
MODELING AND VISUALIZING KERNEL ACTIVITYIN A SHARED MEMORY MULTIPROCESSORJ. Opsommer, W. Van de Velde, E. H. D'Hollander �University of Ghent,Department of Electrical Engineering,St.-Pietersnieuwstraat 41,B-9000 Ghent, BelgiumAbstractA graphical environment is presented to visualizethe kernel activity in a shared memory multiproces-sor. An existing thread scheduler was modelled andsimulated to study the behaviour of parallel threadexecution. The model reveals the possible bottlenecksof the system and allows to optimize several threadscheduling alternatives.Using the MODLINE programming environment, it ispossible to obtain an animated execution showing theevolution of thread creation, scheduling and execution.The simulation was compared with a kernel executingon a shared memory multiprocessor.In addition a post processor was developed to vi-sualize the task execution on each processor and theshared resource accesses. In the corresponding Ganttcharts, task dependencies are graphically represented.1 IntroductionOne of the key performance factors in a multipro-cessor system is the scheduling and allocation of paral-lel tasks. However it is di�cult to accurately monitorthe low level kernel activity, because the measurementprobes and associated instrumentation blur the perfor-mance picture.To visualize the interaction of processors and pro-cesses in a shared memory multiprocessor, a graphicaldiscrete event simulation environment, MODLINE, hasbeen used [5]. Using animation the experimenter isable to observe the evolution of the parallel executingtasks and to zoom in on the hot spots when processorscompete for shared resources.We extended the MODLINE package with a post pro-cessor to visualize speci�c multiprocessing artefacts.The post processor is also able to show the history of�This research is sponsored by the contracts OOA 87/93-117and IT/IF/8 of the Belgian Ministry of Science

the events traced with a non-intrusive timing analyzerduring the execution of a real multiprocessor.The system is used to simulate and validate the op-erating system behaviour of the VPS multiprocessorprototype [6]. Each processor board of the VPS lo-cally executes a thread handling kernel, implementingsystem primitives of the �-kernel [3].The next section describes the models that weredeveloped to simulate several alternative methods forscheduling threads on multiprocessor systems. Thetools for visualizing and animating the kernel activ-ity are discussed in section 3. Section 4 discusses theresults and in section 5 the concluding remarks aregiven.2 Multiprocessing Kernel ModelingThread ManagementThe scheduling policy of a multiprocessing operat-ing system kernel signi�cantly a�ects the execution ofparallel tasks, or threads [8]. Often a �ne task gran-ularity is preferred because this enhances the paral-lelism. However, it is clear that more communicationand scheduling activity will occur in taskgraphs withsmall-sized tasks [9]. To study the behaviour of di�er-ent thread management alternatives, a detailed queue-ing model of a thread scheduling kernel was developed.Di�erent thread schedulers have been simulated.These schedulers vary in the way they handle the list ofexecutable tasks, known as the ready list. The readylist varies dynamically as new tasks are emitted andready tasks are executed. A task becomes ready whenits predecessor tasks have terminated.Basic Multiprocessor Kernel ModelIn its simplest form, the ready list is stored as asingle list in the shared memory. The model of a mul-
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tiprocessor kernel executing tasks from a global readylist is represented in �gure 1.
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not emptyFigure 1: Basic thread scheduler model: the task isfetched from the global ready list and executed on theprocessor; ready successor tasks are emitted to theglobal ready list.Each task has a shared memory semaphore repre-senting the number of uncompleted predecessor tasks.In the �rst scheduling model, the execution of a taskis performed in the following steps:1. A processor fetches the task from the global readylist. The ready list is a shared resource, protectedby a lock. If the list is locked by another proces-sor, the processor keeps polling the lock until thelist becomes accessible. An idle processor period-ically tries to read the ready list using increasingtime intervals when no ready tasks are available.This spin-waiting is similar to the Ethernet Back-o� Algorithm [2,7] and reduces the bus tra�c ifthere is not enough parallelism in the program.2. The processor executes the task locally, using thebus for accessing shared data.3. The semaphores of the successor tasks are decre-mented and if a semaphore becomes zero, thecorresponding task is emitted on the ready list.Emitting a task involves the same resource ac-cesses as in step 1.This model has two potential bottlenecks: theready list and the bus. Furthermore, the polling onthe lock of the ready list has an avalanche e�ect onthe bus usage.Thread Scheduling AlternativesThe various thread scheduling techniques di�er inthe way the ready list is structured and accessed. The

list can be stored in global or in local memory andthe access to the list is private or shared (table 1). Ifthe processors have enough local memory, it is neveradvantageous to store private lists in shared memory;so this possibility is not considered here (e.i. globallists are always shared).Local GlobalPrivate LM, no lock N/AShared DPM, locked SM, lockedTable 1: Overview of the di�erent combinations tostore and access ready lists. LM = local memory;DPM = dual-port memory, SM = shared memoryLocal Private List. To reduce ready list con-tention, processors keep one or more ready tasks lo-cally in a private list. A fetch from the shared list isonly needed when the local bu�er is empty; the num-ber of tasks that is then transferred from the sharedto the private list during the same lock operation isa con�guration parameter. The local taskbu�er is es-pecially useful for parallel chains of sequential taskswhere each task triggers one successor task. If the lo-cal bu�er is too large, the workload balance su�ers,because a processor cannot fetch tasks from its neigh-bour processor's private local list.Multiple Global Ready Lists. Another way toalleviate the contention is to provide multiple sharedlists, each protected by a separate lock. Initially aprocessor selects an arbitrary list and skips to the nextlist when the previous one is locked. The �rst free listbecomes the preferential list for the next accesses aslong as it remains unlocked and contains ready tasks.Local Shared Ready Lists. A third approach usesdual-port memories. This memory allows a processorto access the local memory of another processor viathe shared bus. Now each processor only has a localready list with a lock, allowing a processor with anempty ready list to fetch tasks from the list of anotherprocessor. This method reduces ready list contentionand shared memory accesses, but an excessive dual-port tra�c reduces the performance if the program isnot well-balanced.Both private and shared local and multiple globalready lists are scalable solutions to the contentionfor common data structures. Equally promising arescheduling strategies based on combinations of the



previous methods, e.g. a small private list for eachprocessor together with multiple global lists in sharedmemory.3 Visualization ToolsGraphical Simulation EnvironmentThe di�erent scheduling strategies were imple-mented using the MODLINE graphical programmingenvironment [4]. This includes a graphical editorQNET for entering and animating queueing networks.The design is converted to QNAP2 code, a modelinglanguage for the simulation or analytical solution ofqueueing networks [5]. The system provides a libraryto support a statistical analysis of the obtained re-sults. An experimenter tool enables the user to spec-ify interactively the parameters for a number of simu-lation runs. Reports are generated automatically andinclude a graphical representation of the model, theQNAP2 code, the input parameters and the simulationresults.The kernel activities are modelled by closed queue-ing networks where the CPU, the bus and the di�er-ent kinds of ready list structures are rather uncon-ventionally represented as resources instead of servicestations [1]. This allows to model these resources as in-dependent entities. Each resource has a waiting queue.However, an executing task may decide not to join alocked queue; e.g. when a ready list is locked, the ker-nel may try to access another list. Since the privatelists are not shared, they are not implemented as re-sources but rather as internal structures of the fetchand emit server.The QNET model of the kernel is represented in �g-ure 2. The task execution is modelled as a sequenceof stages (fetch, exec, emit), executed by di�erentservers. The servers re
ect the phases of scheduling(fetch), execution (exec) and synchronization (emit)and they require particular resources to accomplishtheir service. The model allows the user to composethe kernel list data structures from a palette of local,global; private and shared ready lists (cfr. section 2).If di�erent policies are active, the fetch and emit op-erations �rst try to use private lists, then local sharedlists and �nally global lists.The input for a simulation run consists of the fol-lowing:� Hardware parameters: during the edit session, itis possible to change the low-level characteristicsof the simulated architecture. The parametersare the time to lock and access private and shared

Figure 2: QNET representation of the kernel model:the subsequent stages in the execution of a task aremodelled as servers (fetch, exec, emit), competing forshared resources (bus, global ready lists GRL, localshared lists LRL).ready lists and the time to adjust semaphores andto access shared data.� Kernel con�guration: for each run, the user spec-i�es the number of processors and the type ofready lists to use. It is possible to limit the sizeof the private lists and to specify how many tasksare transferred from a shared to a private list dur-ing one lock operation. Also the di�erent backo�parameters for the spin-wait of idle processors arede�ned as part of the kernel con�guration. Sev-eral kernel con�gurations can be selected in a sin-gle simulation experiment.� Program to simulate: the parallel program can bespeci�ed in two ways:1. using a complete description of the task-graph, containing all dependencies betweentasks and an estimated length of each task2. using average task characteristics such asthe average number of successors per task,the shared memory data communication pertask and the average task execution timeon a single processor. Although less accu-rate for studying a particular program, thismethod is useful for studying the e�ect ofgeneral program characteristics on the per-formance of a parallel execution.



AnimationDuring the animation session, a task residing at aparticular server is represented by a large bullet (�g.3). Initially, the resources are �lled with tokens (smallbullets). The number of tokens equals the number ofavailable resources; e.g. in the simplest model there isonly one global ready list token. Accessing a resourcerequires a resource token. Servers compete for theshared resources; if a token is not available, a serveris blocked temporarily. When a service is completed,the task moves from one server to the next one.
Figure 3: Snapshot of animated kernel visualization:tasks are represented by large bullets, tokens by smallones. The task in the fetch server is taking a localready list token from the LRL resourceUsing measurement icons, it is possible to indicatethe average access fraction, the number of free re-sources, etc. These statistical variables are visualisedon a scale and updated during the animation session.From the animation trace, a time plot of a selectionof statistical variables can be generated.Graphical Post ProcessorA graphical post processor was developed to dis-play the events recorded during the simulation run.The graphical post processor makes it possible to ex-periment with various scheduling alternatives and toobtain meaningful information about otherwise un-observable kernel statistics. Among these are Gantt

charts of each processor, displaying task execution,shared resource accesses, idle times, bus locks andcontention delays. Furthermore predecessor and suc-cessor links are indicated on the time charts and ina separate window statistical measures such as thespeed-up, memory communication and synchroniza-tion times, task granularity and bus occupation aredisplayed.The visualization system is also able to display alimited trace of a real execution on a coarse time scaleusing data recorded with a timing analyzer. This al-lows an easy comparison between the simulation andthe execution pro�les.
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Cursor at:Figure 4: Screen output of graphical post executionanalysis: the large numbered blocks represent taskswith the corresponding fetch and emit operations(dark and light gray blocks under the baseline), thebus accesses (small white blocks) and the semaphoreupdates (small black blocks). The Gantt chart showsa zoom of the execution on three processors (P0, P1,P2), using shared memory M0. The lines indicate thepredecessors of task 88.4 ResultsModel ValidationThe VPS multiprocessor system is observed non-intrusively by a timing analyzer. The access to crit-ical kernel data structures can be clocked by trigger-ing the correct addresses. In this way, accurate ma-chine time parameters for the queuing models wereobtained. These are a shared memory data wordread/write, a semaphore synchronizing operation, thelocking of a ready list, a ready list task fetch and atask emit.



Table 2 contains the list manipulation times in theabsence of resource contention (i.e. measured on asingle processor) for a local private list, a global sharedlist and a local shared list. The local shared list hastwo entries: a local access (processor uses its own list)and a dual-port access (processor uses list of anotherprocessor). Using these measured characteristics, thesimulated execution time of a number of programs hasbeen compared with the real execution times. Theaverage deviation of all programs and kernels is limitedto 3.5%, with a maximum of 11.7% [10].Ready list type lock fetch/emitcpu bus totalLocal private N/A 10. 0.0 10.0Global shared 4.0 20. 3.0 23.0Local shared:local access 1.0 15. 0.0 15.0dual-port access 4.0 25. 3.0 28.0Table 2: Times to lock and access (average times offetch and emit operation) the di�erent kernel datastructures . The time a list is locked during a fetchand emit is partitioned in local processing (\cpu") andshared access time (\bus"). Note that the local sharedlist has an entry for a local and for a dual-port access.Times are in �s.Impact of Scheduling AlternativesThe execution times and the mean shared bus occu-pation for a typical program execution on 4 processorsare shown in �gure 5. The di�erent kernel con�gura-tions are ordered in decreasing execution time. Allalternative schedulers are faster than the basic threadscheduler and the local shared lists are more e�cientthan the global shared lists.Adding a private bu�er is advantageous both forthe singly and the multiply global list. Only the localshared list kernel has no execution time bene�t of aprivate bu�er; but using the bu�er reduces the busoccupation from 57% to 45% which is important forthe scalability of this kernel.The private list utilization PL u can be de�ned as:PL u = # tasks fetched from private list# private and shared fetchesThe in
uence of the private list length on the per-formance and on the private list utilization is repre-sented in table 3 for a kernel with one global readylist. Introducing a private list with length 1 doublesthe execution speed and reduces the bus occupation
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t (ms)Figure 5: Execution time t in ms (bar graph) of aGauss-Jordan 10 � 10 linear system solver (GJ10) ona selection of kernels: 1GRL, 4GRL = kernel withone and 4 global ready lists; LRL= kernel with localshared lists, P = private lists. The lines indicates themean bus occupation.signi�cantly. With a larger size the utilization furtherincreases but the impact on execution speed and busoccupation is less remarkable. Due to load inbalance,the execution speed drops with a list of length 5. Theoptimal length of the private list depends on the par-allelism in the program.length t (ms) bus occupation PL u0 77.6 89.0% 0.01 36.9 66.0% 61.02 34.9 63.3% 67.63 32.8 60.8% 74.04 30.4 59.4% 80.45 33.7 53.5% 82.1Table 3: Execution time t, bus occupation and privatelist utilization PL u for a kernel with one global listexecuting the GJ10 program on 4 processors.Figure 6 presents the evolution of the number ofready tasks on the local shared list of a processor; theother processors show a similar curve. The simulatedprogram is GJ10 and the interesting spots are indi-cated on the �gure:(a) here the outer loop of the program generates a lotof successor tasks(b) waiting processors succeed in getting three tasksfrom the list (this processor is the only one emit-ting tasks)



(c) the inner do loops are started, fetching ready it-erations(d) the local list is empty and the processor has tofetch tasks from other processors.
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Figure 6: Number of ready tasks on local shared listof one processor, executing GJ10 on 4 processors; theinset shows a detail of artefact (b).5 ConclusionThe main advantages of the graphical modeling en-vironment are:� the simulation with the animation tool o�ers ane�ective way to understand the inner working ofan executing multiprocessor,� the X-Window oriented user interface presentsdi�erent simultaneous views of events, times andother characteristics,� using the discrete event modeling system, thebuilding blocks of the architecture are describedas independent resource units, which allows a re-source driven description of the environment,� the model developer is assisted by a graphical pro-gramming interface.The modeling approach permits to explain the be-haviour of the scheduler in terms of program and ma-chine characteristics. The model allowed to comparethe scheduling policies, pin-point the bottlenecks inthe algorithm and the shared data structures, and im-prove the scheduling discipline signi�cantly. The im-provements were also veri�ed by implementing themon a real multiprocessor prototype.
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