14,447 research outputs found

    Novel low power CAM architecture

    Get PDF
    One special type of memory use for high speed address lookup in router or cache address lookup in a processor is Content Addressable Memory (CAM). CAM can also be used in pattern recognition applications where a unique pattern needs to be determined if a match is found. CAM has an additional comparison circuit in each memory bit compared to Static Random Access Memory. This comparison circuit provides CAM with an additional capability for searching the entire memory in one clock cycle. With its hardware parallel comparison architecture, it makes CAM an ideal candidate for any high speed data lookup or for address processing applications. Because of its high power demand nature, CAM is not often used in a mobile device. To take advantage of CAM on portable devices, it is necessary to reduce its power consumption. It is for this reason that much research has been conducted on investigating different methods and techniques for reducing the overall power. The objective is to incorporate and utilize circuit and power reduction techniques in a new architecture to further reduce CAM’s energy consumption. The new CAM architecture illustrates the reduction of both dynamic and static power dissipation at 65nm sub-micron environment. This thesis will present a novel CAM architecture, which will reduce power consumption significantly compared to traditional CAM architecture, with minimal or no performance losses. Comparisons with other previously proposed architectures will be presented when implementing these designs under 65nm process environment. Results show the novel CAM architecture only consumes 4.021mW of power compared to the traditional CAM architecture of 12.538mW at 800MHz frequency and is more energy efficient over all other previously proposed designs

    The physiology of movement

    Get PDF
    Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization

    Intraspecific competition in the speckled wood butterfly Pararge aegeria: Effect of rearing density and gender on larval life history

    Get PDF
    In insects, the outcome of intraspecific competition for food during development depends primarily upon larval density and larval sex, but effects will also depend on the particular trait under consideration and the species under study. Experimental manipulations of larval densities of a Madeiran population of the speckled wood butterfly Pararge aegeria confirmed that intraspecific competition affected growth. As densities increased P. aegeria adults were smaller and larval development periods were longer. Sexes responded differently to rearing density. Females were more adversely affected by high density than males, resulting in females having smaller masses at pupation. Survivorship was significantly higher for larvae reared at low densities. No density effect on adult sex ratios was observed. Intraspecific competition during the larval stage would appear to carry a higher cost for females than males. This may confer double disadvantage since females are dependent on their larval derived resources for reproduction as they have little opportunity to accumulate additional resources as adults. This suggests that shortages of larval food could affect fecundity directly. Males, however, may be able to compensate for a small size by feeding as adults and/or by altering their mate location tactics

    Microbial symbionts : a resource for the management of insect-related problems

    Get PDF
    Microorganisms establish with their animal hosts close interactions. They are involved in many aspects of the host life, physiology and evolution, including nutrition, reproduction, immune homeostasis, defence and speciation. Thus, the manipulation and the exploitation the microbiota could result in important practical applications for the development of strategies for the management of insect-related problems. This approach, defined as Microbial Resource Management (MRM), has been applied successfully in various environments and ecosystems, as wastewater treatments, prebiotics in humans, anaerobic digestion and so on. MRM foresees the proper management of the microbial resource present in a given ecosystem in order to solve practical problems through the use of microorganisms. In this review we present an interesting field for application for MRM concept, i.e. the microbial communities associated with arthropods and nematodes. Several examples related to this field of applications are presented. Insect microbiota can be manipulated: (i) to control insect pests for agriculture; (ii) to control pathogens transmitted by insects to humans, animals and plants; (iii) to protect beneficial insects from diseases and stresses. Besides, we prospect further studies aimed to verify, improve and apply MRM by using the insectsymbiont ecosystem as a model

    Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-tuning

    Get PDF
    Deep neural networks require a large amount of labeled training data during supervised learning. However, collecting and labeling so much data might be infeasible in many cases. In this paper, we introduce a source-target selective joint fine-tuning scheme for improving the performance of deep learning tasks with insufficient training data. In this scheme, a target learning task with insufficient training data is carried out simultaneously with another source learning task with abundant training data. However, the source learning task does not use all existing training data. Our core idea is to identify and use a subset of training images from the original source learning task whose low-level characteristics are similar to those from the target learning task, and jointly fine-tune shared convolutional layers for both tasks. Specifically, we compute descriptors from linear or nonlinear filter bank responses on training images from both tasks, and use such descriptors to search for a desired subset of training samples for the source learning task. Experiments demonstrate that our selective joint fine-tuning scheme achieves state-of-the-art performance on multiple visual classification tasks with insufficient training data for deep learning. Such tasks include Caltech 256, MIT Indoor 67, Oxford Flowers 102 and Stanford Dogs 120. In comparison to fine-tuning without a source domain, the proposed method can improve the classification accuracy by 2% - 10% using a single model.Comment: To appear in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Egg size-number trade-off and a decline in oviposition site choice quality: Female Pararge aegeria butterflies pay a cost of having males present at oviposition

    Get PDF
    Once mated, the optimal strategy for females of the monandrous butterfly, Pararge aegeria, is to avoid male contact and devote as much time as possible to ovipositing, as there is little advantage for females to engage in multiple matings. In other butterfly species the presence of males during egg laying has been shown to affect aspects of oviposition behavior and it has been suggested that repeated interference from males has the potential to reduce reproductive output. The aim of this study was to assess the effects of male presence during oviposition on reproductive output and behavior of a population of P. aegeria obtained from Madeira Island, Portugal, and maintained in the laboratory. Two experiments were performed where females were housed individually in small cages. Experiment 1 examined how social factors influenced the egg laying behavior of females. To do this the presence or absence of males was manipulated and egg size and number was measured over the first 14 days of oviposition. It was observed that when males were present during oviposition females made a trade-off between egg size and number. Experiment 2 examined how social factors affected oviposition site choice. Again, male presence/absence was manipulated, but in this experiment where the female laid her egg in relation to host quality was scored, and the size of the egg laid was measured. In the absence of males females selectively positioned their larger eggs on good quality host plants. However, selective oviposition was no longer observed when females were in the presence of males. We suggest that P. aegeria females from the Madeira Island population are adapted for a flexible oviposition strategy, governed by external cues, allowing a trade-off between egg size and number when the time available for egg laying is limiting

    Ancient expansion of the Hox cluster in Lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation

    Get PDF
    Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks

    Inventory of observed unexpected environmental effects of genetically modified crops

    Get PDF
    In general, it can be concluded that very few clearly unexpected effects were observed during the large scale post-release growing of herbicide-tolerant crops and Bt crops. Of course, one has to keep in mind Applied Plant Research (Praktijkonderzoek Plant & Omgeving ) 14 that there will always be an element of subjectivity in assessing effects as “unexpected”. Furthermore, it is also possible that certain effects are becoming visible only after a longer period than 10 – 15 years, but no indications for such effects were found in the literature. Besides the reports about the Farm Scale Evaluations no other reports were found with information about effects of GM crops on biodiversity in ecosysystems surrounding the production fields. Unexpected effects caused directly by the genetic modification were not found. Only in herbicide-tolerant crops, we concluded to some indirect unexpected effects: the reduced uptake of micro-nutrients and some positive and negative effects on susceptibility to diseases. These effects were specific to herbicide use with glyphosate-tolerant crops. Based on this, it was not possible to draw general conclusions for developing protocols for post-release monitoring of environmental effect
    corecore