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Abstract

Facial aging research concerns the way aging affects a person’s appearance and how we

can use knowledge of this process. It has been an interesting topic for fields such as human

perception, pattern recognition, computer vision, graphics, and skin optics. Most studies

acknowledge that facial appearance changes with age. As a person grows older, certain

characteristics of their skin will change, notably the light scattering. If a model is used to

predict a person’s skin light scattering, its parameter(s) may be used to predict the age of

its owner. The aim of this thesis is to observe whether a light scattering model parameter

is suitable to be used as an age estimator/classifier. This is done by investigating and

analyzing the relationship between the parameter of an analytical-based light scattering

model and skins of various ages (henceforth, this will be called ”the parameter-age test”).

Thus, for this parameter-age test, new laminar light scattering models are introduced,

which include an absorption term that is defined using the rule of light energy conservation

(reflectance, transmission, and absorption). Multiple models (including the new models)

are used to investigate the relationship between the model parameters and the subject’s

age. The final results show that all of the models’ roughness parameters have the significant

positive correlation with age (p < 0.05), making it a suitable parameter to be used for

estimating/classifying age. This has been proven in this thesis age classification experiment

using the estimated roughness parameters. In the end, this thesis has shown that the

parameter(s) for an analytical-based light scattering model can be used as an alternative

method for estimating/classifying a person’s age. Moreover, it can also be used to work

with other age extractor/estimator/classifier, for the purpose of designing a more robust

age estimation/classification method.

3





Contents

Abstract 3

Abbreviations and Symbols 7

List of tables 9

List of figures 13

Acknowledgements 19

Declaration 21

1 Introduction 23

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Brief Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Field Survey and Review 27

2.1 Face Aging Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Reflectance and Scattering Model . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Research plan, methodology and thesis structure . . . . . . . . . . . . . . . 42

3 Absorptive Scattering Model for Rough Laminar Surface 45

3.1 R–H model for layered rough surfaces . . . . . . . . . . . . . . . . . . . . . 46

3.2 The new model with light absorption . . . . . . . . . . . . . . . . . . . . . . 49

5



3.3 The quality of fit test for the new model . . . . . . . . . . . . . . . . . . . . 61

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Parameter analysis and selection 77

4.1 Relating skin properties to parameters . . . . . . . . . . . . . . . . . . . . . 78

4.2 Comprehensive polarization reflectance model . . . . . . . . . . . . . . . . . 79

4.3 The correlation test between the model parameters and the material’s DOP 81

4.4 The light stage setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Image acquisition problem and the new image alignment method . . . . . . 95

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 The relation between the model parameters and the subject age 107

5.1 The data collection and organization . . . . . . . . . . . . . . . . . . . . . . 107

5.2 The experiment methodology and results . . . . . . . . . . . . . . . . . . . 110

5.3 Analysis on the model relation with the skin property . . . . . . . . . . . . 119

5.4 Discussion on the parameter-age test . . . . . . . . . . . . . . . . . . . . . . 119

5.5 The roughness parameter-age test for a specific category . . . . . . . . . . . 120

5.6 Age classification using the model parameters . . . . . . . . . . . . . . . . . 121

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusion 127

6.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Thesis limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Future studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 133

6



Abbreviations and Symbols
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Symbols:

L Light radiance
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σ/T Surface Root-Mean-Square slope
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Chapter 1

Introduction

Facial aging is a complex process, but a human has the capability to estimate the age of

others accurately most of the time. This is usually done by just observing a person’s facial

appearance. Most literature on facial aging has shown that age can be estimated by just

observing the changes in the craniofacial shape and the face texture [25,82,86]. However,

how does this change affect the skin light scattering? Researchers have discovered that the

inner characteristics of the skin, such as the dermis and the epidermis layers, will change

with age [20,22,39,112], which means that the light scattering on the skin may also change

in some way. Can this change be modeled with a light scattering model? And can the

model be used as an alternative method to estimate the age?

Computer vision and graphics field provide, amongst other, techniques for creating a

light reflecting/scattering model that can make near photo-realistic graphical image of a

given object. Most of these models can also be used to render human skin. In this case,

the model parameters were defined to be either statistical or empirical. These parameters

are the ones that control the outgoing radiance behavior, hence, the ones that may be

affected by the skin aging, making them a potential tool to estimate a person’s age.

Nevertheless, very few authors have thoroughly investigated the relation between their

model parameter(s) and the age of the person (whose skin is) modeled. The reason is

that most model parameters are difficult to measure directly, especially skin traits such

as the refractive index, hence, some authors [36,53,81] usually made them into a constant

value based on other sources. It would be interesting to analyze how these traits can affect

the light reflectance/scattering model. The information obtained from the study can be

beneficial not only in the computer vision but also to other fields as well, such as the

pattern recognition and the skin optic.
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In this thesis, the author investigates how the aging affects the parameter(s) of a light

scattering model. This is done by analyzing the correlation results between the subject

age and the estimated parameter(s). In the experiment, the parameter(s) are estimated

by fitting the model to the skin light scattering measurements. Moreover, the new model

will also be tested on other materials to observe its model fitting and rendering accuracy.

Figure 1.1 shows the area that this research is focused on.

Figure 1.1: Focus Research Area

1.1 Problem Statement

How does facial aging affect the light scattering on the facial skin? What model will be

used in the study? What relation will the model parameter have with the skin trait (e.g.

surface roughness or refractive index)? Which parameter(s) effect the aging? Would the

parameter behave similarly to what one would expect - e.g. would the model roughness

parameter value increase with aging? How would the model fare as a standard light

scattering model when applying on materials that are not skin?
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1.2 Aim

The aim of this thesis is to investigate and analyze the relationship between the parameter

of an analytical-based light scattering model and the different aging skins; for the purpose

of observing whether the parameter is suitable to be used as an age estimator/classifier.

Multiple models will be selected and compared against each other; this includes the new

light scattering model that will be presented in this thesis. Additionally, the new model

will also be tested on other materials to observe its model fitting accuracy.

1.3 Research Contributions

The novel contributions of this study are:

• Presenting a new absorptive laminar light scattering model that can be used for

statistical analysis.

• Testing the functionality and the accuracy of the new model using both the isotropic

(CUReT database) and anisotropic (UTIA database) samples.

• Making a justifiable relation between the model parameters and the characteristic

of the sample, such as the sample degree of polarization (DOP).

• Presenting and testing a new image alignment technique for aligning image sequence

captured in disparate illumination environments.

• Making correlation analysis between the subject age and the model parameters. The

test is done using the newly proposed models and four other model, for compari-

son. Later identified and highlighted results that agree with the skin optic, human

perception, and computer vision literature.

1.4 Brief Thesis Structure

Chapter 2 first explores some facial aging discoveries from the perspective of Human

Perception and Psychophysics field. Afterward, the chapter will continue reviewing several

works of literature regarding reflectance and scattering model progression until the current

studies that mainly focus on the studies of light scattering models for human skin. In

Chapter 3, the new model is introduced and explained thoroughly. The new absorption
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term is defined in this chapter and its importance is mentioned. The evaluation of the

model is also included in the chapter by comparing it with other models using available

databases.

Next, Chapter 4 explains how we select the appropriate parameters for an investi-

gation. The chapter also describes the experimental setup and its pre-processing step.

Additionally, a new image alignment technique is presented in this chapter. Afterward,

Chapter 5 will be the main experiment, which is the correlation test between the subject

age and the interest parameters. The analysis will be focused on any significant results,

behaviours or other unforeseen circumstances. Finally, Chapter 6 concludes the overall

thesis and evaluates any shortcoming of the experiment for future improvement.

1.5 Summary

Most pattern recognition, computer vision, and graphics that studies facial aging know

that the facial appearance will change with age. However, few have studied the aging

effects on the skin light scattering. A light scattering model parameter has a potential

to be used as an alternative method to estimate facial age. But can it really be used

as a tool to estimate a person’s age? Moreover, if a model parameter is used to control

the skin light scattering behavior, how are the different aging skins going to affect these

parameter(s) and how strongly they are affected? These are the questions this thesis tries

to answer. Additionally, the new model will also be tested on other sample materials to

observe how good the new model is when it is used as a standard light scattering model

and find its limitation when tested on the different type of samples.
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Chapter 2

Field Survey and Review

Facial aging is an interesting topic that has been studied by various authors from multiple

fields. The knowledge gleaned from the studies can be used in numerous real world settings,

such as in plastic surgeries, biometrics, criminology, and even animation. Nevertheless,

there is still more that we need to learn because facial aging is a very complex process. As

mentioned above, the aim of this thesis is to investigate and analyze the light scattering

behavior of the facial skin for subjects of different ages, using a light scattering model.

This will allow us to explore an alternative method of estimating a person’s age using the

model parameters and also, to further understand how aging of the skin affects the light

scattering. A review of the relevant literature and related works will be conducted prior

to the experiment. This is so the process surrounding the development of the problem

statement can be explained in sequential order.

The author will first review facial aging literature from specific related fields, starting

with the Medical, Skin Optics, Human Perception, Psychophysics, Computer Science,

and Pattern Recognition fields. This is so we can understand what previous authors

have discovered about facial aging and what information is lacking or requires further

evaluation. In the remaining sections of this chapter, the author will review some of the

light reflectance and scattering model studies completed by academics in the Computer

Vision and Graphics field. Facial skin reflectance studies have also been included in the

review. At the end of this chapter, the author will outline the problem statement that

this thesis intends to address.
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2.1 Face Aging Research

Estimation of a person’s age based on their face play an important role in everyday com-

munication and human social activity generally. People have the instinctive capability to

estimate the age of others. Assigning this ability into a machine capable of learning and

applying it to a wide variety of fields, such as in law enforcement, security control, soft-

biometric access system, and even in the entertainment industry, has been an interesting

and important development. In recent years, there has been a positive progression in fa-

cial aging research, especially in the fields of human perception, psychophysics, computer

science, and pattern recognition.

2.1.1 Face Aging Research in Medical, Skin Optics, Human Perception

and Psychophysics Fields

The innate ability of humans to estimate a person’s age based on observations of the

facial appearance is impressive. This ability has been explored by members of the Human

Perception and Psychophysics fields in an effort to find a method to convey it as an

algorithm for a machine to learn. From their studies, multiple facial traits that help

determine a person’s age have been identified, including shape of the face, skin texture,

skin features, and skin color contrast [86,112].

The two following predetermined features are the main features that contribute to the

perception of chronological aging by others: 1) The face shape changing, in particular

the cranium bones grow as time passes. This occurs predominately during the transition

from childhood to the adult stage, and; 2) The face develops wrinkles (or face texture), as

facial muscle wastes due to decreasing elasticity. This occurs during the transition from

adulthood to the senior stage [25, 83, 84, 112]. Figure 2.1 shows both of these facial aging

features. This information is important for both humans and machines when deciding

which facial signature to use in order to estimate age any stage (e.g. child to adult or

adult to senior) and, indeed, these features have been used by the computer science and

pattern recognition fields during the construction of face age synthesis systems or a face

age estimator systems.

The physiological aging of the human body is also an important consideration. In

addition to the chronological aging process, there are two physiological forces that can

cause the face to age progressively or regressively. They are the internal force (e.g. genetic,

gender, ethnic, body fat) and the external force (e.g. dietary habit, smoking, climatic

28



condition, exposure to the sun) [25,84,87].

Figure 2.1: The facial aging in term of shape or craniofacial growth (top) and texture

(bottom). Images taken from [25,84,112]

Skin is the outermost tissue and the largest organ in a human body with many com-

ponents and complex structures being evident in its layers. The visual properties of the

skin depend on the constituent components in the skin. As light shines upon the skin,

reflectance can be viewed as a result of the combined effect of the optical phenomena

induced by the physio–anatomical components of all the skin layers, with each component

emitting a specific optical effect [2, 3, 71]. As a person grows older, internal and external

forces act upon the outer and inner skin causing some level of retardation, which later

changes the appearance of the skin and its light scattering. This is demonstrated in [20,22],
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wherein the young skin was perceived to have different color contrast and luminosity than

the older skin.

Healthy, young skin has a smooth, uniformly fine texture that reflects light evenly. It

is also plumper and emits radiant color. Meanwhile, aged skin tends to be rough and dry,

with more wrinkles, freckles, and age spots, and tends to emit dull color [20, 22, 39, 112].

Additionally, in one study on age estimation using viewer quantitative surveys done by

Fink et al. [22], the authors discovered that the concentration and distribution of the

chromophores, have a strong correlation with age, implying that their distribution prompts

the majority of tone dependent age perceptions.

Figure 2.2: The general structure of the skin. (Image illustrate by Don Bliss [40])

Chromophores control the pigment concentration in the skin. The two chromophore

components that affect the brightness and the reflectance colour are melanin and hemoglobin.

Melanin is located in the bottom layer (the stratum basale) of the skin’s epidermis and

is perceived as the brown colored pigment, which is responsible for the different tones in

skin (ethnicity) and tanning. While the hemoglobin, which is located within blood vessels,

contribute to the highly diffuse bloom of pink coloration evident in the skin when it is car-

rying oxygen. Meanwhile, collagen is one of the components responsible for scattering the
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light back out from the skin like a mirror [20,22,39,112]. Young, healthy skin would have

an even distribution of pigment concentration and collagen in the skin. However, as the

age increases chronologically and as a result of multiple injuries from external forces, such

as excessive sun exposure, the chromophores and collagen distribution in the skin become

disturbed, ultimately resulting in uneven concentration, damaged cells, reduction of cell

density, and drop in skin elasticity [17,72,96,97]. This later produces aging features (e.g.

wrinkles, age spots and elastosis), including skin contrast, dull luminosity complexion and

uneven light diffusion. [20,22,47,51,62,91,112].

2.1.2 Face Aging Research in Computer Science and Pattern Recogni-

tion Field

The discoveries made within the Medical, Human Perception and Psychophysics fields

have been applied in the construction of the face aging system in the Computer Science

and Pattern Recognition fields, where different frameworks and methodologies have been

constructed to create robust and accurate facial aging systems. There are two uses for

common facial aging research in the field of computer vision and pattern recognition.

They are: 1) face age synthesis focusing on aesthetically rendering the facial image to be

either younger or older than its original; and 2) face age estimation exploring a method

to estimate the age of a person pictured in a given image by labeling it either as a function

of age group (certain age range) or by their true age [25,84].

Face age synthesis typically uses research to replicate the facial aging model. It often

begins with the construction of a generic face model, in which the face model type can

be an empirical or knowledge-based, and then uses either shape or texture to synthesize

a target aging appearance [31, 61, 75, 76, 82, 102]. They can include other aging features,

such as age spots and freckles. This shows that using the skin color contrast can also help

determine the age of the skin. However, these authors did not specifically analyze the

light reflectance behavior of facial skin of various ages. Table 2.1 displays some of the face

age synthesis literature.

Meanwhile, face age estimation studies have tended to focus on developing accurate

age estimators. This is usually done by introducing a combination of one or more feature

extractors and machine learning methods. One of the early studies was conducted by

Kwon and Lobo [54] who created three categories of age - infant, adult, and senior. It is

one of the earlier studies that considered the different facial shape features and texture
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Table 2.1: Several Age Synthesis Representations

Author(s) Representation Additional Note(s)

Lanitis, Tay-
lor and Cootes,
2002 [55]

Face Shape:- Active Appear-
ance Model (AAM)

Extended AAM for facial ag-
ing to obtained shape and tex-
ture simultaneously while also
constructing aging function in
term of PCA (Principle Com-
ponent Analysis)

Ramanathan and
Chellappa, 2006
[82]

Face Shape:- Using the ratios
for their Craniofacial growth
model

Revised the cardioidal strain
transformation on the child
face profile

Wang et al., 2006
[103]

Face Shape:- Active Shape
Model (ASM)

Used aging function with
polynomial structure to indi-
cate relationship between the
feature vector and age

Suo et al. 2007
[93]

Face Texture/Features:- High
resolution facial components
using AAM, Gabor wavelets
and Blobs (for wrinkle and
pigment)

Followed a grammatical face
model method and enhanced
it with age and additional hair
features.

Li, Park and Jain,
2011 [57]

Face Features:- Scale invari-
ant feature transform (SIFT)
and multi-feature discrimi-
nant analysis (MFDA)

Used the discriminative anal-
ysis method with densely
sampled local descriptor
scheme.

Kemelmacher-
Shlizerman,
Suwajanakorn
and Seitz,
2014 [46]

Face Shape, Texture and
Illumination:- Averaging im-
age subspace and Illumination
subspace flow

Accounting for pose, expres-
sion, and illumination.
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Table 2.2: Several Age Estimation Representations

Author(s) Representation Additional Note(s)

Kwon and Lobo,
1996 [54]

Face Shape and Texture:- An-
thropometric Model (Ratios)
and Snakelets

Used face ratios (shape) to
estimate infant compared to
adult, and snakelets (wrinkle)
to estimate adult compared to
senior.

Geng, Zhou and
Smith-Miles, 2007
[28]

Face Shape and Texture:- Ag-
ing Pattern Subspace (AGES)

Implemented AAM to repre-
sent pattern sequence of same
individual in progressing age.
However, texture wasn’t en-
coded well.

Fu, Xu and
Huang, 2007 [26]

Face Features:- Low-
dimensional representation in
the embedded subspace

Utilized an aging pattern de-
veloped after analyzing many
individuals at specific ages.

Choi et al., 2011
[9]

Face Shape and Texture:-
AAM, Gabor filter and Local
Binary Pattern (LBP)

Extracted multiple features
using AAM (shape); Gabor
(wrinkle); and LBP (skin tex-
ture e.g. spots).

Han et al., 2015
[35]

Face Shape and Texture:-
biologically inspired features
(BIF)

Presented a generic frame-
work for automatic demo-
graphic (age, gender and race)
estimation from a given face
image.

features that enable the differentiation of a child from an adult, and an adult from a senior.

In the past decades, researchers have introduced various age estimation methods. The

method usually consists of one (or more) feature extractors and one (or more) age classifiers

(or estimators). Certain feature extractors can only extract specific facial aging signatures,

which can be either holistic (e.g. facial shape and texture), local (e.g. the aging wrinkle

or the hair color), or a combination of both. However, none so far have considered using

the skin light scattering as an aging feature. Table 2.2 tabulates some of the reviewed face

age estimation studies.

Overall, facial age can be estimated by just observing the structure of the skull and/or

the skin texture. Nevertheless, most of these authors did not thoroughly analyze the affect

of aging on the light reflectance/scattering. It is important to understand the change

in reflectance as a function of aging since it can broaden our knowledge on facial skin

morphology, which has potential applications in a number of fields.
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2.2 Reflectance and Scattering Model

Throughout the search for a reflectance model for human skin, authors from the computer

vision and graphics fields have constructed an appropriate skin reflectance model based

on statistical and analytic discoveries. This helps current animators tremendously in their

efforts to render realistically looking 3D actors in their films. Most reflectance models

need specific parameter(s) values for them to produce the desired radiance output. These

values can be either measured directly or based on skin optics literature.

As mentioned in Section 2.1, aging affects facial features, especially the skin texture.

This might produce different light scattering results for people of different ages, which

means that the standard skin reflectance model might not predict these changes prop-

erly. After analyzing the literature regarding facial aging, it can be hypothesized that

the changes in the skin due to aging may have a certain correlation with the behavior of

skin diffuse reflectance. One such trait is the surface roughness, which is a feature most

computer vision and graphics authors use as one of the light scattering model’s parame-

ters [24, 34, 63, 108]. The subsection below will outline the design of early models before

proceeding to discuss a more specific facial reflectance model.

2.2.1 The Bidirectional Reflectance Distribution Function

The purpose of the general reflectance model is to characterize the directional distribution

of the reflectance of a certain material using physical models that are suitable for the design

of efficient global illumination computation algorithms. Reflection is a process during

which an electromagnetic power flux travels incidentally towards a point of a surface, and

leaves that point without any change in frequency. The function that is used to model

this phenomena is called the Bidirectional Reflectance Distribution Function (BDRF)

[24, 63, 108]. The function defines the model that demonstrates how reflected radiance is

distributed in terms of the distribution of incident radiance.

The light reflection depends on the characteristics of the light, and the composition of

the material, and its physical traits. As a notation, the BRDF function can be written as:

BRDFλ(θi, φi, θo, φo, u, v)

where λ is an indication that the BRDF depends on the wavelength, θi and φi represent

the light incident in spherical coordinates, θo and φo represent light reflected in spherical

coordinates, and u and v represent the points of the surface. The positional variance for
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this BRDF is introduced through the use of a detail texture. To reasonably approximate

a spatially variant BRDF, the texture is added or modulated to the result of a BRDF

lookup. Although a BRDF is a function of position, it is common to find a BRDF writ-

ten as a function of just the incoming and outgoing direction and wavelength. In these

cases, the positional variance is excluded in the BRDF description, such as, for example,

BRDFλ(θi, φi, θo, φo). This BRDF is known as a position-invariant BRDF. Given that

the spatial position is not included as a parameter of this type of BRDF, the function

must assume that the reflectance properties of a material do not vary with spatial posi-

tion, meaning that this type of BRDF is limited to homogenous materials [108]. From

hereon, when describing a BRDF function, the λ subscript is omitted for the sake of no-

tation simplicity. It is to be noted that the values produced by a BRDF do depend on the

wavelength or color channel under consideration. In practice, in terms of the RGB color

convention, each color channel has its own BRDF value, so each color channel must be

determined separately (i.e. R, G, and B separately).

Before defining the BRDF, it is necessary to define a differential solid angle. As

mentioned before, BRDFs measure how light reflects off a surface when viewed under

various viewing positions. This can be described generally in terms of the quantity of

light arriving at or passing through a certain area. Light is measured in terms of flow

through a specific area and can be defined in terms of the amount of energy per-unit

surface area (i.e. Watts/meter2). Hence, to determine the amount of light that arrives

at or leaves a surface, we need to calculate the amount of light passing through a small

cross-sectional area surrounding a direction. Essentially, a solid angle can be described as

being the area of the specific patch on the surface of the sphere (see Figure 2.3).

Figure 2.3 shows a unit sphere and a unit vector positioned at the origin. The pyramid

region highlighted on the inside of the sphere represents a volume of directions. The

portion of the unit sphere bound by the intersection of the pyramid and the unit sphere

form the boundary of the small patch on the sphere’s surface; the area of this small

patch is the differential solid angle [108]. Describing the vectors in terms of the spherical

coordinates (θ, φ), their small differential angular changes as dθ and dφ, the differential

solid angle dω can thus be defined as:

dω = (height)(width) = (dθ)(sin θ dφ) = sin θ dθ dφ

Where both the width and the height of the rectangular patch on the sphere are measured

in radians, and the area quantity is measured in units of radians squared or steradians, sr.
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Figure 2.3: The differential solid angle on a sphere. Taken from [108]

After understanding the notion of a differential solid angle, the definition of a BRDF

can now be given. The BRDF is the ratio of the quantities of the reflected light from the

outgoing direction wo, to the amount of incident light that reaches the point at the surface

from the incoming direction wi [88, 108] (see Figure 2.4). The quantity of incoming and

outgoing light can be written as Ei and Lo respectively.

Figure 2.4: BRDF as a function of (θi, φi) and (θo, φo). Figure adapted by the author

from [88]
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The differential solid angle is the area of a small rectangular region on a unit sphere

(the ‘blue square patch’ in Figure 2.4). The amount of light arriving from direction of

the light source is proportional to the amount of light arriving at the differential solid

angle. Suppose the light source has intensity Li, and since the differential solid angle is

small, the region is uniformly illuminated as the same quantity of light, Li, arrives for

each position on the differential solid angle. This allows the total amount of incoming

light arriving through the region to be Li dwi to be calculated. To determine the amount

of light with respect to the surface element, the incoming light must be “spread out” or

projected onto the surface element. This projection is accomplished by modulating that

amount by cos θi = N ·wi, where N is the normal of the surface. Meanwhile, the outgoing

light can be determined by Ei = Li cos θi dwi. The BRDF can then be defined as:

BRDF (θi, φi, θo, φo) =
Lo(θo, φo)

Li(θi, φi) cos θi dwi

Where Lo is the quantity of reflected light from point surface in direction wo with units

of W/sr−1m−2 and Ei is the amount of arriving light to point surface from direction wi

with units of W/m2. Since the BRDF definition includes a division by the solid angle,

this results in the BRDF having units of inverse steradians, sr−1.

2.2.2 Past Reflectance and Scattering Models

In modeling natural reflectance, there are many properties that need to be considered,

such as retro-reflection, occluding, isotropic or anisotropic surface, and conservation of

energy. Additionally, they must contemplate the reflectance characteristics they want to

model, namely the specular and the diffuse. It is difficult to design a model that covers all

of the properties that affect the behavior of light. So, most authors design their model to

focus on a specific goal instead, each with their own formulation, conditional setup, and

applicability [63,74,79,95,101,106].

Torrance and Sparrow model is one of the earlier models that introduced physical

reflection for isotropic materials [63]. The model has become a precursor for others that

account for polarized light and rough surfaces in their model design. Torrance and Sparrow

defined the surface roughness as microscopic concavities, called ‘microfacets’, which they

have assumed to be in V-form of equal length. The microfacets have random orientation

and their distribution is controlled using specific parameter values that simulate varying

degree of roughness.
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In the case of modeling reflectance for a rough surface, Oren and Nayar [74] have

developed a diffuse reflectance model based on Torrance and Sparrow roughness model

that also uses the microfacets [95]. The Oren and Nayar model is considered to be an

improved version of the classic Lambertian interpretation for diffuse materials [63]. The

roughness of the surface is specified using a probability function for the facet slopes. The

model assumes that each facet followed Lambert’s law and that the facet area is larger than

the incident light wavelength. The model can be derived using geometric optics because

of the large facet area. The model also accounts for the complex geometric effects, such

as masking, shadowing, and inter-reflection.

Meanwhile, as a complement to the rough surface models, Wolff et al. [106] developed

the reflectance model for smooth surfaces, which accounts for subsurface refraction using

Fresnel attenuation and Snell refraction. The Wolff model assumes that subsurface optical

scattering and air-dielectric boundary conditions exist. Using the Fresnel coefficient, the

model describes how incident light and subsurface scattered light distribution behave at

the smooth air-dielectric surface boundary. This model, however, differs from Lambertian

when the Fresnel reflection terms become significant.

Ragheb and Hancock [79] first attempted to create a light scattering model based on

the Beckmann–Kirchhoff model for moderately rough surfaces by adding the Fresnel term

to describe the subsurface scattering effects for surfaces of intermediate roughness. Their

objective was to extend the Beckmann–Kirchhoff model to account for the subsurface

refractive attenuation of light prior to wave scattering. Based on the Beckmann–Kirchhoff

model, Ragheb and Hancock used two variant correlation functions, the Gaussian and

the Exponential, to derive closed-form solutions for the process of light scattering from

random rough surfaces. Ragheb and Hancock also demonstrated that the best proposed

modified model occur when the model is incorporated with the Wolff et al. version of the

Fresnel coefficient [106] and the Vernold–Harvey version of the geometrical factor [101].

Ragheb and Hancock continued to test their model in [80], where they showed that their

modified model was able to give a good estimation of the surface roughness parameters

for dielectric surfaces using the pixel brightness measurements obtained from a digital

camera.

Afterward, Ragheb and Hancock further improved their model in [81] by extending

their previous modified model from [79, 80] so that it would work on rough, laminar

surfaces for dielectrics. The new version modeled light scattering using their previous
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modified Beckmann–Kirchhoff model, but modified it so that the scattering geometry of

the material is split into two layers, namely the surface layer and the subsurface layer.

The new model can produce surface scattering and subsurface scattering separately with

the later accounting for any additional refraction, which is known as the Fresnel layer

transmission. Additionally, the new model has been shown to give excellent quality of

model fitting results when tested using the BRDF data of human skin.

All of these models can be used to model reflectance (or scattering) for various types

of material. In Subsection 2.2.3, I will consider several articles drawn from literature that

are aimed specifically at modeling light scattering on human skin. Authors developing the

skin reflectance model have also often worked on the acquisition method in parallel. The

acquisition method will be further reviewed in Section 2.3.

2.2.3 Human Skin Light Scattering Models

In their efforts to create the appearance of soft skin, Hanrahan and Krueger [36] introduced

the subsurface scattering model for the skin. Their model was motivated by the optical

properties of the skin surface (epidermal and dermal layers). The reflection of the material

outer surface was modeled using the Torrance and Sparrow’s microfacet model and they

designed their own subsurface scattering based on 1D linear transport theory. The model

relates the physical properties of the layered material to its subsurface reflectance proper-

ties. The authors assumed the physical material to be a layered homogeneous scattering

medium. However, the model ignores the light scattering aspect.

Koenderink and Pont [50] introduced the asperity scattering model that adds a ‘surface

lobe’ to the usual skin reflectance (diffuse and specular). Aesthetically, the model gives

the skin a more ‘soft’ and ‘velvety’ appearance. The model assumes that sparse scattering

occurs where thin layer scatterers cover the surface, such as hair follicles and/or dust.

The authors claim that it is an important effect as many materials are covered with

scatterers. Meanwhile, Tsumura et al. [98] have managed to model different skin color

and texture. Using their E-cosmetic function, they can change the strength of the skin

pigmentation (melanin and hemoglobin) by using the extraction completed previously

during independent component analysis. Even though the authors were able to synthesize

the way facial images changed due to tanning or alcohol consumption, no analysis was

made on how the aging affects the melanin and hemoglobin.

Krishnaswamy and Baranoski [53] presented a BIOSPEC model to describe the human
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skin structure. The model comprised of components that emulate five skin layers, namely

the stratum corneum, epidermis, dermis (papillary and reticular) and hypodermis. How-

ever, due to the high quantity of parameters and the complex interaction between them,

it relies on the brute-force Monte Carlo estimation.

Weyrich et al. [104] developed a skin reflectance model wherein the parameters were

estimated using multiple measurements that they captured using custom built devices.

They measured three types of data, namely the 3D face geometry, light reflection, and

subsurface scattering. They use the measurements to then estimate the parameters, which

are the spatial-varying analytic reflectance model (Torrance-Sparrow or Blinn-Phong), a

diffuse albedo map and the diffuse scattering coefficients. The paper also reported a

face reflectance analysis. They claimed that from their analysis that the absorption and

scattering parameters have no correlation with age. However, they may not have found

any correlation between the parameters and age as a result of the inclusion of too few

senior subjects in the experiment (total subjects are 149).

Donner and Jensen [14] presented the first biophysically motivated Bidirectional Surface-

Scattering Distribution Function (BSSRDF). They modeled human skin as a double lay-

ered component with biophysical-based user parameters and intuitive behavior, such as

the melanin and the hemoglobin fraction. Other parameters for the model, however, were

fixed, based on the authors’ reasoning that they have a low impact on the overall skin

appearance.

In a follow up study, Donner et al. [15] improved the model by introducing the layered,

heterogeneous light scattering model for the skin. The model was designed to capture

spatial variation without applying albedo textures to the skin’s outer surface. They used

intuitive parameter maps over the surface of the individual scattering layers with thin

absorbing layers between them. Even though the model is appearance-centric in its data

acquisition, it was reported that the model was able to reproduce the complex variations

in skin pigmentation. Nevertheless, the authors did not make any analysis on the aging

effects on the skin.

Meanwhile, Iglesias–Guitian et al. [38] introduced a model that simulates the changes

in the appearance of human skin due to aging. The model is a time-varying, multi-

layered, biophysical-based model that relies on biophysical parameters from medical and

optical tissue literature. The model is aimed more at synthesizing the appearance of aging

skin, rather than parameter analysis. Nevertheless, the authors did undertake significant
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analytic review of the available medical and optical tissue literature regarding the impact

of aging on the skin. They determined that the aging process is similar for all skin types,

regardless of gender, and that the skin tends to appear paler and less glossy as the age of

the subject increases.

In one report, Igarashi, Nishino and Nayar [39] surveyed the appearance of human

skin based on studies from four different fields: 1) computer vision, 2) computer graphics,

3) Medicine and 4) Cosmetology - and presented them as a single unified framework.

The authors have made an outline of the physioanatomical characteristics of skin that are

important and later relate it to the studies conducted to each of the structural components

of the skin.

2.3 Acquisition Methods

Generally, the face reflectance/appearance data acquisition can be categorized into two

approaches: 1) the Image-based approach and 2) the Parametric approach [49]. The first

uses the captured data directly for rendering and is not bound to a specific model. It also

able to reproduce all real-world effects. Meanwhile, the second uses the measurement data

to determine the parameters of some parametric forward appearance model used during

rendering [49]. It is able to use fewer measurements in circumstances where the parametric

models have been appropriately chosen.

One of the earlier works that considered acquiring the face reflectance/appearance

was undertaken by Debevec et al. [13]. This followed the Image-based approach. They

developed a method of acquiring the reflectance field of the human face by densely sampling

the incident illumination directions from two fixed viewpoints, and then separating the

face specular-diffuse reflectance components using linear combination computation. The

Debevec et al. method can produce high-quality visual synthesis, but it is very data

intensive.

Weyrich et al. [104] proposed a parametric acquisition method for measuring per-pixel

specular BRDF, diffuse albedo map, and diffuse subsurface scattering. The device they use

to acquire the specular BRDF and diffuse albedo measurements is a geodesic dome with

150 Light Emitting Diodes (LED) and 16 cameras. In order to measure the translucency

(subsurface scattering), they used a custom built contact probe consisting of a linear array

of optical fiber detectors. The acquisition method, however, requires extensive sampling

and a relatively long capture time.
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Ma et al. [64] developed a technique that mimicked the spatial-varying illumination ac-

quisition method proposed by Debevec et al. [13] but incorporated a parametric approach

with a lower set of lighting conditions. The authors used four spherical gradient illumina-

tion patterns, as this lighting condition is capable of acquiring independent estimation of

specular and diffuse reflectance surface normal across the entire object surface.

As this thesis is required to analyze the parameter estimation of the model, a paramet-

ric acquisition method is needed. The capturing device will closely resemble the design of

Ma et al. [64] with a small modification in the capturing sequence process.

2.4 Summary

In this chapter, literature from multiple fields related to facial aging, light reflecting/scattering

models, and acquisition methods have been reviewed. Literature in the medical, human

perception and skin optical fields have shown that the skin characteristics change as the

age increases. However, none of the current papers on reflectance/scattering models have

thoroughly analyzed how aging really affects the reflectance/scattering model predictions

or its parameter estimation. So, an investigation on the topic is needed.

2.5 Research plan, methodology and thesis structure

Facial aging research in computer vision and pattern recognition mostly use the aging

features for their aging estimator system. However, the study never goes further to in-

vestigate what effects that cause the aging features to appear in the first place. It would

be interesting if we can study the inner working of the skin in term of a model-based

that can obtain multiple parameter values that have meaning (e.g. the surface roughness

and light absorption) and study its relation to the process of aging. Not only we can use

the parameter values as input for age estimation system, we can relate it to the medical

condition of the skin. For example, a young healthy person has a bright skin, while an

older person has a dull skin. The surface roughness between the two would be different,

but how about their skin light absorption? Is it also different? Which one plays a major

role in affecting the light scattering behavior between the two; the surface roughness or

the light absorption?

This paper will investigate whether the light scattering model parameters change to-

gether with the aging skin, and if so, whether the changes occur in a positive or negative
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manner. This will help determine whether the parameters of a model can be used as a tool

for estimating age. An analytic-base light scattering model seems to be the best choice

for this experiment. By choosing this type of model, the parameters can be estimated

by using the inverse rendering technique, which is an easier method than attempting to

directly measure it using in–vitro type measurements.

Before conducting the aging experiment, the choice of light scattering model and the

experimental setup need to be addressed. The light scattering model must be able to

model the outer and the inner layer of the material (e.g. skin). In Chapter 3, a new light

scattering model is introduced. It is a modified version of the Ragheb–Hancock (R-H)

model [81] with added light absorption function. The R-H model was chosen due to its

simple dual layer representation (surface and subsurface layer). They are other better

model to be based upon for this experiment such as the BIOSPEC model [53] or the

Donner’s model [15]. However, the author chooses the R-H model due to that the model

is much simpler to modify by the author. The new model’s functionality and accuracy

will be tested using database samples that are either isotropic [12] or anisotropic [18] in

nature. This is to observe and compare it with another model for its rendering capability.

To observe how good the new model is when it is used as a standard light scattering model

and to investigate its limitation when test on the different type of samples.

In order to investigate the model parameter relationship with aging, appropriate pa-

rameters from the model need to be selected first. The selected parameters need to have

a rational relationship with the skin properties, such as the surface skin roughness or

the refractive index [20, 22, 38, 39, 47, 51, 62, 91, 112]. However, due to equipment and re-

source limitation at the time, the real measurements such as the surface roughness cannot

be done (need roughness measuring instrument). Hence, an alternative method is used,

by comparing the light scattering with that of the material’s polarization state. It was

known that polarization is directly related to how a material scatters light. The material

properties such as surface roughness, subsurface roughness, and light absorption can di-

rectly affect how polarization will behave. To validate the model parameter relation with

the material’s known measurement, the author decided to use the degree of polarization

(DOP) as the material’s measurement. The relationship between the two is analyzed by

doing a correlation test. Furthermore, the test will be conducted using materials with

varying degree of properties (e.g. very rough surface; highly chromatic). This is to ob-

serve whether the model can estimate the parameters as closely as the material physical
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properties (logically) and for varying type of materials. The parameter selection for the

later parameter-age test (Chapter 5) is based on a comparison between the new model

parameters with the sample degree of polarization (DOP).

Meanwhile, angle measurements are needed for the model prediction, so the samples

surface normal map and image light scattering will be captured using the spherical gradient

illumination photometry technique proposed by Ma et al. [64]. The reason for this choice is

that the technique is more accurate and faster than the 3D scanner. However, aligning the

image sequence captured in disparate illumination environment would not work normally

if we used the standard alignment method. So, a new alignment technique for handling this

particular problem is also presented in this thesis. Accuracy tests for the new alignment

technique will also be conducted and detailed in Chapter 4.

Finally, Chapter 5 will consider the correlation test between the subject age and the

chosen parameters. Results will be analyzed based on specific categories such as gender,

skin type, and facial section. The discussion will highlight any significant findings, inter-

esting behavior, limitations, and any unforeseen circumstances. The conclusion, which will

summarize the findings and evaluate any experiments shortcoming for future improvement,

will also be detailed in Chapter 6.
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Chapter 3

Absorptive Scattering Model for

Rough Laminar Surface

Here, a new analytic–based light scattering model is introduced. The new model is an

extension of the Ragheb–Hancock (R–H) model [81], in which it was previously designed to

model rough laminar surface boundaries for dielectric materials. The new model modified

the R–H model by adding a light absorption function, defined in the subsurface layer part of

the model. To investigate the aging effect on the skin light scattering, this model is created

for studying how the model parameters behave when tested on different aging subjects and

whether they are suitable to be used as a tool for estimating/classifying age. Nevertheless,

the new model is foremost a light scattering model, it is essential to investigate how the

new model’s rendering and fitting accuracy fare with other models; especially with R–H

model. Hence, the fitting tests were done on two different databases: 1) the CUReT

database (isotropic samples), and 2) the UTIA database (anisotropic samples). The reason

for using different range of samples on the model is to observe how good the new model is

and what its limit when it is used as a standard light scattering model. Further explanation

of the new model and its accuracy test results will be mentioned in this chapter.

Firstly, the (R–H) model [81] will be reviewed in Section 3.1, where the section de-

scribed how Ragheb and Hancock modeled the diffuse light scattering for the surface and

subsurface layers of a material. Afterward, Section 3.2 introduced the new model and

also highlights some of its behavior. Section 3.3 then provides an experimental evalua-

tion of the new model done on two reflectance measurement databases, captured either in

isotropic condition (CUReT database [12]) or anisotropic condition (UTIA database [18]).
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3.1 R–H model for layered rough surfaces

In [81], Ragheb and Hancock (R–H) have presented a detailed diffuse light scattering

model using the wave scattering theory. The model assumes that the diffuse radiance is

scattered from bi-layered rough surfaces, consisting of an opaque sub-surface layer below

a transparent one. The top or surface layer was modeled by a single surface scattering

component, while the bottom or subsurface layer was modeled using the combination of

both the effects of radiance transmission through the surface layer and a single subsur-

face scattering component. Here, the authors used Vernold and Harvey version of the

Beckmann model for both the surface and subsurface rough scattering effects, while, the

Fresnel theory and the Snell’s law are used for modeling the attenuation factor and the

light transmission [81].

The surface scattering geometry of the R–H model [81] was based on Kirchoff theory,

as shown in Figure 3.1 (Left). The vector S points in the direction of the light source,

which means that incident light with radiance Li propagates in the −S direction. The

scattered radiance Lo is in the direction V , which is the position of the viewer. The light

beam is incident on the surface with zenith angle θi and azimuth angle φi. Additionally,

Beckmann’s geometry applies so φi = π [81]. The light beam is then scattered at zenith

angle θs and azimuth angle φs.

Figure 3.1: Tangent plane coordinate system (Left) and Layered rough surface under study

(Right).

Ragheb and Hancock defined the subsurface layer part of the R–H model using the

Snell’s law and the Fresnel theory to account for the refractive distortion and the atten-
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uation factor respectively [81]. Figure 3.1 (Right) shows the process for the subsurface

scattering. It first starts with: 1) the light enters the surface at angle θi, 2) next, it re-

fracted to angle θ′i, 3) then undergoes single scattering on the lower surface layer (lower

boundary), at angle θ′s, and 4) finally exits the surface layer (upper boundary) with zenith

and azimuth angles θs and φs. Both of the outgoing radiance components (surface and

subsurface) are considered identical by the authors. The total outgoing radiance is the

linear combination of both components with β as its relative balance control. The R–H

model is given as:

Lo = βLsbo + (1− β)Lsfo (3.1)

where the surface scattered radiance is Lsfo = Lsfo (θi, θs, φs, σ/T ) and the subsurface scat-

tered radiance is Lsbo = Lsbo (θi, θs, φs, σ
′/T ′, n). The parameter β control which two com-

ponents (surface or subsurface) scatter the light the most. If β is higher, then the light

mostly scatter from the subsurface layer, making the surface layer more transparent (ex-

ample material –dielectric). If it is lower, then the light mostly scatter from the surface

layer, making the surface layer less transparent, meaning less light penetrates the surface

layer (example material –metal). In physical term, Equation 3.1 basically describes how

the light incident is scattered either by the surface or through subsurface interactions.

The notations used are summarized in Table 3.1.

Following the Beckmann model, the R–H model used two parameters to account the

material roughness property; a) the root-mean-square (RMS) height deviation σ of the

surface relief distribution about the mean surface level and b) the correlation length T ,

which defined in terms of surface correlation function that characterizes the relative spacing

of peaks and valleys in the surface profile. R–H in [81] also presented two different model

variants, which are i) the Gaussian and ii) the Exponential, in which both refers to the

nature of the correlation function for the surface and subsurface roughness. From [81], the

scattered surface radiance when the correlation function is Gaussian is given by:

LsfG (θi, θs, φs, σ/T ) = KG

[
cos(θi)

v2
z(θi, θs)

]
× exp

[
−T 2v2

xy(θi, θs, φs)

4σ2v2
z(θi, θs)

]
(3.2)

and when surface correlation function is Exponential:

LsfE (θi, θs, φs, σ/T ) = KE

[
cos(θi)

v2
z(θi, θs)

]
×

(
1 +

[
T 2v2

xy(θi, θs, φs)

σ2v2
z(θi, θs)

])− 3
2

(3.3)

where v2
xy(θi, θs, φs) = [k(sin(θi) − sin(θs) cos(φs))]

2 + [−k(sin(θs) sin(φs))]
2; vz(θi, θs) =

−k(cos(θi)− cos(θs)); and k = 2π/λ. The coefficients KG and KE are both proportional
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Table 3.1: The formula notation.

Notation Description

Li Incident radiance

Lo Total scattered radiance

LsfG Surface scattered radiance with Gaussian correlation

function

LsbG Subsurface scattered radiance with Gaussian correla-

tion function

LsfE Surface scatter radiance with Exponential correlation

function

LsbE Subsurface scattered radiance with Exponential corre-

lation function

θi Surface incident zenith angle

θs Surface scattering zenith angle

θ′i Subsurface incident zenith angle

θ′s Subsurface scattering zenith angle

φs Scattered azimuth angle

σ/T Surface Root-Mean-Square (RMS) slope

σ′/T ′ Subsurface Root-Mean-Square (RMS) slope

KG or KE Coefficients for the surface equations of Gaussian and

Exponential respectively

dω′ Solid angle under mean surface level

n Standard refractive index

β Balance parameter

to (σ/T )2 and can be normalized. Meanwhile, the subsurface scattered radiance when the

correlation function is Gaussian is given by:

LsbG (θi, θs, φs, σ
′/T ′, n) = LsfG (θ′i, θ

′
s, φs, σ

′/T ′)× [1− f(θi, n)][1− f(θ′s, 1/n)]dω′ (3.4)

and when the subsurface correlation function is Exponential:

LsbE (θi, θs, φs, σ
′/T ′, n) = LsfE (θ′i, θ

′
s, φs, σ

′/T ′)× [1− f(θi, n)][1− f(θ′s, 1/n)]dω′ (3.5)
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where, the subsurface solid angle is:

dω′ =
cos(θi)

n2 cos(θ′i)
dω (3.6)

Meanwhile, the Fresnel coefficient, which models the refraction effects of the layers, is

given:

f(αi, r) =

[
sin2(αi − αt)

2 sin2(αi + αt)

]
×
[
1 +

cos2(αi + αt)

cos2(αi − αt)

]
(3.7)

r =
sin(αi)

sin(αt)
and αt = sin−1

[
sin(αi)

r
]

]
(3.8)

In Equation 3.8, where light is transmitted from air to dielectric, then r = n and

αi = θi. If, on the other hand, light is transmitted from dielectric to air, then r = 1/n

and αi = sin−1[sin(θs)/n].

Single layer scattering model designs are simpler and do not need to account the

light transmission or the light absorption aspects. However, in nature, many surfaces

have the laminar structure that composed of translucent layer and opaque layer with a

certain degree of roughness. Moreover, varying substance in the layer can affect how

light transmits and/or absorb. For such surface, it is best to use a light scattering model

that accounts the two layers (upper and lower) and the light behavior inside the layer

(transmission and absorption). Examples of these surfaces would be the human skin and

plants. A non-layer model can be considered simpler than a model that account the

material’s laminar structure. However, its simplicity cost it the ability to analyze the

inner layer property of a material.

3.2 The new model with light absorption

One of the main reason R–H model was based upon, is because of the model simple dual-

layer design (Figure 3.2 .Right) can resemble a general skin layer (see Figure 3.2 for the

simple depiction of the young skin layer and the old skin layer). The top layer of the model

resembles the surface of the skin, while the bottom layer of the model resembles the skin

inner layer between the skin surface and the collagen (Figure 3.2). The only limitation

that R–H model is that it does not model the light absorption, in which, is one of the

properties of skin that can affect the light scattering. This does not limit to skin only,

other dielectric materials also have a varying degree of light absorption. The new model
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should put that into consideration as to make a model that not just focus on skin, but

also other materials as well.

Figure 3.2: Diagram of light scattering on the skin. (Diagram was taken from [73].

The new model in this thesis is a modified version of the R–H model [81]. The R–H

model is detailed but it does not account for light absorption. The new model extent the

R–H model by adding an absorption term; defining it using the conservation of energy

for light transmission, reflectance, and absorption. Moreover, the absorption parameter

is unit-less and can be used as an alternative representation for light absorption in a

dielectric.

3.2.1 Defining the light absorption in the subsurface layer

There are different light absorption representations/parameters that can be used to define a

reflectance/scattering model. One example is the complex refractive index, which was used

in Mie Theory to describe the absorption of electromagnetic radiation by spherical particles

[6]. However, defining a light reflectance/scattering model using the complex refractive

index can be difficult to manage due to the problem of trying to solve its imaginary
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component.

Instead of using a predefined function as the absorption term (e.g. complex refractive

index), the new model derives the light absorption using the principle of conservation

of energy during light transfer and a newly defined absorption function. In Ragheb and

Hancock’s model [81], the reflectance is governed by the Fresnel coefficient and the con-

servation of energy was assumed to be satisfied provided the normalization 1 = Rf + Tr

held. However, for the new model, the conservation energy is expressed via a different

normalization:

1 = Rf + Tr +Ab (3.9)

Where Rf is reflectance, Tr is transmission and Ab is absorption. Using the equation

above and applying it to the subsurface scattering equations (Equation 3.4 and 3.5) would

then extended R–H model to include the light absorption property. The geometry of the

new layered rough surface under study would then look like Figure 3.3.

Figure 3.3: Light transfer and absorption in the layered surface under study.

Before modifying Equation 3.4 and 3.5, the absorption term Ab need to be derived first.

Following the conservation energy in Equation 3.9, the light attenuation in the material

must now govern by both the transmittance and the absorbance. To formulate and define

how the attenuation is handled between transmission and absorption, we need to explore

how the polarized light actually behave inside a material (e.g. dielectric). This can be
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considered as its own study in its self. However, the study is beyond the scope of this

thesis. Instead, I considered a much simpler approach in defining how the absorption

would behave in a dielectric, semi-translucent surface.

Aiming to create a new absorption definition that is unit-less and simple, the function

follows two assumptions. The first assumption is that the light absorption is assumed to

be affected by the angle of penetration at the point of the incident on the surface of the

material. The logic behind it follows that light transmission and absorption would have an

inverse relationship when penetrating a surface dielectric at a specific angle of incidence.

As an example, imagine a light penetrating a water surface, as the angle of incidence

increases and reaching perpendicular angle to the water surface, the attenuation from

the transmission would decrease, while the attenuation from the absorption increases. To

represent the mentioned absorption behavior, cosine with even number power would be the

suitable choice; replicating how light fully penetrate the surface at angle perpendicular to

the surface of the material and zero penetration when the angle is parallel to the surface.

Different cosine power were tested to observe which would be the best selection; they

are cos θ, cos2 θ, cos3 θ, cos4 θ, and cos6 θ (see Figure 3.4). The absorption should not

be of negative value, therefore, the power must be an even number. Meanwhile, when

using cos4 or cos6, the absorption term becomes zero when ≥ 75o. Compare to cos4 and

cos6, cos2 still have a small amount of absorption when ≥ 75o before becoming zero at

90o. Moreover, cos2 has the average flexibility that it gives to the radiance curve. Hence,

cosine squared is selected. This makes the new model a non-physical model.

Figure 3.4: Different cosine power for defining the absorption term.

52



The second assumption is that absorption in the subsurface layer is instantaneous,

meaning that the function ignores how much distance the light will travel inside the ma-

terial. Absorption is instead quantified by using the parameter absorption percentage ‘a’,

which represents the strength of the light absorption in the overall subsurface layer. Com-

bining both assumptions, the amount of absorbed light Ab would be proportional to the

cosine squared of the incident angle θi. As a result, the absorption is greatest when the

incident light is normal to the surface and smallest when the incident light is perpendicular

to the surface normal. The absorption term is defined as:

Ab1 = Ab(a, θi) = a(cos2(θi))[1− f(θi, n)] (3.10)

Ab2 = Ab(a, θs2) = a(cos2(θs2))[1− f(θ′s, 1/n)] (3.11)

Where a is the fractional absorption parameter, used to control how strongly light is

absorbed. Equation 3.10 is used when the incident light transmits from the air to the

material. On the other hand, Equation 3.11 is used when the incident light transmits

from the material to the air (see Figure 3.3). Since these two equations are related to

transmission, their units are similar to irradiance, which is the watt per square meter

(W/m2). Inserting Equation 3.10 and 3.11 into 3.4 and 3.5, the subsurface scattering

component now becomes:

LsbG (θi, θs, φs, σ
′/T ′, n) = LsfG (θ′i, θ

′
s, φs, σ

′/T ′)

× [1− f(θi, n)−Ab(a, θi)][1− f(θ′s, 1/n)−Ab(a, θs2)]dω′ (3.12)

LsbE (θi, θs, φs, σ
′/T ′, n) = LsfE (θ′i, θ

′
s, φs, σ

′/T ′)

× [1− f(θi, n)−Ab(a, θi)][1− f(θ′s, 1/n)−Ab(a, θs2)]dω′ (3.13)

where

θs2 = sin−1

[
sin(θ′s))

1/n

]
(3.14)

By conservation of energy, a change in the absorption will cause a change in the

transmission. Using the newly defined absorption function, Figure 3.5 shows how the

different values of a affect the behavior of both the transmission and the absorption as the

incident angle varies (for a medium with n = 1.7).
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Figure 3.5: The Absorption and Transmission curve behavior.

3.2.2 The new model behavior

Light absorption is an electromagnetic radiation behavior that occurs in all creature and

inorganic materials. Knowing the quantity of how much light is absorbed in a material

can help give some idea about the molecules of components in a substrate. In skin optic

or dermatology, this information can help detect some irregularities in the skin. For this

study, the detection of the different level of absorption in the skin can be connected to

the aging effect (e.g. skin dryness or skin disease due to aging [17, 51, 62, 72, 91, 96, 97]).

If an analytical-based light scattering model can be used to accurately estimate the light

absorption of the skin, then the process of extracting the cells in future studies can be

ignored entirely. Hence, in this study, the new model is the author first step of making a

method of obtaining the light absorption information of the inner skin in its original form
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without the need of cell extracting tools.

The new model introduced here is an extension to the Ragheb and Hancock model with

the inclusion of an absorption term. The new model allowing us to estimate the absorption

percentage a, thus providing information concerning the light absorption characteristic of

a material. When the value of the absorption percentage a is zero, the new model behaves

similarly to that of R–H model. An in-depth behavior of the new model regarding its

prediction for varying angular distribution when a = 0 can just be referred to the Ragheb

and Hancock paper [81], which the authors have shown and explained in detail. This

section, however, will focus on studying the different absorption values affect on the model

prediction behavior.

As the Absorption percentage a increases, the subsurface scattering radiance at the

incident angle near 0o become more and more reduced. The decreasing subsurface scat-

tering radiance in the curve behavior is the result from the absorption term subtracting

the overall energy conservation, meaning that as both a and cos2(θi) ≈ 1, the absorption

value at these angles (when θi reaching 0o) become much higher than the transmission

value in the overall energy conservation, resulting in a reduced subsurface radiance.

In the overall scatter outgoing radiance, however, there is a peak that forms at these

incident angles (near zero). The peak of the overall scatter outgoing radiance actually con-

tributed by the surface scattering model. For the purpose of presentation, the prediction

for the R–H and the new model scatter outgoing radiance curve plot for the Exponential

and the Gaussian model variants are shown in Figure 3.6 for three different absorption

percentage, a (e.g. a = 0, 0.25 or 0.40). In Figure 3.6, the left column is the Exponential

variant with β = 0.66, σ/T = 0.15, σ′/T ′ = 0.95, and n = 1.37, while the right column

is for the Gaussian variant with β = 0.56, σ/T = 0.13, σ′/T ′ = 1.0, and n = 1.37. The

parameters values used for this plots were referred from [81], used for comparison and

presentation purposes only. The top row of Figure 3.6 correspond to R–H model (a = 0),

while the two bottom row correspond to new model (a = 0.25 for the middle row and

a = 0.4 for the bottom row). The curves in each plot correspond to constant values of θi,

while making φi = π and φs = 0. Here a peak is form around θs = θi. While the peaks for

the Exponent variant models are very close to the specular direction, this is not the case

for the Gaussian variant models. Meanwhile, increasing the value ’a’ causes the curves to

decrease in their overall outgoing radiance, especially near the normal angle.
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Figure 3.6: The scattered outgoing radiance prediction for the Ragheb–Hancock model

(first row: a = 0) and the new model (second row: a = 0.25 and third row: a = 0.40),

when the model variants against θs. The left column is for the Exponential with β = 0.66,

σ/T = 0.15, σ′/T ′ = 0.95, and n = 1.37, while the right column is for the Gaussian where

β = 0.56, σ/T = 0.13, σ′/T ′ = 1.0, and n = 1.37. Curves in each plot correspond to

constant values θi. (φi = π and φs = 0). The parameters values used for this plot were

referred from [81]
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Figure 3.7: Rendering using the new model Gaussian with 0 (top left), 0.2 (top right),

0.5 (bottom left) and 0.9 (bottom right) absorptions (σ/T = 0.15; σ′/T ′ = 1; β = 0.9;

n = 1.37).
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Figure 3.8: Rendering using the new model Exponential with 0 (top left), 0.2 (top right),

0.5 (bottom left) and 0.9 (bottom right) absorptions (σ/T = 0.15; σ′/T ′ = 1; β = 0.9;

n = 1.37).
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Figure 3.9: The histograms for the new model Gaussian rendering with 0 (top left), 0.2 (top

right), 0.5 (bottom left) and 0.9 (bottom right) absorptions, a. (σ/T = 0.15; σ′/T ′ = 1;

β = 0.9; n = 1.37). Here, the histograms show that as the absorption value increases, the

intensities in the channels decreases (peak move to the left side of the histogram plot).
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Figure 3.10: The histograms for the new model Exponential rendering with 0 (top left),

0.2 (top right), 0.5 (bottom left) and 0.9 (bottom right) absorptions, a. (σ/T = 0.15;

σ′/T ′ = 1; β = 0.9; n = 1.37). Here, the histograms show that as the absorption value

increases, the intensities in the channels decreases (peak move to the left side of the

histogram plot).
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To observe the functionality of the new model, I rendered some face images using the

diffuse surface normal estimated using the Spherical gradient lighting technique [64]. To

compute the RGB values for the skin, I assume that the channel Red = 1.35LO, Green

= 0.95LO, Blue = 0.75LO. Figure 3.7 and 3.8 show the rendering using the new model

for Gaussian and Exponential respectively, while Figure 3.9 and 3.10 are their histograms

(respectively).

3.3 The quality of fit test for the new model

The new model is foremost a surface rendering light scattering model. It is proper to

investigate its quality of fit accuracy when fitting on the different type of materials, not

just skin. Hence, the author wants to observe how good the new model quality of fit is

when uses on other materials and also to investigate its limitation. The new model’s fitting

accuracy will be tested using two different database: 1) the Columbia-Utrecht Reflectance

and Texture (CUReT) database [12], and 2) the Ústav Teorie Informace a Automatizace

(UTIA) database [18]. The CUReT was chosen to test how the new model manages

the isotropic samples, while the UTIA was chosen to test the new model on anisotropic

samples. The objective of these tests is to do a model fitting on the measurements (radiance

data) by varying the model’s parameters (using an exhaustive method) to search the

minimum Root Mean Square error (∆RMS). The tests will be done on each color channel

(RGB) to observe and analyze what factor does the model’s parameters (especially the

defined absorption parameter) have on the overall fitting.

3.3.1 The CUReT Database

The Columbia-Utrecht Reflectance and Texture (CUReT) database referred to throughout

this experiment is the publicly available BRDF database from Dana et. al. [12] that con-

tains reflectance measurements for over 61 different samples, each with over 205 different

combinations of viewing and illumination directions observed (Figure 3.11 shows some of

the CUReT samples). The database is a result of collaborated work undertaken by the re-

searchers at Columbia University and Utrecht University. This joint effort was sponsored,

in part, by REALISE of the European Commission, the National Science Foundation and

by DARPA/ONR under the MURI Grant No. N00014-95-1-0601.

It was created in order to study the visual appearance of real-world surfaces and so
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that they would be made publicly available to any researcher who wants to evaluate the

performance of existing and/or future BRDF models and/or representations. The database

measurement procedure requires several pieces of equipment, namely a personal computer

with a 24-bit RGB frame grabber, a robot arm to orient the texture samples, a halogen bulb

with a Fresnel lens which produces a parallel beam, a photometer, and, finally, a 3-CCD

color video camera for capturing the BRDF samples in 10× 10 cm stills [12]. An image is

captured by the frame grabber for every combination of illumination and viewing direction

within each sample. These images are consist of 640× 480 pixels with 24 bits per pixel (8

bits per RGB channel). After being captured, they are radiometrically calibrated to get

radiance and BRDF from pixel values. The database has also made a table which gives

the illumination and viewing direction associated with the 205 measurements available for

the general public.

Figure 3.11: 10 CUReT samples. Image taken from [12].

3.3.2 Model fitting on the CUReT samples

Here we excluded the BRDF measurements that occur in the specular direction, and which

total 198 non-specular measurements. In total 13 different material samples were selected

for the experiment. The test was performed on the color channels of the different samples

(RGB), giving a total of 39 sample BRDFs. Before the fitting, the tabulated BRDF data

v(θi, φi, θs, φs) were converted into normalized outgoing radiance Lo(θi, φi, θs, φs) using

Lo(θi, φi, θs, φs) = v(θi, φi, θs, φs)Li cos(θi)dω. We experimented with fitting four different

models to the CUReT data, namely a) the proposed model with an Exponential correlation

function, b) the proposed model with Gaussian correlation function, c) the approximate
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Bidirectional scattering-surface reflectance distribution function (BSSRDF) model and d)

the Oren–Nayar model. This is to observe and compare the models overall quality of

fit. The Oren–Nayar model were based on [12] equation derivation, which includes inter-

reflections. Note that only the diffuse component was used. Meanwhile, the Jensen’s

BSSRDF approximation total diffuse reflectance equation [44] is given by:

LJ =
α′

2π

(
1 + exp−

4
3

1+Fr
1−Fr

√
3(1−α′)

)
exp−

√
3(1−α′) (3.15)

Where, Fr is the Fresnel formula and α′ is the apparent albedo, given by α′ = σs/σs+σa.

Here, σs and σa are both scattering and absorption coefficient.

The normalized predicted radiance of the models is fitted to the normalized measured

radiance data from the CUReT database. This is done by varying the model parameters

to find their smallest value of the root-mean-square error ∆RMS . The RMS fitting error

is given by:
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where LDO is the normalized BRDF from the CUReT database, LPO is the normalized

radiance from the model prediction and k runs over the index number of the BRDF

measurements used (K).

There are four parameters in the proposed model that are varied in the exhaustive

search for a best-fit. The values of σ/T and σ′/T ′ are made equal in this search. The

ranges for the parameters used in the experiment are: σ/T = σ′/T ′ which ranges from

(0.12 to 4.1) with 50 equal intervals, β which ranges from (0.01 to 1) with 100 equal

intervals, the index of refraction, with a range of (1.3 to 1.5) with 10 equal intervals, and a

with a range of (0 to 1) with 101 equal intervals. The range for σa and σs for the BSSRDF

model (or Jensen model) [44] are varied between (0.01 to 1) with 100 intervals. Meanwhile,

for the Oren–Nayar model [12], the parameter values were chosen based on the tabulated

data given, but using only the diffuse component. Some of the results are shown as plots

of normalized measured data versus the normalized radiance predicted by the different

models on each RGB channels (See Figures 3.12 and 3.13). Meanwhile, Table 3.2 shows

the ∆RMS fit results done on 13 samples for each color channel. The gray colored cells

highlight the model fitting of samples with ∆RMS < 0.5. It can be seen from the table

that the new exponential model gives the best overall fit for all 13 samples on all color
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channels, followed by the new Gaussian model. Here, the samples were selected based on

the different degree of surface conditions, such as how strongly chromatic and how rough

the surface is. The author was unable to use all of the samples in the database due to the

author’s insufficient information on building a more efficient program for the experiment

at the time. This cost the author a lot of time to test a sample (one to two days), forcing

the author to select samples based on how rough (from less rough surface - Felt; to highly

rough surface - Quarry tile) and how strongly chromatic the samples are (less chromatic -

Felt; to highly chromatic - Velvet). The author noted that most of the samples used here

are not layered materials (e.g. Velvet, Sponge and Quarry tile). Nevertheless, the test was

done to observe the limitations of the new model when dealing with this kind of samples.

In the experiment results (see Table 3.2), Velvet is the highest overall error obtained by

the new model, while Sponge is the lowest overall error.

The new model is capable to give a good fit for rough surfaces (e.g. Quarry tile,

Brown Bread, and Rug-B), with Sponge giving the best results. However, the new model

is less accurate when fitting mediocre roughness and highly chromatic samples —samples

that emit mostly single colour (e.g. emitted only red colour), like the Velvet sample.

This is due to how simplistic the absorption term was defined in the new model, the new

model may not accurately predict samples that are rough and highly chromatic materials.

Nevertheless, for most rough colored samples, the new model still give the best quality

of fit results when compare to other models. Meanwhile, when comparing the new model

with the R–H model (see Table 3.3), there are several samples estimated by the new model

to have a = 0. Noted that the new model will become similar to R–H model when a = 0,

this causes the ∆RMS for some samples from the new model to have similar ∆RMS with

that of R–H model (see Table 3.3). However, there are 6 chromatic samples that gave

better results when using the new absorption model (samples estimated by the new model

with a 6= 0); these samples were Rug-B (red), Velvet (red), Quarry tile (pale red), Brown

bread, Orange peel and Moss (green). This shows that the proposed model accounts well

for chromatic effects in colored samples when compare to R–H model.

3.3.3 CUReT result analysis and discussion

There are three observations highlights from this CUReT model fitting test: Firstly, is

that when the absorption fraction a in the modified absorption model is zero, the model is

equivalent to Ragheb–Hancock model. Secondly, the modified absorption model gave the
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Figure 3.12: Plot for normalized measured data versus normalized model radiance predic-

tion for the sample Soleirolia Plant (53). New Exponential (1st row); New Gaussian (2nd

row); BSSRDF (3rd row); Oren–Nayar (4th row) for Red (left column), Green (middle

column) and Blue (right column) channels.
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Figure 3.13: Plot for normalized measured data versus normalized model radiance pre-

diction for the sample Moss (61). New Exponential (1st row); New Gaussian (2nd row);

BSSRDF (3rd row); Oren–Nayar (4th row) for Red (left column), Green (middle column)

and Blue (right column) channels.
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Table 3.2: The ∆RMS corresponding to the models studied for selected CUReT samples.

The gray cells highlight ∆RMS < 0.5
Sample (no.) ExpR GausR JenR ONR ExpG GausG JenG ONG ExpB GausB JenB ONB

Felt (1) 0.4614 0.5205 2.6657 3.0177 0.4282 0.4818 2.8145 2.5626 0.5413 0.5945 1.8640 3.7595

Terry Cloth (3) 0.5159 0.5440 1.5696 3.7849 0.5064 0.5319 1.5582 3.7940 0.5052 0.5250 1.5383 3.8126

Velvet (7) 1.3626 1.0220 3.2774 1.5568 0.8966 0.9469 5.0024 0.6819 0.9171 0.9501 4.9259 6.1236

Rug-A (18) 0.4203 0.4812 2.3808 2.7587 0.4006 0.4659 2.4446 2.8536 0.3693 0.4347 2.8100 2.4729

Rug-B (19) 0.6179 0.4420 3.1501 1.4729 0.3251 0.3188 4.5258 1.0338 0.3315 0.3312 4.5200 1.0381

Sponge (21) 0.3180 0.3819 2.0959 2.4739 0.2569 0.3127 2.8727 2.4632 0.2112 0.2662 3.7463 1.6272

Quarry Tile (25) 0.4368 0.4808 3.6416 1.2946 0.3786 0.3935 4.5629 1.1512 0.3716 0.3853 4.7954 6.3168

Brown Bread (48) 0.3736 0.4523 2.6015 2.3133 0.3585 0.4373 3.0615 2.3286 0.3047 0.3747 3.7275 1.7031

Corn Husk (51) 0.6466 0.6626 1.8945 3.1789 0.6546 0.6767 1.9531 3.5755 0.4938 0.5131 3.1144 2.2818

White Bread (52) 0.4276 0.5038 1.5637 3.8676 0.4166 0.5050 1.6230 3.8585 0.3774 0.4737 2.0420 3.3901

Soleirolia Plant (53) 0.4507 0.5015 3.3256 2.1832 0.5563 0.5985 2.6582 2.7362 0.3809 0.4348 3.7405 1.6787

Orange Peel (55) 0.7394 0.7915 2.8696 1.2485 0.3794 0.4500 4.6247 0.9470 0.3204 0.3662 5.2467 0.4896

Moss (61) 0.4102 0.3386 4.3900 1.2580 0.3767 0.3265 4.2371 1.3651 0.6432 0.5678 4.4290 1.3021

Table 3.3: The ∆RMS corresponding to the new model and R–H model studied for the

selected CUReT samples. The parameter ‘a’ here correspond to the new model estimation

of absorption. The gray cells highlight samples with a 6= 0. Noted that for the new model,

when a = 0, the new model become similar to R–H model.
Exponential Gaussian

Red Green Blue Red Green BlueSample (no.)

New R-H a New R-H a New R-H a New R-H a New R-H a New R-H a

Felt (1) 0.4614 0.4614 0 0.4282 0.4282 0 0.5413 0.5413 0 0.5205 0.5205 0 0.4818 0.4818 0 0.5945 0.5945 0

Terry Cloth (3) 0.5159 0.5159 0 0.5064 0.5064 0 0.5052 0.5052 0 0.544 0.544 0 0.5319 0.5319 0 0.525 0.525 0

Velvet (7) 1.3626 1.3626 0 0.8966 0.9017 1 0.9171 0.9197 1 1.0222 1.022 0 0.9469 0.9494 1 0.9501 0.9507 1

Rug-A (18) 0.4203 0.4203 0 0.4006 0.4006 0 0.3693 0.3693 0 0.4812 0.4812 0 0.4659 0.4659 0 0.4347 0.4347 0

Rug-B (19) 0.6179 0.7677 0.484 0.3251 0.3343 1 0.3315 0.3392 1 0.442 0.4888 0.361 0.3188 0.3216 1 0.3312 0.3335 1

Sponge (21) 0.318 0.318 0 0.2569 0.2569 0 0.2112 0.2112 0 0.3819 0.3819 0 0.3127 0.3127 0 0.2662 0.2662 0

Quarry Tile (25) 0.4368 0.4559 0.292 0.3786 0.4307 0.815 0.3716 0.3807 1 0.4808 0.51 0.37 0.3935 0.4542 0.861 0.3853 0.3983 1

Brown Bread (48) 0.3736 0.3739 0.029 0.3585 0.3707 0.176 0.3047 0.3249 0.355 0.4523 0.4523 0.002 0.4373 0.4393 0.072 0.3747 0.3838 0.389

Corn Husk (51) 0.6466 0.6466 0 0.6546 0.6546 0 0.4938 0.4938 0 0.6626 0.6626 0 0.6767 0.6767 0 0.5131 0.5131 0

White Bread (52) 0.4276 0.4276 0 0.4166 0.4166 0 0.3774 0.3774 0 0.5038 0.5038 0 0.505 0.505 0 0.4737 0.4737 0

Soleirolia Plant (53) 0.4507 0.4507 0 0.5563 0.5563 0 0.3809 0.3809 0 0.5015 0.5015 0 0.5985 0.5985 0 0.4348 0.4348 0

Orange Peel (55) 0.7394 0.7394 0 0.3794 0.3798 0.259 0.3204 0.333 1 0.7915 0.7915 0 0.45 0.453 0.409 0.3662 0.3805 1

Moss (61) 0.4102 0.5135 1 0.3767 0.5326 1 0.6432 0.694 1 0.3386 0.3796 1 0.3265 0.3926 0.87 0.5678 0.5819 1

least model fitting error, and thirdly, the BSSRDF model was observed to overestimated

the outgoing radiance prediction and the Oren–Nayar model was observed to underesti-

mated it.

To measure the discrepancy existing between the best-fit error (observation data) and

its expected error, the chi-squared per degree of freedom test was used to check whether the

Ragheb–Hancock model and the absorption model differ significantly. The Chi-squared

statistic is given by:

χ2 =

K∑
k=1

(Modelk −Datak)2

Datak
(3.17)
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Table 3.4: The Chi-Square test per Degree of Freedom for the selected CUReT samples.

Sample (No.)

New Model Ragheb Model

Exponent Gaussian Exponent Gaussian

R G B R G B R G B R G B

Felt (1) 0.0327 0.0369 0.0378 0.0419 0.0493 0.0482 0.0327 0.0367 0.0376 0.0417 0.0491 0.0480

Terry Cloth (3) 0.0115 0.0112 0.0111 0.0128 0.0123 0.0118 0.0114 0.0112 0.0111 0.0127 0.0123 0.0118

Velvet (7) 0.0633 0.1328 0.2049 0.0442 0.1500 0.2161 0.0630 0.1332 0.2077 0.0440 0.1496 0.2183

Rug-A (18) 0.0293 0.0242 0.0193 0.0596 0.0546 0.0445 0.0291 0.0241 0.0192 0.0593 0.0543 0.0443

Rug-B (19) 0.0193 0.0131 0.0135 0.0101 0.0126 0.0133 0.0314 0.0140 0.0143 0.0146 0.0131 0.0136

Sponge (21) 0.0052 0.0040 0.0039 0.0160 0.0111 0.0187 0.0052 0.0040 0.0039 0.0159 0.0111 0.0186

Quarry Tile (25) 0.0238 0.0116 0.0206 0.0275 0.0149 0.0199 0.0256 0.0228 0.0229 0.0320 0.0268 0.0226

Brown Bread (48) 0.0205 0.0189 0.0120 0.0512 0.0438 0.0220 0.0208 0.0227 0.0162 0.0520 0.0454 0.0278

Corn Husk (51) 0.0298 0.0294 0.0240 0.0272 0.0288 0.0219 0.0297 0.0293 0.0239 0.0271 0.0286 0.0218

White Bread (52) 0.0438 0.0381 0.0731 0.0746 0.0623 0.1845 0.0436 0.0379 0.0728 0.0743 0.0620 0.1836

Soleirolia Plant (53) 0.0231 0.0183 0.0182 0.0588 0.0247 0.0285 0.0230 0.0182 0.0181 0.0585 0.0246 0.0283

Orange Peel (55) 0.0912 0.0218 0.0255 0.0962 0.0296 0.0424 0.0907 0.0220 0.0277 0.0957 0.0305 0.0457

Moss (61) 0.0122 0.0112 0.0356 0.0083 0.0083 0.0287 0.0231 0.0261 0.0461 0.0116 0.0136 0.0321

After obtaining the chi-squared statistic, it is then divided by v the number of degrees

of freedom to give χ2/v the chi-squared per degree of freedom, where v = d − p. Here,

d = 198 which is the number of data samples and p is the number of model parameters.

For the Ragheb–Hancock model, p = 3 while the proposed model has p = 4. A comparison

of the Ragheb–Hancock model and the proposed absorption model is given in Table 3.4.

It was found out that there is no significant difference between the chi-square test for

the Ragheb–Hancock model and the proposed absorption model. However, a total of 6

chromatic samples gave better results using the proposed absorption model; these samples

were Rug-B (red), Velvet (red), Quarry tile (pale red), Brown bread, Orange peel and

Moss (green). This shows that the proposed model accounts well for chromatic effects in

colored samples. Even though there is no significant different in the chi square test between

the two models, the absorption parameter in the new model have certain influence in the

overall model parameter estimation. Between the two variants, the new Exponential model

has the lowest average ∆RMS for all channels than the new Gaussian model. Meanwhile,

Figure 3.14 shows the spheres absorption colours rendering for two CUReT samples using

the new model estimated parameters.
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Figure 3.14: Rendering for two of the CUReT samples using the new model estimated

parameters. The two left sphere is for the Brown Bread (48) sample, while the two right

sphere is for the Quarry Tile (25) sample. The new Gaussian model rendering is much

brighter than the Exponential. However, the new Gaussian ∆RMS is much higher than

Exponential (See Table 3.2).

3.3.4 The UTIA database

The Ústav Teorie Informace a Automatizace (or the Institute of Information Theory and

Automation in English) UTIA database is a collection of samples that deal with full four-

dimensional anisotropic BRDF [18]. The database contains 150 measurements relating to

a wide range of materials with elevation directions 15o and azimuthal directions 7.5o apart

(6 x 48 illumination directions and 6 x 48 view directions).

All of their data were captured using their own high precision robotic gonioreflecto-

metric device [19]. The device consist of two independently controlled arms with one arm

containing a custom-build LED light (12 000 lux) and another arm containing a 16Mpix

RGB camera AVT Pike 1600C with their distance from the sample are 1.1 m and 2.1 m.

The arm positioning accuracy is calculated as being 0.03o (see Figure 3.15).

The authors in [18] recorded the samples in HDR using five combinations of lighting

intensity and camera exposure relative to the measured material reflectivity. Radiometric

and colorimetric calibration were performed prior to each measurement, having the uni-

form angular density of 81×81 = 6561 directions. All of data were recorded as float values

and the 4D anisotropic BRDF were stored as 2D images divided into azimuthally depen-

dent BRDF subspaces for fixed elevation angles (see Figure 3.16). Each of the BRDFs

measurements for the 81×81 hemispherical uniform sampling, resulted in a variable count
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Figure 3.15: The gonioreflectometric device used to measure the UTIA database. Image

taken from [19].

of samples at different elevation angles. The authors then converted these 6561 samples

to angularly uniform directions, where they measured 6 × 48 × 6 × 48 = 82944 different

directions using an interpolation based on the radial basis function (see Figure 3.17).

To obtain access to this database, I sent an email request to M. Haindl and explained

that I wanted to use the database for my model experiment. He responded stating that

he would gladly offer it to me and requested that I share my findings with him after I

finished my research.

3.3.5 The quality of fit test on the UTIA samples

Where the CUReT database contained isotropic samples, the UTIA database has anisotropic

ones [18]. Here, the UTIA samples were used to test how the new model fare with samples

that retain its anisotropic characteristics. The quality of fit test is done at 6 different

elevation angles for θi and θv from [0o, 75o] with 15o apart; and 47 different azimuthal

angles for φv with 7.50 apart. The azimuthal angles were made to be φi = 0o and

φv =| φi database − φv database |. Also, the data in the specular direction were not in-

cluded. This makes a total of 1722 different directions used in the experiment. Five

models were used in the fitting test: The new model (Exponential and Gaussian vari-

ants); the Ragheb–Hancock model (Exponential and Gaussian variants); and the BSS-

RDF model. The model fitting setup and the parameters range for this test (using the
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Figure 3.16: The UTIA parameterization of illumination and view directions. Image taken

from [19].

Figure 3.17: The BRDF of a sample (fabric112) with specular and anisotropic highlights

in a BRDF subspace. Image taken from [18].
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UTIA database) are the same as when doing with the CUReT database, except that a

nonlinear least square fitting method (MATLAB function) was used and the refractive

index n was changed into (1.2 to 2.0) with 41 intervals. The test was done on 99 different

samples. They were: 59 fabrics, 6 carpets, 16 leathers, 10 woods, and 8 other materials

such as papers, glitter, plastic, and wallpapers. Based on the database numbering, the

selected samples are: m001-m054, m061, m062, m071, m072, m074, m075, m095-m097,

m105-m127, m132-m144. Each of the selected samples were then respectively correspond

to numbers in ascending order, example - samples m001-m054, m061 and m062 correspond

to the number 1 to 56. Figure 3.18, 3.19 and 3.20 show the ∆RMS fitting error for the 99

samples in stacked bar form for each Red, Green and Blue channel respectively.

Figure 3.18: The stacked bar plot for the ∆RMS corresponding to the models studied for 99

UTIA samples (Red channel). The bottom bar is the fitting error for the new Exponential,

followed by the new Gaussian, the R–H Exponential, the R–H Gaussian, and finally the

BSSRDF. The test was done on 6 different elevation angles for θi and θv; and 47 different

azimuthal angles for φv, while φi = 0o.

3.3.6 UTIA result analysis and discussion

The proposed model obtained the average lowest ∆RMS error than the Ragheb–Hancock

model and the BSSRDF model. Moreover, there are multiple discoveries regarding the test,

which are: 1) In the overall 99 samples tested, it was observed that the models obtained

high error value when fitting against samples with strong anisotropic highlights. Most of

these samples are from fabric materials that have strong anisotropic highlight(s) [18]. 2)

All leathers samples having the lowest error overall. Since leather is similar to skin, this
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Figure 3.19: The stacked bar plot for the ∆RMS corresponding to the models studied

for 99 UTIA samples (Green channel). The bottom bar is the fitting error for the new

Exponential, followed by the new Gaussian, the R–H Exponential, the R–H Gaussian, and

finally the BSSRDF. The test was done on 6 different elevation angles for θi and θv; and

47 different azimuthal angles for φv, while φi = 0o.

Figure 3.20: The stacked bar plot for the ∆RMS corresponding to the models studied

for 99 UTIA samples (Blue channel). The bottom bar is the fitting error for the new

Exponential, followed by the new Gaussian, the R–H Exponential, the R–H Gaussian,

and finally the BSSRDF. The test was done on 6 different elevation angles for θi and θv;

and 47 different azimuthal angles for φv, while φi = 0o.

result suggest that the new model may be suitable for modeling skin samples captured

in anisotropic condition. 3) The new model and R–H model have slight error difference

between the two model variants (Exponential and Gaussian). Nevertheless, the new models

have lower total average fitting error (New Exponential = 0.1789; New Gaussian = 0.1982)
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than the R–H versions (R–H Exponential = 0.1830; R–H Gaussian = 0.2042). Meanwhile,

the BSSRDF have the highest total average fitting error, which is BSSRDF = 1.2254 (see

Figure 3.21).

Figure 3.22 shows an example comparison between the proposed (Exponential variant)

model prediction and the data measurements for five samples when θi = θv = 60o with

varying incident azimuth and viewing azimuth. It can be seen from the figure that the

model fail to predict the anisotropic highlights as seen from the Carpet2, Fabric135, and

Fabric136 samples. Figure 3.23 shows the rendering of some UTIA samples using the new

absorption model. The spheres show absorption colours. i.e. the surface colour implied

by the estimated absorption values in each channel. The top sphere is the sample where

the new model fits best, while the bottom one is the sample where the new model fit the

least (Samples from the top: Leather16, Fabric096, Fabric135, Fabric111). The difference

in rendering between the Exponential and Gaussian is that samples rendered using the

new Exponential seems slightly brighter and take fewer iterations to fit with the sample’s

colour than the new Gaussian for most best-fit samples.

Figure 3.21: The total average ∆RMS error for all UTIA samples used in the experiment.
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Figure 3.22: The normalized radiance for the measurement (top row) and the modified

Exponential model prediction (bottom row) for five samples with various incident azimuth

and viewing azimuth (θi = θv = 60o). Note: The axial slice is the highlight near specular

angles and the diagonal slice is the anisotropic highlight. The specular component was

not included.

3.4 Summary

In this paper, we introduced a new light scattering model for layered rough surfaces

with absorption. With regard to the the CUReT database, we have demonstrated that

the method is superior to a number of alternative light scattering models, including the

Ragheb–Hancock model, which is essentially an absorption-free version of the new method.

That is to say the new method handles wavelength dependent chromatic absorption effects,

which are beyond the scope of the Ragheb–Hancock model. Although the new model has

been tested on a variety of samples in Section 3.3, the author does not claim that all

materials for which the experiment obtain a good fit of the model to the data follow

the assumptions regarding dual layer (surface and subsurface) and light absorption. The

author understands that it is impossible to satisfy the described assumptions for some

materials. Nevertheless, the new model builds and improves upon the Ragheb–Hancock

model, not only for the purposes of analyzing subsurface roughness, but also with regard

to analysis of the absorption characteristics of materials. This offer a significant advantage

when studying biological materials, such as the human skin. Furthermore, the new model

can handle samples that are not highly anisotropic, which shown in the experiment using

the UTIA database. The lowest error obtained by the new model was when the model

considered the leather type materials which resemble skin. This means that we can assume
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Figure 3.23: Rendering using some of the UTIA samples, The top figure is the sample

where the new model fits best, while the bottom one is the sample where the new model

fit the least (Samples from the top: Leather16, Fabric096, Fabric135, Fabric111).

that the new model is suitable for the experiment which will be undertaken in this thesis,

namely the parameter-age test in Chapter 5. In addition, the new model allows us to

estimate the absorption percentage ‘a’, thus providing information concerning the light

absorption characteristic of a material, and, ultimately, enabling us to analyze the light

absorption properties of the skin in the parameter-age test later on.
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Chapter 4

Parameter analysis and selection

In order to investigate the model parameter relationship with aging, appropriate param-

eters from the model need to be selected first. It is essential to select the appropriate

parameters that are able to be practically related to the measurements such as the sur-

face skin roughness or the refractive index [20, 22, 38, 39, 47, 51, 62, 91, 112]. However, due

to equipment and resource limitation at the time, the author was unable to get the real

measurements of the materials such as the surface roughness where roughness measuring

instrument are needed. Hence, an alternative method is used. It was known that polar-

ization is directly related to how a material scatters light. The material properties such

as the surface roughness, the subsurface roughness, and the light absorption can directly

affect how polarization will behave [5, 6, 30,37,48,52].

To validate the new model parameter relation with the material’s known measurement,

the author decided to use the degree of polarization (DOP), which is one of the material’s

property, to be compared with the model parameters. The author noted that the DOP

is an independent measurement –different from the new model parameters, but it is the

material property that the author able to measure using the current equipment available

at the time. In this chapter, the relationship between the two is compared and analyzed by

first completing a correlation test between the object measurement (degree of polarization -

DOP) and the model parameters to see whether the estimations are in agreement with each

other (e.g. by reference or by the practical characteristics of the object). Furthermore,

the test will be conducted using materials with varying degree of properties (e.g. very

rough surface; highly chromatic). The parameters that have a significant correlation with

the material’s polarization will be selected for the later parameter-age test, which is in

Chapter 5.
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The discussions relating to the correlation test constitute the first half of this chapter.

The second half will outline the experiment setup for the image capturing process and the

introduction of a new image alignment technique. There are several limitations to consider

when capturing non-static subjects, so the second part of the chapter will thoroughly

explain how our alignment technique addresses these issues.

Sections 4.1 to 4.6 describe the parameter selection experiment, including setup, test

results, and the finalization of parameter selection. The Zhang and Hancock comprehen-

sive polarization model [109] is used in conjunction with the proposed scattering model to

investigate which model parameters should be used for the later parameter-age experiment

(will be mentioned in chapter 5). Afterwards, sections 4.4 to 4.5.5 describe the light stage

setup designed to capture the subject’s face for the parameter-age experiment and, also,

present the new alignment technique that accounts for errors resulting from small move-

ments between image sequences captured in environments with disparate illumination.

Alignment accuracy tests and discussion regarding future improvements to the technique

will also be included.

4.1 Relating skin properties to parameters

The new scattering model has four parameters that define how the light scattering should

behave when reflecting from a surface. These parameters can easily be related to the

characteristics of human skin. Table 4.1 shows the predictions of the parameters behavior

based from several sources. Additionally, the test will be conducted on all RGB chan-

nels, so it is possible that the results for each color channel will have different parameter

strength. Noted that, when using the parameter as a feature for estimating age, it is better

to use the parameter in a channel that is strongly affected by aging (i.e. using surface

roughness parameter estimated using the red channel for skin, since it is the colour light

most scatter and less absorb by skin).

To prove that the parameters of the new model can be related to the properties of the

object, we completed correlation tests between the object’s light scattering parameters

and the object’s degree of polarization (DOP). The reason that the material’s polarization

was chosen for this test is because the polarization of the reflected light depends on the

symmetry of the arrangement of the incident probing light (i.e. surface of the material)

with respect to the absorbing transitions dipole moments (i.e. light absorption) in the

material [5, 6, 30, 37, 48, 52]. If there is a change in either of these parameters, they might
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Table 4.1: The behavior prediction for the New model parameters when apply on different

aging skin

Parameter Young skin
Old Skin (parameter’s be-

havior prediction)
Reference

Surface slope (σ/T )

Smooth micro-structure surface,

good lipid production, low skin

contrast.

Rough micro-structure surface,

bad lipid production, high skin

contrast (σ/T value increases).

[20, 22,36,38,39,41–43,50,53,104,112]

Refractive index (n)

Normal Lipid production,

healthy skin with average water

content.

Less Lipid production, dry skin

with less water content (n value

increases).

[39, 41–43,53,112]

Balance Parameter

(β)

Plump skin, thicker skin layers,

probably dominate by the sub-

surface component of the model.

Dry skin, thinner skin layers,

probably dominate by the sur-

face component of the model (β

value decreases).

[36, 41–43,47,51,53,62,91,112]

Absorption (a)

Healthy skin, good melanin pro-

duction, probably have lower ab-

sorption on the red band but

higher on other bands.

Dry skin, bad melanin produc-

tion, probably have variance ab-

sorption values on all the bands

(depend on the colour band and

also skin type).

[14, 15,20,22,39,41–43,98,112]

also be a change in the polarization degree. In this test, the DOP is calculated using

Zhang and Hancock’s comprehensive polarization reflectance model [109].

4.2 Comprehensive polarization reflectance model

Polarization is the process of transforming a random fluctuate electrical field into a well

defined one. In the field of computer vision, Fresnel Theory is generally used to predict

how polarized light interacts with a surface. The theory has other applications, such as

reflectance component separation, surface analysis and surface normal recovery [4,64,109,

110].

Using both Fresnel theory and Malus law, Zhang and Hancock [109] developed a com-

prehensive polarization reflectance model that combines both the underlying physics of

specular and diffuse polarization. They used the model to estimate shape from image in-

tensity by defining their model to relate the degree of polarization (DOP) ρ to the zenith

angle θ. In this section, the comprehensive polarization model will be used for estimating

a sample’s polarization property.

The equation for the DOP curve is referred from Zhang and Hancock [109]. The values

that can be determined from the calculation are: the amplitude reflection coefficient for
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light polarized perpendicular to the plane of incidence, r⊥, which is given by:

r⊥(ni, nt, θi) =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(4.1)

and the amplitude reflection coefficient for light polarized parallel to the plane of incidence,

r‖:

r‖(ni, nt, θi) =
nt cos θi − ni cos θt
nt cos θi + ni cos θt

(4.2)

The θi and θt are the angles of incident and transmission, while ni and nt are the refractive

indexes of air and material respectively. Here, the refractive index of air is assumed equal

to 1. Using the Snell’s law, the angle θt can be replaced with:

θt = sin−1(
sin θi
nt

) (4.3)

Generally, it is not the amplitude of the wave that is measured by the camera, but

the intensity, which is proportionate to the square of the amplitude. Knowing this, the

intensity coefficient measured can be related to the reflected power and to the incident

power, which is R⊥ = r2
⊥ and R‖ = r2

‖. Now, the standard equation for the degree of

polarization (DOP) ρ is:

ρ =
Imax − Imin
Imax + Imin

(4.4)

Here, Imin and Imax denote the minimum and maximum intensity values in the po-

larised images. In the experiment, Imin = Icross-polarized and Imax = Ico-polarized. The

Icross-polarized is an image of an object captured when the light source (camera flash) po-

larizer filter oriented in 0o angle and the camera polarizer filter oriented in 90o, while the

Ico-polarized is when both the light source and the camera polarizer filter are oriented in 0o

angle. Another to note that Icross-polarized = Idiffuse and Ico-polarized = Idiffuse + Ispecular,

where Idiffuse and Ispecular are the diffuse and specular reflectance components of the

image respectively. Each object was illuminated in the camera viewing direction.

To obtain the polarization curve, the Imin and Imax in equation 4.4 need to be replaced

with the Fresnel coefficients as to relate the ρ to the zenith angle θ. The new polarization

model (referring from [109]) then becomes:

ρ =

Ls
R‖(n, θ)

R⊥(n, θ) +R‖(n, θ)
+ Ld

R‖(1/n, θ)−R⊥(1/n, θ)

R⊥(1/n, θ) +R‖(1/n, θ)− 2

Ld + Ls
R‖(n, θ)

R⊥(n, θ) +R‖(n, θ)

(4.5)

In [109], they acquired the zenith angle of the reflected light using numerical inversion of

the Lambert and Torrance Sparrow models. The zenith angle is required for the calculation
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of the material’s ρ. For this, I used the Ma et al. [64] normal maps acquisition method. The

incident and viewing angles are calculated by converting the material’s estimated normal

map vectors into angles using [80] conversion. Both the light source and the camera were

positioned to be same. These angles are later used in the model data fitting for estimating

the material’s scattering parameters and also the ρ. Here, the test will be done using

different materials with different properties (e.g. surface roughness and chromatic level).

However, the author could not capture the human skin for this experiment. The reason

is that since the setup need both the Icross-polarized and Ico-polarized capture images, the

author has to manually change the polarizer filter due to the limitation of the equipment.

Since the skin is a non-static object, it took the author some time to change the polarizer

filter and this cause the subject (volunteer) to move from its original position by a lot. As a

substitute for skin, the author uses plant materials such as leaves with different conditions

(e.g. green healthy leaves and old dry leaves) instead.

4.3 The correlation test between the model parameters and

the material’s DOP

There are sixteen samples captured for this experiment, they are: Blue Rubber Ball,

Orange Plastic Ball, White Polystyrene Ball, Wood Cube, Brown Clay Teapot, Brown

Cloth, Big Leaf 1, Big Leaf 2, Big Leaf Dry 1, Big Leaf Dry 2, Banana, Green Apple,

Small Leaf, Small Leaf Dry, Small Leaf Hydrated and Yellow Grapefruit. Most of them

are color samples with medium to rough surface and some of the leaves (the big leaves)

are multilayered. In the next following subsections, we will detail the setup, results, and

analysis of the test.

4.3.1 Comprehensive polarization model fitting procedure and the re-

fractive index estimation

To obtained the material’s DOP curve for the correlation test, Zhang–Hancock model [109]

is used to fit to the DOP data of the material, which is first calculated using the Ico-polarized

and Icross-polarized (see Equation 4.4). Figure 4.1 show the DOP images of some of the

samples, calculated using the green channel of the images. In Zhang–Hancock model,

there are three parameters need to be considered: the two radiance Ls and Ld, and the

refractive index n (see Equation 4.5). Since the total radiance is a sum of specular and
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diffuse radiance Ls + Ld = 1, I presumed that the specular radiance Ls = 1 − Ld. This

would decrease the unknown parameters into only two, namely the diffuse radiance Ld

and the refractive index n. The fitting process is completed using the Matlab’s nonlinear

least square function with 25 maximum evaluation, while using the trust-region-reflective

algorithm as the optimization option. The test was done on each RGB channels; using 1100

random data points with selected angles between 0o−75o. Selected data with similar angles

were averaged before the normalization process. Using and exhaustive method, the search

for the best-fit is done by minimizing the root-mean-squared error ∆RMSρ by varying the

parameters of Ld and n. The ranges for the parameters used in the experiment are: Ld

which ranges from (0 to 1) and n which range from (1 to 2.5). Here, the estimated n will

later be used in the scattering model fitting test. The RMS fitting error for the ρ is given

by:

∆RMSρ = 100× 1

K

{ K∑
k=1

[ρm(θk)− ρp(θk, Ld, n)]2
} 1

2
(4.6)

where ρm is the normalized data, ρp is the normalized DOP from the model prediction

and k runs over the index number of the measurements used (K).

Figure 4.1: The ρ images for three samples. Start from the left: Apple; Clay Pot; and

Grapefruit. Calculated using the green channel of the images.

There were several limitations when conducting the experiment. The first is that the

data samples > 75o angles were not included in the test due to the high measurement

error that exists on most of the collected samples. The second is that some samples have

large variance measurements due to these samples having irregular shapes (e.g. the leaves

and the cloth). It does not affect the accuracy of the fit of the model, but it does affect

the estimation of n. Additionally, due to a high error measurement for the wood sample,

resulting from human error, it was not included in the correlation test.
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4.3.2 The refractive index discussion

Comparing the estimated refractive index n with the reference data, it was observed that

some samples were estimated over or under the reference range values (see Table 4.2). If

the lowest point of the curve decreases or increases in value, so does the estimation of

n. The estimation of n using the Zhang–Hancock model can result in some discrepancies

between the reference value and the estimated refractive index when dealing with rough

surfaces, translucence and/or color coated materials. Most of the samples used for this

experiment featured one or more of these characteristics. However, the purpose of using

the Zhang–Hancock model was to determined the ρ curve of the sample.

4.3.3 The new light scattering model parameter estimation

The estimated n from the DOP model was used in the new scattering model fitting test. In

circumstances where the n is not in the range of the reference, the proposed model is not

particularly sensitive to the choice of the refractive index, so using the estimated values is

acceptable. Additionally, for this test, the roughness parameters for the upper and lower

boundaries of the scattering model are assumed identical σ/T = σ′/T ′. Table 4.3 and

4.4 show the new model ∆RMS and their estimated parameters for 15 samples (wood was

excluded due to high data variance), when performed on red, green and blue channels, for

both the Exponential and Gaussian variant. You will note that, based on these tables,

the new Exponential model variant has a smaller average error (∆RMS = 0.173) than

the Gaussian one (∆RMS = 0.195). Additionally, in both tables, most leaves and fruits

samples obtained ∆RMS < 0.2, indicating that the models can estimate parameters for

biological type samples quite accurately.

4.3.4 The correlation results and analysis

To prove that the parameters are able to be related to the practical measurements, the

correlation test is made between the estimated parameters and the material’s polarization

ρ. The tests were completed at five specific angle ranges: 0o − 15o, 16o − 30o, 31o − 45o,

46o−60o and 61o−75o. The ρ averaged values for each of these ranges were then correlated

with the estimated parameters (σ/T , β and a). The refractive index n, however, was not

included in this test. Table 4.5 shows the p-values in color-coded format (e.g. p-value

that is < 0.05 is the most significant), while tables 4.6 and 4.7 illustrate the correlation

coefficient results for both model variants.
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Table 4.2: The Refractive Index n estimation using the Comprehensive Polarization Model.

Samples nref nr ng nb

Blue Rubber Ball 1.50-1.59 [67] 1.39 1.27 1.28

Orange Plastic Ball 1.49-1.50 [78] 1.05 1.08 1.30

White Polystyrene 1.55-1.59 [1] 1.47 1.38 1.34

Wood Cube 1.47-1.48 [78] 2.14 2.30 2.42

Brown Clay Teapot 1.47-1.68 [69] 1.14 1.11 1.32

Brown Cloth 1.51-1.71 [77] 1.15 1.17 1.45

Big Leaf 1 1.41-1.60 [7, 27,107] 1.51 1.35 1.81

Big Leaf 2 1.41-1.60 [7, 27,107] 1.12 1.02 1.29

Big Leaf Dry 1 1.41-1.60 [7, 27,107] 1.16 1.23 1.55

Big Leaf Dry 2 1.41-1.60 [7, 27,107] 1.15 1.16 1.35

Banana 1.41-1.60 [7, 27,107] 1.25 1.38 1.61

Green Apple 1.41-1.60 [7, 27,107] 1.50 1.46 1.83

Small Leaf 1.41-1.60 [7, 27,107] 2.15 1.97 2.33

Small Leaf Dry 1.41-1.60 [7, 27,107] 1.20 1.21 1.55

Small Leaf Hydrate 1.41-1.60 [7, 27,107] 1.23 1.03 1.49

Yellow Grapefruit 1.41-1.60 [7, 27,107] 1.25 1.30 1.63
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Table 4.3: Estimated Parameters for the new Exponential model variant (Here the surface

slope σ/T = σ′/T ′). The rows highlighted in gray are samples that obtained ∆RMS < 0.15

for all color channels.

Samples
Red Green Blue

∆RMS σ/T β a ∆RMS σ/T β a ∆RMS σ/T β a

Blue Rubber Ball 0.208 0.440 0.505 0.743 0.206 0.566 0.396 0.935 0.238 1.218 0.266 0.718

Orange Plastic Ball 0.233 1.804 0.378 0.767 0.125 0.600 0.902 0.836 0.081 0.340 0.290 0.972

White Polyester 0.176 0.471 0.384 0.718 0.172 0.486 0.323 0.783 0.161 0.493 0.287 0.821

Brown Clay Teapot 0.178 0.623 0.302 0.894 0.168 0.383 0.317 0.893 0.174 0.456 0.480 0.596

Brown Cloth 0.314 0.674 0.502 0.678 0.293 0.648 0.352 0.832 0.250 0.652 0.289 0.849

Big Leaf 1 0.152 0.470 0.380 0.782 0.286 0.430 0.495 0.789 0.180 0.507 0.251 0.901

Big Leaf 2 0.128 0.718 0.430 0.771 0.222 1.750 0.127 0.075 0.119 0.694 0.315 0.812

Big Leaf Dry 1 0.223 0.800 0.452 0.655 0.238 0.549 0.447 0.809 0.084 0.480 0.300 0.850

Big Leaf Dry 2 0.311 1.606 0.127 0.858 0.319 1.533 0.154 0.866 0.235 0.959 0.292 0.934

Banana 0.174 1.156 0.310 0.768 0.156 0.900 0.406 0.740 0.093 0.691 0.318 0.890

Green Apple 0.118 0.402 0.276 0.731 0.115 0.520 0.188 0.937 0.125 0.396 0.243 0.307

Small Leaf 0.193 0.773 0.352 0.862 0.181 0.892 0.301 0.929 0.190 0.794 0.339 0.832

Small Leaf Dry 0.164 0.983 0.361 0.664 0.146 0.672 0.396 0.758 0.150 0.634 0.292 0.712

Small Leaf Hydrate 0.057 0.712 0.432 0.617 0.091 0.834 0.477 0.471 0.109 0.764 0.286 0.452

Yellow Grapefruit 0.077 0.556 0.313 0.841 0.070 0.486 0.304 0.846 0.077 0.425 0.282 0.398

Table 4.4: Estimated Parameters for the new Gaussian model variant (Here the surface

slope σ/T = σ′/T ′). The rows highlighted in gray are samples that obtained ∆RMS < 0.15

for all color channels.

Samples
Red Green Blue

∆RMS σ/T β a ∆RMS σ/T β a ∆RMS σ/T β a

Blue Rubber Ball 0.239 0.632 1.000 0.002 0.233 0.848 0.962 0.010 0.219 0.998 0.979 0.001

Orange Plastic Ball 0.218 1.466 0.757 0.005 0.097 1.773 0.857 0.047 0.062 1.497 0.802 0.896

White Polyester 0.273 0.379 0.935 0.144 0.275 0.450 0.883 0.015 0.274 0.469 0.865 0.014

Brown Clay Teapot 0.250 0.626 0.986 0.003 0.273 0.564 1.000 0.000 0.238 0.341 0.978 0.105

Brown Cloth 0.355 0.654 0.964 0.003 0.343 0.648 0.971 0.004 0.287 0.595 0.996 0.009

Big Leaf 1 0.164 0.369 0.338 0.626 0.298 0.782 1.000 0.020 0.213 0.370 0.528 0.490

Big Leaf 2 0.137 0.746 0.999 0.090 0.268 0.998 1.000 0.000 0.133 0.506 0.980 0.110

Big Leaf Dry 1 0.216 0.973 0.999 0.000 0.254 0.690 1.000 0.073 0.088 0.386 0.236 0.992

Big Leaf Dry 2 0.304 0.987 0.991 0.002 0.311 0.988 0.993 0.002 0.238 1.222 0.994 0.000

Banana 0.163 1.176 1.000 0.000 0.154 1.181 1.000 0.044 0.116 0.374 0.641 0.505

Green Apple 0.121 0.256 0.208 0.995 0.126 0.323 0.251 0.980 0.141 0.356 0.175 0.993

Small Leaf 0.200 0.386 0.792 0.411 0.184 0.364 0.543 0.626 0.193 0.346 0.725 0.439

Small Leaf Dry 0.161 0.786 0.983 0.011 0.152 0.705 0.998 0.001 0.163 0.312 0.562 0.581

Small Leaf Hydrate 0.084 0.598 0.368 0.321 0.128 0.621 0.960 0.004 0.111 0.312 0.510 0.476

Yellow Grapefruit 0.119 0.561 0.971 0.008 0.110 0.413 0.949 0.023 0.104 0.444 0.157 0.997
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Table 4.5: The chosen significant level p and its strength (color coded) for two tail test.

Significant level p p < 0.05 0.05 < p < 0.1 0.1 < p < 0.2

Correlation Strength Highest significance High significance Medium significance

Table 4.6: Correlation between the DOP ρ and the estimated parameters for the new

Exponential model variant at five specific angle range.

Parameters 0o − 15o 16o − 30o 31o − 45o 46o − 60o 61o − 75o

σ/T -0.276 -0.267 -0.242 -0.238 -0.327

β -0.273 -0.255 -0.214 -0.203 -0.252

a 0.068 0.071 0.075 0.075 0.091

Table 4.7: Correlation between the DOP ρ and the estimated parameters for the new

Gaussian model variant at five specific angle range.

Parameters 0o − 15o 16o − 30o 31o − 45o 46o − 60o 61o − 75o

σ/T -0.552 -0.545 -0.523 -0.523 -0.583

β -0.469 -0.483 -0.500 -0.504 -0.543

a 0.558 0.567 0.575 0.576 0.620

In practice, surface roughness and absorption can cause depolarization to a polarized

incident light. Knowing this, I would hypothesize that the model’s roughness parame-

ter σ/T should have a negative relationship with the sample’s ρ value, since increasing

roughness would likely depolarize polarized light even more. Meanwhile, the model’s ab-

sorption, a, should have a positive relationship with the sample’s ρ value, because high

absorption levels would produce low diffuse radiance. Looking at tables 4.6 and 4.7, the

σ/T and a demonstrate negative and positive correlation with the ρ values respectively,

which supports my hypothesis. Meanwhile, regarding the correlation between β and ρ, the

results obtained suggested a negative correlation, which means that as the model’s lower

boundary component becomes more dominant (e.g. β > 0.5), the ρ value will become

lower. This result follows the diffuse polarization process state from [106], which asserts

that incident light that penetrates a surface material will result in internal scattering and,

later, refract back into the air, ultimately becoming partially polarized (hence lower ρ).

Looking at the correlation coefficients for both table 4.6 and table 4.7, the Gaussian

variant has been shown to have more significant correlation coefficients than the Exponent

variant. However, the total average root-mean-squared error ∆RMS for the Gaussian
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variant is higher than the Exponent variant (Exponent variant: ∆RMS = 0.173, Gaussian

variant: ∆RMS = 0.195). Moreover, the histogram for the Gaussian model estimated

parameters that were spread unevenly. Most parameters estimated by the Gaussian model

are at the end of the estimation range; for example, most samples’ a were either estimated

to be ≈ 0 or ≈ 1, in which, become outliers that affect the overall correlation between the

Gaussian model parameters and the ρ. The histograms for the parameters and the ρ for

all samples are shown in Figure 4.2 and 4.3.

Figure 4.2: Histogram for the estimated parameters for the two new models.

Meanwhile, across the zenith angle, when the light incident is θi = 0o, the level of po-

larization should be different for the specular and diffuse components. In the experiment,

the specular component should be the dominant radiance contributor near the surface nor-

mal where the radiance should be the highest, but the dominance may shift to the diffuse

component as the viewing angle moves away from the right angle (e.g. surface normal).

Here, the polarization of the specular component is maintained while the diffuse compo-

nent becomes depolarized. Furthermore, the level of polarization ρ should be different

across the angles due to the difference between the specular and diffuse components.

Tables 4.6 and 4.7 show that there are different correlation strengths across the angle.

As examples, Figure 4.4-?? show the curve for the proposed scattering model and their
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Figure 4.3: Histogram for the ρ at specific angle range (Right side).

DOP for three different samples with increasing roughness (e.g. Apple, Grapefruit and

Cloth).

Note that increasing the proposed model roughness parameter σ/T would increase

the curve diffuse outgoing radiance since the correlation results between σ/T and ρ are

negative (see Tables 4.6 and 4.7). An increase in diffuse outgoing radiance should result in

a decrease in ρ. Interestingly, evidence of this behavior did emerge from the measurement.

For example, a smooth surface apple with low σ/T (small scattering of light) was shown

to have higher ρ (see Figure 4.4 or 4.6 for the model curve fitting for the Exponential or

Gaussian variant respectively), while a less smooth surface, like grapefruit, having σ/T

than the apple (wide scattering of light) was shown to have lower ρ (see Figure 4.5 or 4.5

for the model curve fitting for the Exponential or Gaussian variant respectively). This

suggests that the behavior of the model’s σ/T parameter is in agreement with the surface

roughness effects on the material’s DOP [5,6, 30,37,48,52].

On the other hand, even though a and ρ have a positive correlation for both model

variants, the correlation coefficients for the exponential variant are not significant (p >

0.2). Meanwhile, the Gaussian variant was shown to have a strong significant (p < 0.05),

but the estimated parameter data histograms illustrated a mostly uneven spread and was
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concentrated in specific value ranges (see Figure 4.2).

Figure 4.4: The new model curve (top) and the DOP curve (bottom) fitted on the captured

data. This is for the Exponent variant done on the Red channel (Sample: Apple). σ/T =

0.40, β = 0.28, a = 0.73. Noted that the spike in the radiance data (top) is the specular

highlight that was unable to be completely removed (measurement error).

Figure 4.5: The new model curve (top) and the DOP curve (bottom) fitted on the captured

data. This is for the Exponent variant done on the Red channel (Sample: Grapefruit).

σ/T = 0.56, β = 0.31, a = 0.84.
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Figure 4.6: The new model curve (top) and the DOP curve (bottom) fitted on the captured

data. This is for the Gaussian variant done on the Red channel (Sample: Apple). σ/T =

0.26, β = 0.21, a = 0.99.

Figure 4.7: The new model curve (top) and the DOP curve (bottom) fitted on the captured

data. This is for the Gaussian variant done on the Red channel (Sample: Grapefruit).

σ/T = 0.56, β = 0.97, a = 0.01.
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4.3.5 The absorption parameter analysis

There are various modes of interaction between electromagnetic radiation and matter.

Each material has a particular absorption and reflection spectrum as a result of this.

Furthermore, the absorption properties of a material will greatly vary over the frequency

range. To study the behavior of the proposed model’s absorption, I conducted an addi-

tional analysis between the plant sample estimated parameters and their physical condi-

tion, focusing only on the Exponential model variant.

Figure 4.8: Changes in Leaf Reflectance as it Dries for Magnolia Leaf (Magnolia grandi-

flora). Image taken from [45]

There is an empirically established relationship between the plant optical and biochem-

ical properties, such as the leaf response to aging or environmental stresses [32,45,59,92].

Even though different species have varying concentrations of light absorbing compounds

(chlorophylls, carotenoids, water, cellulose, lignin, starch, proteins, etc.), most dry plant

leaves absorb less light in all visible spectrums (400nm−700nm) [32,45,59,92] (see Figure

4.8 as an example). In this study, I observed the estimated absorption difference between

a young leaf and a dry one (for the same species).

One interesting feature that emerges from the observation (see Table 4.8) is that, for

leaves of the same species, the dryer leaf has lower absorption than the young healthy one

(for the Exponent variant). This was observed on the red, green and blue spectral bands.
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These results support the empirically established relationship between plant reflectance

and dryness detailed in [32,45,59,92]. This suggests that the a in the new model has some

degree of relation (especially the Exponential variant model) to the absorption properties

of organic material. However, the absorption behavior is quite different for the Big Leaf 2

and Big Leaf 2-Dry, due to their multi-layer properties.

Table 4.8: Estimated parameters for specific group of plant leaves (Exponent).

Absorption

Group 1 Blue Green Red

Big Leaf 1 0.901 0.789 0.782

Big Leaf 1 (Dry) 0.850 0.809 0.655

Group 2 Blue Green Red

Small Leaf 0.832 0.929 0.862

Small Leaf (Dry) 0.712 0.758 0.664

Small Leaf (Hydrate) 0.452 0.471 0.617

4.3.6 The chosen parameters for the parameter-age test

The results of this experiment regarding correlation have suggested that the new param-

eters of the scattering model can be related to the sample measurements and physical

characteristics. The chosen parameters are the roughness parameter σ/T , the balance

parameter β, and the absorption parameter a. The refractive index n was not chosen

because the estimated n of the samples tend to deviate from the reference values. Other

BRDF models that have similar parameter characteristics are also used for comparisons,

such as the Oren-Nayar [12] model that has a roughness parameter m and the BSSRDF

model [44], which includes the scattering coefficient σs and absorption coefficient σa.

4.4 The light stage setup

To obtain the necessary angle measurements from the subject’s face, the diffuse normal

map is captured using the Ma et al. [64] spherical gradient illumination technique and a

geodesic dome light stage with LED light sources. The Ma et al. photometry method is

a technique that can approximate surface normal maps by estimating it from the object’s
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diffuse reflectance using only a small number of gradient illumination patterns. Due to

the low number of patterns, the method is suitable for real-time normal capture using

time-multiplexed illumination.

In the setup, two light sources were used, namely a) ultra-bright white LEDs and

b) a flash lamp. The image capture process was performed inside a geodesic dome light

stage with diameter 1.58 m, with 40 filtered LEDs located at each geodesic vertex [16].

Linear polarization filters were positioned in front of each of the LEDs and also in front

of the lens of the Nikon D200 camera. The light stage is controlled using an mbed NXP

LPC1768 microcontroller development board. This controls the brightness of the LEDs

and the camera shutter. The camera was placed at the periphery of the light stage and was

manually focused. A single camera flash lamp (Nikon Speed-light SB-600) was positioned

slightly above the camera, having a flash output level of 1/64 and a zoom head position

value configured to 24 mm. The size of the captured image is 471× 421. Figure 4.9 shows

an image of the geodesic light stage used for this experiment and its diagram.

Surface reflection consists of diffuse and specular reflectance components. To sep-

arate these components, the cross-polarization method [16, 64] was used to obtain the

diffuse component of the subjects. Using linearly polarized incident light (LED), the dif-

fuse reflection was captured by placing a linear polarizer in front of the camera oriented

perpendicular to the plane of incidence.

The spherical gradient photometric stereo method [64] amounts to the capturing of

a sequence of images under spherical illumination conditions. When all light sources are

set to a constant brightness, shading is canceled out and the surface albedo is able to be

measured directly. We refer to this as the constant image, C. To capture geometry, six

illumination conditions are captured wherein the brightness of each light source is linearly

related to its direction from the center of the dome. The X, Y and Z images use gradient

patterns wherein the illumination brightness depends on the x, y and z component of the

light direction. To improve the signal to noise ratio, we also captured the complement

images X̂, Ŷ and Ẑ, wherein the gradients were inverted. Hence, with no motion, we

would expect that C = X + X̂. In practice, we expect some small, possibly nonrigid

motion to occur between frames.

To test the accuracy of Ma’s spherical gradient illumination technique, several synthe-

ses images were made from a ground truth surface normal map. For this test, the author

selected the already estimated surface normal of a doll made out of fabric as a ground
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Figure 4.9: The geodesic dome light stage used in the experiment.

truth image. To create a synthesis image for the surface normal map estimation using the

Mas technique, the author rendered light scattering image on the ground truth surface

normal with different scale of albedo for different gradient illumination directions (Xa, X̂a,

Ya, Ŷa, Za, and Ẑa). The first synthesis sample (henceforth, will be called synthesis X) is

the six gradient illumination direction images with the albedo in two different X-gradient

directions (Xa and X̂a) are multiplied by a scale of two, while albedo for Y-gradient and

Z-gradient is scale to one, so that the first group of images would be (2Xa, 2X̂a, Ya,

Ŷa, Za, and Ẑa). The surface normal map for the synthesis X samples (gradient images)

will then be estimated using the Mas photometry technique and later compared with the

ground truth. The author also made two more synthesis samples, which are the synthesis
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Y (Ya and Ŷa are multiply by two, while other gradients are scale to one) and synthesis

Z (Za and Ẑa are multiplied by two, while other gradients are scale to one). To calculate

the accuracy, the author selects a profile within the surface normal map and compare

the geometry depth difference (z-direction) between the ground truth and the synthesis

samples using the root-mean-square equation. The closer the synthesis surface normal

map estimation is to the ground truth geometry depth, the lower the RMS will be. The

RMS error for synthesis X, Y and Z are 19.5829, 3.6335 and 10.2996 respectively. The

total average RMS is 11.1720 and the total RMS standard deviation is 8.0104. Figure 4.10

(top) shows the surface normal maps for the ground truth and the synthesis images. The

yellow line indicates the location of the profile surface. Meanwhile, Figure 4.10 (bottom)

shows the plot of the slice through the surface structure of Figure 4.10 (top). From the

results, it is indicated that if the intensity of the gradient illumination is different for all

gradient directions, it will have an impact in the surface normal map estimation accuracy

when using the Mas photometry technique. It is advisable to use all light sources (i.e.

the LEDs) that produce the same intensity. Nevertheless, the surface geometry for the

synthesis images estimated surface normal maps is quite close to the ground truth.

In addition to the seven spherical gradient images, we also captured an additional

image(s), a point flash image, that uses the camera flash as a light source. The purpose

of the flash image is to be used as an image reference, which is required for the model

prediction. For the experiment in Chapter 4.2, we captured two additional different flash

reflectance images (co- and cross-polarized source flash). Meanwhile, Chapter 5 required

the capture of just one additional cross-polarized source flash image of each subject used

in the experiment. These flash images are used to estimate the degree of polarization

(Chapter 4.2) and/or the light scattering model parameters (Chapter 5.1). In this section,

the flash image is used to solve the problem for aligning images captured using different

types of light source.

4.5 Image acquisition problem and the new image alignment

method

There are two alignment problems that need to be addressed in order for our experiments

to capture a non-static object. The first is that of aligning small inter-frame motions

captured in the spherical gradient photometric stereo. The second is aligning inter-frame
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Figure 4.10: The top figure shows the surface normal maps, start from the left: the ground

truth, the synthesis X, the synthesis Y and the synthesis Z. The yellow line indicates the

location of the profile surface. The bottom figure shows the plot of the slice through the

surface structure of the doll.

motions for photometric images captured in changing lighting conditions. The objective

here is to create an alignment method that addresses these two illumination problems

associated with imaging a human face that will undoubtedly make small motions through-

out the process. The situation arises when a human face is being captured using different

cameras and lights, and there is a gap of several seconds between the acquisition of the

different images. Under these conditions the subjects face may move by several millimeters

between images where the frames are captured using the spherical gradient illumination

photometric stereo technique described in [64].

To tackle this obstacle, we present a reflectance-aware optical flow technique to solve

some of the alignment problems for images captured in disparate illumination environ-
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ments. The technique combines optical flow estimation with illumination-independent

image transformation, image color transformation, and specular-invariant projection. In

this section, we test the accuracy of our photometric alignment method with two prob-

lems in mind, namely (1) images captured in different lighting gradient using a single

light source; and; (2) images captured using different types of light source. Here, the

alignment experiment will use the seven spherical gradient images of subjects and an ad-

ditional eighth image using a point source flash. The first challenge is to densely align the

spherical gradient images. However, this is made easier by the fact that the properties

of the illuminants are fixed. Our second challenge is to align the spherical gradient set

with the flash image. This is more difficult both because the shading is unlike any of the

other images and, also, because the spectral power distribution of the flash and LEDs are

different, which means the image has a different color to the rest of the images. Figure 4.11

shows the entire image sequence for one sample set, while Figure 4.12 shows the overall

experiment flow for testing the new alignment method.

Figure 4.11: The eight images captured in a sequence. Starting from the leftmost, the X,

Y , Z, X̂, Ŷ , Ẑ and C are the LED spherical gradient images. The rightmost image is the

flash image.

4.5.1 Illumination-Independent Image

Different illumination gradients influence the image brightness constancy, which, in turn,

can directly affect the optical flow calculation. Nevertheless, the spherical illumination

pattern affects the intensity, but not color. Based on this observation, we mimic the

approach of Seck et al. [89] by using a color-space transformation technique to extract

intensity-free information from the frames, producing an illumination-independent image,

Icolour:

Icolour =
1

2

Ihue +
I√

I2
R + I2

G + I2
B

 (4.7)
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where I is the captured image, and Ihue is the hue component of the Hue-Saturation-Value

(HSV) space; IR , IG and IB are respectively the red, green and blue image channels.

Optical flow methods [60] are sufficient for correcting any small motion misalignment.

To align the images, Seck et al. [89] modified the Wilson et al. [105] iterative optical flow

approach which can be used to solve the issues associated with both the gradient and its

complement images. Assuming that there is no motion, the sum of a gradient image and

its complement are equal to the constant image. For example, let the x-gradient images

be:

C(x, y) = X(x1 + ∆x1, y1 + ∆y1) + X̂(x2 + ∆x2, y2 + ∆y2) (4.8)

Wilson et al. [105] initially computed the flow from X to C − X̂ followed by the flow

from X̂ to C − w(X), where w is the warp computed at the previous step. However, by

using the equation 4.7, we were able to use the flow between Ccolour and X̂colour to align

Figure 4.12: The process flow of the new alignment method.
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C and X̂ before computing C − X̂. Figure 4.13 shows two gradient images and their

illumination-independent transformation.

Figure 4.13: Two images in different spherical gradient lighting patterns (top) and their

corresponding illumination-independent images (bottom). The left column is the X Gra-

dient image and the right column is its complement image.

From the aligned spherical gradient images, we can compute per-pixel surface normal

estimates and the diffuse albedo [105]. We then use these to render a diffuse image with

a point light source in the same direction as the flash. This provides a target image to

which we can align the flash image.

4.5.2 Image Color Transformation

Before aligning the flash image to the rendered image, we begin by compensating for the

color transformation caused by the different light sources. We assume that the two color
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spaces can be related by an affine transformation:

ILED(x, y) = TIFlash(x, y) +−→c (4.9)

where ILED(x, y) and IFlash(x, y) are LED and flash RGB reference images respectively,

having the size of 3× 1. Meanwhile, T is a 3× 3 transformation matrix, and −→c is a 3× 1

vector of offsets. To obtain T and −→c , we first acquire reference images of a color checker

chart illuminated by each light source. We averaged each of the 24 color squares from the

flash and LED chart images and used them to form a 72× 12 matrix F and 72× 1 vector
−→
L , respectively. The matrix form for F is:

Ai =


ri gi bi

0 0 0

0 0 0

Bi =


0 0 0

ri gi bi

0 0 0



Ci =


0 0 0

0 0 0

ri gi bi

F =


A1 B1 C1 Id

...
...

A72 B72 C72 Id

 (4.10)

where Id is an 3 × 3 identity matrix and (ri, gi, bi) is the color of the ith color checker

square in the flash image.
−→
L is given by:

−→
L =

[
R1 G1 B1 R2 . . . B72

]
(4.11)

where (Ri, Gi, Bi) is the color of the ith color checker square in the LED image.

We express the affine relationship as

F−→v =
−→
L (4.12)

and solve in a least squares sense for the 12× 1 vector −→v containing T and −→c :

−→v =
[
T 11 T 12 T 13 T 21 . . . T 33

−→c 1
−→c 2

−→c 3

]
. (4.13)

4.5.3 Projection into Specular Invariant Space

After color correction, we expect that the flash image and the rendered image will differ

only as a result of the specular reflections that are included in the flash image, while they

are not in the rendered image. For this reason, we project into a specular invariant space

as proposed by Zickler et al. [111], producing a dichromatic specular invariant image. This

is done by linearly transforming the RGB coordinate system by rotating one of its axes

100



(in this case, blue B) to align in the direction of the source vector s. This transformation

defines a new color space referred to as the SUV color space [111]. It is defined according

to eSUV = BeRGB using any B ∈ SO(3) that must satisfy Bs = (0, 0, 1). With the neutral

interface assumption, the observation of a surface point can now become:

eSUV = d̄φd + s̄φs (4.14)

with,

d̄ = Bd and s̄ = Bs = (0, 0, 1). (4.15)

The S channel can be uniquely defined for a given s, while U and V channels can be

arbitrarily chosen from the family of orthonormal bases for the plane orthogonal to s. The

S channel encodes the entire specular component while the U and V diffuse channels are

independent of φs and, therefore, become specular invariant [111]. As a consequence of

linear transformation, when rTi denotes the ith row of B, the values of the two diffuse

channels then satisfy:

eU = rT1 dφd and eV = rT2 dφd. (4.16)

The dichromatic specular invariant projection image can now be produced using the equa-

tion 4.16 to get a two-channel color vector j = (eU , eV ).

4.5.4 The image alignment test

In this experiment, we conducted two alignment tests to address two separate illumination

problems. The first problem we considered was that frames captured in different spherical

gradient illumination needed to be aligned, while the second one is that frames captured

using two different light sources needed to be aligned. For the first test, we conducted

alignment error calculations between two gradient images (e.g. Figure 4.14). The pixel

alignment error is calculated based on the difference of pixel brightness, where the equation

is given by:

EP =

∣∣∣XP − X̂P

∣∣∣
X̂P

× 100


if EP ≥ 15% then CountP = 1

if EP < 15% then CountP = 0

(4.17)

where here, P is the pixel location at row i and column j. We assume an acceptable pixel

alignment error to be below the threshold of 15%. The overall alignment error between

the two frames is given by:

EAlign =

∑∞
n=1Countn

n
(4.18)
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To observe the accuracy of the method, we aligned the transformed complement gradient

images by rotating it at a certain degree or by increasing its brightness at a certain scale.

The results are shown in Table 4.9 and Table 4.10. Note that for the brightness test, we

used the complement image rotated at 8o clockwise.

Figure 4.14: Alignment error difference for two different frames (Constant and X-Gradient)

at the nose and mouth; before (left) and after (right) alignment. The nose and mouth

outline is visible for the left image compares to the right one.

Table 4.9: Alignment error for different rotation r of the complement image (clockwise)

Rotation Degree ’r’

Sample 0o 4o 8o 12o 16o 20o 24o 28o 32o 36o 40o

X1 − X̂r1

µ 0.0704 0.0684 0.0700 0.0715 0.0744 0.0803 0.1000 0.1300 0.1532 0.1541 0.1593

σ 0.2558 0.2524 0.2552 0.2576 0.2625 0.2718 0.3000 0.3363 0.3602 0.3611 0.3660

Y1 − Ŷr1
µ 0.0806 0.0807 0.0808 0.0809 0.0845 0.0849 0.1184 0.1368 0.1849 0.2107 0.2011

σ 0.2722 0.2724 0.2725 0.2727 0.2781 0.2787 0.3231 0.3437 0.3882 0.4077 0.4008

Z1 − Ẑr1
µ 0.0739 0.0712 0.0715 0.0750 0.0741 0.0915 0.0998 0.1249 0.1583 0.1634 0.1513

σ 0.2616 0.2571 0.2576 0.2634 0.2619 0.2883 0.2997 0.3306 0.3650 0.3697 0.3583

X2 − X̂r2

µ 0.0256 0.0241 0.0236 0.0242 0.0372 0.0416 0.0460 0.0512 0.0526 0.0716 0.0670

σ 0.1579 0.1535 0.1518 0.1538 0.1894 0.1996 0.2096 0.2204 0.2232 0.2579 0.2500

Y2 − Ŷr2
µ 0.0287 0.0276 0.0275 0.0291 0.0340 0.0416 0.0456 0.0631 0.0710 0.0842 0.0884

σ 0.1670 0.1638 0.1636 0.1680 0.1812 0.1996 0.2087 0.2431 0.2568 0.2777 0.2838

Z2 − Ẑr2
µ 0.0356 0.0329 0.0327 0.0354 0.0362 0.0389 0.0567 0.0628 0.0769 0.0768 0.0889

σ 0.1854 0.1784 0.1779 0.1847 0.1867 0.1933 0.2313 0.2427 0.2665 0.2663 0.2846

In practice, the alignment of the LED images provides good results with just one
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Table 4.10: Alignment error for different brightness scale b of the complement image

rotated at 8o clockwise

Brightness scale

Sample 1.05 1.10 1.15 1.20 1.25 1.30 1.35

X1 − X̂b1

µ 0.0705 0.0707 0.0711 0.0855 0.1128 0.1188 0.1191

σ 0.2560 0.2563 0.2570 0.2796 0.3163 0.3236 0.3239

Y1 − Ŷb1
µ 0.0806 0.0809 0.0810 0.0819 0.0825 0.0837 0.0862

σ 0.2723 0.2727 0.2729 0.2742 0.2752 0.2770 0.2807

Z1 − Ẑb1
µ 0.0807 0.0762 0.0797 0.0906 0.0867 0.0855 0.0821

σ 0.2723 0.2652 0.2708 0.2870 0.2814 0.2797 0.2745

X2 − X̂b2

µ 0.0239 0.0240 0.0268 0.0243 0.0306 0.0407 0.0481

σ 0.1528 0.1532 0.1616 0.1539 0.1722 0.1976 0.2139

Y2 − Ŷb2
µ 0.0274 0.0275 0.0276 0.0275 0.0276 0.0277 0.0275

σ 0.1634 0.1635 0.1640 0.1636 0.1637 0.1640 0.1635

Z2 − Ẑb2
µ 0.0340 0.0351 0.0433 0.0455 0.0436 0.0426 0.0486

σ 0.1811 0.1841 0.2034 0.2083 0.2043 0.2020 0.2150

iteration after initialization. Tables 4.9 and 4.10 show that as the rotation or brightness

increases, so does the mean error and its standard deviation. Visible misalignment at

a certain region of the face start to occur as the rotation degree reach ≥ 12o or the

brightness scale > 1.2. So, good alignment should not exceed this threshold when using

this alignment method if the first problem outlined above is to be managed.

Regarding the second problem of aligning the spherical gradient set with the flash

image, the projection to the specular invariant space is applied to both the color-corrected

flash image and the rendered image. Hence, we finally obtain a pair of specular invariant,

two channel images which (neglecting noise) differ only by a global scaling. We compute

an approximate global scale using the unaligned images and finally apply optical flow to

compute the dense alignment. In practice, attenuation of the flash light means that the

boundary of the face is much darker than predicted by our rendering. Moreover, due to the

different intensity distributions between the rendered and the flash dichromatic images,

the intensity distribution was still large enough to cause the optical flow to miscalculate
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even after scaling was applied to these images. These are the main sources of error in our

alignment for the flash image.

4.5.5 Discussion on the image alignment test

Due to limitations resulting from the available equipment, it was difficult to calibrate both

the LEDs and the camera flash to produce the closest attenuation effect. The illumination-

independent transformation failed when applied to the flash image because of the attenua-

tion difference. Moreover, the transformation cannot be applied to the dichromatic images

since all three channels are required to calculate the image’s HSV. Figure 4.15 shows the

illumination-independent images obtained for the LED and the flash images (after color

transformation); the differences between the two are quite apparent.

Figure 4.15: Two illumination-independent images. The left is the LED image (constant

gradient) and the right is the transformed color flash image.

In the second alignment test, we did not achieve good result for two reasons. Firstly,

the shadow forming on the sides of the face of the flash image contributed to the alignment

error. Using a rendered image mimicked the flash image aesthetically, but did not improve

the performance. Secondly, even after applying the specular invariant projection technique

and the scaling on both the flash image and the rendered images (Figure 4.16), their pixel

intensity histogram distributions remained quite different. This resulted in inaccurate

movement flow estimation due to the attenuation problem. As an alternative for aligning

flash image for the experiment detailed in Chapter 5.1, the extrapolation technique was

used instead.
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Figure 4.16: The dichromatic images. The left is the flash image version while the right

is the rendered version.

4.6 Summary

The correlation test between the material’s DOP and the new model parameters suggest

that the new scattering model’s parameters can be related to the sample’s practical char-

acteristics. The chosen parameters that will be used in the next experiment (Chapter 5.1)

are the roughness σ/T , the balance parameter β and the absorption a. Moreover, the

results from Table 4.3 and 4.4, have shown that the model parameter estimation of leaves

and fruits samples obtained ∆RMS < 0.2, indicating that the new models can be used to

estimate parameters for biological type samples quite accurately. This is important when

trying to estimate the skin parameters for different aging skin for the purpose of statistical

analysis.

For the image capturing process, we introduced a reflectance aware optical flow method

for aligning photometric images with different lighting environment. It was observed to

provide good alignment results for frames captured in different gradient illumination, but

failed to align the frames captured with changing light source. Nevertheless, the method

is novel and can be improved. Some of the future improvements or alternatives to be

considered for the second illumination problem are: 1) Capturing the subject’s diffuse

component for the flash image using the polarizer. By doing this, the specular invariant

projection process can be skipped. However, the polarizer for the camera flash needs to be

adjusted manually and the light attenuation problem between the flash and LED image still
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remains. 2) Using a controllable light source so that the light can be calibrated to give the

appropriate brightness. Still, this results in the creation of a control lighting environment

which negates the purpose of the proposed method. 3) Focus on designing an algorithm

to handle the attenuation problem between the two images or replace the proposed flash

image alignment with an extrapolation technique. Additionally, as an alternative to the

linear polarized spherical illumination method, the proposed alignment technique might

also work if the circular polarized method advanced by Ghosh et al. [29] was chosen

instead. In summary, refinements of the proposed method may assist in image alignment

and photometry where they are being used in an uncontrollable lighting environment.
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Chapter 5

The relation between the model

parameters and the subject age

This chapter will outline the study undertaken for this thesis, which is studying the re-

lationship between the parameters of a light scattering model and skin from subjects of

various ages (henceforward, referred to as the parameter-age test). The main objective of

this study is to analyze whether the parameters of statistic-based Bidirectional Reflectance

Distribution Function (BRDF) models can be used to distinguish between skin of differing

ages. This is done by fitting the models under study (i.e. the new model and other selected

BRDF models) to the subject’s radiance measurements, by varying the model parameters

to minimize the root-mean-squared error and, later, correlating the parameters with the

subjects ages. The sections contained in this chapter provide details regarding how the

data was collected and organized, the methodology of the experiment, the test results, an

analysis of the parameter-age relationship, and a discussion of the findings.

5.1 The data collection and organization

The subjects in this experiment were volunteers, all of whom had freely provided their

consent. The candidates were categorized based on their skin types using the Fitzpatrick

labeling method, which is a skin classification base on the amount melanin pigment in the

skin [23]. This is determined by constitutional colour (white, brown or black skin) and the

result of exposure to ultraviolet radiation (tanning). The scale start from the pale or white

skin classify as number 1 and increases in number as the skin gets darker (the darkest skin

is classify as number 6). Pale or white skin burns easily and tans slowly and poorly, while
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darker skin burns less and tans more easily. Table 5.1 shows the candidate pool grouped

based on their gender and skin type. Two measurements were taken from each subject;

the normal map and a single diffuse reflectance image, which acts as a reference image for

the model fitting. The normal map was acquired using the Ma et al. spherical gradient

illumination method [64], while the diffuse reflectance image was captured using a single

flash camera fitted with a cross-polarizer filter. The image was captured in the .tiff format

with the size being 3900× 2616, however, for the purpose of processing the image, it was

resized to 1/4 (or 975 × 654) of its original size using the bicubic interpolation method.

The scaled down image reduces the time required for the image alignment process. The

author has noted that reducing the image size will degrade the image quality to some

extent due to the down-sampling process, which will affect the appearance quality of the

aging features that are on the facial image. See Chapter 4.4 for more detail regarding the

image acquisition setup.

Table 5.1: The candidates used for the parameter-age test

Group by gender

Age Group 19-29 30-39 40-49 50 > Total

All Male 9 7 1 6 23

All Female 14 6 4 1 25

Overall Total 48

Group by skin type (using the Fitzpatrick labeling method [23])

Skin Type Male Male with Cream Female Female with Make up / Cream Total

2 4 0 2 3 9

3 9 1 3 5 18

4 6 0 6 6 18

5 2 1 0 0 3

Overall Total 48

It is also noted that most of the candidates are people who work indoors, so the data

collected is limited in this respect. Nevertheless, different skin properties can and do

still occur for each individual due to other effects, such as genetics (internal force) or skin

injury (external force) [25,84,87]. Additionally, there are a higher proportion of candidates

below the age of 29 within the sample used in this experiment. This is because most of

these volunteers are acquainted with the author of this thesis. Table 5.1 illustrate that the

volunteer quantity decreases as the age group increases. That said, there are a number of
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male volunteers above the age 50 who have been included within the sample. The reason

is that most of these volunteers who kindly agreed to help were staff who work in the same

department as the author. Figure 5.1 shows some of the volunteers captured using the

camera flash fitted with a linear polarization filter.

Figure 5.1: Several images of volunteer used in this experiment.

There were some volunteers who were wearing makeup (or facial cream) when the

image of them was captured. It should be noted that the cosmetics do likely affect the

light scatter on the skin. More than half of the women in the dataset were wearing

cosmetics when the image of them was captured. In the experiment, these volunteers

are included in the test to observe how would the cosmetics affect the estimation value

of the model parameter(s). The dataset also includes volunteers from a variety of ethnic

backgrounds, namely: Malaysian = 22; English = 11; Chinese = 5; Turkish = 2; Indian

= 1; Welsh = 1; Maldovian = 1; Arabic = 1; White Asian = 1; Irish = 1; Russian = 1;

and American = 1. It should be noted that different ethnic backgrounds usually result in

different facial structures and skin and that the process of chronological aging is likely to

differ between those from different ethnic backgrounds [8, 58, 65, 68, 85, 90, 94, 100]. This

turn, this will affect the light scatter on their facial skin. The author was not able to get

an evenly distributed race in the dataset, due to the author respecting the candidates’

right to privacy.

One of the limitations resulting from this dataset is that it collected different subjects

with different age, not subjects capture in progressing age. The affirmation correlation of
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the results of the experiment regarding the relationship between the model parameter and

the subject age would be much stronger if similar subjects were captured across a coherent

and progressive age range. This would help to confirm that the model parameter does

change as a result of aging. However, to obtain data from a single subject in consecutive

years is time consuming and costly to both the subject and the researcher. Moreover, the

volunteer’s skin condition must also be taken into consideration. A subject who works

outdoors in the sun would have age more across one or two years than a subject who

work indoors, due to external forces, such as photoaging, which is a skin damage caused

by prolonged sun exposure. Furthermore, the changes resulting from external forces can

be slow for subjects who work indoors and it may take five years for some changes or

additional aging features to appear on their faces (It should be noted that this is true only

for the sample within the adult to senior stage). As such, the experiment will proceed

based on the data collected from the current sample.

5.2 The experiment methodology and results

After the images of the front of the subject face had been captured, they were cropped

into four different sections, namely the forehead, the left cheek, the right cheek, and the

nose. The reason for this is that different facial sections have different facial structures

and skin properties, which will, in turn, produce differing radiance intensities. In this

experiment, the radiance from each area was averaged across the angles. Here, only the

data at 0o− 70o angles were used because the data at angles > 70o produce high radiance

variances that can contribute to model fitting error.

This parameter-age test is done using all of the candidates collected. To estimate the

parameter(s), the selected models are fit to the captured radiance data. This was done by

varying the model parameters in an effort to minimize the root-mean-square error ∆RMS

(see Equation 3.16). For the new model variants (Exponential and Gaussian), the initial

estimation range for the new model RMS slope σ/T are between (0.01 to 2.00), while

the absorption a - range between (0 to 1). Meanwhile, for the Ragheb–Hancock (R–H)

models, σ/T is between (0.01 to 4.00). The balance parameter β for both the new and

R–H models are made within the range of (0.01 to 1.00). It should be noted that in this

test, for both new and R–H models, the RMS slope for the surface and the subsurface

are identical σ/T = σ′/T ′. As for the Oren–Nayar model, the roughness parameter m is

measured in degrees, so the range of estimation is between (0o to 180o); while the albedo
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ρON is within (0 to 1). The BSSRDF model scattering σs and absorption σa coefficients

were also estimated to be between (0 to 1). Meanwhile, each model has a coefficient kmodel,

the range for them being between (0 to 1). It should be noted that the relevant equations

have already been described in chapter 3.

The estimations are completed using 1000 selected sample points, using Matlab’s least

squared function with maximum function evaluation set to 55. After the initial fitting

process, the samples are fitted to the model again, but with smaller and more specific

estimation ranges for the parameters. This is done in an effort to decrease large variation

within the initial estimation. The process is completed several times until it reaches

the least total ∆RMS and the least possible variation. After the final estimation, the

relationship between the parameters and the subject age can be analyzed. The analysis

consisted of the calculation of the correlation coefficient for the selected parameters, with

any values that have p < 0.05 being highlighted.

To demonstrate the accuracy of the models, Figure 5.2 shows the ∆RMS histogram

of all the data, including all of the color channels and all of the face sections for all six

different models. Meanwhile, Figure 5.3 illustrates the fitting plot for one subject on six

different models. The subjects used in this experiment possessed a wide variety of facial

features as a result of varying gender, skin type, cosmetic use and facial structure. Figures

5.4 to 5.9 show the plots for the subject age against the estimated parameters for each of

the six models, on each RGB channel. The experiment used all 48 subjects; including all

facial sections. The points in the plots are the estimated model parameters. The dotted

line is the regression line. Meanwhile, Tables 5.2 - 5.4 show the two-tailed correlation

coefficient results between each model parameters and the subject age.
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Figure 5.2: The root-mean-square error RMS∆ histogram for the models using all 48

samples (including all facial region).
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Figure 5.3: Normalized data measurements against the normalized radiance prediction

(Subject: Male, Age: 35, Skin Type: 2, Cosmetic: None).
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Table 5.2: Correlation coefficients between the parameter and the subject age for the New

model using all samples. (White cell p < 0.05; Grey cell: p > 0.2)

Model Parameter R G B

σ/T 0.2146 0.2309 0.1555

β 0.0044 -0.0785 -0.0724New Exponential

a 0.1924 0.2781 0.1758

σ/T 0.2405 0.2434 0.1662

β 0.2637 0.3083 0.2231New Gaussian

a 0.0651 -0.0494 0.0379

Table 5.3: Correlation coefficients between the parameter and the subject age for the R–H

model using all samples. (White cell p < 0.05; Grey cell: 0.1 < p < 0.2)

Model Parameter R G B

σ/T 0.3948 0.3518 0.3010
R–H Exponential

β 0.2575 0.2365 0.2695

σ/T 0.3156 0.3104 0.2489
R–H Gaussian

β 0.1405 0.1558 0.1201

Table 5.4: Correlation coefficients between the parameter and the subject age for the

Oren–Nayar and BSSRDF models using all samples. (White cell p < 0.05; Grey cell:

0.1 < p < 0.2)

Model Parameter R G B

Oren–Nayar m 0.2578 0.2977 0.1936

σs 0.1718 0.1633 0.1320
BSSRDF

σa -0.1718 -0.1634 -0.1320
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Figure 5.4: The estimated parameter plots for the new Exponential model done using

all 48 subjects; including all facial sections. The top of each plot shows its correlation

coefficient.
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Figure 5.5: The estimated parameter plots for the new Gaussian model done using all 48

subjects; including all facial sections. The top of each plot shows its correlation coefficient.
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Figure 5.6: The estimated parameter plots for the R–H Exponential model done using

all 48 subjects; including all facial sections. The top of each plot shows its correlation

coefficient.

Figure 5.7: The estimated parameter plots for the R–H Gaussian model done using all 48

subjects; including all facial sections. The top of each plot shows its correlation coefficient.
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Figure 5.8: The estimated parameter plot for the Oren–Nayar model done using all 48

subjects; including all facial sections. The top of each plot shows its correlation coefficient.

Figure 5.9: The estimated parameter plots for the BSSRDF done using all 48 subjects;

including all facial sections. The top of each plot shows its correlation coefficient.
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5.3 Analysis on the model relation with the skin property

When using the inverse rendering method to estimate the model parameters by fitting

the model under study to the radiance data, the balance parameter β for the new model

(and R–H model) behaves differently than what was initially predicted (see Table 4.1).

This is due to most of the young subjects having small diffuse radiance size near the

surface normal angle, which results in the model estimating that they will have a low β

value (e.g. low β means that both the R–H model and the new model will exhibit small

outgoing radiance curve –please refer to Chapter 3). For the new model, the estimation

of absorption a is easily affected by the wavelength, the subject’s skin type, and, also, the

model’s correlation function (Exponential or Gaussian). Only the roughness parameter

behaves in accordance with the prediction (Table 4.1) and the literature; that aging will

cause an increase in the model roughness parameter values.

5.4 Discussion on the parameter-age test

In the search for the best-fit parameters, the new model Exponential has the lowest ∆RMS ,

followed by the new model Gaussian. The BSSRDF exhibited the overall highest error,

followed by the Oren–Nayar model (see Figure 5.2). The BSSRDF and the Oren–Nayar

models were both designed to model large diffuse radiance, so, in this test, they failed to

properly fit to sample radiances that are less diffuse. For example, when the roughness

parameters are set to the lowest value (e.g. ≈ 0) for each of the models, the outgoing

radiance for the BSSRDF and the Oren–Nayar models was observed to be much wider

than both the new and the R–H models. Meanwhile, the σ/T and β estimated values for

the new models are lower than the R–H model counterpart (Figure 5.4-5.7). This is due

to the parameter a increasing the flexibility of the new model.

An interesting pattern emerged from the correlation results when all samples were

considered (Table 5.2-5.4). The roughness parameters for the new, R–H, Oren–Nayar and

BSSRDF models (e.g. σ/T , m, and σs) suggest that a significant positive correlation

with age exists (p < 0.05). This is true for both male and female subjects, including the

subjects that wear makeup or facial cream. These results support the literature regarding

skin roughness (see Table 4.1). However, for the new model, β and a parameters show no

strong pattern or relation with age. This is because these parameters are more affected by

the skin type and condition. The new model Exponential parameters have more variation
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for the a parameter than the Gaussian version. However, the Gaussian version has higher

error count than the Exponential one. The regression line is fitted on the estimated

parameter to observe the relation between the age and the parameters. The chi-square

for fit calculated were ≈ 1.008 for all the plots (see Figure 5.4 to 5.9). Meanwhile, the

Oren-Nayar and BSSRDF model parameters have outliers that affect the regression line

placement (see Figure 5.8 and 5.9).

5.5 The roughness parameter-age test for a specific category

Multiple studies have suggested that factors like gender, ethnicity and cosmetic use do

result in differences in appearances as people age chronologically [20–22, 58, 66, 85, 90, 94,

100]. As a result of this, I have undertaken some additional parameter-age tests based on

specific factors. The purpose of these tests is to observe whether there is any significant

result when only the subjects with specific category are used. It should be noted that, for

these tests, I only considered the correlation between the roughness parameter and the

age of the subject. These categories are: 1) Gender (Male or Female); 2) Face section

(Forehead, Left Cheek, Right Cheek, Both Cheek, Nose or All sections); 3) Fitzpatrick

Skin Type (2, 3, 4, 5 or all); and 4) Cosmetics (With, Without or include both with and

without). The methodology for these parameter-age tests are the same as above, except

that the subject in the dataset that fit with one of the chosen categories were selected for

the experiment. For example, if the chosen category was to use only the male subjects,

then only the male subjects were used for the parameter-age test, regardless of their skin

type, face section and whether they wore cosmetics or not. I only highlighted and discussed

results from the categories that have the most significant correlation that appears on most

of the models. These highlighted categories are the gender (male and female) and face

sections (forehead and both left and right cheek). Other results may be mentioned in

circumstance where they warrant attention.

Table 5.5 and 5.6 show the roughness parameters and age correlation results within the

model for males and females in each gender category. Comparing the two tables (all male

versus all female), the results show that most of the light scattering models obtained a

positive significant correlation only when the female subjects were used. This result seems

to imply that the age of the female candidates is able to be distinguished more easily

than that of the males and that the results from the female candidates can be more easily

compared when the model roughness parameter is used for the age estimation. However,
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half of the female candidates wore cosmetics, and, as outline above, cosmetics tend to

affect the light scattering, which will likely effect their overall skin light scattering. The

purpose of make up or facial cream is to make skin scatter light evenly [20, 22, 39, 112].

However, interestingly enough, since most female in the samples across the age groups

wore make up, the results still show that the older female have rougher skin than the

younger ones. This indicate that the more older they are, the more make up (or cream)

they apply on their face, hence, the more light scatters due to the multiple layers of make

up they have. Meanwhile, Table 5.7 and 5.8 show the correlation results between the

model roughness parameters and age for the Forehead section and both cheek sections in

the face section category. Given that most of the models with strong positive correlations

occur within these sections, it may be implied that these sections are the best sections for

estimating age using the roughness parameter. Meanwhile, the correlation between the

skin type and age, and the correlation between the cosmetics categories (With, Without or

include both with and without) and age was observed by the author to have mostly weak

correlation results; very few models shown to have significant correlation results. This is

because when the dataset samples are divide based on these categories, the distribution

of the subjects across the various ages becomes uneven, which may, in turn, affect the

correlation process.

5.6 Age classification using the model parameters

To test how the parameter fare when using as an aging feature, an age estimation ex-

periment was conducted using all the subjects, which include all gender, skin type, and

face sections, giving a total of 192 samples overall. For classification method, the author

decided to use the support vector machine (SVM) [99], which is supervised machine learn-

ing algorithm that can analyze data to be used for classification. The author uses SVM

due to the author familiarity with the method. In SVM, a hyperplane is created to best

separate the points in the input variable space by their class, either class 0 or class 1. The

numeric input variables in your data form an n-dimensional space. For example, if there

are two input variables, this would form a two-dimensional space. A hyperplane is a line

that splits this input variable space. It can be visualized in 2-dimensions as a line and lets

assume that all of the input points can be completely separated by this line. By using the

samples age as its variable, the author can classify the data into two different age.
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Table 5.5: Correlation coefficients between the roughness parameter and the subject age for

all models using just the Male candidates. (White cell p < 0.05; Grey cell: 0.1 < p < 0.2)

Model
Roughness

Parameter
R G B

New Exponential σ/T 0.2204 0.2345 0.1756

New Gaussian σ/T -0.0096 0.05847 -0.0585

R-H Exponential σ/T 0.3516 0.2852 0.2374

R-H Gaussian σ/T 0.1944 0.2016 0.1476

Oren-Nayar m 0.1730 0.2426 0.1107

BSSRDF σs 0.0217 0.0155 0.0023

Table 5.6: Correlation coefficients between the roughness parameter and the subject age for

all models using just the Female candidates. (White cell p < 0.05; Grey cell: 0.1 < p < 0.2)

Model
Roughness

Parameter
R G B

New Exponential σ/T 0.1087 0.1492 0.0730

New Gaussian σ/T 0.3767 0.32354 0.2743

R-H Exponential σ/T 0.3347 0.3188 0.2731

R-H Gaussian σ/T 0.3682 0.3481 0.2832

Oren-Nayar m 0.3124 0.3013 0.2702

BSSRDF σs 0.3779 0.3514 0.3167

Table 5.7: Correlation coefficients between the roughness parameter and the subject age

for all models using just the Forehead section of all candidates. (White cell p < 0.05; Grey

cell: 0.1 < p < 0.2)

Model
Roughness

Parameter
R G B

New Exponential σ/T 0.3178 0.4057 0.3649

New Gaussian σ/T 0.3967 0.5033 0.4154

R-H Exponential σ/T 0.5502 0.5651 0.5658

R-H Gaussian σ/T 0.4698 0.5430 0.5379

Oren-Nayar m 0.3688 0.4847 0.3702

BSSRDF σs 0.1700 0.2276 0.1431
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Table 5.8: Correlation coefficients between the roughness parameter and the subject age

for all models using both left and right Cheek sections of all candidates. (White cell

p < 0.05; Grey cell: 0.1 < p < 0.2)

Model
Roughness

Parameter
R G B

New Exponential σ/T 0.2554 0.2291 0.0631

New Gaussian σ/T 0.2627 0.2239 0.1195

R-H Exponential σ/T 0.4313 0.3650 0.2887

R-H Gaussian σ/T 0.3510 0.3304 0.2335

Oren-Nayar m 0.3256 0.3528 0.2287

BSSRDF σs 0.2385 0.2016 0.1732

The MATLAB has a build in SVM function that the author used for this age classi-

fication experiment. The experiment is done by first selecting a parameter as the aging

feature (i.e. roughness), then hold-out 10% (or 19 samples) of the 192 samples to be used

as testing samples, while the rest as training samples. The tests are done for each model

parameters. In this experiment, the samples are group into their specific age groups: 1)

Subjects below age 30 as age group 20, 2) Subjects age between 30-39 as age group 30, 3)

Subjects age between 40-49 as age group 40, and 4) Subjects above age 49 as age group

50. The experiment is done on different colour channels to observe if there any difference

in accuracy between channels. Here, the age classification is done by classifying the test

subjects between two different age groups; example, classify subject between age group 20

versus 30; 20 versus 40; 20 versus 50; 30 versus 40; 30 versus 50; and 40 versus 50. The

average accuracy is calculated based on the correct classification of the subject with its

true age.

Table 5.9 show the age classification accuracy results for each of the different model

parameters used as the aging feature. From the results, it can be seen that the parameters

estimated using the new Exponential model are the parameters that can give good age

classification when used as an aging feature. However, in this age classification experiment,

there is a problem classifying the subjects that are above age group 20 into their corrected

age group (not shown here). This may be due to the uneven distribution of subjects

between age groups, where, subjects in age group 20 having more than the other age

groups. To solve this problem, adding more subjects with age above 30 years old may
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improve the SVM training process of this experiment. Another alternative is by solving

the uneven data distribution problem using weighted examples. Nevertheless, this cannot

be done due to time limitation.

Table 5.9: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model roughness parameters as the aging feature. This table for the

New models (both Exponential and Gaussian variants).

Parameter (Roughness)
New Exponential ( σT ) New Gaussian ( σT )

R G B R G B

Accuracy (%) 70.13 69.24 69.24 69.67 69.67 68.48

Total Average Accuracy (%) 69.54 69.28

Table 5.10: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model roughness parameters as the aging feature. This table for the

R–H model (both Exponential and Gaussian variants).

Parameter (Roughness)
R-H Exponential ( σT ) R-H Gaussian ( σT )

R G B R G B

Accuracy (%) 66.9 67.24 69.08 67.59 68.63 68.48

Total Average Accuracy (%) 67.74 68.24

Table 5.11: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model roughness parameters as the aging feature. This table is for the

Oren–Nayar model and the BSSRDF model.

Parameter (Roughness)
Oren-Nayar (m) BSSRDF (σs)

R G B R G B

Accuracy (%) 68.04 68.63 65.81 67.89 67.29 66.25

Total Average Accuracy (%) 67.5 67.14
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Table 5.12: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model balance parameters as the aging feature. This table for the New

models (both Exponential and Gaussian variants).

Parameter (Balance parameter)
New Exponential (β) New Gaussian (β)

R G B R G B

Accuracy (%) 69.74 71.33 69.24 67.20 67.94 67.16

Total Average Accuracy (%) 69.94 67.43

Table 5.13: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model balance parameters as the aging feature. This table for the R–H

model (both Exponential and Gaussian variants).

Parameter (Balance parameter)
R-H Exponential (β) R-H Gaussian (β)

R G B R G B

Accuracy (%) 67.16 67.16 69.84 67.16 69.24 68.65

Total Average Accuracy (%) 68.05 68.35

Table 5.14: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model absorption parameters as the aging feature. This table for the

New models (both Exponential and Gaussian variants).

Parameter (Absorption)
New Exponential (a) New Gaussian (a)

R G B R G B

Accuracy (%) 69.24 69.24 69.24 69.24 67.71 67.16

Total Average Accuracy (%) 69.24 68.03

Table 5.15: The age estimation accuracy for all samples (gender, skin types, and face

sections) using the model absorption parameters as the aging feature. This table is for

the BSSRDF model.

Parameter (Absorption)
BSSRDF (σa)

R G B

Accuracy (%) 67.89 67.29 66.25

Total Average Accuracy (%) 67.14
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5.7 Summary

In this chapter, we have provided details regarding an experiment designed to determine

whether the light scattering models estimated parameters correlate with the age of various

subjects. The behavior of the roughness parameters (σ/T , m and σs) and the parameters

of all models are in line with the skin optic and computer vision literature; that is to say

that the roughness parameter (or skin surface/subsurface roughness) increases with age.

The results in this chapter suggest that the selected light scattering models, especially the

new models (Exponential and Gaussian variants), can be used to approximately determine

the age of a subject. This is proven in the age classification experiment (in Section 5.6)

where the model parameters are used as the aging feature for trainig and testing; while

the support vector machine is used as the classifier. Meanwhile, light scatter differ across

age are more apparent on the forehead section and both the left and right cheeks (when

included together). This is understandable since those sections are where aging features

tend to appear. However, it should be noted that the confirmation of the results of the

experiment regarding the relationship between the model parameter and the subject age

would be much stronger if a dataset that featured similar subjects captured as they age

progressively was considered, instead of using different subjects with different ages. As

outline above, this was not possible because of the time and cost limitations of this study,

we made do with the images of the volunteer subjects that were captured.
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Chapter 6

Conclusion

Inverse rendering is usually used to test a model’s accuracy and to analyzed the pa-

rameters estimated by the model. When fitting the light scattering model to the data

measurements, each of the model’s parameters would have a different role on shaping the

behavior (or curve shape) of the model’s outgoing radiance. We need to consider what

the parameter values would be when applied on different facial skin surfaces that vary

with age. Would there be any relation between the parameter values and the subject’s

age? If yes, then this suggests that a light scattering model has the capacity to be used

as an alternative estimator of age, which can be used in conjunction to other face aging

extractors. Nevertheless, we need to confirm this first and find out whether it is possible

for a model to be used in this manner and investigate any limitations that it may have.

To recap, the aim of this thesis is to study whether a light scattering model is capable

of being used as an alternative estimator of age. An investigation into the relationship

between the parameters of various models and the age of various subjects was undertaken.

The parameter-age test results detailed in Chapter 5 suggests that the roughness parameter

for the model chosen for this experiment demonstrate a significant positive relationship

with age, and can, therefore, be used to determine the approximate age of a subject.

This is true in circumstances where parameters, other than the roughness parameter, are

controlled.

The author also has used the estimated model parameters for an age classification ex-

periment, proving that the parameter can be used to approximately determine a subject’s

age. This thesis has shown that an analytical-based light scattering model parameter can

be used as an alternative method of estimating a person’s age. Moreover, it can also be

used in conjunction with other age extractor/estimator methods so as to strengthen the
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estimation accuracy, such as the active appearance model (AAM), which is use for esti-

mating facial shape and Gabor filter, which is an extractor for aging wrinkles . The idea

of using the light scattering of the skin to estimate age is a novel idea; one that requires

more focus studies to ascertain how to build a robust light scattering AND age estimation

model that can directly classify skin traits without directly measuring it. For the rest of

this chapter, the author will highlight the thesis contributions and the limitations. The

author will also propose some suggestions for future study.

6.1 Thesis contributions

This thesis main contribution is confirming that the parameters of a light scattering model

can actually be used as an aging feature for classifying the age of a person. This is proven

by the experiments in Chapter 5 where the model parameters are used for classifying the

subject’s age. Besides this, the thesis also has six other novel contributions, which are:

1. The presentation of a method capable of estimating facial skin characteristics using

a photometry technique and a light scattering model.

2. The introduction of a new absorptive laminar light scattering model that defines a

simple light absorption term using the conservation of light energy.

3. Testing of the functionality and accuracy of the new model on both the isotropic

(CUReT database) and anisotropic (UTIA database) samples.

4. Establishing a justifiable relationship between the model parameters and the cap-

tured samples characteristics by correlating their parameter estimations with their

degree of polarization.

5. The introduction of a new image alignment technique for aligning image sequence

captured in disparate illumination environments.

6. Testing of the correlation between the age of various subjects and the parameters

of the model that are related to the skin characteristics. Results that support the

skin optic, medical, human perception and psychophysics literature have been high-

lighted.

Tools have always been adapted and used in situation that they were not necessarily

built for. If the tool has the potential to be used for a different task that was not considered
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when it was initially designed, why not use it? Expanding the light scattering model so

that it can be used for estimating age might have potential benefits for the computer vision

and skin optic fields.

6.2 Thesis limitations

The first main limitation of this thesis is the limited subjects (or volunteers) collected for

the main parameter-age test. If there were more subjects, especially for subjects aging

above 30 years old, the test results will be more concrete. The second main limitation

is that there are no real measurements for the estimated parameters to compare with.

The estimated parameters were assumed to be true based on the model fitting to the

scattering radiance. Meanwhile, there are also other limitations that focus on the proposed

models, image acquisition, image alignment, model-polarization test, and the parameter-

age experiment. Here, these limitations are described and also highlight some areas of

improvement for future reference.

6.2.1 The absorptive laminar light scattering model

The proposed model - the absorptive laminar light scattering model - is a modified version

of the Ragheb-Hancock (R–H) model [81]. The new model used the rule of light energy

conservation to define an absorption term that is simple and unit-less for easier analysis.

The model’s absorption, also assumed that the light absorption is instantaneous, so, the

distance of light traveled within the subsurface layer can be ignored. Similar to R–H model,

the new model assume that the diffuse radiance is scatterd from bi-layered rough surfaces,

consisting of an opaque subsurface layer below a transparent one. The surface layer and the

subsurface layer are parallel and only single scattering occur in the subsurface layer. The

surface layer was modeled by a single surface scattering component, while the subsurface

layer was modeled using the combination of both the effects of radiance transmission

through the surface layer and a single subsurface scattering component.

6.2.2 The image acquisition and alignment

In this thesis, the light stage [13] and Ma et al. photometry technique [64] were used

for capturing both the surface normal map and light reflectance of various objects. The

author has presented a new alignment technique for managing errors resulting from small
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movements that are likely to occur during image sequences captured in disparate illumina-

tion environments. The alignment technique aligns small inter-frame motions captured in

spherical gradient photometric stereo. However, the technique does not accurately align

inter-frame movements when the photometric images are captured in changing lighting

conditions. The reason for this being that illumination-independent transformation failed

when it was applied to the flash image (e.g. image captured with the camera flash) as

a result of the attenuation difference. This later results in inaccurate movement flow es-

timation. Due to the equipment limitation, it was difficult to calibrate the LEDs and

the camera flash in a manner that would produce the closest attenuation effect. In order

to manage this issue in the future, the capturing sequence for the flash image could be

reorganized and used in conjunction with the extrapolation technique. This may help to

improve the image flow alignment.

6.2.3 The model-polarization test

In the correlation test between the degree of polaization (DOP) and the model parameters,

the absorption parameter a of the new model showed no strong relation to the polarization.

It may be that there is really no strong relation between the two, or, that there is some

hidden property that impacts the overall result. The second option is more likely in

the authors opinion. Furthermore, there is no proof that suggests that the relationship

between the two is truly weak. In order to do this we would need to measure the sample’s

absorption properties directly, which would require additional time and special equipment.

Nevertheless, this problem should be investigated further in the future.

6.2.4 The parameter-age test and methodology

Older candidates exhibited difficulty entering the light stage, since there was no proper

door through which they could enter. The physical condition and comfort of the volun-

teers should be considered more carefully in the future. The study was limited by the

characteristics of the skin of the volunteers. It was difficult to obtain samples from older

participants due to the physical set up of the experiment and the importance of consent.

Additionally, errors resulting from movement and facial obstruction are unavoidable. So,

some adjustments were made by the author (where the adjustments have been thoroughly

described in section 4.5).

Most of the volunteers are people who work indoors. People who work indoors would
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generally have less photoaging damage and are probably less active, than people who

work outdoors. This may cause some of the volunteers to appear younger even when their

chronological age is above 30. Additionally, the data collection involved more candidates

aged below 29. Most of these volunteers are acquainted with the author, meaning that

most of the volunteers are Malaysian (22 people out of 48). Regarding volunteers above

the age 50, most were staff who work in the same department as the author who kindly

agreed to help. So most of the older volunteers are Englishmen (7 people out of 48).

Furthermore, due to time limitations, the dataset used in this experiment consisted of

different subjects with different ages. The author will plan to capture subjects over time

in order to assess their age as it progresses for the future study.

Finally, the parameter-age test in Chapter 5 suggests that the parameters from an

analytical-base light scattering model can be used to approximately determine the age of

a subject. This thesis, however, did not extend the study to observe how accurate the

chosen parameter (e.g. roughness parameter) is when estimating the subject’s age. These

further investigations were not within the scope of this thesis, and more time would have

been required, not to mention the additional expense that would have been incurred, in

order to extend the study. Nevertheless, this thesis suggests that the parameters of an

analytical-base light scattering model can be used as an alternative method to estimate a

person’s age. Moreover, it can be used in conjunction with other age extractor/estimator

methods to increase the accuracy of the estimate.

6.3 Future studies

In the future, it would be interesting to test the ability of the model’s parameters to ac-

curately estimate the age of a subject. A suitable classifier or a machine learning would

be needed to train and classify the age using the parameters. A robust technique that

can integrate both the machine learning and the proposed light scattering model would

be preferable. Additionally, it is possible that the lighting condition for the current exper-

iment may improve if the LeGendre et al. [56] practical method is used to reproduce and

capture multiple incident illumination spectra. This could warrant further investigation.

Moreover, the rendering of the skin using the new model should be studied further to

observe the capability of the new model in this regard. The author will be conducting

a future study regarding the variety of absorption value while using the estimated skin

parameters.
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Capturing the skin micro-structure may help enhance the skin micro-surface roughness

which may, in turn, aid estimation accuracy based on the surface normal map of a subject.

Nagano et al. [70] and Graham et al. [33] both presented a 10-micron resolution scanning

technique to measure in vivo skin samples. Using this technique might help to improve the

capturing of the skin micro-traits which would increase our understanding of the effects

of aging on the skin surface and, also, the light scattering behavior.

Furthermore, it would be interesting to see whether we can design an absorptive light

scattering model with an absorption term that uses standard light absorption measure-

ment, such as the complex refractive index or the attenuation coefficient. Using either of

these measurements as the model parameter would mean that the model was based more

on the actual physical condition of the skin and would therefore allow for standardized the

measurements. With that in mind, the new absorption function would need to be defined

in a manner that is consistent with the whole model equation.

Lastly, the refractive index is one of the physicochemical properties of substances

(or optical medium). Much like light absorption, it can provide information about the

behavior of light when light passes between two different substances, which can provide us

with information about the molecules of components in both of the substrates. However,

in this thesis, the estimated value obtained while using the new model to estimate the

refractive index was too different from the reference value. The author considers that

this casts doubt on whether the refractive index estimated by the new model is correct or

not. Because of this, the author decided to not use the refractive index in the parameter-

age test. Further investigation is required in this regard. Nevertheless, this topic of

investigation can help to improve the application of the light scattering model, and may

allow for the broadening of its use to computer vision and graphics, security and also

potentially in medical fields. Two example applications: 1) the parameters estimated

by the model can be used by medical expert to study any aging related diseases that

might occur during aging; and 2) the model can be used in security cameras to detect and

estimate the age of a person by using their skin’s light scattering instead.
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