103,892 research outputs found

    Incorporating User Experience Evaluation into Application Design for Optimal Usability

    Get PDF
    Forest and land fires have become a national issue every year, especially in West Kalimantan. From 2015 to 2020, around 331,268.35 hectares of forest and land were burned in West Kalimantan. As a result of forest and land fires, the haze disrupts public health, the economy, and river, land, sea, and air transportation. As anticipation and prevention, the community and government monitor forest and land fires using the Forest Fire Monitoring System Application. The purpose of this study was to the User Experience (UX) evaluation for design improvement in the Forest Fire Monitoring System Application (SIPONGI) inWest Kalimantan. The method used was User Centered Design (UCD) and Website Usability Evaluation Tool (WEBUSE) to provide new design solutions in the form of a website prototype. The research methodology included a literature study of the SIPONGI application. The study used a sample of 25 respondents with different work backgrounds to represent the population using the SIPONGI application. The results of this study showed that usability points per attribute and category are superior after making UI/UX improvements using the UCD process in prototype form. In conclusion, using the UCD method is better if it is accompanied by the WEBUSE method in improving the design of an application

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Automatic Fire Detection: A Survey from Wireless Sensor Network Perspective

    Get PDF
    Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a certain field (e.g., event detection for wireless sensor networks) or the main concern for which techniques have been specifically designed (e.g., fire detection using remote sensing techniques). These different approaches stem from different backgrounds of researchers dealing with fire, such as computer science, geography and earth observation, and fire safety. In this report we survey previous studies from three perspectives: (1) fire detection techniques for residential areas, (2) fire detection techniques for forests, and (3) contributions of sensor networks to early fire detection

    RH-mote for Next-generation Wireless Sensor Networks

    Get PDF
    AbstractMany Wireless Sensor Networks (WSNs) applications are new and their requirements may not be fully anticipated during the sensor networks design and development stage. We are presenting a sensor network infrastructure that support motes’ with remote hardware and software modification to match the target applications need. Using the proposed infrastructure in next-generation WSNs will produce flexible infrastructures that will provide over-the-air remote design modification even after the deployment of WSNs on the sensing field.In this paper, we are presenting the design concept and challenges of such infrastructure. Also, we present the use of the infrastructure in one possible environmental monitoring application such as forest fire. The development of such infrastructure will have an impact on advances the research on the real- time remote sensing, heterogeneous WSN, and WSNs applications

    On-site forest fire smoke detection by low-power autonomous vision sensor

    Get PDF
    Early detection plays a crucial role to prevent forest fires from spreading. Wireless vision sensor networks deployed throughout high-risk areas can perform fine-grained surveillance and thereby very early detection and precise location of forest fires. One of the fundamental requirements that need to be met at the network nodes is reliable low-power on-site image processing. It greatly simplifies the communication infrastructure of the network as only alarm signals instead of complete images are transmitted, anticipating thus a very competitive cost. As a first approximation to fulfill such a requirement, this paper reports the results achieved from field tests carried out in collaboration with the Andalusian Fire-Fighting Service (INFOCA). Two controlled burns of forest debris were realized (www.youtube.com/user/vmoteProject). Smoke was successfully detected on-site by the EyeRISTM v1.2, a general-purpose autonomous vision system, built by AnaFocus Ltd., in which a vision algorithm was programmed. No false alarm was triggered despite the significant motion other than smoke present in the scene. Finally, as a further step, we describe the preliminary laboratory results obtained from a prototype vision chip which implements, at very low energy cost, some image processing primitives oriented to environmental monitoring.Ministerio de Ciencia e Innovación 2006-TIC-2352, TEC2009-1181

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    A new wildland fire danger index for a Mediterranean region and some validation aspects

    Full text link
    Wildland fires are the main cause of tree mortality in Mediterranean Europe and a major threat to Spanish forests. This paper focuses on the design and validation of a new wildland fire index especially adapted to a Mediterranean Spanish region. The index considers ignition and spread danger components. Indicators of natural and human ignition agents, historical occurrence, fuel conditions and fire spread make up the hierarchical structure of the index. Multi-criteria methods were used to incorporate experts¿ opinion in the process of weighting the indicators and to carry out the aggregation of components into the final index, which is used to map the probability of daily fire occurrence on a 0.5-km grid. Generalised estimating equation models, which account for possible correlated responses, were used to validate the index, accommodating its values onto a larger scale because historical records of daily fire occurrence, which constitute the dependent variable, are referred to cells on a 10-km grid. Validation results showed good index performance, good fit of the logistic model and acceptable discrimination power. Therefore, the index will improve the ability of fire prevention services in daily allocation of resources.The authors acknowledge the support received from the Ministry of Science and Innovation through the research project Modelling and Optimisation Techniques for a Sustainable Development, Ref. EC02008-05895-C02-01/ECON.Vicente López, FJD.; Crespo Abril, F. (2012). A new wildland fire danger index for a Mediterranean region and some validation aspects. International Journal of Wildland Fire. 21(8):1030-1041. https://doi.org/10.1071/WF11046S10301041218Aguado, I., Chuvieco, E., Borén, R., & Nieto, H. (2007). Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire, 16(4), 390. doi:10.1071/wf06136Andrews, P. L., Loftsgaarden, D. O., & Bradshaw, L. S. (2003). Evaluation of fire danger rating indexes using logistic regression and percentile analysis. International Journal of Wildland Fire, 12(2), 213. doi:10.1071/wf02059Bradstock, R. A., Cohn, J. S., Gill, A. M., Bedward, M., & Lucas, C. (2009). Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. International Journal of Wildland Fire, 18(8), 932. doi:10.1071/wf08133Buizza, R., & Hollingsworth, A. (2002). Storm prediction over Europe using the ECMWF Ensemble Prediction System. Meteorological Applications, 9(3), 289-305. doi:10.1017/s1350482702003031Carmel, Y., Paz, S., Jahashan, F., & Shoshany, M. (2009). Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management, 257(1), 370-377. doi:10.1016/j.foreco.2008.09.039Castedo-Dorado, F., Rodríguez-Pérez, J. R., Marcos-Menéndez, J. L., & Álvarez-Taboada, M. F. (2011). Modelling the probability of lightning-induced forest fire occurrence in the province of León (NW Spain). Forest Systems, 20(1), 95. doi:10.5424/fs/2011201-9409Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8), 921. doi:10.1071/wf07123CHUVIECO, E., & SALAS, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International journal of geographical information systems, 10(3), 333-345. doi:10.1080/02693799608902082Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martı́nez-Vega, J., de la Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. doi:10.1016/j.rse.2004.01.019Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., … Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46-58. doi:10.1016/j.ecolmodel.2008.11.017Danson, F. M., & Bowyer, P. (2004). Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment, 92(3), 309-321. doi:10.1016/j.rse.2004.03.017Dasgupta, S., Qu, J. J., & Hao, X. (2006). Design of a Susceptibility Index for Fire Risk Monitoring. IEEE Geoscience and Remote Sensing Letters, 3(1), 140-144. doi:10.1109/lgrs.2005.858484Fairbrother, A., & Turnley, J. G. (2005). Predicting risks of uncharacteristic wildfires: Application of the risk assessment process. Forest Ecology and Management, 211(1-2), 28-35. doi:10.1016/j.foreco.2005.01.026Finney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management, 211(1-2), 97-108. doi:10.1016/j.foreco.2005.02.010Gouma, V., & Chronopoulou-Sereli, A. (1998). Wildland Fire Danger Zoning - a Methodology. International Journal of Wildland Fire, 8(1), 37. doi:10.1071/wf9980037Hernandez-Leal, P. A., Arbelo, M., & Gonzalez-Calvo, A. (2006). Fire risk assessment using satellite data. Advances in Space Research, 37(4), 741-746. doi:10.1016/j.asr.2004.12.053Li, L.-M., Song, W.-G., Ma, J., & Satoh, K. (2009). Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. International Journal of Wildland Fire, 18(6), 640. doi:10.1071/wf07136Maingi, J. K., & Henry, M. C. (2007). Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. International Journal of Wildland Fire, 16(1), 23. doi:10.1071/wf06007Martell, D. L., Otukol, S., & Stocks, B. J. (1987). A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research, 17(5), 394-401. doi:10.1139/x87-068Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241-1252. doi:10.1016/j.jenvman.2008.07.005Moffett, A., Garson, J., & Sarkar, S. (2005). MultCSync: a software package for incorporating multiple criteria in conservation planning. Environmental Modelling & Software, 20(10), 1315-1322. doi:10.1016/j.envsoft.2004.10.001Nieto, H., Aguado, I., Chuvieco, E., & Sandholt, I. (2010). Dead fuel moisture estimation with MSG–SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content. Agricultural and Forest Meteorology, 150(7-8), 861-870. doi:10.1016/j.agrformet.2010.02.007Noble, B. F., & Christmas, L. M. (2007). Strategic Environmental Assessment of Greenhouse Gas Mitigation Options in the Canadian Agricultural Sector. Environmental Management, 41(1), 64-78. doi:10.1007/s00267-007-9017-yNúñez-Regueira, L. (1997). Calorific values and flammability of forest species in galicia. Continental high mountainous and humid Atlantic zones. Bioresource Technology, 61(2), 111-119. doi:10.1016/s0960-8524(97)00053-9Padilla, M., & Vega-García, C. (2011). On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. International Journal of Wildland Fire, 20(1), 46. doi:10.1071/wf09139Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M., & Fisher, M. R. (1996). A Survey of Methods for Analyzing Clustered Binary Response Data. International Statistical Review / Revue Internationale de Statistique, 64(1), 89. doi:10.2307/1403425Pew, K. ., & Larsen, C. P. . (2001). GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. Forest Ecology and Management, 140(1), 1-18. doi:10.1016/s0378-1127(00)00271-1Podur, J., Martell, D. L., & Csillag, F. (2003). Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecological Modelling, 164(1), 1-20. doi:10.1016/s0304-3800(02)00386-1Preisler, H. K., Brillinger, D. R., Burgan, R. E., & Benoit, J. W. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13(2), 133. doi:10.1071/wf02061Preisler, H. K., Chen, S.-C., Fujioka, F., Benoit, J. W., & Westerling, A. L. (2008). Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices. International Journal of Wildland Fire, 17(3), 305. doi:10.1071/wf06162Romero-Calcerrada, R., Novillo, C. J., Millington, J. D. A., & Gomez-Jimenez, I. (2008). GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23(3), 341-354. doi:10.1007/s10980-008-9190-2Saaty, T. L. (1987). RANK GENERATION, PRESERVATION, AND REVERSAL IN THE ANALYTIC HIERARCHY DECISION PROCESS. Decision Sciences, 18(2), 157-177. doi:10.1111/j.1540-5915.1987.tb01514.xSahin, Y. G., & Ince, T. (2009). Early Forest Fire Detection Using Radio-Acoustic Sounding System. Sensors, 9(3), 1485-1498. doi:10.3390/s90301485López, A. S., San-Miguel-Ayanz, J., & Burgan, R. E. (2002). Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. International Journal of Remote Sensing, 23(13), 2713-2719. doi:10.1080/01431160110107761Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009). A simple index for assessing fire danger rating. Environmental Modelling & Software, 24(6), 764-774. doi:10.1016/j.envsoft.2008.11.004Stocks, B. J., Lynham, T. J., Lawson, B. D., Alexander, M. E., Wagner, C. E. V., McAlpine, R. S., & Dubé, D. E. (1989). The Canadian Forest Fire Danger Rating System: An Overview. The Forestry Chronicle, 65(6), 450-457. doi:10.5558/tfc65450-6Sturtevant, B. R., & Cleland, D. T. (2007). Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. International Journal of Wildland Fire, 16(4), 398. doi:10.1071/wf06023Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. doi:10.1126/science.3287615Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. S. (2009). Fire risk evaluation using multicriteria analysis—a case study. Environmental Monitoring and Assessment, 166(1-4), 223-239. doi:10.1007/s10661-009-0997-3Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., Kallos, G., & Matsinos, Y. (2007). Integrating new methods and tools in fire danger rating. International Journal of Wildland Fire, 16(3), 306. doi:10.1071/wf05091Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Science, 10(3), 485-497. doi:10.5194/nhess-10-485-2010Wotton, B. M., & Martell, D. L. (2005). A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research, 35(6), 1389-1401. doi:10.1139/x05-071Yebra, M., Chuvieco, E., & Riaño, D. (2008). Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 148(4), 523-536. doi:10.1016/j.agrformet.2007.12.00
    corecore