3,639 research outputs found

    Online regenerator placement.

    Get PDF
    Connections between nodes in optical networks are realized by lightpaths. Due to the decay of the signal, a regenerator has to be placed on every lightpath after at most d hops, for some given positive integer d. A regenerator can serve only one lightpath. The placement of regenerators has become an active area of research during recent years, and various optimization problems have been studied. The first such problem is the Regeneration Location Problem (Rlp), where the goal is to place the regenerators so as to minimize the total number of nodes containing them. We consider two extreme cases of online Rlp regarding the value of d and the number k of regenerators that can be used in any single node. (1) d is arbitrary and k unbounded. In this case a feasible solution always exists. We show an O(log|X| ·logd)-competitive randomized algorithm for any network topology, where X is the set of paths of length d. The algorithm can be made deterministic in some cases. We show a deterministic lower bound of W([(log(|E|/d) ·logd)/(log(log(|E|/d) ·logd))])log(Ed)logdlog(log(Ed)logd) , where E is the edge set. (2) d = 2 and k = 1. In this case there is not necessarily a solution for a given input. We distinguish between feasible inputs (for which there is a solution) and infeasible ones. In the latter case, the objective is to satisfy the maximum number of lightpaths. For a path topology we show a lower bound of Öl/2l2 for the competitive ratio (where l is the number of internal nodes of the longest lightpath) on infeasible inputs, and a tight bound of 3 for the competitive ratio on feasible inputs

    Placing regenerators in optical networks to satisfy multiple sets of requests.

    Get PDF
    The placement of regenerators in optical networks has become an active area of research during the last years. Given a set of lightpaths in a network G and a positive integer d, regenerators must be placed in such a way that in any lightpath there are no more than d hops without meeting a regenerator. While most of the research has focused on heuristics and simulations, the first theoretical study of the problem has been recently provided in [10], where the considered cost function is the number of locations in the network hosting regenerators. Nevertheless, in many situations a more accurate estimation of the real cost of the network is given by the total number of regenerators placed at the nodes, and this is the cost function we consider. Furthermore, in our model we assume that we are given a finite set of p possible traffic patterns (each given by a set of lightpaths), and our objective is to place the minimum number of regenerators at the nodes so that each of the traffic patterns is satisfied. While this problem can be easily solved when d = 1 or p = 1, we prove that for any fixed d,p ≥ 2 it does not admit a PTASUnknown control sequence '\textsc', even if G has maximum degree at most 3 and the lightpaths have length O(d)(d). We complement this hardness result with a constant-factor approximation algorithm with ratio ln (d ·p). We then study the case where G is a path, proving that the problem is NP-hard for any d,p ≥ 2, even if there are two edges of the path such that any lightpath uses at least one of them. Interestingly, we show that the problem is polynomial-time solvable in paths when all the lightpaths share the first edge of the path, as well as when the number of lightpaths sharing an edge is bounded. Finally, we generalize our model in two natural directions, which allows us to capture the model of [10] as a particular case, and we settle some questions that were left open in [10]

    Ceramic regenerator systems development program

    Get PDF
    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included

    Regenerator Location Problem and survivable extensions: A hub covering location perspective

    Get PDF
    Cataloged from PDF version of article.In a telecommunications network the reach of an optical signal is the maximum distance it can traverse before its quality degrades. Regenerators are devices to extend the optical reach. The regenerator placement problem seeks to place the minimum number of regenerators in an optical network so as to facilitate the communication of a signal between any node pair. In this study, the Regenerator Location Problem is revisited from the hub location perspective directing our focus to applications arising in transportation settings. Two new dimensions involving the challenges of survivability are introduced to the problem. Under partial survivability, our designs hedge against failures in the regeneration equipment only, whereas under full survivability failures on any of the network nodes are accounted for by the utilization of extra regeneration equipment. All three variations of the problem are studied in a unifying framework involving the introduction of individual flow-based compact formulations as well as cut formulations and the implementation of branch and cut algorithms based on the cut formulations. Extensive computational experiments are conducted in order to evaluate the performance of the proposed solution methodologies and to gain insights from realistic instances. (C) 2014 Elsevier Ltd. All rights reserved

    Design and Operational Modifications to Model IV FCCUs to Improve Dynamic Performance

    Get PDF
    Model IV Fluid Catalytic Cracking Units (FCCUs) differ from other cracking units in that model IV FCCUs do not have slide valves in the catalyst circulation lines to enable direct control of catalyst circulation rate through the unit. Reducing fluctuations in catalyst circulation rate is found to significantly improve closed loop performance of the FCCU. Some design and operational modifications that can be made to model IV FCCUs to improve closed loop performance at the regulatory level based on this insight are modeled and compared. Closed loop performance of a model IV FCCU operated with the weir and standpipe always flooded is examined. The achievable performance is significantly better than that of the standard model IV FCCU. The closed loop performance of the model IV FCCU modified to incorporate slide valves in the catalyst circulation lines is also examined. The performance of the FCCU with slide valves is better than the performance achievable by the FCCU with the weir flooded. It is found that model IV FCCUs are ill-conditioned owing to the use of the weir and standpipe arrangement in the regenerator section. Both the operational and design modifications studied reduce plant ill-conditioning appreciably

    Advanced Gas Turbine (AGT) powertrain system

    Get PDF
    A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given

    Ceramic regenerator systems development program

    Get PDF
    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included

    Upgraded automotive gas turbine engine design and development program, volume 2

    Get PDF
    Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight

    Advanced Gas Turbine (AGT): Power-train system development

    Get PDF
    Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme
    corecore