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Abstract. The graphics boards have become so powerful that they are usded for mathematical 

computations, such as matrix multiplication and transposition, which are required for complex visual and 
physics simulations in computer games. NVIDIA has supported this trend by releasing the CUDA 
(Compute Unified Device Architecture) interface library to allow applications developers to write code 
that can be uploaded into an NVIDIA-based card for execution by NVIDIA's massively parallel GPUs. 
This paper is an introduction to the CUDA programming based on the documentation from [2] and [4].  

 
Introduction 
 
The programmable graphics processor unit (GPU) has evolved into an absolute computing 

workhorse. Today's GPUs offer a lot of resources for both graphics and non-graphics processing. Data-
parallel processing maps data elements to parallel processing threads. Many applications that process 
large data sets such as arrays can use a data-parallel programming model to speed up the computations. In 
3D rendering large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media 
processing applications can map image blocks and pixels to parallel processing threads. A lot of any other 
algorithms except the image rendering and processing algorithms are accelerated by data-parallel 
processing.  

In this scope, Nvidia developed CUDA (Compute Unified Device Architecture) [1], a new 
hardware and software architecture for issuing and managing computations on the GPU as a data-parallel 
computing device without the need of mapping them to a graphics API.  It is available for the GeForce 8 
Series, Quadro FX 5600/4600, and Tesla solutions.  

The paper presents the principal features of CUDA programming. It is presented the CUDA 
architecture and the application programming interface in CUDA, based on the documentation from [2] 
and [4]. Also there is an simple CUDA program for adding two matrix which uses the parallel capabilities 
of CUDA, which was presented in [3]. 

Figure 1.  The CUDA software stack 
 
The CUDA Architecture  
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CUDA is a framework which works in a modern massively-parallel environment. CUDA-enabled 
graphics processors operate as co-processors within the host computer. This means that each GPU is 
considered to have its own memory and processing elements that are separate from the host computer. To 
perform useful work, data must be transferred between the memory space of the host computer and 
CUDA device(s). 

As in [2], the CUDA software stack is composed of several layers: (i) a hardware driver, (ii) an 
application programming interface (API) and its runtime, (iii) two higher-level mathematical libraries of 
common usage, as in Figure 1.   

CUDA provides general DRAM memory addressing [2]: the ability to read and write data at any 
location in DRAM, just like on a CPU. CUDA has a parallel data cache with very fast general read and 
write access, that threads use to share data with each other.  

 
 When programmed with CUDA, the GPU is viewed as a compute device capable of executing a 

very high number of threads in parallel. It operates as a coprocessor to the main CPU (host).  The host 
and the device maintain their own DRAM, the host memory and device memory, respectively, as in [2].   
 The batch of threads that executes a kernel is organized as a grid of thread blocks like in Figure 2, 
as in [2].  

Figure 2. Thread batching 
 A thread block is a batch of threads that can cooperate together by efficiently sharing data 
through some fast shared memory and synchronizing their execution to coordinate memory accesses. 
Each thread is identified by its thread ID, which is the thread number within the block. An application 
can also specify a block as a two- or three-dimensional array of arbitrary size and identify each thread 
using a 2- or 3-component index instead. There is a limited maximum number of threads that a block can 
contain. The blocks of same dimensionality and size that execute the same kernel can be batched together 
into a grid of blocks. Threads in different thread blocks from the same grid cannot communicate and 
synchronize with each other. A device may run all the blocks of a grid sequentially if it has very few 
parallel capabilities, or in parallel if it has a lot of parallel capabilities, or usually a combination of both. 
Each block is identified by its block ID, which is the block number within the grid. An application can 
also specify a grid as a two-dimensional array of arbitrary size and identify each block using a 2-
component index instead.A thread that executes on the device has only access to the device’s DRAM and 



on-chip memory through the following memory spaces, as illustrated in Figure 3 (as described in [2]): (i) 
read-write per-thread registers, (ii) read-write per-thread local memory, (iii) read-write per-block shared 
memory, (iv) read-write per-grid global memory, (v) read-only per-grid constant memory, (vi) read-only 
per-grid texture memory. 

 

Figure 3. The Memory model 
 
The device is implemented as a set of multiprocessors as illustrated in Figure 4, as described in [2]. 

Each multiprocessor has a Single Instruction, Multiple Data architecture (SIMD). At any given clock 
cycle, each processor of the multiprocessor executes the same instruction, but operates on different data. 
Each multiprocessor has on-chip memory of the four following types: (i) one set of local 32-bit registers 
per processor, (ii) a parallel data cache (shared memory) that is shared by all the processors and 
implements the shared memory space, (iii) a read-only constant cache that is shared by all the processors 
and speeds up reads from the constant memory space, which is implemented as a read-only region of 
device memory, (iv) a read-only texture cache that is shared by all the processors and speeds up reads 
from the texture memory space, which is implemented as a read-only region of device memory.  

The local and global memory spaces are implemented as read-write regions of device memory and 
are not cached. Each multiprocessor accesses the texture cache via a texture unit that implements the 
various addressing modes and data filtering. 

A grid of thread blocks is executed on the device by executing one or more blocks on each 
multiprocessor using time slicing: Each block is split into SIMD groups of threads called warps; each of 
these warps contains the same number of threads, called the warp size, and is executed by the 
multiprocessor in a SIMD fashion; a thread scheduler periodically switches from one warp to another to 
maximize the use of the multiprocessor’s computational resources. A block is processed by only one 
multiprocessor, so that the shared memory space resides in the on-chip shared memory leading to very 
fast memory accesses. The multiprocessor’s registers are allocated among the threads of the block. If the 
number of registers used per thread multiplied by the number of threads in the block is greater than the 
total number of registers per multiprocessor, the block cannot be executed and the corresponding kernel 
will fail to launch. Several blocks can be processed by the same multiprocessor concurrently by allocating 
the multiprocessor’s registers and shared memory among the blocks. The issue order of the warps within 
a block is undefined, but their execution can be synchronized.  



Figure 4. The hardware model 
 
The CUDA  application programming interface  
 

 The goal of the CUDA programming is to provide a relatively simple path for users familiar with 
the C.  Based on [2],  it consists of:  

• A runtime library (presented in Table 1) split into:  

• A host component, that runs on the host and provides functions to control and access one or 
more compute devices from the host;  

• A device component, that runs on the device and provides device-specific functions;  

• A common component, that provides built-in vector types and a subset of the C standard 
library that are supported in both host and device code.  

• A minimal set of extensions to the C language, that allow the programmer to target portions of the 
source code for execution on the device (composed of four parts presented in Table 2).  

 
 
The host 
component  

Multiple devices supported 
  



 

Memory: linear or CUDA arrays 
  

OpenGL and DirectX interoperability 
  

Asynchronicity:  __global__ functions and most runtime functions   return to the 
application before the device has completed the requested task 

The device 
component 

Synchronization function 

 Type conversion 
Type casting  
Atomic functions (performs a read-modify-write operation on one 32 bit word residing 
in global memory) 

A common 
component 

Built-in Vector types ( float1, float2, int3, ushort4 etc) 
Constructor type creation: int2 i = make int2( i, j) 
Mathematical functions (standard math.h on CPU) 

Time function for benchmarking 
Texture references 

Table 1 The runtime library 
 

Function type qualifiers to 
specify whether a function 

executes on the host or on the 
device and whether it is 

callable from the host or from 
the device 

 __device__  declares a function that is:  
(i) executed on the device, (ii) callable from the device only.  
 __global__  declares a function as being a kernel: (i) executed on the 
device, (ii) callable from the host only.  
 __host__  declares a function that is: (i) executed on the host, (ii) 
callable from the host only.  

Variable type qualifiers to 
specify memory location on the 

device of a variable 

__device__ declares a variable that resides on the device: (i) resides in 
global memory space, (ii) has the lifetime of an application, (iii) it is 
accessible from all the threads within the the grid and from the host 
through the runtime library. 

__constant__ (optionally used with __device__), declares a variable 
that: (i) Resides in constant memory space, (ii) has the lifetime of an 
application, (iii) it is accessible from all the threads within the grid and 
from the host through the runtime library. 

__shared__ , (optionally used with __device__), declares a variable 
that: (i) resides in the shared memory space of a thread block, (ii) has the 
lifetime of  the block, (iii) is only accessible from all the threads within 
the block. 

A new directive to specify how 
a kernel is executed on the 

device from the host 
 

 Any call to a __global__  function must specify the execution 
configuration for that call. 

 The execution configuration defines the dimension of the grid 
and blocks that will be used to execute the function on the 



device. 
 It is specified by the expression <<<Dg,Db,Ns>>> inserted 

between the function name and the parenthesized argument list, 
where: (i) Dg is of type dim3 and specifies the dimension and 
size of the grid (Dg.x*Dg.y*Dg.y is the number of blocks being 
launched), (ii) Db is of type dim3 and specifies the dimension 
and size of each block, (Db.x*Db.y*Db.z is the number of 
threads per block), (iii)  Ns is of type size_t and specifies the 
number of bytes in shared memory that is dynamically allocated 
per block for this call in addition to the statically allocated 
memory.  

Four built-in variables that 
specify the grid and block 

dimensions and the block and 
thread indices 

gridDim is of type dim3 and contains the dimensions of the grid.  
blockIdx is of type uint3 and contains the block index within the grid.  

blockDim is of type dim3 and contains the dimensions of the block.  
threadIdx is of type uint3 and contains the thread index within the 
block.  

Table 2. The set of extensions to the C language 
 
 
 
 
A CUDA example 
 
In the following it is presented a CUDA program for adding two matrix in parallel comparing with the 
same program write in C, which is described in [3]: 
 
CPU Program Observations CUDA Program  

void add_matrix 
(float* a, float* b, 
float* c, int N) { 
int index; 
 
for ( int i = 0; i < 
N; i++ ) 
for ( int j = 0; j < 
N; j++ )  
{ 
index = i + j*N; 
c[index] = 
a[index] + 
b[index]; 
} 
} 
 
 
int main() { 
add_matrix(a, b, 
c, N ); 

The nested for-loops 
are replaced with an 

implicit grid 

__global__ add_matrix 
( float* a, float* b, float* c, int N )  
{ 
int i = blockIdx.x * blockDim.x +   
           threadIdx.x; 
int j = blockIdx.y * blockDim.y +  
           threadIdx.y; 
int index = i + j*N; 
 
if ( i < N && j < N ) 
c[index] = a[index] + b[index]; 
} 
 
 
int main() { 
dim3 dimBlock( blocksize, blocksize ); 
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y); 
add_matrix<<<dimGrid,dimBlock>>> 
(a,b,c,N); 
} 
 



} 
 
 
 

Bellow it is presented the whole source version of the above program, as pesented in [3]: 
 
 

Program  Observations 
const int N = 1024; 
const int blocksize = 16; Set grid size 

__global__ 
void add_matrix(float* a, float *b, float *c, int N) 
{ 
int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.y; 
int index = i + j*N; 
if ( i < N && j < N ) 
c[index] = a[index] + b[index]; 
} 

Compute kernel 

int main()  
{  

float *a = new float[N*N]; 
float *b = new float[N*N]; 
float *c = new float[N*N]; 
for (int i = 0; i < N*N; ++i) a[i] = 1.0f; b[i] = 3.5f;  

CPU memory allocation 

float *ad, *bd, *cd; 
const int size = N*N*sizeof(float); 
cudaMalloc((void**)&ad, size); 
cudaMalloc((void**)&bd, size); 
cudaMalloc((void**)&cd, size); 

GPU memory allocation 

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice); 
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice); Copy data to GPU 

dim3 dimBlock(blocksize, blocksize); 
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y); 
add_matrix<<<dimGrid, dimBlock>>>( d, bd, cd, N); 

Execute kernel 

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); Copy result back to CPU 

cudaFree(ad); cudaFree(bd); cudaFree(cd); 
delete[] a; delete[] b; delete[] c; 
return EXIT_SUCCESS; 

Clean up and return 

}  
 
Conclusions 
CUDA has several advantages over traditional general purpose computation on GPUs (GPGPU) 

using graphics APIs: 
 It uses the standard C language, with some simple extensions; it is no need to learn graphics API; 



 Scattered writes – code can write to arbitrary addresses in memory; 
 Shared memory – CUDA exposes a fast shared memory region that can be shared amongst 

threads; 
But CUDA has some limitations: 

 Recursive functions are not supported and must be converted to loops.  
 Threads should be run in groups of at least 32 for best performance.  
 CUDA-enabled GPUs are only available from Nvidia (GeForce 8 series and above, Quadro 

and Tesla)  
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