10 research outputs found

    Interactive editing and modeling of bidirectional texture functions

    Get PDF

    Reflectance from images: a model-based approach for human faces

    No full text
    In this paper, we present an image-based framework that acquires the reflectance properties of a human face. A range scan of the face is not required. Based on a morphable face model, the system estimates the 3D shape, and establishes point-to-point correspondence across images taken from different viewpoints, and across different individuals' faces. This provides a common parameterization of all reconstructed surfaces that can be used to compare and transfer BRDF data between different faces. Shape estimation from images compensates deformations of the face during the measurement process, such as facial expressions. In the common parameterization, regions of homogeneous materials on the face surface can be defined a-priori. We apply analytical BRDF models to express the reflectance properties of each region, and we estimate their parameters in a least-squares fit from the image data. For each of the surface points, the diffuse component of the BRDF is locally refined, which provides high detail. We present results for multiple analytical BRDF models, rendered at novelorientations and lighting conditions

    Human face rendering

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 59-60).Human skin exhibits complex light reflectance properties that make it difficult to render realistically. In recent years, many techniques have been introduced to render skin, with varying degrees of complexity and realism. In this thesis, I will implement several of these techniques, and use them to render scenes with various lighting and geometry parameters, in order to compare their strengths and weaknesses. My goal is to provide a clearer understanding of which rendering techniques are most effective in different scenarios.by Arturo Andrew Arizpe.M.Eng

    A Physical Model of Human Skin and Its Application for Search and Rescue

    Get PDF
    For this research we created a human skin reflectance model in the VIS and NIR. We then modeled sensor output for an RGB sensor based on output from the skin reflectance model. The model was also used to create a skin detection algorithm and a skin pigmentation level (skin reflectance at 685nm) estimation algorithm. The average root mean square error across the VIS and NIR between the skin reflectance model and measured data was 2%. The skin reflectance model then allowed us to generate qualitatively accurate responses for an RGB sensor for different biological and lighting conditions. To test the accuracy of the skin detection and skin color estimation algorithms, hyperspectral images of a suburban test scene containing people with various skin colors were collected. The skin detection algorithm had a probability of detection as high as 95% with a probability of false alarm of 0.6%. The skin pigmentation level estimation algorithm had a mean absolute error when compared with data measured by a reflectometer of 2.6% where the reflectance of the individuals at 685nm ranged from 14% to 64%

    The Perception of Surface Properties: Translucence and Gloss

    Get PDF
    The human visual system is sensitive to differences in gloss and translucence, two optical properties which are found in conjunction in many natural materials. They are driven by similar underlying physical properties of light transport - the degree to which light is scattered from the surface of a material, or within the material. This thesis aimed to address some fundamental questions about how gloss and translucence are perceived. Two psychophysical methods (maximum likelihood difference scaling, and conjoint measurement) were used throughout, as they provided an appropriate way of investigating how perceptual experiences related to physical variables. In the introduction, I review the literature on the perception of gloss and translucence. Study 1 investigated the relationship between variables controlling light transport in translucent volumes and percepts of translucence. The results show that translucence perception is not based on estimates of light transport properties per se, but probably uses spatially-related statistical pseudocues in conjunction with other cues. Study 2 examined a similar issue, but the translucent material was presented as a layer enveloping a solid object. Behavioural responses were similar for these translucent materials, which were perceived as glossy layers of coating. Study 3 further explored established findings that perceived translucence shows inconstancy under changes in viewing condition. Perceived translucence was dependent in a complex way on both light-scattering in the material and illumination direction in both volumes and layers of translucent materials. Study 4 used similar layers of subsurface light-scattering and -absorbing material and applied them to multiple base materials. Opacity and a lack of mirror-like reflections enabled observers to make the most accurate independent judgements of darkness and cloudiness. Study 5 explored observers' sensitivity to spatial variation of scatter across a surface using similar layers of coating, and the way in which observers might weight cues differently to answer subtly different questions (judgements of 'shininess' vs. 'cleanliness'). Layer thickness and variation of scatter significantly affected perceived shine and cleanliness, with layer thickness influencing decisions more than variation. Scatter variation contributed to decisions significantly more for judgements of cleanliness than shine. Study 6 investigated how tactile surface roughness influenced perceived gloss. Previous findings have shown that tactile compliance and friction influence perceived gloss, and that friction interacts with visual gloss. Our results showed that surface roughness and visual gloss both affected perceived gloss, but there was no interaction, suggesting that different types of haptic information are combined with visual information differently. Finally, study 7 explored the potential cortical basis of perceived translucence. Through testing a neuropsychological patient, we showed that perceived translucence is dependent on cortical areas not responsible for colour or texture discrimination. The thesis concludes with a discussion of additional recent findings, the implications of the research reported in this thesis, and proposals for future research

    Facial Age Analysis using an Absorptive Rough Laminar Light Scattering Model

    Get PDF
    Facial aging research concerns the way aging affects a person’s appearance and how we can use knowledge of this process. It has been an interesting topic for fields such as human perception, pattern recognition, computer vision, graphics, and skin optics. Most studies acknowledge that facial appearance changes with age. As a person grows older, certain characteristics of their skin will change, notably the light scattering. If a model is used to predict a person’s skin light scattering, its parameter(s) may be used to predict the age of its owner. The aim of this thesis is to observe whether a light scattering model parameter is suitable to be used as an age estimator/classifier. This is done by investigating and analyzing the relationship between the parameter of an analytical-based light scattering model and skins of various ages. In the end, this thesis has shown that the parameter(s) for an analytical-based light scattering model can be used as an alternative method for estimating/classifying a person’s age

    Human Skin Modelling and Rendering

    Get PDF
    Creating realistic-looking skin is one of the holy grails of computer graphics and is still an active area of research. The problem is challenging due to the inherent complexity of skin and its variations, not only across individuals but also spatially and temporally among one. Skin appearance and reflectance vary spatially in one individual depending on its location on the human body, but also vary temporally with the aging process and the body state. Emotions, health, physical activity, and cosmetics for example can all affect the appearance of skin. The spatially varying reflectance of skin is due to many parameters, such as skin micro- and meso-geometry, thickness, oiliness, and pigmentation. It is therefore a daunting task to derive a model that will include all these parameters to produce realistic-looking skin. The problem is also compounded by the fact that we are very well accustomed to the appearance of skin and especially sensitive to facial appearances and expressions. Skin modelling and rendering is crucial for many applications such as games, virtual reality, films, and the beauty industry, to name a few. Realistic-looking skin improves the believability and realism of applications. The complexity of skin makes the topic of skin modelling and rendering for computer graphics a very difficult, but highly stimulating one. Skin deformations and biomechanics is a vast topic that we will not address in this dissertation. We rather focus our attention on skin optics and present a simple model for the reflectance of human skin along with a system to support skin modelling and rendering

    Toward a Perceptually-relevant Theory of Appearance

    Get PDF
    Two approaches are commonly employed in Computer Graphics to design and adjust the appearance of objects in a scene. A full 3D environment may be created, through geometrical, material and lighting modeling, then rendered using a simulation of light transport; appearance is then controlled in ways similar to photography. A radically different approach consists in providing 2D digital drawing tools to an artist, whom with enough talent and time will be able to create images of objects having the desired appearance; this is obviously strongly similar to what traditional artists do, with the computer being a mere modern drawing tool.In this document, I present research projects that have investigated a third approach, whereby pictorial elements of appearance are explicitly manipulated by an artist. On the one side, such an alternative approach offers a direct control over appearance, with novel applications in vector drawing, scientific illustration, special effects and video games. On the other side, it provides an modern method for putting our current knowledge of the perception of appearance to the test, as well as to suggest new models for human vision along the way
    corecore