
An INTRODUCTION TO CUDA Programming
Irina Mocanu

University POLITEHNICA Bucharest
irina.mocanu@cs.pub.ro

Abstract. The graphics boards have become so powerful that they are usded for mathematical

computations, such as matrix multiplication and transposition, which are required for complex visual and
physics simulations in computer games. NVIDIA has supported this trend by releasing the CUDA
(Compute Unified Device Architecture) interface library to allow applications developers to write code
that can be uploaded into an NVIDIA-based card for execution by NVIDIA's massively parallel GPUs.
This paper is an introduction to the CUDA programming based on the documentation from [2] and [4].

Introduction

The programmable graphics processor unit (GPU) has evolved into an absolute computing

workhorse. Today's GPUs offer a lot of resources for both graphics and non-graphics processing. Data-
parallel processing maps data elements to parallel processing threads. Many applications that process
large data sets such as arrays can use a data-parallel programming model to speed up the computations. In
3D rendering large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media
processing applications can map image blocks and pixels to parallel processing threads. A lot of any other
algorithms except the image rendering and processing algorithms are accelerated by data-parallel
processing.

In this scope, Nvidia developed CUDA (Compute Unified Device Architecture) [1], a new
hardware and software architecture for issuing and managing computations on the GPU as a data-parallel
computing device without the need of mapping them to a graphics API. It is available for the GeForce 8
Series, Quadro FX 5600/4600, and Tesla solutions.

The paper presents the principal features of CUDA programming. It is presented the CUDA
architecture and the application programming interface in CUDA, based on the documentation from [2]
and [4]. Also there is an simple CUDA program for adding two matrix which uses the parallel capabilities
of CUDA, which was presented in [3].

Figure 1. The CUDA software stack

The CUDA Architecture

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6662549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CUDA is a framework which works in a modern massively-parallel environment. CUDA-enabled
graphics processors operate as co-processors within the host computer. This means that each GPU is
considered to have its own memory and processing elements that are separate from the host computer. To
perform useful work, data must be transferred between the memory space of the host computer and
CUDA device(s).

As in [2], the CUDA software stack is composed of several layers: (i) a hardware driver, (ii) an
application programming interface (API) and its runtime, (iii) two higher-level mathematical libraries of
common usage, as in Figure 1.

CUDA provides general DRAM memory addressing [2]: the ability to read and write data at any
location in DRAM, just like on a CPU. CUDA has a parallel data cache with very fast general read and
write access, that threads use to share data with each other.

 When programmed with CUDA, the GPU is viewed as a compute device capable of executing a

very high number of threads in parallel. It operates as a coprocessor to the main CPU (host). The host
and the device maintain their own DRAM, the host memory and device memory, respectively, as in [2].
 The batch of threads that executes a kernel is organized as a grid of thread blocks like in Figure 2,
as in [2].

Figure 2. Thread batching
 A thread block is a batch of threads that can cooperate together by efficiently sharing data
through some fast shared memory and synchronizing their execution to coordinate memory accesses.
Each thread is identified by its thread ID, which is the thread number within the block. An application
can also specify a block as a two- or three-dimensional array of arbitrary size and identify each thread
using a 2- or 3-component index instead. There is a limited maximum number of threads that a block can
contain. The blocks of same dimensionality and size that execute the same kernel can be batched together
into a grid of blocks. Threads in different thread blocks from the same grid cannot communicate and
synchronize with each other. A device may run all the blocks of a grid sequentially if it has very few
parallel capabilities, or in parallel if it has a lot of parallel capabilities, or usually a combination of both.
Each block is identified by its block ID, which is the block number within the grid. An application can
also specify a grid as a two-dimensional array of arbitrary size and identify each block using a 2-
component index instead.A thread that executes on the device has only access to the device’s DRAM and

on-chip memory through the following memory spaces, as illustrated in Figure 3 (as described in [2]): (i)
read-write per-thread registers, (ii) read-write per-thread local memory, (iii) read-write per-block shared
memory, (iv) read-write per-grid global memory, (v) read-only per-grid constant memory, (vi) read-only
per-grid texture memory.

Figure 3. The Memory model

The device is implemented as a set of multiprocessors as illustrated in Figure 4, as described in [2].

Each multiprocessor has a Single Instruction, Multiple Data architecture (SIMD). At any given clock
cycle, each processor of the multiprocessor executes the same instruction, but operates on different data.
Each multiprocessor has on-chip memory of the four following types: (i) one set of local 32-bit registers
per processor, (ii) a parallel data cache (shared memory) that is shared by all the processors and
implements the shared memory space, (iii) a read-only constant cache that is shared by all the processors
and speeds up reads from the constant memory space, which is implemented as a read-only region of
device memory, (iv) a read-only texture cache that is shared by all the processors and speeds up reads
from the texture memory space, which is implemented as a read-only region of device memory.

The local and global memory spaces are implemented as read-write regions of device memory and
are not cached. Each multiprocessor accesses the texture cache via a texture unit that implements the
various addressing modes and data filtering.

A grid of thread blocks is executed on the device by executing one or more blocks on each
multiprocessor using time slicing: Each block is split into SIMD groups of threads called warps; each of
these warps contains the same number of threads, called the warp size, and is executed by the
multiprocessor in a SIMD fashion; a thread scheduler periodically switches from one warp to another to
maximize the use of the multiprocessor’s computational resources. A block is processed by only one
multiprocessor, so that the shared memory space resides in the on-chip shared memory leading to very
fast memory accesses. The multiprocessor’s registers are allocated among the threads of the block. If the
number of registers used per thread multiplied by the number of threads in the block is greater than the
total number of registers per multiprocessor, the block cannot be executed and the corresponding kernel
will fail to launch. Several blocks can be processed by the same multiprocessor concurrently by allocating
the multiprocessor’s registers and shared memory among the blocks. The issue order of the warps within
a block is undefined, but their execution can be synchronized.

Figure 4. The hardware model

The CUDA application programming interface

 The goal of the CUDA programming is to provide a relatively simple path for users familiar with
the C. Based on [2], it consists of:

• A runtime library (presented in Table 1) split into:

• A host component, that runs on the host and provides functions to control and access one or
more compute devices from the host;

• A device component, that runs on the device and provides device-specific functions;

• A common component, that provides built-in vector types and a subset of the C standard
library that are supported in both host and device code.

• A minimal set of extensions to the C language, that allow the programmer to target portions of the
source code for execution on the device (composed of four parts presented in Table 2).

The host
component

Multiple devices supported

Memory: linear or CUDA arrays

OpenGL and DirectX interoperability

Asynchronicity: __global__ functions and most runtime functions return to the
application before the device has completed the requested task

The device
component

Synchronization function

 Type conversion
Type casting
Atomic functions (performs a read-modify-write operation on one 32 bit word residing
in global memory)

A common
component

Built-in Vector types (float1, float2, int3, ushort4 etc)
Constructor type creation: int2 i = make int2(i, j)
Mathematical functions (standard math.h on CPU)

Time function for benchmarking
Texture references

Table 1 The runtime library

Function type qualifiers to
specify whether a function

executes on the host or on the
device and whether it is

callable from the host or from
the device

 __device__ declares a function that is:
(i) executed on the device, (ii) callable from the device only.
 __global__ declares a function as being a kernel: (i) executed on the
device, (ii) callable from the host only.
 __host__ declares a function that is: (i) executed on the host, (ii)
callable from the host only.

Variable type qualifiers to
specify memory location on the

device of a variable

__device__ declares a variable that resides on the device: (i) resides in
global memory space, (ii) has the lifetime of an application, (iii) it is
accessible from all the threads within the the grid and from the host
through the runtime library.

__constant__ (optionally used with __device__), declares a variable
that: (i) Resides in constant memory space, (ii) has the lifetime of an
application, (iii) it is accessible from all the threads within the grid and
from the host through the runtime library.

__shared__ , (optionally used with __device__), declares a variable
that: (i) resides in the shared memory space of a thread block, (ii) has the
lifetime of the block, (iii) is only accessible from all the threads within
the block.

A new directive to specify how
a kernel is executed on the

device from the host

 Any call to a __global__ function must specify the execution
configuration for that call.

 The execution configuration defines the dimension of the grid
and blocks that will be used to execute the function on the

device.
 It is specified by the expression <<<Dg,Db,Ns>>> inserted

between the function name and the parenthesized argument list,
where: (i) Dg is of type dim3 and specifies the dimension and
size of the grid (Dg.x*Dg.y*Dg.y is the number of blocks being
launched), (ii) Db is of type dim3 and specifies the dimension
and size of each block, (Db.x*Db.y*Db.z is the number of
threads per block), (iii) Ns is of type size_t and specifies the
number of bytes in shared memory that is dynamically allocated
per block for this call in addition to the statically allocated
memory.

Four built-in variables that
specify the grid and block

dimensions and the block and
thread indices

gridDim is of type dim3 and contains the dimensions of the grid.
blockIdx is of type uint3 and contains the block index within the grid.

blockDim is of type dim3 and contains the dimensions of the block.
threadIdx is of type uint3 and contains the thread index within the
block.

Table 2. The set of extensions to the C language

A CUDA example

In the following it is presented a CUDA program for adding two matrix in parallel comparing with the
same program write in C, which is described in [3]:

CPU Program Observations CUDA Program

void add_matrix
(float* a, float* b,
float* c, int N) {
int index;

for (int i = 0; i <
N; i++)
for (int j = 0; j <
N; j++)
{
index = i + j*N;
c[index] =
a[index] +
b[index];
}
}

int main() {
add_matrix(a, b,
c, N);

The nested for-loops
are replaced with an

implicit grid

__global__ add_matrix
(float* a, float* b, float* c, int N)
{
int i = blockIdx.x * blockDim.x +
 threadIdx.x;
int j = blockIdx.y * blockDim.y +
 threadIdx.y;
int index = i + j*N;

if (i < N && j < N)
c[index] = a[index] + b[index];
}

int main() {
dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);
add_matrix<<<dimGrid,dimBlock>>>
(a,b,c,N);
}

}

Bellow it is presented the whole source version of the above program, as pesented in [3]:

Program Observations
const int N = 1024;
const int blocksize = 16; Set grid size

__global__
void add_matrix(float* a, float *b, float *c, int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N && j < N)
c[index] = a[index] + b[index];
}

Compute kernel

int main()
{

float *a = new float[N*N];
float *b = new float[N*N];
float *c = new float[N*N];
for (int i = 0; i < N*N; ++i) a[i] = 1.0f; b[i] = 3.5f;

CPU memory allocation

float *ad, *bd, *cd;
const int size = N*N*sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

GPU memory allocation

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice); Copy data to GPU

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(d, bd, cd, N);

Execute kernel

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); Copy result back to CPU

cudaFree(ad); cudaFree(bd); cudaFree(cd);
delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

Clean up and return

}

Conclusions
CUDA has several advantages over traditional general purpose computation on GPUs (GPGPU)

using graphics APIs:
 It uses the standard C language, with some simple extensions; it is no need to learn graphics API;

 Scattered writes – code can write to arbitrary addresses in memory;
 Shared memory – CUDA exposes a fast shared memory region that can be shared amongst

threads;
But CUDA has some limitations:

 Recursive functions are not supported and must be converted to loops.
 Threads should be run in groups of at least 32 for best performance.
 CUDA-enabled GPUs are only available from Nvidia (GeForce 8 series and above, Quadro

and Tesla)

Bibliography

1. http://www.nvidia.com/object/cuda_home.html
2. http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
3. Johan Seland - Cuda Programming, Winter School in Parallel Computing,Geilo, January 20-25, 2008,

(http://heim.ifi.uio.no/~knutm/geilo2008/seland.pdf)
4. http://www.gpgpu.org/sc2007/

http://en.wikipedia.org/wiki/Scratchpad_RAM
http://en.wikipedia.org/wiki/GeForce
http://en.wikipedia.org/wiki/Quadro
http://en.wikipedia.org/wiki/NVIDIA_Tesla
http://www.nvidia.com/object/cuda_home.html
http://www.ddj.com/cpp/207200659
http://www.ddj.com/cpp/207200659
http://www.ddj.com/cpp/207200659
http://www.ddj.com/cpp/207200659

	An INTRODUCTION TO CUDA Programming

