1 Thread-level Facet Processing

As mentioned in Section 2.1, the massive parallelism
of a GPU is achieved by organizing a large number
of concurrently executed threads into thread blocks
that are run on the multiprocessors of the GPU. To
determine the thread-block organization for a specific
algorithm, the overall computation is segmented into
units of operations that can be mapped onto each
GPU thread. Among various criteria used for compu-
tation segmentation, independence is paramount. It is
obvious that if two processing units can be executed
independently, they can be scheduled to run in parallel
without synchronization. Consider a model where ‘each
pixel sits on its own facet’ such that we use its
neighborhood pixels for the facet computation. For
robust FIM, an independent computational unit is the
facet image modeling of a pixel. Thus an input image
with width× height pixels has width× height indepen-
dent computational units, each of which calculates the
facet model for a pixel. The first computation-to-core
mapping scheme, thread-level facet processing, is based
on such a computation segmentation—simply map the
facet processing of one pixel onto a GPU thread.

Figure 3 illustrates a thread organization for thread-
level facet processing in detail. width × height threads
are generated to process width × height pixels on the
image. The threads are grouped into a block of width N
and height M as on the left of the figure. The number

M = BlockHeight
N = BlockWidth
K = Height/M
L = Width/N

Thread (1,1)

Thread (M,N)

Width

H
e
ig
h
t

Block
(1,1)

Block
(1,2)

Block
(1,L)

Block
(2,L)

Block
(2,1)

Block
(2,2)

Block
(K,1)

Block
(K,2)

Block
(K,L)

Fig. 3 Thread organization for thread-level facet processing.

of threads N × M in a block is determined by the
resource usage of an individual thread. Consequently,
width/N × height/M of thread blocks run on the image
as shown on the right of the figure.

Because of the uniformity of the algorithm across
the entire image, the algorithm may be implemented as
a single CUDA kernel function that is executed for all
facets. Each block of the input image is loaded onto the
shared memory array of the multiprocessor assigned to
process the facet associated with that block. The kernel
function performs Algorithm 1 four iterations of IRLS
for each degree of fitting function (constant fit, k = 0,
· · · , k = 3). The implementation is straightforward since
the computation within a kernel is sequential. However,
the challenge is on dealing with memory hierarchy to
conserve memory bandwidth and reduce the memory
latency for the optimal performance.

5.1.1 Thread-Block Configuration

We analyze the memory requirement for the robust FIM
to describe the thread-level facet processing in detail.
Table 1 lists all the required variables and their memory
usage in Algorithm 1, with two additional temporary
variables T and t. The matrix T is used to store the
intermediate result of matrix-matrix multiplication (at
line number 7 in Algorithm 1), and the vector t is
used to store the intermediate result of matrix-vector
multiplication (at line number 4 in Algorithm 1). Robust
FIM evaluates four polynomial models from constant
fit to cubic fit in one kernel function to yield the best
estimation, the vector a must hold all the coefficients
from all fits. Therefore the space needed for a is

q =
∑3

k=0 pk = 1 + 3 + 6 + 10 = 20, where pk is the
number of coefficients for the k-th degree polynomial
model, e.g., p3 = 10 for a cubic fit. The weight matrix W
only requires n×m elements of memory space, because
only diagonal elements contain an effective value. The
matrix R shares the same memory space with A (A
is not used after R). Fit quality is evaluated for each
polynomial model, and stored in fit . Since d is a vector
representation of the window data, d requires no extra

7

memory space. Table 1 shows memory requirements for
two window sizes, 5×5 and 7×7. Note that each element
in the vectors and matrices has data type float.

Table 1 Memory requirement for executing the robust FIM

algorithm for a single facet.

Variable Memory (bytes) 5× 5 7× 7

a q × 4 80 80
window n×m× 4 100 196
E n×m× 4 100 196
W n×m× 4 100 196
b n×m× 4 100 196
v n×m× 4 100 196
t n×m× 4 100 196
Φ n ·m× p× 4 1,000 1,960
A(R) n ·m× p× 4 1,000 1,960
H n ·m× n ·m× 4 2,500 9,604
Qt n ·m× n ·m× 4 2,500 9,604
T n ·m× n ·m× 4 2,500 9,604
fit 4× 4 16 16
Total 10,196 34,004

As shown in Table 1, the overall memory required
for all four fits (from constant to cubic) is 10,196 bytes
for the window size of 5 × 5 and 34,004 bytes for 7× 7.
A thread’s resource usage in low latency shared memory
should be maximized to improve the performance of an
individual thread. However, the total number of threads
running on each streaming multiprocessor decreases as
each thread’s shared memory usage increases, because
of the 16K space limit. This decrease in thread count
leads to a less thread-level parallelism, and results in
GPU underutilization. It is necessary to have enough
threads to hide the long latency of global memory
accesses and multicycle arithmetic operations such as
division and reciprocal square root. The tradeoff of the
performance of an individual thread and the degree of
concurrency among all threads should be considered
when we decide which variables in Table 1 are allocated
in shared memory and how many threads are assigned
in each block.

Because of the high memory requirements of the
robust FIM algorithm, we minimize the use of high
latency global memory as it is one of the priority
principles in CUDA program optimization [22]. The
thread-level facet processing execution is set to have 32
threads per block and (width×height)/32 blocks on the
image. The most frequently revisited space throughout
the robust FIM algorithm, i.e., a, window, E, W , v, and
fit, can reside in shared memory with this configuration.
One might consider reducing the number of threads
per block to increase the amount of shared memory
available for each thread. However, the 32-thread warp
is the atomic resource unit that is scheduled by the
GPU thread manager in CUDA. The number of threads
in a block should be a multiple of 32 threads, to achieve
optimal computing efficiency and facilitate coalescing.

5.1.2 Limitations

In the thread-level processing scheme, each thread
requires a large amount of global memory space. For
a 5 × 5 window, 8.7K of global memory is allocated
for each thread for the variables b, t, A(R), H , Qt,
and T (Φ is stored in constant memory and the rest
of the variables are allocated in shared memory). All
threads are executed in parallel on the GPU, and
global memory is preallocated for all threads before
calling the CUDA kernel function. Each thread runs
one instance of the algorithm on a single pixel, and the
whole input image is processed with many instances of
the algorithm running concurrently in their own global
memory space. The required global memory for a large
input image, therefore, can exceed the hardware limit.
To run the thread-level processing implementation for
a 5 × 5 window size on the GTX295 GPU, which has
876 MB of global memory, the input image cannot be
larger than 328 ×328, a significant limitation for the
application of robust FIM. If we raise the number of
threads per block for a higher concurrency, the global
memory usage per thread increases because of a decline
in the amount of shared memory available per thread.
This results in further reduction of the allowed image
size.

Even for a small size image, the large amount of
high latency global memory access by each thread
causes a performance issue. If there are not enough
threads to achieve a full multiprocessor occupancy, the
multiprocessor will be forced to idle, and results in
performance degradation. We discuss this issue with
performance experiment results in Section 7.2.2 .

5.2 Block-Level Facet Processing

To address the limitation of the thread-level mapping
scheme, we propose a fine-grained computation-to-
core mapping scheme. This mapping scheme seeks
block-level parallelism where the estimation of a facet
model is executed on a block of threads instead of
a single thread. All the threads in a block work
collaboratively to accelerate the linear algebra, such as
matrix multiplication. The configuration of block-level
facet processing is shown in Figure 4. Each block
consists of N × M threads as on the left of the
figure, and width× height blocks are created to process
width × height pixels on the image as on the right of
the figure.

Each matrix and vector operation in Algorithm 1
is further segmented into computational units. These
units are mapped onto different threads in a block
and executed in parallel. For example, in matrix-matrix
multiplication, a unit is defined as the calculation of
an element in the resulting matrix, which is the inner
product between a row vector from the first matrix and

8

M = BlockHeight
N = BlockWidth

Thread (1,1)

Thread (M,N)

Width

H
e
ig
h
t

Block
(1,1)

Block
(Height,
Width)

Fig. 4 Thread organization for block-level facet processing.

a column vector from the second matrix. For matrix-
vector multiplication, a unit is defined as the calculation
of an element in the resulting vector, which is also an
inner product. All the other operations in Algorithm 1
are segmented into units of computation in a similar
fashion—a block of threads covers the computation of
all the units in the operation cooperatively.

This block-level mapping scheme allows all the
computation in Algorithm 1 of robust FIM to stay in
the shared memory space because only one instance of
the algorithm is executed in a multiprocessor. The image
data is loaded into shared memory at the beginning
of the kernel function execution. During the IRLS
iteration, all threads in the same block operate on the
data in shared memory. Finally, the result is written
back to global memory. No global memory allocation
for the computation is needed, the limitation associated
with the thread-level mapping scheme is obviated.

5.2.1 Thread-Block Configuration

The block-level mapping scheme generates one thread
block for each pixel/facet. The threads cover all the
computational units of each matrix/vector operation.
Among these operations, matrix-matrix multiplication
has the largest number of units. For example, for a 5× 5
window, the largest matrix is 25× 25, which will result
in 625 units of computation. The hardware limitation
for the maximum number of threads per block is 512 in
the GTX295. Therefore, each thread has more than one
unit to complete with the maximum thread allocation
granularity.

To find an optimal thread block configuration, we
varied the number of threads per block and evaluated
the performance iteratively. This empirical optimization
with varying configurations is a typical approach in GPU
programming because a general performance prediction
model for a GPU architecture is not available due to
the complexity of its parallel programming model [2,
27,28]. Our experiments showed that the thread block
with size 16 × 26 yields the best performance in the
block-level facet processing implementation. We provide

the experimental results with varying thread counts in
Section 7.2.2.

5.2.2 Advantages over Thread-level Mapping Scheme

The proposed block-level mapping scheme has no global
memory constraint and can be applied to any size image.
This advantage over thread-level parallelism derives from
the fact that the GPU manages global memory and
shared memory differently. Figure 5 illustrates this

SM 1 SM 2 SM m
GPU Hardware

TB 1 Space

TB 1 Space

…...

Thread Blocks

TB m TB n…...TB

m+1
TB 1 TB 2 …...

TB 1 TB 2 TB m

TB 2 Space

TB 2 Space

TB m Space

TB m Space

T
B

 1

T
B

 2

T
B

 m

T
B

 m
+

1

T
B

 2
m…... …...

Register

Shared

Memory

Global

Memory

SM 1 SM 2 SM m
GPU Hardware

TB m+1

TB m+1

…...

Thread Blocks

TB n…...TB

m+1

TB

m+1

TB

m+2

TB

2m

TB m+2

TB m+2

TB 2m

TB 2m
T

B
 n…...

T
B

 1

T
B

 2

T
B

 m

T
B

 m
+

1

T
B

 2
m…... …...

T
B

 n…...

Active Global Memory

Active Global Memory

Fig. 5 CUDA Thread Block Scheduling. Top half: execution
of first m thread blocks. Bottom half: execution of next m
thread blocks.

difference, where n thread blocks, TB1, . . ., TBn, are
scheduled to execute on m stream multiprocessors, SM1,
. . ., SMm. On the top half of the figure, CUDA first
schedules m thread blocks, TB1 to TBm, assuming that
only one TB can execute on a SM . On the bottom
half of the figure, the second m TBs are scheduled,
after the first m TBs are completed. Focusing on global
memory and shared memory usage, notice that the
shared memory space in SMi is used by both TBi and
TBm+i. Therefore, if the amount of shared memory in a
SM is enough for a thread block, no additional memory
is needed. In terms of global memory usage, however, no
space can be shared between different TBs, because the
scheduled order of the TBs is indeterminate. All TBs

9

have to pre-allocate global memory space. If the image
size n ≫ m, n is limited by the hardware constraint on
global memory size.

6 Optimization

Further optimization of memory utilization for the
QR decomposition is possible. First, a Householder
reflection matrix H can be formed implicitly. H applied
to a column vector x of A in place, overwriting the
column vector, has the form Hx = (I − 2vvt)x =
x− 2(vtx)v. Second, since Householder transformations
are applied to both sides of the equation Aa ≈ b,
Qt need not be explicitly computed or stored. The
reflection vector v is saved instead at each step, and
products of the form QtA or Qtb can be computed
efficiently. A detailed explanation is found in [32].
Consequently, T for the intermediate result of matrix-
matrix multiplication in Algorithm 1 is not used.
Algorithm 2 illustrates the IRLS estimation process for
a k-th degree fitting polynomial, with the efficient QR
decomposition. Table 2 lists all the required variables
and their memory requirements for Algorithm 2. In
the remainder of this section, the implementation
and thread-block configuration for thread-level and
block-level processing with the algorithm modification
are revisited. Then multiGPU processing with the
block-level scheme is introduced to show that further
performance gain can be easily obtained with the
hardware extension.

Algorithm 2 Modified k-th Degree Polynomial Fit
for a Single Facet.

Require: window[n][m] of image data, d[1 : n ·m] is vector
representation of window, p is number of coefficients

Ensure: coefficient vector ak[p]
1: E = |window − Φk−1ak−1| ; i = 0
2: while (scale! = 0 & i < MAXITERATION) do
3: W = WeightFunction(r, scale)

4: A = W
1

2Φk; b = W
1

2 d
5: for j = 1 to p do
6: v = House(A[j : n ·m, j])
7: for k = 1 to p do

8: A[:, k] = A[:, k]− (2vtA[:, k]/(vtv))v
9: end for
10: b = b− (2vtb/(vtv))v
11: end for
12: R = A
13: ak[1 : p] = BackwardSubstitution(Rak = Qtb)
14: E = |window − Φkak|
15: scale = 1.4826Median(E)
16: i = i+ 1
17: end while
18: fit[k] = FitQuality(E, p, scale)
19: return ak[1 : p]

6.1 Thread-level Facet Processing

6.1.1 Thread-Block Configuration

Table 2 Memory requirement for executing the robust FIM

algorithm for a single facet with the more efficient QR
decomposition.

Variable Memory (bytes) 5× 5 7× 7

a q × 4 80 80
window n×m× 4 100 196
E n×m× 4 100 196
W n×m× 4 100 196
b n×m× 4 100 196
v n×m× 4 100 196
Φ n ·m× p × 4 1,000 1,960
A(R) n ·m× p × 4 1,000 1,960
fit 4× 4 16 16
Total 2,596 5,092

As shown in Table 2, the overall memory required
for all four fits (from constant to cubic) is 2,596 bytes
for the window size of 5×5 and 5,092 for 7×7. Again, Φ
is stored in constant memory. If the rest of the variables
a, window,E,W, b, v, A, and fit in Table 2 are assigned
in shared memory, only 10 threads are allowed in a
block. To maximize the number of variables that are
allocated in shared memory while having enough threads
in a block, all variables except A, b, and Φ are placed
in shared memory. A and b must use global memory.
Then 32 threads are generated per block, resulting in
(width × height)/32 blocks in total. Comparing to the
first trial of thread-level facet processing in Section 5.1,
the shared memory layout of the optimized thread-level
facet processing is exactly the same. However, the global
memory usage is 1.1K per thread.

Though global memory usage decreased from 8.7K
to 1.1K per thread with this approach, the required
global memory for a large image can still exceed the
hardware limit. The input image cannot be larger than
921× 921 with the GTX295 GPU.

6.2 Block-level Facet Processing

6.2.1 Thread-Block Configuration

In the original block-level facet processing in Section 5.2,
multiple threads operate on a single multiprocessor to
execute the robust FIM algorithm. This can be done
because all the variables needed for the computation of
a facet are the same across all the threads, and can
be efficiently represented in the shared memory of the
block. Building on this idea, the new algorithm keeps all
variables associated with a facet in shared memory with
the exception of t,H ,Qt, and T because they do not have
to be explicitly computed. The threads cover all the

10

computational units of each matrix/vector operation
cooperatively. Furthermore, since H and Qt are not
explicitly computed or stored, the number of matrix-
matrix multiplication units decreases significantly. The
largest computation unit is A, which is the product of
the weight matrix W and the basis function (Gram)
matrix Φ. For a 5 × 5 window, the matrix A is 25× 10,
which will result in 250 units of computation. With
the iterative performance evaluation in Section 7.2.2, we
found a thread block of 8×8 yields the best performance.

6.2.2 MultiGPU Processing

Thread (1,1)

Thread (M,N)

Width

H
e
ig
h
t

Block
(1,1)

Block
(Height,
Width)

Device 2

. . .

M = BlockHeight
N = BlockWidth

Device 1

Device n

Fig. 6 Thread organization for block-level facet processing
with multiple GPUs.

The use of multiple GPUs can bring more parallelism.
The block-level mapping scheme can be extended for
multiGPU processing, since the implementation can be
easily adapted to use multiple devices without modifying
kernel code. Once the input data is distributed among
several devices, each device runs the kernel function
for block-level facet processing. By hardware design,
device code can be executed on only one device at any
given time. To use multiple CUDA devices, host threads
in the CPU are required to launch a device code. As
many CPU threads as the number of GPUs are created.
Each host thread feeds each device with input data and
launches the device code. As shown in Figure 6, the
thread organization is the same as that for block-level
facet processing. The only difference is that the input
image is segmented into a number of pieces equalling the
number of GPUs, and each input segment is processed
by each GPU. 8 × 8 is chosen as the thread block size
through the iterative optimization process.

7 Result and Discussion

We measured the performance of our GPU implemen-
tations on a NVIDIA GTX295. The GTX295 is a
dual-GPU based graphics card, and each GT200 GPU
has 240 processor cores with a 1.24 GHz clock, 896 MB

of device memory, and compute capability 1.3. Each
GPU implementation of different mapping schemes on
Algorithm 1 and 2 is tested using a single GT200 among
the two GPUs. A multiGPU implementation is tested on
a system with four GTX295 cards, which allows up to 8
GPUs to run concurrently. For comparison, a standard
CPU implementation (single thread) of the robust FIM
algorithm is written in C++ and is compiled with
the highest optimization level (-O3 in gcc to include
SSE options). The CPU implementation is tested on a
computer with Intel Core i7-920 2.67 GHz CPU and
11.9GB system memory.

The implementation of robust FIM is tested with five
images. The canonical Lena picture and four other noisy
images, Cell, Airplane, Moon, and Fingerprint, are used.
The Lena image is also used for performance experiments
with different image sizes. To ensure a similar pattern of
computation is given to the multiprocessors, the 64× 64
Lena image is mosaicked to form a set of larger size
images. The facet model window size is 5×5 throughout.

7.1 Accuracy of the GPU Implementation

Fig. 7 Noisy input image (left), processed images from
CPU (middle) and GPU (right) implementations.

Table 3 Comparison between CPU and GPU implementa-
tions.

Image RMSE CPU time (sec) GPU time (sec)

Lena 0.037 0.2849 0.0680
Cell 0.052 0.2953 0.0702
Airplane 0.037 0.2664 0.0692
Moon 0.059 0.2881 0.0719
Fingerprint 0.028 0.2803 0.0697

In this section the correctness of the GPU imple-
mentation of the robust FIM algorithm is demonstrated.
Figure 7 shows a 64 × 64 noisy input image (Lena
with impulse noise added) and two processed images
resulting from CPU and GPU implementations of Al-
gorithm 2. The resulting images show that the robust
computation (removing outliers) worked correctly in
both implementations. Further examination of the CPU
and GPU result images shows slight differences in
image smoothing, with the GPU version appearing to
apply greater smoothing. Our ensuing discussion will
address this difference. The GPU execution time in
Table 3 is measured using the GPU implementation
with block-level processing scheme.

11

Table 3 shows root mean square (RMS) error
between images processed by the CPU and GPU im-
plementations, arising from differences in the CPU and
GPU floating point hardware. Floating point operations
between different devices are not guaranteed to be
identical owing to rounding errors, different size of FP
registers, different order of instructions, etc. [6]. In
GT200 architecture based GPUs with compute capa-
bility 1.3 and below, some single precision arithmetic
operations do not follow the IEEE 754 standard, and
denormal numbers are flushed to zero [36]. Consequently,
GPU operations such as division and square root may
not always yield floating point values of the same
accuracy as CPU computations. Furthermore, the GPU
computes in single or double precision only, while the
CPU may use an extended precision for intermediate
results. Due to these differences between hardware,
mathematical function libraries, and instruction sets,
GPU and CPU implementations do not yield identical
arithmetic results. Because the robust facet algorithm
employs extensive numerical computation for facet es-
timation, there are inevitable differences in the images
resulting from the GPU and CPU implementations (see
differences in Figures 7(b) and (c)).

The results illustrate important computational trade-
offs when using GPUs for numerical computation in
image processing. Most of these trade-offs arise from
numerical precision issues in the generation of GPUs
used in our studies, as discussed in [36]. Fortunately,
these issues are being addressed in newer generations
of CUDA architecture, Fermi [23], as we expect the
performance gains over CPU computation for these new
GPUs to be maintained or increased.

7.2 The Level of Parallelism and Performance

For the sake of brevity, we shall use the acronyms shown
in Table 4.

Table 4 Acronyms for different computations.

Algorithm 1 Algorithm 2

GPU thread-level T1 T2

GPU block-level B1 B2

CPU C1 C2

Both the T1 and T2 implementations use 15,872
bytes of shared memory per block and 40 registers per
thread. Each thread uses 8.7K of global memory in T1
and 1.1K in T2. The B1 implementation uses 8,824
bytes of shared memory per block and 20 registers per
thread. B2 runs with 1,524 bytes of shared memory per
block and 19 registers per thread. Both B1 and B2 do
not access the global memory for the facet computation.
C1 and C2 process computations with a single CPU
thread. However, since the SSE instruction sets are

enabled in a compilation of the CPU implementation,
four 32-bit floating point operations can be executed
simultaneously with a single instruction.

Various image sizes ranging from 32×32 to 256×256
are used to compare the performance of T1, B1, and
C1, and T2, B2, and C2. For this test, the images are
limited to relatively small sizes due to the scalability
issue of the GPU thread-level mapping, as discussed
in Section 5.1.2. Section 7.3 presents the performance
evaluations of B1, B2, C1, and C2 with larger images up
to 2048×2048. Table 5 provides speedups of T1 and B1
over C1, B1 over T1, T2 and B2 over C2, and B2 over
T2. The speedup values are rounded up to the second
decimal place. In the rest of this section, we present
the performance characterizations of robust FIM with
different mapping schemes.

Table 5 Speedups of each algorithm with respect to the
other.

Img. size T1:C1 B1:C1 B1:T1 T2:C2 B2:C2 B2:T2

32 × 32 0.49 19.41 39.26 2.04 4.17 2.04
64 × 64 0.61 19.71 32.25 2.81 4.16 1.48
96 × 96 0.61 19.58 31.90 3.04 4.22 1.39

128 × 128 0.61 19.84 32.36 3.04 4.24 1.39
160 × 160 0.61 19.86 32.31 3.05 4.24 1.39
192 × 192 0.62 19.91 31.88 3.07 4.23 1.38
224 × 224 0.63 19.92 31.86 3.11 4.24 1.35
256 × 256 0.63 20.01 31.98 3.21 4.28 1.33

7.2.1 Impact of Mapping Scheme on Execution Time

Figure 8 shows the comparison of execution times for
T1, B1, and C1. For all image sizes, B1 runs ≈ 20
times faster than C1, and ≈ 32 times faster than T1.
The execution time difference between the two GPU
implementations is largely due to the performance gain
from accessing high speed shared memory instead of
global memory in B1.

Interestingly, C1 has a faster execution time than
T1 for all image sizes. This is because only one warp
is resident on a multiprocessor for the T1 computation.
Since 15,872 bytes of shared memory are consumed by a
32 thread block, the maximum number of thread blocks
per multiprocessor is limited to one. Each thread of the
warp accesses a large amount of global memory, and no
computation is done while data is accessed from global
memory. This low concurrency in computation causes a
failure to hide the long latency of global memory access,
hence deteriorates the performance of T1. From this
result we observe that a parallel implementation can be
slow when execution resources are saturated.

The execution times of T2, B2, and C2 are shown
in Figure 9. In comparison to C2, T2 and B2 achieve
speedups from 2.04 to 3.21 and ≈ 4.2 respectively. B2
runs ≈ 1.3 times faster than T2. The performance gap
between the thread-level and block-level mappings is
not as significant as for Algorithm 1, mostly because:
1. A decrease of 7.6K in global memory usage in T2

12

!"#"$ %&#"$ '%#"$ (")#"$ (%*#"$ ('"#"$ ""&#"$ "+%#"$

,($ *-(*).$ *-&!'.$ *-')++$ (-.+"%$ "-%')%$!-'&+&$ +-!.*+$.-*("!$

/($ &-"%)!$ (&-()(*$!(-&&(+$+%-.('%$).-"*(&$("+-.).

.$

(.(-*'!

.$

""&-"!)

*$
0($ "-(*'.$)-%%)!$ ('-"'"%$!&-..'!$+!-+)')$.)-+%"%$(*.-**"

+$

(&*-"'"

)$

-$

+*-*$

(**-*$

(+*-*$

"**-*$

"+*-*$

,($

/($

0($

1
2
3
$

Fig. 8 Execution time of T1, B1, and C1.

promotes a performance improvement in the thread-
level mapping approach, by alleviating the memory
latency issue. 2. There is not as much data parallel
computation in Algorithm 2 as in Algorithm 1. The
chunks of 625 matrix-matrix multiplication units of
the QR decomposition in Algorithm 1 have decreased
to chunks of 25 matrix-vector multiplications units in
Algorithm 2. This result indicates that the granularity of
parallelism would not have a great impact on execution
time if there were not a significant latency problem due
to the global memory access and multicycle operations.

!"#"$ %&#"$ '%#"$ (")#"$ (%*#"$ ('"#"$ ""&#"$ "+%#"$

,"$ *-*()!$ *-*%)+$ *-(+*"$ *-"%."$ *-&(*.$ *-+'%+$ *-)*!.$ (-*%"($

/"$ *-*!.&$ *-(*(%$ *-"*)!$ *-!."*$ *-+.*'$ *-)"('$ (-*'+($ (-&(&+$

0"$ *-*.%!$ *-")&'$ *-%!!%$ (-(!()$ (-.&("$ "-+"")$!-&*))$ &-+&%)$

-$

*-+$

(-*$

(-+$

"-*$

"-+$

!-*$

!-+$

&-*$

&-+$

+-*$

,"$

/"$

0"$

1
2
3
$

Fig. 9 Execution time of T2, B2, and C2.

7.2.2 Impact of Mapping Scheme on Scalability

As for the CPU computation, all four GPU implementa-
tions exhibit a trend of less performance gain with small
image sizes, see Table 5. For example, a speedup of 4.17
is obtained with a 32 × 32 image while one of 4.28 is
gained on a 256× 256 input with B2. Though T1 has
larger execution times than C1, this trend toward better
performance for larger images persists. This trend is
more pronounced for thread-level mapping (going from
0.49 to 0.63 for T1:C1, and 2.04 to 3.21 for T2:C2) than
for block-level mapping (going from 19.41 to 20.01 for
B1:C1, and 4.17 to 4.28 for B2:C2).

In Figure 10, the speedup values of each GPU
implementation in Table 5 are normalized with respect
to its speedup factor on a 32×32 image. The speedups of
B1 and B2 over the CPU implementation remain almost
constant through varying image sizes, while those of T1

!"!!#

!"$!#

%"!!#

%"$!#

&"!!#

'&(&#)*(&# +)(&# %&,(&# %)!(&# %+&(&# &&*(&# &$)(&#

-%# .%# -&# .&#

Fig. 10 Normalized speedup of T1, B1, T2, and B2 with
respect to CPU implementations.

and T2 show upward trends as the image size increases.
When T1 and T2 evaluate a small image, e.g., 32× 32,
they launch 1024 threads and each thread processes its
own pixel individually. A GPU on the GTX295 has
30 multiprocessors, with each capable of carrying out
a maximum of 8 active blocks at a time, and a total
of 240 potentially active blocks are available. Given
a 32 × 1 thread block size 1024 threads are grouped
into 32 blocks, which is far less number than the 240
available blocks. Hence, T1 and T2 suffer from the GPU
underutilization problem. However, a 256 × 256 image
requires 2,048 blocks with 65,536 threads for 65,536
pixel computations, and gives enough parallelism to
the GPU. From this observation we can characterize
thread-level parallelism as not efficient for small input
images due to the GPU resource underutilization.

To further understand the impact of the level of
parallelism on the performance, the block-level mapping
implementations are tested with varying thread block
sizes on three sizes of inputs, 32 × 32, 512 × 512, and
1024 × 1024. Figure 11 shows plots of execution time
as a function of the number of threads per block for a
1024× 1024 image for both B1 and B2. We show only
a graph for the largest image (1024 × 1024) for both
implementations in Figure 11, since exactly the same
pattern is observed with the other two images, with
respect to each approach. For B1, the execution times
improve rapidly as the number of threads per block
increase from 64 to 160, and then it levels off up to 384.
Above 416 threads per block, the computation times are
virtually constant. For B2, the execution times increase
steadily as the number of threads per block increase
from 64 to 288. It then levels off up to 384 threads
per block. There is a large performance hit as we go to
416 threads-per-block after which the execution times
plateau.

In B1, since 8,824 bytes of shared memory are
required per block, only one thread block can reside on
a multiprocessor at a time, owing to the 16K space
limit. More threads in a block add more parallelism
to the computation. As such, the execution times for
B1 go downwards but plateau after 416(= 16 × 26)
threads. In B2, a configuration of 64(= 8 × 8) threads
produces the best performance. A thread block size of
64 allows 8 blocks resident on a multiprocessor, given
1,524 bytes of shared memory usage per block in B2,

13

!"!!#

$!"!!#

%!!"!!#

%$!"!!#

&!!"!!#

&$!"!!#

'(# %&)# %'!# %*&# &&(# &$'# &))# +&!# +$&# +)(# (%'# (()# ()!# $%&#

%!&(,%!&(#

-
.
/
#

(a)

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!!"!!#

($!"!!#

&%# ($'# (&!# ()$# $$%# $*&# $''# +$!# +*$# +'%# %(&# %%'# %'!# *($#

(!$%,(!$%#

-
.
/
#

(b)

Fig. 11 Execution times as a function of number of threads
per block for a 1024 × 1024 image for (a) B1, and (b) B2.

the GTX295 hardware specification of a maximum of
512 threads per block. 64 threads are grouped into two
warps, and 16 warps reside on a multiprocessor in total.
Compared to this, with a thread block size of 512, we
have a single block and 16 warps per multiprocessor.
Though the occupancy is the same, this configuration
results in a lower number of thread blocks and therefore
takes a longer execution time. When a lower number
of threads per block is specified for the algorithm B2,
CUDA assigns more blocks to the computation. This
presents the opportunity for greater concurrency since
if one block is waiting (e.g., for multicycle arithmetic
operations), the other blocks can keep operating (this is
automatically scheduled by CUDA). This explains the
increase in performance for lower thread per block in
B2.

7.3 Performance Gain over CPU, and MultiGPU
Processing

In this section the performance evaluations of GPU and
CPU implementations are presented. We consider only
the execution time for the facet computation in this
comparison. The times are measured in seconds and
rounded up to the second decimal place in Table 6.
Figure 12(a) compares the performance of B1 and
C1. B1 on a single GPU shows a speedup of 20
for a 2, 048 × 2, 048 image. As the number of GPUs
increases, the performance increases linearly; a four-
GPU implementation shows a speedup of 79.99, and the
eight-GPU one shows a speedup of 159.88.

The performance comparison of the B2 and C2
implementations is presented in Figure 12(b). B2 on a
single GPU shows a speedup of 4.1 for a 2, 048× 2, 048
image. As the number of GPUs increases, the perfor-
mance increases linearly; a four-GPU implementation

Table 6 Execution time measured in second of CPU and
GPU implementations.

Img. size C1 B1(1GPU) B1(4GPU) B1(8GPU)

32 × 32 2.11 0.11 0.03 0.02
64 × 64 8.67 0.44 0.12 0.06

128 × 128 34.78 1.75 0.45 0.23
256 × 256 140.29 7.01 1.79 0.89
512 × 512 558.99 27.94 7.03 3.55

1024 × 1024 2233.40 111.63 28.03 14.03
2048 × 1024 8977.32 448.79 112.23 56.15

Img. size C2 B2(1GPU) B2(4GPU) B2(8GPU)

32 × 32 0.08 0.02 0.01 0.01
64 × 64 0.28 0.07 0.02 0.01

128 × 128 1.13 0.27 0.07 0.04
256 × 256 4.5 1.06 0.29 0.14
512 × 512 18.24 4.25 1.12 0.57

1024 × 1024 73.06 17.00 4.49 2.26
2048 × 1024 292.44 68.05 17.96 8.94

!"#$!% !"#&!% !"#'$% ()#)!% ()#)!% ()#)!% ()#))%

*+#'+%
&,#+&% &&#&*% &'#+&% &"#+)% &"#*'% &"#""%

!!,#)"%

!,*#(&%
!+(#$+% !+&#+"% !+&#$*%

!+"#(!% !+"#''%

)%

()%

$)%

*)%

')%

!))%

!()%

!$)%

!*)%

!')%

,(-(% *$-(% !('-(% (+*-(% +!(-(% !)($-(% ()$'-(%

.!% .!/$0123% .!/'0123%

(a)

!"#$% !"&'% !"(!% !"()% !"('% !"*&% !"*&%

$"$)%

#*"'!%
#+"++% #+"))% #,"($% #,"($% #,"()%

#!")&%

(!"'+%

*&",+% *#"!)% *("#&% *("($% *("$(%

&%

+%

#&%

#+%

(&%

(+%

*&%

*+%

*(-(% ,!-(% #()-(% (+,-(% +#(-(% #&(!-(% (&!)-(%

.(% .(/!0123% .(/)0123%

(b)

Fig. 12 GPU performance gain over CPU for (a) Algo-
rithm 1, and (b) Algorithm 2.

shows a speedup of 16.28 and the eight-GPU one shows
a speedup of 32.72.

Overall performances for Algorithms 1 and 2 are
significantly different as shown in Figure 13. The
speedup graph is plotted normalized for the B1 speedup
on a single GPU. B2 on a single GPU shows a speedup
of 6.60 over B1 for a 2, 048 × 2, 048 image. For this
size of image, the block-level mapping scheme with
Algorithm 2 on the four-GPU and eight-GPU systems
shows speedups over Algorithm 1 of 24.99 and 50.21,
respectively.

8 Conclusion and Future Work

This paper investigated the computation-to-core map-
ping strategies to probe the efficiency and scalability of

14
!
"

!
"

!
"

!
"

!
"

!
"

!
"#
$#
%
"

#
$&
#
"

#
$%
'
"

#
$%
#
"

#
$%
&
"

#
$%
(
"

)
$*
*
"

+
$(
#
"

,
$%
!
"

&
$,
(
"

&
$(
(
"

&
$(
&
"

&
$%
,
"

&
$%
%
"

+
$%
)
"

,
$)
'
"

,
$+
,
"

,
$,
*
"

,
$+
&
"

,
$+
&
"

,
$,
*
"

!
!
$*
(
" '
!
$%
*
"

'
)
$*
&
"

'
)
$)
%
"

'
)
$%
#
"

'
)
$(
,
"

'
)
$%
%
"

'
!
$!
*
"

#
%
$!
%
"

)
&
$)
+
"

)
(
$+
+
"

)
%
$!
%
"

)
%
$#
!
"

+
*
$'
!
"

*"

!*"

'*"

#*"

)*"

+*"

,*"

#'-'" ,)-'" !'(-'" '+,-'" +!'-'" !*')-'" '*)(-'"

.!" .!/)0123" .!/(0123" .'" .'/)0123" .'/(0123"

Fig. 13 The performance comparison of B1 and B2 with
multiGPUs.

the robust facet image modeling algorithm on GPUs.
Our fine-grained mapping scheme showed a significant
performance gain over the standard pixel-based mapping
scheme. This work suggests two principles for optimizing
future image processing applications on the GPU plat-
form. Firstly, when considering a parallel decomposition
(the problem to processor mapping) for implementation
on a GPU, choose the mapping that results in simple
and compact kernel functions, so that each thread
can work efficiently with limited hardware resources,
such as shared memory. In the robust FIM algorithm,
estimating a local facet model for a pixel is too heavy
a workload for a thread, which makes the execution
inefficient. Secondly, since GPU memory resources are
allocated and used differently in a thread block for
global memory and for shared memory, it is important
to consider memory constraints when deciding on the
parallel decomposition for the application. In the robust
FIM algorithm, a large amount of global memory is
required for thread-level parallelism, which makes large
input images impossible to process.

Our test results on the multiGPU implementations
show that multiGPU systems have great potential
for enhancing the performance of an algorithm with
computationally intensive workloads. However there is a
caveat to consider in the adoption of a multiGPU cluster
for a real-time performance. In a multiGPU system,
several GPUs are connected to a host CPU through a
shared bus. As the number of GPUs attached to the
shared bus grows, the increased pressure on the bus
affects the transfer latencies, and can result in an overall
performance degradation. For example, our system has
four GTX295s installed in a single motherboard, where
each card has two GT200 GPUs. When a program
launches, the CPU communicates with the eight-GPUs
to distribute the input image, and this causes an initial
overhead delay. If an application stores a processed
image onto a disk rather than directly displays it to a
screen, each GPU has to transfer its result back to a
CPU, an extra overhead.

The performance bottleneck due to data transfer
between the CPU and GPU is a serious concern in
hybrid computing [8,29], and a next generation of GPU

architectures will address this problem. For example,
AMD has been in development of Fusion to integrate
the CPU and GPU on the same silicon die, and this will
allow unified address space and fully coherent memory
access between the CPU and GPU [1,3].

Our future work will address memory limitation
problems associated with a larger window size, such as
7× 7. In this case, the shared memory is not enough for
the computation of a single facet even in the block-level
processing scheme. The solution to this problem may be
found in other computation-to-core mapping schemes,
e.g., multiple blocks per facet and controlled block
scheduling.

References

1. AMD Inc., (2011) AMD Accelerated Processing Units.
retrieved Feb. 2012, available at http://www.amd.com/us/
products/technologies/fusion/Pages/fusion.aspx

2. Archuleta J., Cao Y., Scogland T., Feng W. 2009. Multi-
dimensional characterization of temporal data mining on
graphics processors. In Proc. of the 2009 IEEE Int.l
Symposium on Parallel & Distributed Processing (IPDPS
’09), IEEE Computer Society, pp1–12

3. Branover A, Foley D, Steinman M (2012), AMD’s Llano
Fusion APU. IEEE Micro, vol. 99, no. PrePrints

4. Besl P, Birch J, Watson L (1989) Robust window
operators. Machine Vision and Applications 2(4):179–191

5. Bui P, Brockman J (2009) Performance analysis of
accelerated image registration using GPGPU. In Proc. of
2nd wksp. on General Purpose Processing on Graphics
Processing Units, ACM, pp 38–45

6. Goldberg D (1991) What every computer scientist should
know about floating-point arithmetic. ACM Comput. Surv.
23(1):5–48

7. Golub G, Van Loan C (1996) Matrix Computations (3rd
ed.). Johns Hopkins University Press.

8. Gregg, C, Hazelwood K (2011) Where is the data?
Why you cannot debate CPU vs. GPU performance
without the answer, Performance Analysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium
on, pp.134-144

9. Haralick RM, Watson L (1981) A facet model for image
data. Computer Graphics Image Processing 15(2):113–129

10. Haralick RM, Watson L, Laffey TJ (1983) The topo-
graphic primal sketch. Int. J. Robotics Research 2(1):50–72

11. Haralick RM (1984) Digital step edges from zero crossing
of second directional derivatives. Pattern Analysis and
Machine Intelligence, IEEE Trans. on PAMI-6(1):58–68

12. Harish P, Narayanan P (2007) Accelerating Large Graph
Algorithms on the GPU Using CUDA, In Proc. of the 14th
international conference on High performance computing
(HiPC’07), pp 197–208

13. Huang J, Ponce S, Park, SI, Cao Y, Quek F, GPU-
accelerated computation for robust motion tracking using
the CUDA framework, Visual Information Engineering,
2008. VIE 2008. 5th International Conference on, pp.437-
442

14. Householder A (1958) Unitary triangularization of a
nonsymmetric matrix. J. ACM 5(4):339–342

15. Huber PJ (1964) Robust estimation of a location param-
eter. The Annals of Mathematical Statistics 35(1):73–101

16. Jankowski M (1994) Iterated facet model approach to
background normalization. SPIE, vol 2238, pp 198–206

15

17. Luo YM, Duraiswami R. (2008). Canny edge detec-
tion on NVIDIA CUDA. 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
Workshops, 43(1), 1-8.

18. Matalas I, Benjamin R, Kitney R (1997) An edge detec-
tion technique using the facet model and parameterized
relaxation labeling. IEEE Trans. on Pattern Analysis and
Machine Intelligence 19:328–341

19. Mizukami Y, Tadamura K (2007) Optical flow compu-
tation on compute unified device architecture. In: ICIAP
07: Proc. of the 14th Int. Conf. on Image Analysis and
Processing, pp 179–184

20. Nickolls J, Buck I, Garland M, Skadron K (2008)
Scalable parallel programming with CUDA. Queue 6(2):40–
53

21. NVIDIA Corporation (2010) NVIDIAs Compute Unified
Device Architecture. retrieved Feb. 2012, available at http:
//developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

22. NVIDIA Corporation (2009) NVIDIA CUDA Best
Practices Guide. retrieved Feb. 2012, available at
http://developer.download.nvidia.com/compute/cuda/
2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.
3.pdf.

23. NVIDIA Corporation (2010) NVIDIA’s Next
Generation CUDA Compute Architecture:
Fermi. retrieved Feb. 2012, available at http:
//www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

24. Owens JD, Luebke D, Govindaraju N, Harris M, Krűger
J, Lefohn AE, Purcell TJ (2007) A survey of general
purpose computation on graphics hardware. Computer
Graphics Forum 26(1):80–113

25. Pathak SD, Kim Y, Kim J (1996) Efficient implemen-
tation of facet models on a multimedia system. Optical
Engineering, 35(6):1739–1745

26. Qiang J, Haralick RM (2002) Efficient facet edge
detection and quantitative performance evaluation. Pattern
Recognition 35(3):689–700

27. Ryoo S, Rodrigues C, Baghsorkhi S, Stone S, Kirk D,
Hwu W (2008a) Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA. In Proc. of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, ACM,
pp 73–82

28. Ryoo S, Rodrigues CI, Stone SS, Stratton JA, Ueng SZ,
Baghsorkhi SS, Hwu W (2008b) Program optimization
carving for GPU computing. J. Parallel Distributed
Computing, 68(10):1389–1401

29. Schaa D, Kaeli D (2009) Exploring the multiple-GPU
design space. In Proc. of the 2009 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS
’09), pp1–12

30. Scheuermann T, Hensley J (2007) Efficient histogram
generation using scattering on GPUs. In Proc. of the 2007
symposium on Interactive 3D graphics and games, pp
33–37

31. Sinha S, Frahm JM, Pollefeys M, Genc Y (2007) Feature
tracking and matching in video using programmable
graphics hardware. Machine Vision and Applications, pp
1–11

32. Trefethen LN, Bau D (1997) Numerical linear algebra.
SIAM.

33. Terzopoulos D (1988) The computation of visible-surface
representation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 10(4) 417–438

34. Torr PHS, Zisserman A (2000) MLESAC: A New
Robust Estimator with Application to Estimating Image
Geometry. Computer Vision and Image Understanding
78(1): 138–156

35. Vineet V and Narayanan, PJ (2008) CUDA cuts: Fast
graph cuts on the GPU. 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
Workshops, pp 1–8

36. Whitehead N, Fit-Florea A, (2011) Precision & Per-
formance: Floating Point and IEEE 754 Compliance for
NVIDIA GPUs, white paper, NVIDIA Corporation.

37. Yang R, Pollefeys M (2003) Multi-resolution real-time
stereo on commodity graphics hardware, In Proc. of the
2003 IEEE computer society conf. on Computer vision
and pattern recognition (CVPR’03), pp 211–217

38. Yang R, Pollefeys M, Li S (2004) Improved real-time
stereo on commodity graphics hardware, In Proc. of the
2004 Conf. on Computer Vision and Pattern Recognition
wksp. (CVPRW’04), pp 36

39. Yixun L, Zhang EZ, Shen X (2009) A cross-input
adaptive framework for GPU program optimizations. In
Proc. of the 2009 IEEE Int. Symposium on Parallel &
Distributed Processing, pp 1–10

