Provided by Ghent University Academic Bibliography

Metadata, citation and similar papers at core.ac.uk

MODELING AND VISUALIZING KERNEL ACTIVITY
IN A SHARED MEMORY MULTIPROCESSOR

J. Opsommer, W. Van de Velde, E. H. D’Hollander *
University of Ghent,
Department of Electrical Engineering,
St.-Pietersnieuwstraat 41,

B-9000 Ghent, Belgium

Abstract

A graphical environment is presented to visualize
the kernel activity in a shared memory multiproces-
sor. An existing thread scheduler was modelled and
simulated to study the behaviour of parallel thread
execution. The model reveals the possible bottlenecks
of the system and allows to optimize several thread
scheduling alternatives.

Using the MODLINE programming environment, it is
possible to obtain an animated execution showing the
evolution of thread creation, scheduling and execution.
The simulation was compared with a kernel executing
on a shared memory multiprocessor.

In addition a post processor was developed to vi-
sualize the task execution on each processor and the
shared resource accesses. In the corresponding Gantt
charts, task dependencies are graphically represented.

1 Introduction

One of the key performance factors in a multipro-
cessor system is the scheduling and allocation of paral-
lel tasks. However it is difficult to accurately monitor
the low level kernel activity, because the measurement
probes and associated instrumentation blur the perfor-
mance picture.

To visualize the interaction of processors and pro-
cesses in a shared memory multiprocessor, a graphical
discrete event simulation environment, MODLINE, has
been used [5]. Using animation the experimenter is
able to observe the evolution of the parallel executing
tasks and to zoom in on the hot spots when processors
compete for shared resources.

We extended the MODLINE package with a post pro-
cessor to visualize specific multiprocessing artefacts.
The post processor is also able to show the history of

*This research is sponsored by the contracts OOA 87/93-117
and IT/IF/8 of the Belgian Ministry of Science

the events traced with a non-intrusive timing analyzer
during the execution of a real multiprocessor.

The system is used to simulate and validate the op-
erating system behaviour of the VPS multiprocessor
prototype [6]. Each processor board of the VPS lo-
cally executes a thread handling kernel, implementing
system primitives of the p-kernel [3].

The next section describes the models that were
developed to simulate several alternative methods for
scheduling threads on multiprocessor systems. The
tools for visualizing and animating the kernel activ-
ity are discussed in section 3. Section 4 discusses the
results and in section 5 the concluding remarks are
given.

2 Multiprocessing Kernel Modeling
Thread Management

The scheduling policy of a multiprocessing operat-
ing system kernel significantly affects the execution of
parallel tasks, or threads [8]. Often a fine task gran-
ularity is preferred because this enhances the paral-
lelism. However, it is clear that more communication
and scheduling activity will occur in taskgraphs with
small-sized tasks [9]. To study the behaviour of differ-
ent thread management alternatives, a detailed queue-
ing model of a thread scheduling kernel was developed.

Different thread schedulers have been simulated.
These schedulers vary in the way they handle the list of
executable tasks, known as the ready list. The ready
list varies dynamically as new tasks are emztted and
ready tasks are executed. A task becomes ready when
its predecessor tasks have terminated.

Basic Multiprocessor Kernel Model

In its simplest form, the ready list is stored as a
single list in the shared memory. The model of a mul-

https://core.ac.uk/display/55685285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tiprocessor kernel executing tasks from a global ready
list is represented in figure 1.

<

executing tasks

shared —
memory emitting tasks
accesses

fetching tasks

ready list queue
not empty

ready list

Figure 1: Basic thread scheduler model: the task is
fetched from the global ready list and executed on the
processor; ready successor tasks are emitted to the
global ready list.

Each task has a shared memory semaphore repre-
senting the number of uncompleted predecessor tasks.
In the first scheduling model, the execution of a task
is performed in the following steps:

1. A processor fetches the task from the global ready
list. The ready list is a shared resource, protected
by a lock. If the list is locked by another proces-
sor, the processor keeps polling the lock until the
list becomes accessible. An idle processor period-
ically tries to read the ready list using increasing
time intervals when no ready tasks are available.
This spin-waiting is similar to the Ethernet Back-
off Algorithm [2,7] and reduces the bus traffic if
there is not enough parallelism in the program.

2. The processor executes the task locally, using the
bus for accessing shared data.

3. The semaphores of the successor tasks are decre-
mented and if a semaphore becomes zero, the
corresponding task is emitted on the ready list.
Emitting a task involves the same resource ac-
cesses as in step 1.

This model has two potential bottlenecks: the
ready list and the bus. Furthermore, the polling on
the lock of the ready list has an avalanche effect on
the bus usage.

Thread Scheduling Alternatives

The various thread scheduling techniques differ in
the way the ready list is structured and accessed. The

list can be stored in global or in local memory and
the access to the list is private or shared (table 1). If
the processors have enough local memory, it is never
advantageous to store private lists in shared memory;
so this possibility is not considered here (e.i. global
lists are always shared).

Local Global
Private LM, nolock N/A
Shared DPM, locked SM, locked

Table 1: Overview of the different combinations to
store and access ready lists. LM = local memory;
DPM = dual-port memory, SM = shared memory

Local Private List. To reduce ready list con-
tention, processors keep one or more ready tasks lo-
cally in a private list. A fetch from the shared list is
only needed when the local buffer is empty; the num-
ber of tasks that is then transferred from the shared
to the private list during the same lock operation is
a configuration parameter. The local taskbuffer is es-
pecially useful for parallel chains of sequential tasks
where each task triggers one successor task. If the lo-
cal buffer is too large, the workload balance suffers,
because a processor cannot fetch tasks from its neigh-
bour processor’s private local list.

Multiple Global Ready Lists. Another way to
alleviate the contention is to provide multiple shared
lists, each protected by a separate lock. Initially a
processor selects an arbitrary list and skips to the next
list when the previous one is locked. The first free list
becomes the preferential list for the next accesses as
long as it remains unlocked and contains ready tasks.

Local Shared Ready Lists. A third approach uses
dual-port memories. This memory allows a processor
to access the local memory of another processor via
the shared bus. Now each processor only has a local
ready list with a lock, allowing a processor with an
empty ready list to fetch tasks from the list of another
processor. This method reduces ready list contention
and shared memory accesses, but an excessive dual-
port traffic reduces the performance if the program is
not well-balanced.

Both private and shared local and multiple global
ready lists are scalable solutions to the contention
for common data structures. Equally promising are
scheduling strategies based on combinations of the

previous methods, e.g. a small private list for each
processor together with multiple global lists in shared
memory.

3 Visualization Tools
Graphical Simulation Environment

The different scheduling strategies were imple-
mented using the MODLINE graphical programming
environment [4]. This includes a graphical editor
QNET for entering and animating queueing networks.
The design is converted to QNAP2 code, a modeling
language for the simulation or analytical solution of
queueing networks [5]. The system provides a library
to support a statistical analysis of the obtained re-
sults. An experimenter tool enables the user to spec-
ify interactively the parameters for a number of simu-
lation runs. Reports are generated automatically and
include a graphical representation of the model, the
QNAP2 code, the input parameters and the simulation
results.

The kernel activities are modelled by closed queue-
ing networks where the CPU, the bus and the differ-
ent kinds of ready list structures are rather uncon-
ventionally represented as resources instead of service
stations [1]. This allows to model these resources as in-
dependent entities. Each resource has a walting queue.
However, an executing task may decide not to join a
locked queue; e.g. when a ready list is locked, the ker-
nel may try to access another list. Since the private
lists are not shared, they are not implemented as re-
sources but rather as internal structures of the fetch
and emit server.

The QWET model of the kernel is represented in fig-
ure 2. The task execution is modelled as a sequence
of stages (fetch, exec, emit), executed by different
servers. The servers reflect the phases of scheduling
(fetch), execution (ezec) and synchronization (emit)
and they require particular resources to accomplish
their service. The model allows the user to compose
the kernel list data structures from a palette of local,
global; private and shared ready lists (cfr. section 2).
If different policies are active, the fetch and emit op-
erations first try to use private lists, then local shared
lists and finally global lists.

The input for a simulation run consists of the fol-
lowing:

e Hardware parameters: during the edit session, it
is possible to change the low-level characteristics
of the simulated architecture. The parameters
are the time to lock and access private and shared

GRL LRL
2 LT Y

L Fetch axes

TIME :

Figure 2: QNET representation of the kernel model:
the subsequent stages in the execution of a task are
modelled as servers (fetch, exec, emit), competing for
shared resources (bus, global ready lists GRL, local
shared lists LRL).

ready lists and the time to adjust semaphores and
to access shared data.

e Kernel configuration: for each run, the user spec-
ifies the number of processors and the type of
ready lists to use. It is possible to limit the size
of the private lists and to specify how many tasks
are transferred from a shared to a private list dur-
ing one lock operation. Also the different backoff
parameters for the spin-wait of idle processors are
defined as part of the kernel configuration. Sev-
eral kernel configurations can be selected in a sin-
gle simulation experiment.

e Program to simulate: the parallel program can be
specified in two ways:

1. using a complete description of the task-
graph, containing all dependencies between
tasks and an estimated length of each task

2. using average task characteristics such as
the average number of successors per task,
the shared memory data communication per
task and the average task execution time
on a single processor. Although less accu-
rate for studying a particular program, this
method is useful for studying the effect of
general program characteristics on the per-
formance of a parallel execution.

Animation

During the animation session, a task residing at a
particular server is represented by a large bullet (fig.
3). Initially, the resources are filled with tokens (small
bullets). The number of tokens equals the number of
available resources; e.g. in the simplest model there is
only one global ready list token. Accessing a resource
requires a resource token. Servers compete for the
shared resources; if a token is not available, a server
is blocked temporarily. When a service is completed,
the task moves from one server to the next one.

GRL LRL

Global e Local shared
ready lists R ready lists

Anlmated
token
Task b A Mo
execution ./ R Lok
fE'tch_‘.'.-" eREC emi £
T ! !
A i@ A
° ’ ®
o
BUS
188% K
— TIME :
Shared
0.462%4 . bho 239.5

Figure 3: Snapshot of animated kernel visualization:
tasks are represented by large bullets, tokens by small
ones. The task in the fetch server is taking a local
ready list token from the LRL resource

Using measurement icons, it is possible to indicate
the average access fraction, the number of free re-
sources, etc. These statistical variables are visualised
on a scale and updated during the animation session.
From the animation trace, a time plot of a selection
of statistical variables can be generated.

Graphical Post Processor

A graphical post processor was developed to dis-
play the events recorded during the simulation run.
The graphical post processor makes it possible to ex-
periment with various scheduling alternatives and to
obtain meaningful information about otherwise un-
observable kernel statistics. Among these are Gantt

charts of each processor, displaying task execution,
shared resource accesses, idle times, bus locks and
contention delays. Furthermore predecessor and suc-
cessor links are indicated on the time charts and in
a separate window statistical measures such as the
speed-up, memory communication and synchroniza-
tion times, task granularity and bus occupation are
displayed.

The visualization system is also able to display a
limited trace of a real execution on a coarse time scale
using data recorded with a timing analyzer. This al-
lows an easy comparison between the simulation and
the execution profiles.

Figure 4: Screen output of graphical post execution
analysis: the large numbered blocks represent tasks
with the corresponding fetch and emit operations
(dark and light gray blocks under the baseline), the
bus accesses (small white blocks) and the semaphore
updates (small black blocks). The Gantt chart shows
a zoom of the execution on three processors (P0, P1,
P2), using shared memory MO0. The lines indicate the
predecessors of task 88.

4 Results
Model Validation

The VPS multiprocessor system is observed non-
intrusively by a timing analyzer. The access to crit-
ical kernel data structures can be clocked by trigger-
ing the correct addresses. In this way, accurate ma-
chine time parameters for the queuing models were
obtained. These are a shared memory data word
read /write, a semaphore synchronizing operation, the
locking of a ready list, a ready list task fetch and a
task emit.

Table 2 contains the list manipulation times in the
absence of resource contention (i.e. measured on a
single processor) for a local private list, a global shared
list and a local shared list. The local shared list has
two entries: a local access (processor uses its own list)
and a dual-port access (processor uses list of another
processor). Using these measured characteristics, the
simulated execution time of a number of programs has
been compared with the real execution times. The
average deviation of all programs and kernels is limited
to 3.5%, with a maximum of 11.7% [10].

Ready list type lock fetch/emit
cpu | bus | total
Local private N/A || 10. | 0.0 | 10.0
Global shared 4.0 20. | 3.0 | 23.0
Local shared:
local access 1.0 15. | 0.0 | 15.0
dual-port access 4.0 25. | 3.0 | 28.0

Table 2: Times to lock and access (average times of
fetch and emit operation) the different kernel data
structures . The time a list is locked during a fetch
and emit is partitioned in local processing (“cpu”) and
shared access time (“bus”). Note that the local shared
list has an entry for a local and for a dual-port access.
Times are in us.

Impact of Scheduling Alternatives

The execution times and the mean shared bus occu-
pation for a typical program execution on 4 processors
are shown in figure 5. The different kernel configura-
tions are ordered in decreasing execution time. All
alternative schedulers are faster than the basic thread
scheduler and the local shared lists are more eflicient
than the global shared lists.

Adding a private buffer is advantageous both for
the singly and the multiply global list. Only the local
shared list kernel has no execution time benefit of a
private buffer; but using the buffer reduces the bus
occupation from 57% to 45% which is important for
the scalability of this kernel.

The private list utilization PL_u can be defined as:

PL 7t tasks fetched from private list
u=

7t private and shared fetches

The influence of the private list length on the per-
formance and on the private list utilization is repre-
sented in table 3 for a kernel with one global ready
list. Introducing a private list with length 1 doubles
the execution speed and reduces the bus occupation

busy (%)

1GRL 4GRL 1GRL+P 4GRL+P LRL+P LRL

Figure 5: Execution time t in ms (bar graph) of a
Gauss-Jordan 10 x 10 linear system solver (GJ10) on
a selection of kernels: 1GRL, 4GRL = kernel with
one and 4 global ready lists; LRL= kernel with local
shared lists, P = private lists. The lines indicates the
mean bus occupation.

significantly. With a larger size the utilization further
increases but the impact on execution speed and bus
occupation is less remarkable. Due to load inbalance,
the execution speed drops with a list of length 5. The
optimal length of the private list depends on the par-
allelism in the program.

length | t (ms) | bus occupation | PLu
0 77.6 89.0% 0.0
1 36.9 66.0% 61.0
2 34.9 63.3% 67.6
3 32.8 60.8% 74.0
4 30.4 59.4% 80.4
5 33.7 53.5% 82.1

Table 3: Execution time t, bus occupation and private
list utilization PL_u for a kernel with one global list
executing the GJ10 program on 4 processors.

Figure 6 presents the evolution of the number of
ready tasks on the local shared list of a processor; the
other processors show a similar curve. The simulated
program is GJ10 and the interesting spots are indi-
cated on the figure:

(a) here the outer loop of the program generates a lot
of successor tasks

(b) waiting processors succeed in getting three tasks
from the list (this processor is the only one emit-
ting tasks)

r 50 1 (ms)

(c) the inner do loops are started, fetching ready it-

erations

(d) the local list is empty and the processor has to

25

fasks

20

fetch tasks from other processors.

/AW

] M\ M

o 5000 10000 15000
fime us>

20000 25000

Figure 6: Number of ready tasks on local shared list
of one processor, executing GJ10 on 4 processors; the
inset shows a detail of artefact (b).

5

Conclusion

The main advantages of the graphical modeling en-

vironment are:

e the simulation with the animation tool offers an

effective way to understand the inner working of

an executing multiprocessor,

e the X-Window oriented user interface presents

different simultaneous views of events, times and
other characteristics,

e using the discrete event modeling system, the

building blocks of the architecture are described
as independent resource units, which allows a re-
source driven description of the environment,

e the model developer is assisted by a graphical pro-

gramming interface.

The modeling approach permits to explain the be-

haviour of the scheduler in terms of program and ma-

chine characteristics. The model allowed to compare
the scheduling policies, pin-point the bottlenecks in
the algorithm and the shared data structures, and im-
prove the scheduling discipline significantly. The im-
provements were also verified by implementing them

on

a real multiprocessor prototype.

30000

References

[1]

[10]

Akyildiz I.F., On the Ezact and Approzimate
Throughput Analysis of Closed Queueing Nei-
works with Blocking, IEEE Trans. on Software
Engineering, Vol. 14, 1, pp. 62-70, 1988.

Anderson T.E., Lazowska E.D., Levy H.M., The
Performance Implications of Thread Manage-
ment Alternatives for Shared-Memory Multipro-
cessors, IEEE Trans. on Computers, Vol. 38, 12,
pp. 1631-1644, 1989.

Buhr P.A., Strooboscher R.A., uSystem. Provid-
ing light-weight concurrency on shared-memory
multiprocessor computers running UNIX, Soft-
ware — Practice and Experience, Vol. 20, 9, pp.
929-964, 1990.

Bull/INRIA, MODLINE Users Guide, Simulog,
1992.

Bull/INRIA, QNAP2 Users Guide, Simulog, pp.
315, 1992.

D’Hollander E.H., The VPS, ¢ Virtual MIMD
Processor and its Software Environment, Work-
shop on Compiling Techniques and Compiler
Construction, for Parallel Computers, Keble Col-
lege, Oxford UK, 13-15 September 1989., pp. 19-
36, 1989.

Gupta A., Tucker A., Urushibara S., The Impact
of Operating System Scheduling Policies and Syn-
chronization Methods on the Performance of Par-
allel Applications, ACM, pp. 120-132, 1991.

Lehr T., Black D., Segall Z., Vrsalovic D., Visual-
izing Contezt-Switches Using PIE and the Mach
Kernel Monitor, Intl. Conf. on Parallel Process-
ing, IT - Software, pp. 298-299, 1990

Opsommer J., A Taskgraph Clustering Algorithm
based on an Attraction Metric between tasks,
Proc. Computer Systems and Software Engineer-
ing, IEEE COMPEURO92, pp. 77-82, 1992

Van de Velde W., Opsommer J., D’Hollander
E.H., Performance Modeling of Micro-kernel
Thread Schedulers for Shared Memory Multipro-
cessors, Proc. of the PARLE93 conference, June,
pp. 736-739, 1993

