37 research outputs found

    Definition, Analysis, And An Approach For Discrete-Event Simulation Model Interoperability

    Get PDF
    Even though simulation technology provides great benefits to industry, it is largely underutilized. One of the biggest barriers to utilizing simulation is the lack of interoperability between simulation models. This is especially true when simulation models that need to interact with each other span an enterprise or supply chain. These models are likely to be distributed and developed in disparate simulation application software. In order to analyze the dynamic behavior of the systems they represent, the models must interoperate. However, currently this interoperability is nearly impossible. The interaction of models also refers to the understanding of them among stakeholders in the different stages of models¡Š lifecycles. The lack of interoperability also makes it difficult to share the knowledge within disparate models. This research first investigates this problem by identifying, defining, and analyzing the types of simulation model interactions. It then identifies and defines possible approaches to allow models to interact. Finally, a framework that adopts the strength of Structured Modeling (SM) and the Object-Oriented (OO) concept is proposed for representing discrete event simulation models. The framework captures the most common simulation elements and will serve as an intermediate language between disparate simulation models. Because of the structured nature of the framework, the resulting model representation is concise and easily understandable. Tools are developed to implement the framework. A Common User Interface (CUI) with software specified controllers is developed for using the proposed framework with various commercial simulation software packages. The CUI is also used to edit simulation models in a neutral environment. A graphical modeling tool is also developed to facilitate conceptual modeling. The resulting graphic can be translated into the common model representation automatically. This not only increases the understanding of models for all stakeholders, but also shifts model interactions to the ¡§formulating¡š stage, which can prevent problems later in the model¡Šs lifecycle. Illustration of the proposed framework and the tools will be given, as well as future work needs

    Algorithm for Accurate Three-Dimensional Scene Graph Updates in High-Speed Animations of Previously Simulated Construction Operations

    Full text link
    Visualization of construction operations is an important technique to communicate the logic of simulation models in detail. Early efforts resulted in a scene graph and frame update algorithm that was capable of converting discrete information from simulation models into smooth and continuous 3D animations. That algorithm did not account for high speed or concurrent animation because the need to do so was not anticipated. Recent advances in computing power and an interest in using the technology for next generation applications now demand accurate high speed and concurrent animations. This article presents the design of the original algorithm at a previously undocumented level of detail and specificity, and that allows for the analysis of its shortcomings when used at high speeds or concurrently with simulation. Two subsequent but still inadequate designs of the algorithm are also presented and analyzed in detail so that they can serve as an illustration of the path toward the final design and place it in proper context. The article concludes with the final design and evaluation of the algorithm, which is accurate at very high animation speeds and supports concurrent animation of simulation models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73119/1/j.1467-8667.2008.00565.x.pd

    Scheduling of pipeline construction projects using simulation

    Get PDF
    Repetitive Projects represent a large percentage of construction projects. They usually have an immense importance for a nation’s economy and future. Highways, tunnels, infrastructure networks, high-rise buildings, housing projects, pipeline networks, airport runways, railways, bridges, sewer mains and mass transit systems are all considered projects of repetitive nature. Research that started to serve industrial purposes for the military efforts in World War II has been revised and improved to be employed for repetitive construction projects. Obtaining an optimum schedule that would be achievable, feasible, and comprehensive by all involved parties besides maintaining minimum overall cost and duration has been an important objective. Another main objective was to maintain an optimal formation of various types of crews and equipment that would avoid idle periods as well as work stoppages. Various examples of mathematical models presented in the literature were presented as an example to show their limitations. This research presents a simulation-based scheduling model for pipeline construction projects. The model was developed with a simulation software called “AnyLogic”; this software supports discrete events, agent based and system dynamics simulation, presents an easy graphical user interface and utilizes Java coding. The model consists of various types of pre-programmed objects that were used and connected together to model the different stages of the project and resources involved within them. The model also contains a simulation experiment that would be used to provide the visual presentation of the construction process including the layout of the project and all kinds of utilized resources moving within it. The final part of the model is the optimization module. This module has the definition of the optimization objective, the optimization parameters and constraints. This module would run the simulation experiment a numerous trials while changing the parameters to get the optimal solution which is the optimal schedule for the project. This simulation model would aid planners in scheduling, tracking and controlling the construction operations over the lifetime of the project. It would present an important tool for top management to visualize the impact of their decisions

    A simulation modelling approach to improve the OEE of a bottling line

    Get PDF
    This dissertation presents a simulation approach to improve the efficiency performance, in terms of OEE, of an automated bottling line. A simulation model of the system is created by means of the software AnyLogic; it is used to solve the case. The problems faced are a sequencing problem related to the order the formats of bottles are processed and the buffer sizing problem. Either theoretical aspects on OEE, job sequencing and simulation and practical aspects are presented

    Simulation modelling software approaches to manufacturing problems

    Get PDF
    Increased competition in many industries has resulted in a greater emphasis on developing and using advanced manufacturing systems to improve productivity and reduce costs. The complexity and dynamic behaviour of such systems, make simulation modelling one of the most popular methods to facilitate the design and assess operating strategies of these systems. The growing need for the use of simulation is reflected by a growth in the number of simulation languages and data-driven simulators in the software market. This thesis investigates which characteristics typical manufacturing simulators possess, and how the user requirements can be better fulfilled. For the purpose of software evaluation, a case study has been carried out on a real manufacturing system. Several simulation models of an automated system for electrostatic powder coating have been developed using different simulators. In addition to the evaluation of these simulators, a comprehensive evaluation framework has been developed to facilitate selection of simulation software for modelling manufacturing systems. Different hierarchies of evaluation criteria have been established for different software purposes. In particular, the criteria that have to be satisfied for users in education differ from those for users in industry. A survey has also been conducted involving a number of users of software for manufacturing simulation. The purpose of the survey was to investigate users' opinions about simulation software, and the features that they desire to be incorporated in simulation software. A methodology for simulation software selection is also derived. It consists of guidelines related to the actions to be taken and factors to be considered during the evaluation and selection of simulation software. On the basis of all the findings, proposals on how manufacturing simulators can be improved are made, both for use in education and in industry. These software improvements should result in a reduction in the amount of time and effort needed for simulation model development, and therefore make simulation more beneficial

    A flight software development and simulation framework for advanced space systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 293-302).Distributed terrestrial computer systems employ middleware software to provide communications abstractions and reduce software interface complexity. Embedded applications are adopting the same approaches, but must make provisions to ensure that hard real-time temporal performance can be maintained. This thesis presents the development and validation of a middleware system tailored to spacecraft flight software development. Our middleware runs on the Generalized Flight Operations Processing Simulator (GFLOPS) and is called the GFLOPS Rapid Real-time Development Environment (GRRDE). GRRDE provides publish-subscribe communication services between software components. These services help to reduce the complexity of managing software interfaces. The hard real-time performance of these services has been verified with General Timed Automata modelling and extensive run-time testing. Several example applications illustrate the use of GRRDE to support advanced flight software development. Two technology-focused studies examine automatic code generation and autonomous fault protection within the GRRDE framework. A complex simulation of the TechSat 21 distributed spacebased radar mission highlights the utility of the approach for large-scale applications.by John Patrick Enright.Ph.D

    Design and Analysis of Green Mission-Critical Fiber-Wireless Broadband Access Networks

    Get PDF
    In recent years, the ever-increasing environmental friendliness concern has made energy efficiency in telecom networks as an important theme in their operations. Meanwhile, mission-critical (MC) services and systems (such as healthcare, police, and firefighting) have been acquiring special attention from telecom designers and operators. The currently deployed MC network technologies are indigent in terms of bandwidth capacity, and thus they are not able to support the emerging MC multimedia applications. Therefore in this thesis, we first explore the possibility of provisioning the MC services over the integration of fiber-wireless (FiWi) technologies, which has been considered as a promising candidate for the deployment of high-speed and mobile broadband access networks. We then investigate the energy efficiency problem in the FiWi integration, which consists of WiMAX in the wireless plane, and of Ethernet Passive Optical Network (EPON) - the most popular variant of the next-generation PON (NG-PON) technology, in the optical plane. In WiMAX, the energy saving protocol has been extensively investigated and standardized. Conversely, it has been recently studied in NG-PON, which currently consumes the least power among all the high-speed access networks. However, NG-PON has notably matured in the past few years and is envisioned to massively evolve in the near future. This trend will increase the power requirements of NG-PON and make it no longer coveted. Therefore we address the energy efficiency problem in NG-PON. For each of our contributions, we conduct extensive simulations to demonstrate the effectiveness and advantages of the proposed solutions

    Modelling adaptive routing in Wide Area Networks

    Get PDF
    Bibliography: leaves 132-138.This study investigates the modelling of adative routing algorithms with specific reference to the algorithm of an existing Wide Area Network (WAN). Packets in the network are routed at each node on the basis of routing tables which contain internal and external delays for each route from the node. The internal delay on a route represents the time that packets queued for transmission will have to wait before being transmitted, while the external delay on a route represents the delay to other nodes via that route. Several modelling methods are investigated and compared for the purpose of identifying the most appropriate and applicable technique. A model of routing in the WAN using an analytic technique is described. The hypothesis of this study is that dynamic routing can be modelled as a sequence of models exhibiting fixed routing. The modelling rationale is that a series of analytic models is run and solved. The routing algorithm of the WAN studied is such that, if viewed at any time instant, the network is one with static routing and no buffer overflow. This characteristic, together with a real time modelling requirement, influences the modelling technique which is applied. Each model represents a routing update interval and a multiclass open queueing network is used to solve the model during a particular interval. Descriptions of the design and implementation of X wan, an X Window based modelling system, are provided. A feature of the modelling system is that it provides a Graphical User Interface (GUI), allowing interactive network specification and the direct observation of network routing through the medium of this interface. Various applications of the modelling system are presented, and overall network behaviour is examined. Experimentation with the routing algorithm is conducted, and (tentative) recommendations are made on ways in which network performance could be improved. A different routing algorithm is also implemented, for the purpose of comparison and to demonstrate the ease with which this can be affected

    Simulation of production scheduling in manufacturing systems

    Get PDF
    Research into production scheduling environments has been primarily concerned with developing local priority rules for selecting jobs from a queue to be processed on a set of individual machines. Most of the research deals with the scheduling problems in terms of the evaluation of priority rules with respect to given criteria. These criteria have a direct effect on the production cost, such as mean make-span, flow-time, job lateness, m-process inventory and machine idle time. The project under study consists of the following two phases. The first is to deal with the development of computer models for the flow-shop problem, which obtain the optimum make-span and near-optimum solutions for the well-used criteria in the production scheduling priority rules. The second is to develop experimental analysis using a simulation technique, for the two main manufacturing systems, 1. Job-shop 2. Flexible Manufacturing System The two manufacturing types were investigated under the following conditions i. Dynamic problem conditions ii. Different operation time distributions iii. Different shop loads iv. Seven replications per experiment with different streams of random number v. The approximately steady state point for each replication was obtained. In the FMS, the material handling system used was the automated guided Vehicles (AGVs), buffer station and load/ unload area were also used. The aim of these analyses is to deal with the effectiveness of the priority rules on the selected criteria performance. The SIMAN software simulation was used for these studies
    corecore