
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-10-2005

Definition, Analysis, And An Approach For Discrete-Event Definition, Analysis, And An Approach For Discrete-Event

Simulation Model Interoperability Simulation Model Interoperability

Tai-Chi Wu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Wu, Tai-Chi, "Definition, Analysis, And An Approach For Discrete-Event Simulation Model Interoperability"
(2005). Theses and Dissertations. 1269.
https://scholarsjunction.msstate.edu/td/1269

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1269?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DEFINITION, ANALYSIS, AND AN APPROACH FOR DISCRETE-EVENT

SIMULATION MODEL INTEROPERABILITY

By

Tai-Chi Wu

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Industrial Engineering
in the Department of Industrial Engineering

Mississippi State, Mississippi

December 2005

DEFINITION, ANALYSIS, AND AN APPROACH FOR DISCRETE-EVENT

SIMULATION INTEROPERABILITY

By

Tai-Chi Wu

Approved:

Allen G. Greenwood
Professor of Industrial Engineering
(Director of Dissertation)

Donna S. Reese
Professor of Computer Science &
Engineering
(Committee Member)

Stanley F. Bullington
Professor of Industrial Engineering
Graduate Coordinator in the
Department of Industrial Engineering
(Committee Member)

Larry G. Brown
Professor and Head Emeritus of
Industrial Engineering
(Committee Member)

John M. Usher
Professor of Industrial Engineering
(Committee Member)

Kirk H. Schulz
Dean of the College of Engineering

Name: Tai-Chi Wu

Date of Degree: December 9, 2005

Institution: Mississippi State University

Major Field: Industrial Engineering

Major Professor: Allen G. Greenwood

Title of Study: DEFINITION, ANALYSIS, AND AN APPROACH FOR DISCRETE-
EVENT SIMULATION MODEL INTEROPERABILITY

Pages in Study: 217

Candidate for Degree of Doctor of Philosophy

Even though simulation technology provides great benefits to industry, it is

largely underutilized. One of the biggest barriers to utilizing simulation is the lack of

interoperability between simulation models. This is especially true when simulation

models that need to interact with each other span an enterprise or supply chain. These

models are likely to be distributed and developed in disparate simulation application

software. In order to analyze the dynamic behavior of the systems they represent, the

models must interoperate. However, currently this interoperability is nearly impossible.

The interaction of models also refers to the understanding of them among stakeholders in

the different stages of models’ lifecycles. The lack of interoperability also makes it

difficult to share the knowledge within disparate models.

This research first investigates this problem by identifying, defining, and

analyzing the types of simulation model interactions. It then identifies and defines

possible approaches to allow models to interact. Finally, a framework that adopts the

strength of Structured Modeling (SM) and the Object-Oriented (OO) concept is proposed

for representing discrete event simulation models. The framework captures the most

common simulation elements and will serve as an intermediate language between

disparate simulation models. Because of the structured nature of the framework, the

resulting model representation is concise and easily understandable.

Tools are developed to implement the framework. A Common User Interface

(CUI) with software specified controllers is developed for using the proposed framework

with various commercial simulation software packages. The CUI is also used to edit

simulation models in a neutral environment. A graphical modeling tool is also developed

to facilitate conceptual modeling. The resulting graphic can be translated into the

common model representation automatically. This not only increases the understanding

of models for all stakeholders, but also shifts model interactions to the “formulating”

stage, which can prevent problems later in the model’s lifecycle. Illustration of the

proposed framework and the tools will be given, as well as future work needs.

DEDICATION

I would like to dedicate this research to my parents and my wife Chiung-I.

ii

ACKNOWLEDGMENTS

A profound gratitude is expressed to my major professor Dr. Allen G. Greenwood

for his invaluable advice, invariable encouragement and guidance. His patience and

kindness will never be forgotten.

A sincere gratitude is extended to Drs. Larry G. Brown, John M. Usher, Donna S.

Reese, and Stanley F. Bullington for serving on my committee. Additional thanks are

given to Dennis Mohr and Travis Hill for their help on my research and I wish the best of

luck to them.

I wish to thank the Department of Industrial Engineering and Center for

Advanced Vehicular Systems for their funding support.

Finally, every sincere and special appreciation is extended to my parents and my

family, who gave effortlessly their love, support and prayers throughout my academic

career.

iii

TABLE OF CONTENTS

Page
DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES... viii

LIST OF FIGURES ... xi

CHAPTER

I. INTRODUCTION... 1
1.1 Problem of Simulation ... 1
1.2 Reasons for the Lack of Interoperability ... 3
1.3 Scenarios and Research Objectives ... 5

II. DEFINITION AND ANALYSIS OF SIMULATION MODEL
INTERACTIONS... 7

2.1 Types of Model Interactions .. 7
2.1.1 One-to-One Integration.. 9
2.1.2 Many-to-One Integration ... 10
2.1.3 One-to-Many Integration ... 10
2.1.4 Parallel Integration... 11
2.1.5 Replacement Integration .. 12

2.2 Approaches to Model Interactions ... 12
2.2.1 Model Interactions at the Application Stage............................ 16

2.2.1.1 Link Through Individual Observation 16
2.2.1.2 Link Through Distribution .. 18
2.2.1.3 Common Structure/Common Application 19
2.2.1.4 Distributed Simulation .. 24
2.2.1.5 Comparison of Approaches to Model Interaction at

 the Application Stage... 27
2.2.2 Model Interactions at the Formulation Stage........................... 28

2.2.2.1 Graphical Modeling .. 31
2.3 Summary of the Chapter .. 35

iv

CHAPTER Page

III. REVIEWS OF EXISTING COMMON MODEL REPRESENTATIONS..... 37
3.1 Conditional Specification... 38
3.2 Structural Modeling ... 39
3.3 Shop Data Model and Interface Specification 41
3.4 Other Approaches .. 43

3.4.1 Entity-Relationship Approach ... 43
3.4.2 Object-Oriented Approach... 45

3.5 Comparison of Existing Model Representations 47

IV. PROPOSED SIMULATION INTERACTION APPROACH 49
4.1 Overview of the Proposed Approach... 49
4.2 The Common Model Elements .. 56

4.2.1 General Information... 57
4.2.2 Entity.. 59
4.2.3 Static Resource... 60
4.2.4 Dynamic Resource ... 64
4.2.5 Linkage .. 66
4.2.6 Routing... 67
4.2.7 Operation.. 69
4.2.8 Arrival .. 70
4.2.9 Non-Supported Elements ... 71

4.3 The Entity-Relationship Diagram.. 74
4.4 The Structural Modeling Schema .. 79
4.5 Common Graphic Elements... 82
4.6 Summary.. 82

V. IMPLEMENTATION OF PROPOSED SIMULATION INTERACTION
APPROACH .. 83

5.1 The XML DTD .. 83
5.2 The XML file ... 85
5.3 Graphical Modeling Tool... 86
5.4 Common User Interface... 93

5.4.1 The User Interface and XML Parser .. 93
5.4.2 The ProModel Controller... 95
5.4.3 The QUEST Controller .. 97

VI. ILLUSTRATION OF THE PROPOSED APPROACH 99
6.1 Test Set 1.. 99

6.1.1 BullyBooks .. 100
6.1.2 Quarry problem.. 102
6.1.3 Shuttle bus problem ... 106

v

CHAPTER Page

6.2 Test Set 2.. 107
6.2.1 Exercise 5.1.. 108
6.2.2 Exercise 5.2.. 110
6.2.3 Exercise 5.3.. 111
6.2.4 Exercise 5.4.. 111
6.2.5 Exercise 5.5.. 113
6.2.6 Exercise 5.6.. 114
6.2.7 Exercise 5.7.. 116
6.2.8 Exercise 5.8.. 118
6.2.9 Exercise 5.9.. 120
6.2.10 Exercise 5.10.. 122
6.2.11 Exercise 5.11.. 124
6.2.12 Exercise 5.12.. 124
6.2.13 Exercise 5.13.. 125
6.2.14 Exercise 5.14.. 125

6.3 Summary of the Chapter .. 125

VII. LIMITATION OF THE PROPOSED APPROACH....................................... 127
7.1 Compatibility from Framework to ProModel (Opportunity 1)............ 129
7.2 Compatibility from Framework to QUEST (Opportunity 2)............... 132
7.3 Compatibility from ProModel to the Framework (Opportunity 3)...... 135

7.3.1 General Information... 135
7.3.2 Entities ... 136
7.3.3 Locations.. 136
7.3.4 Resources ... 137
7.3.5 Arrival .. 138
7.3.6 Process ... 138

7.4 Compatibility from Quest to the Framework (Opportunity 4)............. 139
7.4.1 General Information... 141
7.4.2 Parts.. 141
7.4.3 Machine and Buffer ... 142
7.4.4 Labor, AGV, and Controllers... 144
7.4.5 Source .. 145
7.4.6 Connections.. 148
7.4.7 Process and Failure .. 148

7.5 Capturing Model Information Not Used in the Framework 151

VIII. CONCLUSIONS AND RECOMMENDATIONS.. 157
REFERENCES .. 162

vi

APPENDIX Page

A STRUCTURAL MODELING SCHEMA... 167

B XML DTD... 170

C A SAMPLE XML FILE .. 173

D ProModel® LISTING .. 182

E SAMPLE LOG FILE... 189

F SAMPLE UNINTERPRETED ProModel® XML FILE 197

G SAMPLE UNINTERPRETED QUEST® XML FILE..................................... 202

vii

LIST OF TABLES

TABLE Page

2.1 Mapping of Integration Requirements to Integration Approaches................ 28

4.1 General Information Elements Included in the Framework 58

4.2 Entity Elements Included in the Framework ... 59

4.3 Static Resource Elements Included in the Framework.................................. 61

4.4 Static Resource Elements Not Included in the Framework........................... 63

4.5 Dynamic Resource Elements Included in the Framework 65

4.6 Dynamic Resource Elements Not Included in the Framework 66

4.7 Linkage Elements Included in the Framework.. 67

4.8 Routing Elements Included in the Framework .. 68

4.9 Operation Elements Included in the Framework... 69

4.10 Arrival Elements Included in the Framework ... 71

4.11 Elements that are Not Supported by the Framework..................................... 73

4.12 Common Sequence Rules.. 75

4.13 Common Routing Rules .. 77

7.1 General Information Compatibility from Framework to ProModel.............. 129

7.2 Entity Resource Compatibility from Framework to ProModel 130

7.3 Static Resource Compatibility from Framework to ProModel...................... 130

7.4 Dynamic Resource Compatibility from Framework to ProModel 130

viii

TABLE Page

7.5 Arrival Compatibility from Framework to ProModel 131

7.6 Linkage Compatibility from Framework to ProModel 131

7.7 Routing Compatibility from Framework to ProModel.................................. 131

7.8 Operation Compatibility from Framework to ProModel............................... 132

7.9 General Information Compatibility from Framework to QUEST................. 132

7.10 Entity Compatibility from Framework to QUEST.. 133

7.11 Static Resource Compatibility from Framework to QUEST......................... 133

7.12 Dynamic Resource Compatibility from Framework to QUEST 133

7.13 Arrival Compatibility from Framework to QUEST 134

7.14 Linkage Compatibility from Framework to QUEST..................................... 134

7.15 Routing Compatibility from Framework to QUEST..................................... 134

7.16 Operation Compatibility from Framework to QUEST.................................. 135

7.17 General Information Compatibility from ProModel to Framework.............. 136

7.18 Entity Compatibility from ProModel to Framework..................................... 136

7.19 Location Compatibility from ProModel to Framework 137

7.20 Resource Compatibility from ProModel to Framework................................ 138

7.21 Arrival Compatibility from ProModel to Framework 138

7.22 Process Compatibility from ProModel to Framework. 139

7.23 General Information Compatibility from QUEST to Framework................. 141

7.24 Parts Compatibility from QUEST to Framework.. 142

7.25 Machine Compatibility from QUEST to Framework.................................... 143

ix

TABLE Page

7.26 Buffer Compatibility from QUEST to Framework 144

7.27 Labor Compatibility from QUEST to Framework .. 145

7.28 Source Compatibility from QUEST to Framework....................................... 147

7.29 Connection Compatibility from QUEST to Framework 148

7.30 Cycle Process Compatibility from QUEST to Framework 149

7.31 Failure Compatibility from QUEST to Framework 150

7.32 Repair Process Compatibility from QUEST to Framework.......................... 150

x

LIST OF FIGURES

FIGURE Page

2.1 Sequential Model Integration .. 9

2.2 Many-to-One (Multiple Source) Integration ... 10

2.3 One-to-Many (Multiple Destination) Integration.. 11

2.4 Parallel Integration .. 12

2.5 Replacement Integration.. 12

2.6 Opportunities for Simulation Models to Interact During the Simulation
Process ... 14

2.7 Conceptual and Programmed Model Interactions ... 16

2.8 Link Through Individual Observation... 17

2.9 Link Through Distributions... 19

2.10 Models Merged in Targeted Simulation Environment 21

2.11 Models Merged in Software Independent Environment 23

2.12 Peer-to-Peer Communication .. 25

2.13 Central Communication Bus ... 26

2.14 Model Interaction Opportunities at the Formulation Stage 29

4.1 General Interaction Strategy for Current Practice ... 50

4.2 General Interaction Strategy for the Proposed Approach.............................. 51

4.3 Components of Proposed Approach to Facilitate Simulation Model
Interactions... 54

xi

FIGURE Page

4.4 Relationships Between Common Data Elements .. 76

4.5 Performance Measuments of Common Data Elements................................. 78

4.6 Example SM Schema .. 81

5.1 Example XML DTD.. 84

5.2 Example XML file... 86

5.3 Visio Stencil of Model Elements... 88

5.4 Graphical Modeling Tool Environment with Part1 Selected 91

5.5 Graphical Modeling Tool Environment with Part2 Selected 92

5.6 Overall Structure of the Common User Interface.. 93

5.7 Common User Interface .. 94

5.8 Management Functions in the Common User Interface................................ 95

5.9 Transferring ProModel Files to the Proposed Framework 96

6.1 Graphical model of Bully Books... 101

6.2 Graphical Model of Quarry Problem... 104

6.3 Graphical Model of Exercise 5.1... 109

6.4 Graphical Model of Exercise 5.2... 110

6.5 Graphical Model of Exercise 5.4... 113

6.6 Graphical Model of Exercise 5.5... 114

6.7 Graphical Model of Exercise 5.6... 116

6.8 Graphical Model of Exercise 5.7... 117

6.9 Flow Chart of Exercise 5.7 .. 118

xii

FIGURE Page

6.10 Graphical Model of Exercise 5.8... 120

6.11 Exercise 5.9 With Lines for Different Customers ... 121

6.12 Exercise 5.9 with One Line for All Customers ... 122

6.13 Graphical Model of Exercise 5.10 With Orders Randomly Assigned 123

6.14 Graphical Model of Exercise 5.10 With Order Assigned to First
Available ... 124

7.1 Relationships Between Simulation Packages and Implementations 127

7.2 Log File ... 152

7.3 Portion of the Uninterpreted XML File for ProModel Distribution Model .. 153

7.4 Portion of the Interpreted XML File for ProModel Distribution Model 154

7.5 Portion of the Uninterpreted XML File for a QUEST Model 156

xiii

CHAPTER I

INTRODUCTION

Decision-making is becoming increasingly complex, especially when the

decisions involve entire production systems, enterprises, and supply chains. The

complexity of these problems requires modeling to effectively address the large number

of variables and interactions inherent in such systems. These decision problems are

usually too difficult to be solved by traditional methods, such as linear programming.

Discrete-event simulation is a primary means used to model and analyze complex

systems. According to the Oak Ridge Centers for Manufacturing Technologies [1], “no

other technology offers more than a fraction of the potential that M&S (modeling and

simulation) does for improving products, perfecting processes, reducing design-to-

manufacturing cycle time, and reducing product realization costs.” However, even

though simulation provides great benefits to industry, it is largely underutilized [2]. It is

especially underutilized when multiple models must interoperate in order to analyze

large-scale organizational systems.

1.1 Problem of Simulation

One of the largest barriers to utilizing simulation to address problems in these

complex systems is that disparate simulation models, those developed using different

simulation software, do not interact or interoperate with each other; i.e., it is very

1

2
difficult for simulation models to act upon or influence each other. Entire models or

portions of models oftentimes must be considered together so that the activities can be

coordinated across models and the dynamic behavior of the overall system can be

analyzed [3]. As McLean and Leong [2] point out, the most important factor that inhibits

the use of simulation is cost. The extremely limited interoperability between disparate

simulation models directly and indirectly increases the simulation implementation and

model management costs.

Model reusability is also directly affected by the lack of interaction. For example,

an existing model that is built using one simulation package cannot be executed in other

environments. In order to execute it in other simulation packages, a new model must be

built. However, if the model can be transferred to the new environment, it would save

the duplication of modeling efforts. In addition to expanding the application domain,

effective simulation model interactions also increase the useful life of existing models.

Most models are built from scratch to solve an ad hoc problem and represent a portion of

some larger system. Once the immediate problem is solved, these models are often no

longer used. However, if they can be coupled with other models and enable the analysis

of a broader system, their useful life would be greatly expanded. The modeling effort

would provide a much greater return on the investment needed to build the models.

Poor, or no, model interactions create another problem – they create islands of

simulation modeling and analysis. These islands result from inter- and intra-company

barriers because of varying simulation expertise and software preferences. It also

restricts the use of existing simulation models to analyze and improve the supply chain.

3
The lack of interactions also complicates the development of decision support systems

(DSSs) and model management systems (MMSs). Since most DSSs require multiple

simulation models to address a specific problem, the lack of interoperability of the

simulation models greatly complicates the development of interfaces and

communications protocol between disparate models. Selecting and managing models

that are built and executed using different software or a different approach further

complicates DSS development. This disparity in commercial software also inhibits the

creation of a common representations of a simulation models. This lack of common

representation creates problems of understanding among model builders and decision-

makers (DMs) and complicates validation and verification.

1.2 Reasons for the Lack of Interoperability

There are several reasons why models do not interact with each other. A model is

an abstraction of a system’s behavior and there are many world views or ways to view,

characterize, and represent a system as a model. For example, simulation time can be

viewed as a continuous flow or a series of discrete-events. Even the discrete-event

approach has several world views, such as event-scheduling, activity-scanning, and

process-interaction. While the most common world view being used today is event

scheduling (at least in the U.S.), there are numerous implementations; i.e., one for each

simulation package on the market. Models that are built using different world views are

not likely to interact with each other.

While the various implementations or simulation packages have many aspects in

common (e.g., pseudorandom number generation, sampling from theoretical probability

4
distributions, and processing events over time), there are many significant differences.

First, there is no common input/output format. For example, the output generated by a

ProModel® model cannot be directly used as input to a QUEST® model (a simulation

software package from the DELMIA Corporation). Second, there is no common

interface or communication protocol between simulation software applications. For

example, it is difficult to coordinate the execution of models in ProModel® and QUEST®

because they cannot exchange information at run-time. Third, each simulation software

vendor has their own approach to building models. Therefore, models of the same

system are likely to be represented in such different formats that the behavior of the

system is unintelligible unless someone has considerable expertise in the different

packages. Fourth, there are few common elements and corresponding terminology

between simulation packages. For example, ProModel® refers to the things that flow

through a model as entities, General Purpose Simulation System (GPSS) refers to them as

transactions, and QUEST® refers to them as parts. Finally, there is no common structure

for simulation models, like there are for other types of models, e.g., mathematical

programming system (MPS) format for defining linear programming models. Ideally, a

system that is to be represented as a simulation model could be represented in a general

format, then that format could be used by any applicable solver.

Also, typically a model of a system either lies in the modeler’s mind or is

embedded in some specific software; there is no generalized way to represent or

formulate a simulation model. Given the same system, different model builders are likely

to formulate and build the model in different ways.

5
1.3 Scenarios and Research Objectives

The poor interoperability between disparate simulation models creates a lot of

problems. Consider the following scenarios: When an organization decides to build a

simulation model to address a problem, it is not uncommon that decision-makers and the

model builders are different groups of people. In this beginning, the model builders

usually do not have enough information about the system to build a good model. Getting

the right information is important to the success of simulation [4]. The decision-makers

need to provide system information to the model builders, but they usually do not know

what information is needed in order to build a model. Thus, the model builders may

create a rough-cut model, ask the decision-makers to verify the model, then ask for more

information, modify the model, come back to the decision-makers, and so on until the

model is acceptable. This iterative model building process is usually very time

consuming. If there were an intermediate language between model builders and decision-

makers, this process would be considerably shortened.

Consider another scenario: Companies in a supply chain would like to integrate

their simulation models to analyze the overall performance. However, they find it

difficult to do it because their models are created using different simulation software

packages. There is a need to identify possible methods to facilitate model interaction

between disparate simulation models (meaning models that are built using different

simulation software packages). But if the desired models can be translated into a common

format, it will be easier to integrate disparate simulation models.

6
Regardless of all other possible model interaction approaches, from the above two

scenarios, having an intermediate language (or a common model representation) between

a human and a model, or between models, will largely improve the model

interoperability. The purpose of this research is to develop a framework that enables a

common model representation, and thus improves discrete-event simulation model

interoperability. The study focuses on the model interaction problem and has two primary

objectives:

� Define and analyze simulation model interactions, by:

- Identifying, defining, and analyzing the types of simulation model

interactions.

- Identifying and defining possible approaches to allow models to

interact.

� Develop an approach to improve model interoperability.

In Chapter 2, the various types of simulation model interactions are identified and

defined. It also includes potential approaches for facilitating simulation model

interactions, and the advantages and disadvantages of each. Chapter 3 reviews relative

works on simulation model representation. Chapter 4 describes the proposed approach for

facilitating model interaction. The implementation of the proposed approach is given in

Chapter 5. Chapter 6 applies the proposed approach to a variety of simulation problems.

Chapter 7 describes the limitations of the proposed approach and suggests methods to

compensate for the limitations. Future research needs are discussed in Chapter 8. Finally,

Chapter 9 draws conclusions from the research and summarizes the contributions.

CHAPTER II

DEFINITION AND ANALYSIS OF SIMULATION MODEL INTERACTIONS

Simulation models interact and interoperate when multiple models work together

-- i.e., act upon or influence each other -- in order to analyze a system. To address the

first research objective, and provide the basis for the second objective, this section

identifies and defines the types of simulation model interactions and the general

approaches for getting models to interact.

2.1 Types of Model Interactions

There are different types of interactions that are characterized along the following

dimensions:

� degree to which the system description is revealed,

� where in the simulation process the interaction takes place, and

� the types of interaction relationships that exist between the models.

The degree to which a system description is revealed by a model can range from

closed to open. A closed-type of interaction can be viewed as the exchange of

information between “black boxes.” Only limited system knowledge is revealed. A very

common example of this type of interaction is “blindly” using the output of one model as

the input of the other. Another example of “closed” interaction is High Level

Architecture (HLA). While HLA is described in a later section, basically each

7

8
federation (e.g., a simulation application) exchanges small specific sections of execution

state information between others dynamically at run-time and thus only small portions of

execution information are revealed; i.e., models essentially act as black boxes.

An “open” type of interaction is one where a full system description and operating

logic are revealed and understandable by other models. This usually occurs when models

are merged (e.g., into a common simulation package) and become integrated into a single

implementation. It is very difficult to perform this form of interaction across simulation

packages because of the lack of a common simulation model structure.

Another way to classify model interactions is pinpointing where in the simulation

modeling process the interactions take place. Models either can interact at application or

at formulation. Models are said to interact during application (not necessarily

concurrently) when the state of one or more models depends on the state or output of

another model or models; i.e., models interact with each other either to exchange

information dynamically during run-time or the output from one or more models is used

as input to another model or models. Models are said to interact during formulation when

any stakeholder (not just modelers) needs to understand model logic and/or data or when

common elements that will interact during execution need to be understood. For example,

it is needed to ensure two models give the same entity an identical name.

The third way to characterize model interactions is by the type of relationships

that need to exist between a set of models. The difficulty of getting the models to interact

is heavily dependent upon the type of relationship that is required between models in

9
order to capture the system’s behavior. There are five possible relationships between

models: one-to-one, one-to-many, many-to-one, parallel, and replacement.

2.1.1 One-to-One Integration

One-to-one is the simplest type of integration. It is one where there is a simple

sequential relationship between two models; i.e., the output of one model is the input to

the other. As shown in Figure 2.1, this type of integration emphasizes the input/output

relationships and ignores the content of simulation models. Blanning’s [5] entity-

relationship approach, where the relational data concept is applied to models, addresses

this type of integration. Blanning [5] considers a model as a virtual file and all of the

possible inputs and corresponding outputs are considered as records. Once the

input/output types of two models fit, then it is possible for two models to be integrated.

Model B Model A

Figure 2.1 Sequential Model Integration

There are several advantages to this type of integration. First, models do not have

to be run synchronously if there is no blocking effect; i.e., the output of one model is

always accepted by the subsequent model. Blocking can occur when there is no space for

transferring an entity and when multiple entities are combined in the receiving model. As

long as the output of one model is stored properly, the subsequent model can execute any

time. A second advantage is that two disparate simulation applications can be integrated

10
quite easily; the only requirement being a neutral data exchange format that is common or

shared by the models. A third advantage is that the information and knowledge contained

in the models are hidden from each other. This is an important characteristic in the case

of supply-chain models since companies are usually reluctant to share the details of their

operations.

2.1.2 Many-to-One Integration

As shown in Figure 2.2, a many-to-one integration is required when a model

derives its inputs from multiple models; i.e., a model has multiple sources. This type of

integration is similar to the sequential type of integration; however, blocking can have a

more severe effect. If blocking is an issue, then all models need to run synchronously.

Since the relationship between models is one of input/output, then the internal

information of each model remains hidden.

Model B

Model C

Model A

Figure 2.2 Many-to-One (Multiple Source) Integration

2.1.3 One-to-Many Integration

In a one-to-many integration, the output of one model drives multiple models; i.e.,

the output of a model has multiple destinations. This relationship is illustrated graphically

in Figure 2.3. The main difference between it and a many-to-one relationship is the

11
routing logic involved. If the blocking is an issue, then a model needs to know the

available capacity of subsequent models before it can send the outputs; therefore, the

models need to run synchronously. Similar to many-to-one integration, model details

remain hidden.

Model B

Model C

Model A

Figure 2.3 One-to-Many (Multiple Destination) Integration

2.1.4 Parallel Integration

As shown in Figure 2.4, parallel integration involves two tightly-coupled models

that each receive input from, and provide input to, the other. The activities of each model

need to be coordinated with the state of the other model. Analyzing a proposed expansion

of a production facility is an example of parallel integration. This type of integration is

obviously much more complex than input/output types defined above since the

availability of dynamic resources, routing logic, linkage between static resources, and

operation logic all need to be considered. In this case, models need to run synchronously

and the information contained within the models is difficult to protect.

12

Simulation Model A

Simulation Model B

Figure 2.4 Parallel Integration

2.1.5 Replacement Integration

As the name implies, and as shown in Figure 2.5, one simulation model replaces a

portion of another simulation model. This type of integration is typically used to build

hierarchical models. For example, a high-level simulation model may represent an overall

production facility with individual, more detailed models, used to represent work cells,

shops, or departments. In this type of integration, models need to run synchronously and

it is difficult to protect the internal information within each model.

Model A

Model B

Figure 2.5 Replacement Integration

2.2 Approaches to Model Interactions

The simulation process is used to identify opportunities for model interaction.

Figure 2.6 is a representation of a generic simulation modeling and analysis process.

13
While there is no standard process, Figure 2.6 represents a compilation of processes from

a variety of sources (e.g., Banks & Carson [6], Law and Kelton [7], Shannon [8], Harrell,

Ghosh, and Bowden [9]). As noted earlier, and as shown in the simulation process in

Figure 2.6, there are two possible opportunities for simulation models to interact, i.e., at

application and at formulation. Traditionally, model interactions occur at application

when the system representation has been translated into a simulation language. The

models that need to interact are called a programmed model. After models are built using

different simulation languages, the model structure and terminologies are tied to a

simulation vendor’s specified model building approach. The content of the model is not

likely to be understood by others that are using different simulation software. Only the

observable information, such as output, can be used as means for interaction. However,

even the output format and terminology vary greatly from package to package. Thus, the

application stage primarily supports the closed type of interaction. Since most companies

are not willing to share the details of their operation, this closed type of interaction is

usually preferred when the interaction spans multiple enterprises.

In Figure 2.6, the steps that follow step “problem definition, statement of

objectives, and develop project plan” are: “design experiments”, “model formulation”,

and “data preparation.” This research focuses on model formulation. Commercial

simulation software packages usually contain functions to assist in the “design

experiments” step. For example, in ProModel® , users can specify the number of

replications and whether to exclude transient behavior. Those features are considered as

experimental design and out of the scope of this research.

14

Model Formulation

Problem Definition

Statement of Objectives

Develop Project Plan

Design Experiments (conceptual representation of Data Preparation
system)

Validation

Model Translation
Verification

Pilot runs
Validation

Execute Model

Analyze and Interpret Results

Document

(identification, collection,
analysis)

Model interaction at
Application

Model interaction at
Formulation Conceptual Model

Programmed Model

Implement

Figure 2.6 Opportunities for Simulation Models to Interact During the Simulation
Process

15
As shown in Figure 2.6, interactions that occur at the formulation stage involve

conceptual models. They are referred to as conceptual since the abstraction of a system’s

behavior typically lies in the mind of the modeler. The representation of the system at the

formulation stage is used to verify that the modeler’s observations and assumptions are

correct, and to define the information that needs to be collected. Because all of the

system information is revealed, the formulation stage primarily supports an open type of

interaction. This stage is prior to the translation to a specific simulation package.

Currently, there is no standard methodology for representing a system, formulating a

model of the system, and depicting the relevant information that is needed to construct a

functioning simulation model. The conceptual models can be text or graphical

representations, e.g., activity diagram or flow chart. Addressing model interactions at the

formulation stage, rather than at application, helps to avoid duplicate names, different

measurement units, identical objects with different names, routing problems, reference

problems, etc. Having well understood and clearly represented models at this stage

greatly improves model validation and verification.

Figure 2.7 showns a more detailed view of the modeling process and the performer

of each step in the process, i.e. human and machine performers. Typically, modelers

manually translate conceptual simulation models into programmed models. However, in

some cases, existing models need to be translated from one simulation environment to

another, or integrated with other models. This is called model interaction at the

application stage. Approaches and opportunities for interactions at the application and

formulation stages are discussed in a subsequent section.

16

Figure 2.7 Conceptual and Programmed Model Interactions

2.2.1 Model Interactions at the Application Stage

There are several approaches for facilitating model interactions at the application

stage. A review of them is given in this section.

2.2.1.1 Link Through Individual Observation

This approach stores the output from one model and then uses that information as

input to subsequent models, as shown in Figure 2.8. To use this approach, a data exporter

that records and saves the outputs of simulation is needed. Most simulation software

applications have built-in functions to export the output data to an external file. The

information that needs to be stored includes the type of output, quantity, and the time

each observation leaves the system (or exit time between observations). Metadata is also

17
needed to indicate the description of output, the format of the file, the location of the file,

etc. In the subsequent simulation software application, a data importer is needed to (1)

establish the connection between the output data file(s) and the current simulation, (2)

synchronize the exit time in the output data file(s) with the simulation time, and (3) map

the output names and output types to appropriate arrival logics in the receiving

simulation. This approach is only applicable to one-to-one, many-to-one, and one-to-

many types of integration; it works well if blocking is not an issue. It is not suitable for

integration that requires dynamic information from other models.

Simulation A
(Sending)

Data
Exporter

Output C
Data

Output B
Data

Output A
Data

Data
Importer

Simulation B
(Receiving)

Figure 2.8 Link Through Individual Observation

Advantages:

• Models can be built in and run by different simulation software,

• Easy to implement,

• Information is protected within a model,

• Synchronous execution is not required.

Disadvantages:

• Only suitable for integrations that have no blocking effect,

• Requires a large amount of storage space,

18
• Transferring information between models is time-consuming and may cause

errors,

• Access to external data may reduce the execution speed.

2.2.1.2 Link Through Distribution

Instead of linking two models with individual observations (output of one model

is input to another model), the distribution of the output of each “sending” model is

determined (primarily through distribution fitting), stored, and then used as input to a

subsequent or “receiving” model, as shown in Figure 2.9. Similar to the link-through-

individual-observation approach, the output data are exported through a data exporter.

Then a data importer loads the output files into a statistical software application that fits

the data to a probability distribution. These distributions are then used as part of the logic

in the subsequent receiving simulations. For example, exit time data from the sending

model may become the arrival time data for the receiving model. That is, the time

between arrivals within the receiving model may be based on the time between exits from

the sending model.

In this approach, synchronous executions are not required. The distribution may

not adequately represent the actual behavior if the data set is not sufficiently large. The

approach works well for one-to-one and many-to-one relationships. However, it is not

suitable for integration that requires dynamic information from the other models.

19

Simulation A Data
Exporter

Output C
Data

Output B
Data

Output A
Data

Data
Fit

Data Importer

Simulation B

Figure 2.9 Link Through Distributions

Advantages:

• Models can be built in and run by different simulation software,

• Easy to implement,

• Information is protected within a model,

• Synchronous execution is not required,

• Fast execution speed.

Disadvantages:

• May not represent the actual behavior when sample size is small,

• Loss of dynamic interaction between models. Models become decoupled and
semi-independent.

2.2.1.3 Common Structure/Common Application

In this approach, disparate models are translated to one common simulation

structure, merged into a single simulation software application or a software independent

environment, and executed in one implementation, as shown in Figure 2.10 and Figure

20
2.11. The first step of this approach is to develop a common structure, i.e., a common

representation for all simulation models. The second step is to develop an interface in

each simulation software application. This interface will enable the simulation

application to export models into the common structure and import the models that are

stored in the common structure. The final step is to merge the models. Because disparate

models are frequently integrated during the application stage instead of the model

building stage, the modeling methodology and naming rules are not the same. Some

issues that arise from integrating models late in the models’ lifecycle include duplicate

names, different measurement units, identical objects with different names, routing

problems, and reference problems. Because of these problems, manual integration of

models is usually required.

Models can be merged either in a specified simulation software application or a

software independent environment. In Figure 2.10, one model is saved into the common

structure, and then translated into targeted simulation format. Then both models are

merged in the targeted simulation environment. In Figure 2.11, models are translated into

a common structure, then merged in a software independent environment. Then the

merged models are translated into the targeted simulation format and executed in one

implementation.

21

Model Model Development
User Interface

Output

Model Model Development
User Interface Output

Simulation Software A

Simulation Software B

Model Stored in
Common Structure

Model Stored in
Common Structure

Interface

Interface

Figure 2.10 Models Merged in Targeted Simulation Environment

22
In order to implement this approach, a common structure is needed.

Unfortunately, there is no common or standard format or means to represent discrete-

event simulation models. If a common structure did exist, then a translator would be

needed to convert models developed in one implementation to the standard and then the

standard would be translated into another implementation. Several methods have been

proposed to create a common structure, such as structural modeling [10], Simulation Data

eXchange (SDX) [11][12], and condition specification (CS) [13] – none of them are

widely accepted. Their lack of acceptance is primarily due to their not being capable of

handling both the static and dynamic parts of discrete-event simulation models or they

become extremely complex and difficult to implement. Both SM and CS (derived from

the Conical Methodology) provide a methodology for facilitating model interactions in

both the formulation and application stages of the simulation process. They are reviewed

with “formulation” approaches because they provide a modeling methodology that covers

both conceptual and programmed models. SDX, developed by Engineering Animation,

Inc. (EAI), is a simulation standard that embeds simulation relative information with

computer-aided design (CAD) objects. A library of CAD objects contains dimensional

information as well as simulation-relevant information (e.g., processing time). The

model building time can be shortened by pulling the predefined objects into either CAD

or simulation software applications. The major shortfall of SDX is that it is not able to

handle complex user logic.

Ideally, this integration approach is suitable for all five types of integration. Since

this approach merges all of the information from each model implementation, the

23
resulting model should represent the behavior of the disparate models. However, the

internal information of each model becomes revealed; also, the resulting model may

become too large and hinder execution speed.

Model Model Development
User Interface

Output

Model Model Development
User Interface Output

Simulation Software A

Simulation Software B

Independent Model
Merging Tool

Model A in
Common
Structure

Model B in
Common Structure

Interface

Interface

Model A+B in
Common
Structure

Model A+B in
Common
Structure

Figure 2.11 Models Merged in Software Independent Environment

Advantages:

• Very accurate since all information is captured in one implementation,

• Dynamic behavior is maintained,

• Applicable to all types of model integration,

24
• Applicable to all simulation application software.

Disadvantages:

• There is no common structure that can represent all simulation models,

• Information within simulation modelsis not protected,

• A translator needs to be developed for each simulation application software,

• Execution speed may degrade significantly since model size increases with
integration.

2.2.1.4 Distributed Simulation

The fourth approach to simulation model interoperability during the application

stage is distributed simulation. With the advancement of network technologies, it is

possible to link disparate simulation models into a distributed simulation network.

Object orientation concepts are widely used in this approach. Each simulation is viewed

as an independent, yet interoperable, object. This approach primarily supports the closed

form of model interaction in that only the essential information is revealed. An interface

is needed for each simulation software application so that every simulation in the

simulation network is able to communicate with each other. Heim [14] proposed a pure

object-oriented distributed simulation network structure using peer-to-peer

communication architecture that avoids large bandwidth. The general structure of peer-

to-peer communication is shown in Figure 2.12. Because each simulation (object) in the

distributed simulation network sends/receives information to/from others directly, the

required communication bandwidth may be smaller but the overall information

mechanism is harder to handle. Intelligent agents are used to help in integrating models.

25
The agent describes the information of a model, information needed, information

generated, and the coordination requirements.

Simulation A Simulation B

Common Interface Common Interface

Simulation C

Common Interface

Figure 2.12 Peer-to-Peer Communication

The most notable work using the distributed simulation approach is the HLA that

was developed by the U.S. Department of Defense (DoD) [15]. The HLA uses the HLA

run-time infrastructure (RTI) to coordinate activities and information flows between

different simulation models. An adaptor is needed in each simulation software

application to communicate (send and receive specific information) with RTI [16]. In

general, HLA uses a central communication bus that requires huge bandwidth. Figure

2.13 shows the general structure of HLA. A shortfall of HLA is that it fails to address the

need for command and control systems, that is, a hierarchical structure of simulations,

which is usually needed in a complex simulation network [17]. For example, a

simulation model in the simulation network may be supported by several sub-models and

databases. The HLA fails to support this kind of hierarchical structure. McLean and

Riddick [15] also point out that a significant amount of coding is needed in order to

integrate HLA with legacy simulation systems.

26

Activity Coordinator
Communication Bus

(HLA RTI)

Simulation A Simulation B

Adaptor Adaptor

Figure 2.13 Central Communication Bus

The most significant difference between the distributed simulation approach and

the common structure approach is that the latter merges the individual models into one

large model as opposed to integrating simulation software applications together. All

models in the distributed approach need to be run synchronously; therefore, there is a

need for a good mechanism to coordinate the activities of models. Also, a communication

and information filter mechanism is needed to transfer information between models either

through a peer-to-peer bus or a central communication bus.

Advantages:

• Simulation behavior is accurate since model is unchanged and all data are
used,

• Dynamic behavior is maintained,

• Different types of software can be integrated, e.g., database management
system (DBMS) and simulation models can be integrated,

• Information is protected within a model,

• Overall execution speed may be improved through parallel computing,

• Utilize the strength of each simulation software application.

27
Disadvantages:

• Communication overhead may be very large,

• Execution speed may be greatly reduced due to large overhead,

• Considerable communication bandwidth may be required,

• Execution speed is tied to the slowest machine,

• An adaptor needs to be developed for every simulation software application,

• Model validation and verification may be difficult,

• Difficult to structure a hierarchical system of models.

2.2.1.5 Comparison of Approaches to Model Interaction at the Application Stage

Each model integration approach presented in this paper has its own pros and

cons and no one approach dominates. However, in general, the common structure and

distributed approaches support each type of model integration. The individual

observations and distribution approaches are applicable only to the one-to-one, one-to-

many, and many-to-one types of integration. Table 2.1 shows the level of applicability of

the integration approaches to the different types of integration required. Since the

maintenance of dynamic behavior between integrated models is usually very important,

the cell contents in the table reflect to what extent dynamic behavior is maintained.

Therefore, an “M” in the table indicates the dynamic behavior between the models is

maintained, an “L” indicates the dynamic behavior is lost, and a ”C” indicates the extent

of the dynamic behavior is conditional on the extent of blocking. If the cell is blank, then

the approach is not applicable to the type of integration.

28
Table 2.1 Mapping of Integration Requirements to Integration Approaches

Approaches to Integration at Application

Requirements
for

Integration

Link Through
Individual

Observations

Link Through
Distributions

Common
Structure /
Common

Application

Distributed

One-to-One C L M M
Many-to-One C L M M
One-to-Many L M M
Parallel M M
Replacement M M

2.2.2 Model Interactions at the Formulation Stage

The formulation stage primarily supports interactions between humans and

models. At this stage, model contents are usually “open” to each other. Figure 2.14

illustrates three opportunities for human and simulation model interactions through: (1)

visual means, (2) common data structure, and (3) commercial simulation software

packages. The lettered white boxes in Figure 2.14 identify simulation model

representations in three different formats: (a) conceptual framework of simulation model

elements and relationships, (b) common graphical representation, and (c) common data

representation. The dark boxes in Figure 2.14 represent software programs that enable

the interactions between humans and the various model representations. The arrows

mean that the representation at the source box can be translated into the representation at

the destination box.

29

Figure 2.14 Model Interaction Opportunities at the Formulation Stage

The conceptual framework of simulation elements (represented by box A in

Figure 2.14) is a set of rules for defining the basic elements of simulation models and

their relationships, structure, data type, etc. The framework serves as the basis for

developing various model representations, i.e., graphical representation and structural

common data representation. Conical methodology (CM) [18], structural modeling [10],

and the application of object-oriented concepts [19] [20] are examples of conceptual

frameworks. A more detailed review of these approaches is provided in Chapter 3.

The most convenient and intuitive way to interact with a simulation model is

through graphical or visual means. The common graphical representation (represented by

box B in Figure 2.14) utilizes symbols to represent simulation elements and relationships.

It provides a powerful tool for conceptual modeling. Early commercial simulation

languages – such as Q-GERT [21], SLAM II [22], and GPSS/H [23]-- used combinations

30
of graphic symbols to construct the logic of simulation models. Each graphic

representation is coupled with intermediate simulation statements that are subsequently

executed on a specific “solver.” Unfortunately, each approach adopts a different world

view and uses a different set of symbols. There is no standard way to represent simulation

models graphically. A more detailed discussion of the graphical modeling approach is

given in the following section.

With a common data representation (represented by box C in Figure 2.14),

disparate simulation models can be translated into a common format. Having all of the

models in the same format makes it much easier for the models to interact with each

other. This standardized simulation data format can also serve as an intermediate

language between conceptual models and programmed models, making it easier for non-

modelers to understand the model contents in the common representation rather than a

format associated with a specific simulation package. Examples of common data

representations are condition specification [13] and structural modeling schema [10].

When human-model interaction occurs with specific simulation applications, at

Interface 3 in Figure 2.14, different simulation vendors use completely different

approaches and means for building models. Therefore, users must learn the approach,

terminology, and syntax that are associated with each specific simulation software. A

significant investment is required in order to become proficient in modeling using each

package. Any resulting models are not able to interact with others, unless they were

developed using the same simulation software.

31
2.2.2.1 Graphical Modeling

A trend of software design is toward the use of graphical representations. Visual

programming is the concept of using graphical objects to present the system in mind. A

good example of it is Microsoft™ Visual Basic. The main advantage of using intuitive

graphical representations in programming is because it largely reduces the learning curve.

Likewise, using graphical representations in the modeling process is called visual

modeling. It is well known that a simulation model is an expensive tool. One important

reason is the lack of effective, intuitive and general modeling approaches. Early

simulation models were written in programming languages such as FORTRAN and C.

These languages use unintuitive commands instead of graphics that are more intuitive and

help users more easily connect portions of the model to real world objects.

Visual modeling is the idea of using graphical representations, such as icons and

lines, to represent the model elements, constructs, and relationships. The most common

graphical units include icons, lines, boxes, diamonds, ovals, and text strings. When

arranging these graphical units under certain rules and providing the required data, the

resulting drawing becomes an overall system representation and the data beneath it

becomes a simulation model in a generic format. The resulting drawings are easier to

understand than modeling languages. Thus, it can serve as a bridge between people who

use models and people who build models. Another advantage of using graphical models

is that they can be used to measure the complexity of simulation models [24].

It is common that decision-makers (DMs) and model builders are different groups

of people. The DMs try to express what they want and the model builders try to

32
understand and translate this to models. This is usually an iterative process until the

model builders come up with a model that meets DMs’ needs. This process can take

considerable time and is error prone since different groups of people usually speak

different languages. Visual modeling can serve as a bridge between decision makers and

model builders. The intuitive graphic representations avoid the need for DMs to

memorize unintuitive commands. They can express their idea using high-level drawings.

Then the model builders can use their draft models to develop them into more detailed

and executable models.

Using graphic symbols to describe a system being modeled is not a new idea.

PERT (Program Evaluation and Review Technique) is a graphical tool that describes the

duration and dependency information of tasks that are required to accomplish a project.

Lines in PERT represent tasks and nodes represent milestones. PERT is used to manage a

project and does not have direct relationship with simulations.

Queuing – Graphical Evaluation and Review Technique (Q-GERT), developed by

Pritsker [21], generalizes the PERT concepts with additional queuing and decision

constructs. In Q-GERT, branches represent activities such as process or delay. Nodes

represent model milestones, decision points, and queues. Nodes and branches in Q-GERT

contain statements that portray key information and are executable by Q-GERT software.

Each statement contains a three-character key word and parameters separated by

commas. Entities that flow through the system are called transactions. Transactions differ

only by their attribute values. Attributes can be assigned at any node. Like PERT, Q-

GERT only focuses on how the tasks get done, the duration of tasks, the relationships

33
between tasks, and the flow of transactions. There is no direct relationship between the

graphical symbols and real world objects. Q-GERT has fewer symbolic icons compared

to other graphic modeling tools. The advantage is that it is easier to learn its symbology.

The main disadvantage is that a node may contain too much information and the resulting

statement becomes difficult to read. For example, a node may contain statistic collection

information, label, initial number, capacity, user-defined functions, parameter set, etc.

The resulting statement of the node may contain a long list of parameters.

Q-GERT analysis program is written in American National Standards Institute

(ANSI) FORTRAN IV. Q-GERT has default FORTRAN functions to assist collecting

statistical data. But users still need to explicitly specify how to collect the data. For

example, to collect travel time for a transaction, an “M” must be put in the beginning

node to record the time that a transaction enters the system. And an “I” must be put in the

end to record the interval statistic. Q-GERT allows users to insert customized functions

and sub-routines to accomplish complex logic. As a result, Q-GERT is a powerful

graphical modeling system that permits direct computer analysis.

SLAM II evolved from Q-GERT and was also developed by Pritsker and Pegden

[22]. It adds new features such as materials handling. Like Q-GERT, users can build

graphical models with network symbols and translate them into input statements for

computer analysis. SLAM II uses a hybrid world view and is able to handle discrete-

event and continuous simulation modeling. Like Q-GERT, SLAM II implements

activities as branches, nodes as milestones and decisions. SLAM II diagrams look very

similar to Q-GERT. SLAM II fixes the problem that a node may contain too much

34
information by introducing more specific nodes. For example, in Q-GERT, attributes are

assigned on basic nodes. SLAM II adds an assign node just to perform the attribute

assignment task. In addition to using the combinations of nodes to represent complex

logic, SLAM II also allows users to write their own code to accomplish complex logic.

With the advance of hardware, it is easier to write custom codes. SLAM II is available in

FORTRAN and C versions, which gives users more flexibility. Like Q-GERT, each

graphic symbol in SLAM II directly ties to a statement. Each statement consists of a key

word (not limited to three characters) and parameters separated by comma. SLAM II also

introduces a statistics collection capability, called the COLCT node, that makes

collecting performance measurements easier.

GPSS/H is also a graphical-based discrete-event simulation language. GPSS/H is

used for “modeling system composed of units of traffic that compete with each other for

the use of scarce resources” [23, p.16]. Units of traffic refer to unfinished products that

flow through the system and are called transactions in GPSS/H. Each transaction

possesses a unique ID and differs based on the attributes they carry. GPSS/H does not

provide pictorial representations; however, a block diagram is used to express a GPSS/H

model. The block diagram consists of different types of blocks and arrows. Each block

represents an action, decision, or milestone. There are 60 types of blocks in GPSS/H

while arrows have no meaning except to show the flow direction of transactions.

A model file in GPSS/H consists of block statements, control statements, and

comment statements. Block statements directly correspond to the blocks in the block

diagram. They describe the behavior of the system and are only executed at the time

35
transactions move into the blocks. Control statements are used to control the model

execution, input/output of model, define features of model, etc. Comment statements

provide additional information about the model and are optional, but strongly

recommended. Statements in GPSS/H follow a specific format. Block and control

statements can consist of three parts: label, operation, and operands. The label in the

block diagram and the statements makes it easier to relate to real world objects. In

GPSS/H, statistical data are collected automatically by the system. GPSS/H also allows

users to write user functions and subroutines to accomplish complex tasks. GPSS/H is

still one of the most general, flexible, and powerful simulation languages [25].

One problem with early graphic modeling languages is the graphic symbols do

not have direct relationship with real world objects. For example, in Q-GERT, an activity

may take 5 minutes to accomplish. This activity could be a machine drilling a hole on a

panel, a doctor examining a patient, or an ATM machine finishing a transaction. Another

problem is that the early languages try to teach the system “How” to do instead of

“What” to do. This results in a complex representation of simulation models. For

example, SLAM II has a series of blocks -- resource block, await node, free node, gate

node, open node, preempt node, and alter nodes -- to manipulate the resources.

2.3 Summary of the Chapter

In this chapter, three ways to characterize model interaction types are discussed.

The first way to classify model interaction is by the degree to which the system

description is revealed, i.e., “open” versus “closed” type of interaction. The second way

is by identifying where in the simulation process the interaction takes place, i.e., at

36
application or at formulation. The third way to classify model interaction is by the types

of interaction relationships that exist between the models. Five possible relationships

between models are discussed, they are: one-to-one, one-to-many, many-to-one, parallel,

and replacement.

There are different approaches to achieving model interactions at application and

at formulation stages. At the model application stage, the approaches include: link

through individual observation, link through distribution, common structure/common

application, and distributed simulation. The pros and cons of each are discussed as well

as a mapping of interaction relationships to interaction approaches. At the model

formulation stage, there are three opportunities for humans and simulation models to

interact-through visual means, common data structure, and commercial simulation

software. Reviews of existing visual means are provided in the chapter. A more detailed

review on common data structure is given in Chapter 3.

CHAPTER III

REVIEWS OF EXISTING COMMON MODEL REPRESENTATIONS

Based on the analysis and definition of the types of simulation model interactions

and approaches, the common structure and distributed simulation network approaches are

applicable to all types of model interactions. As mentioned earlier, the models in a

distributed simulation network act like “black boxes” and the model information is

“closed;” thus, this approach does not facilitate model interaction in the formulation

stage. The common structure approach supports all types of model interactions, in both

formulation and application stages. Having a common model representation is essential to

model interactions as well as model management [26]. To efficiently carry out the

functionalities of model management systems, i.e., model development, model storage,

and model manipulation, a common model representation format that is independent of

software is needed [27][28][29][30]. There are several attempts to represent various types

of models in a generic format. These include: structured modeling (SM), entity-

relationship model, object-oriented approach, simulation data exchange (SDX), and

condition specification (CS). Detailed discussions of these methods are given in the

following sections.

37

38

3.1 Conditional Specification

Conical methodology (CM) is proposed by Richard E. Nance. “The CM is an

object-oriented, hierarchical specification language that iteratively prescribes object

attributes in a definitional phase that is top-down, followed by a specification phase that

is bottom-up” [18, p.1]. Thus, CM defines the pieces, or components, of the system for

building simulation models, especially for large complex models. The intent of CM is to

provide disciplines and methods for the entire model lifecycle, e.g., from conceptual

model to results. Consequently, CM divides model development into two phases, model

definition and model specification. The top-down definition phase is to hierarchically

decompose models into sub-models. At each level of hierarchy, attributes and elements

are specified. The bottom-up specification phase defines the necessary information for a

model. By completing the information of each hierarchical level from bottom to top, a

complete representation of the model is thus finished.

The bottom-up specification phase focuses on creating a specification, which

results in a CS as is proposed by Overstreet and Nance [13]. It is intended to “reduce

modeling costs by interposing an intermediate form between a conceptual model and an

executable representation of that model. As a model specification is constructed, the

incomplete specification can be analyzed to detect some types of errors and provide some

types of model documentation” [13, p. 190]. The CS consists of three components:

interface specification, specification of model dynamics, and report specification. The

interface specification defines the input and output of a model. The model dynamics

specifications provide representation for the main body of the simulation. It consists of a

39
set of both object specifications and transition specifications. The object specifications

define the elements and their attributes in a simulation model, such as facilities,

resources, and positions. The transition specifications define the logic within the

simulation model, such as initialization/termination logic, repair logic, arrival logic, and

travel logic. The report specification defines the data that are to be collected and the logic

how these data are to be collected.

The CS provides a complete method to define a simulation model. However, it is

tedious to design a simulation model following CS since it requires the users to define

every single piece of information about how to execute the model. Modern simulation

software usually has built-in functions that handle a large part of the programming load

for modeler. For example, the modern simulation software permits selecting a preferred

routing rule from a list. In CS, however, modelers need to hard code every piece of logic.

3.2 Structural Modeling

Structured modeling is proposed by Geoffrion [10]. The purpose of SM is to

identify the basic components of a model and store them in a structured format. It

decomposes a model into manageable elements. The arrangement of elements and calling

sequences decide the functionality of a model. The SM tries to cover major modeling

areas, such as mathematical programming, data models, knowledge representation, and

simulation models. Also, SM identifies the basic components of a model, the

relationships between the components and then represents a model as an acyclic graph.

There are three abstract degrees in SM: elemental structure, generic structure, and

modular structure. The elemental structure defines the basic units of the models. These

40
units are primitive entity, compound entity, attribute, function, and test. Every element

except primitive entity will “call” an associated element. This calling sequence is closed

and acyclic. Thus, the element structure is a set of closed and acyclic elements. Generic

structure groups the similar elements into a genus. Like the element structure, the generic

structure is also a set of closed and acyclic genera. The modular structure is the highest

level of SM and should have practical meaning to the users. It organizes all of the

meaningful elements into a tree-like structure. For details of structured modeling, see

Geoffrion [10] [31].

The SM was first designed for “static” models, i.e., the behavior of models will

not change over time, such as linear programs. It is able to capture the numeric

relationships between variables of the mathematical models. It also provides a standard

format for representing models. However, SM is not able to capture the dynamic part of a

simulation model in that SM cannot describe the behaviors of entities at a certain point of

time. Researchers point out that SM is not designed for discrete-event simulation without

considerable modification [31] [32]. The most significant difference between “static” and

“dynamic” models is “time.” Since states within a simulation model change over time, it

is necessary to define the behavior of model elements over time. If a time element can be

properly integrated with static models, then it is possible to manage dynamic models

[33].

Although SM was not originally designed for simulation models, considerable

effort was has been put forth to extend SM to discrete-event simulation. Lenard proposed

an extended structured modeling (ESM) framework that adds three new types of elements

41
to SM, i.e., random attribute elements, action elements, and transaction elements [34]. A

random attribute element is simply an attribute whose value is not known, but is based on

a specified distribution. The transaction element is used to build up complex event lists.

With certain preconditions, transactions invoke certain actions. An action element is used

to specify a change to the current state of the simulation. Lenard’s work suggests ESM is

capable of capturing the dynamic behaviors of a simulation model. Since the transaction

elements are modeled after the action clusters in CS, the framework also includes

instructions on how to process the model and collect statistical data. As a consequence,

the resulting schema is huge and complex. Yeo and Li tried to extend SM to discrete-

event simulation by adding a new time element into the framework [33]. Their approach

results in a complicated simulation time-advancement mechanism. Also, because each

time point is recorded, it takes a tremendous amount of memory. Their approach also

requires modelers to provide detailed instructions on how to perform computational tasks,

thus, the resulting model representation becomes complex.

3.3 Shop Data Model and Interface Specification

Shop data model and interface specification is an extensible mark-up language

(XML) based simulation specification developed by the National Institute of Standards

and Technology (NIST) [35] [36] [37]. It contains all of the information needed to model

a manufacturing system. It aims to provide a consistent data integration specification for

discrete-event simulation. It is also referred to as the Machine Shop Data Model (MSDM)

because, currently, it is only used to represent and exchange machine shop data [38]. The

NIST will likely expand the specifications to business processes in the future. The work

42
is still ongoing and the resulting model will be promoted as a standard data interface for

simulators.

The MSDM contains four major supporting data structures and fifteen major

manufacturing data structures. The four major supporting data are:

� time sheets,

� probability distributions,

� references, and

� units of measurement.

The fifteen major manufacturing data structures are:

� organizations,

� calendars,

� resources (machines, stations, cranes, employees, tool-catalog, and fixture-

catalog),

� skill-definitions,

� setup-definitions,

� operation-definitions,

� maintenance-definitions,

� layout, parts,

� bills-of-materials,

� inventory,

� procurements,

� process-plans (routing-sheets, operation-sheets, and machine-programs),

43
� work (orders, jobs, tasks, maintenance-orders, pick-orders, and tool-orders),

and

� schedules.

Based on the data structure list, the MSDM completely covers all the information

in a manufacturing system, from a manufacturing system’s perspective. From a

simulation perspective, the data elements in MSDM have a lot of similarities. For

example, machines’ and stations’ data structures are represented the same way in

ProModel® . Also, most discrete-event simulation packages use only a small subset of

MSDM.

Currently, the shop data files are implemented through QUEST® . Using a

translator, the shop data file is parsed into QUEST® batch control language (BCL) and

Simulation Control Language (SCL) files and then executed in QUEST®’s simulation

environment [35][39]. The advantage of this approach is that non-simulation experts can

modify the shop data in MSDM and then generate QUEST® simulation models

automatically. In the future, the NIST is going to apply this approach to various

simulation software packages, as well as develop a graphical user interface (GUI) for

collecting simulation data [35].

3.4 Other Approaches

3.4.1 Entity-Relationship Approach

The entity-relationship (ER) model has been used widely to represent entities and

relationships between entities in database management [40]. Given the characteristics of

the ER model, it is easy to represent the static part of simulation models, such as entity,

44
location, attributes, the inheritance of objects, and the relationships between them.

However, the ER approach is unable to represent the dynamic part of a simulation model,

e.g., performing different actions based upon different situations.

Blanning tries to apply the principles of the relational view of data to models [5].

He views a model as a virtual file, while all the possible inputs and its corresponding

output are records. For example, consider a virtual file called “factory” (a factory model),

where inside this file is a table(s) that contains records with fields named “raw materials”

(for input) and “products” (for output). The “raw materials” and “products” fields

represent the observable information of the “factory” model. It is usually easier to

identify the purpose of a model by its observable information than its inner content.

While it may not be easy to store most of the structure and logic of simulation models in

traditional DBMSs, the input/output data can easily be stored in a DBMS. Thus,

Blanning’s approach facilitates applying the DBMS practices to model management

system (MMS) functions. For example, model selection can be done easier by sending

the query “select product=“screw driver” .”

Blanning’s approach does not provide a standard format for models; instead, it

tries to hide the physical part of models from users. This approach hides the tedious

model details from the DMs and enables model selection by using query languages

similar to structured query language (SQL) on input/output sets. This approach also helps

model integration regardless of the physical difference of models. The limitation of the

relational approach is that a virtual file is represented by its input and output set. It is

possible that two completely different models have the same input/output set. This

45
approach can serve as an initial model selection approach, while additional information,

such as metadata, is needed for accurate model selection.

3.4.2 Object-Oriented Approach

It is intuitive to view a manufacturing system as a set of objects, such as

machines, pallets, and people. Object-Oriented Programming (OOP) has been in

computer science for a long time and is also used in model representation [41]. In an

object-oriented approach, models are built of reusable objects. An object is an entity that

has its own private data and provides functionalities through a specified interface to

others. The access to the data is via methods or functions that the object provides. That is,

an object is a “black box” that receives inputs and sends outputs from certain ports to

communicate with other objects. This mechanism facilitates building hierarchical models

or command and control systems.

Because these objects (module models) are independent of their environment,

they are easier to attach or detach from a base model in a order to build a new model or

for conducting “what-if” experiments by plugging and unplugging the modeling

components. Moreover, the principle of inheritance of objects makes it easier to develop

new objects out of existing ones [42]. In short, the independent, yet interoperable,

functional blocks (objects) largely increase the reusability of existing models [43].

Another advantage of object-oriented simulation is the encapsulation of objects that

makes them more relevant to real world entities, thus facilitating the understanding of

simulation models. It is also easy to represent a simulation model graphically because

each object usually represents a real world entity [43].

46
Similar to distributed simulation discussed in Chapter 2, the object-oriented

approach can be used to integrate existing objects into a new model based on a common

structure. However, instead of integrating simulation software applications into a

simulation network, objects are integrated into just one implementation. The point of

using an object-oriented approach is to build a model quickly. Given that objects are from

disparate environments, the problem becomes how to link the objects together. Zeigler

suggests a coupling scheme that couples the input and output ports of the modules

(objects) [44]. This input/output coupling is not restricted to physical input/output

relationships, but also applies to state changes. For example, a machine’s output port that

indicates the state of the machine (busy/idle) may be coupled with its buffer’s input port,

so that the buffer knows when to send raw materials to the machine. A disadvantage of

this approach is that the coupling may become very complex if there are a large number

of objects in the system.

There are similarities between SM and OOP. The representation of a structured

model is close to the object-oriented representation [20]. “Structured modeling formalizes

the notion of a definitional system as a way of describing models. This is precisely what

the object-oriented concept of a class and the class-composition graphs formalize” [45, p.

221]. Ma, Tian, and Zhou point out, using the object-oriented modeling concept, a

discrete-event simulation model can be described by three different models, i.e., static

model, functional model, and dynamic model [19]. A static model describes the

properties of the system that are independent of time. A functional model (mathematical

model) describes the numeric relationships between properties. A dynamic model

47
describes how the model changes over time, e.g., states, events, activities, and actions.

SM is able to represent the first two kinds of model, but fails to represent the dynamic

model. Ma et al. proposed a logic framework that takes advantage of object-oriented

features to extend SM in order to capture dynamic part of models [19].

3.5 Comparison of Existing Model Representations

Structured Modeling fails to represent discrete-event simulation because it is not

able to capture the dynamic part of a model. The ESM is able to capture both static and

dynamic parts of simulation, but is too complex and difficult to implement. An object-

oriented approach is able to handle both static and dynamic parts of a simulation and

largely increases model reusability and interoperability. However, almost no commercial

simulation software application supports the importing/exporting of objects from/to

disparate simulation packages. Also, it is difficult to break down a simulation model into

objects in some simulation software packages. The SDX provides a convenient way to

build a model, but is not able to handle complex user logic [11][12]. Condition

specification provides a complete method for representing simulation models, but it is

complex and tedious to implement. While MSDM is a promising standard, it seems that

fulfilling all of the required information in MSDM may be a real challenge. Also, the

MSDM approach only supports one-way transformation, i.e., from MSDM to simulation.

It does not help the reusability of existing simulation models.

Based on the literature reviewed in the above discussion, there is a need for a

concise model representation that is:

� able to capture both static and dynamic parts of discrete-event simulation,

48
� easy to read and easy to write,

� easy to expand, and

� in a widely accepted format (open architecture).

Current simulation software applications usually provide some default options

that are able to handle simple activities for users. Users no longer need to explicitly

define how to perform some simple tasks. For example, to define the capacity of a queue,

in the past, users needed to define events such as arrivals, departure, queue length

handling, and statistic data collection methods. With modern simulation software

application, users only need to specify the capacity of the queue, and then the application

will handle the rest. This characteristic points out that it is possible to create a generic

model format that only stores the critical information. Because the generic model format

only contains important and intuitive information that supports all stakeholders, it will be

concise, easy to read/write, and easy to learn.

It is believed that no common simulation model representation is able to satisfy

all simulation software applications. Thus, expandability is an important factor in

designing a generic format. Once the generic format is interacting with more simulation

applications, new features can be added to it easily. A widely accepted storage media,

such as XML, is also needed to develop a generic model format because it will interact

with various simulation software applications.

CHAPTER IV

PROPOSED SIMULATION INTERACTION APPROACH

As discussed in Chapter 2, the common structure approach supports all types of

model interactions in both formulation and application stages. However, no such

approach exists. This section describes a proposed approach, based on the common

structure concept, which is applicable at both the formulation and application stages.

4.1 Overview of the Proposed Approach

Figure 4.1 illustrates current practice, in terms of model interaction. Assume the

three modelers in the left-hand portion of the figure all observe and model the same

system. Because each model of the system either lies in each modeler’s mind or is

embedded in a specific simulation software package, the models will differ from each

other. The conceptual models will be hard to understand by the other stakeholders

because there is no common methodology or representation. Some modelers may use

flow charts, but the symbols will likely differ; others may prepare detailed systems

documentation. However, most will likely develop the model directly within a specific

simulation package and employ no external visual representation. Similarly, the

programmed models that are created by the modelers will be hard to understand by other

modelers and other stakeholders, especially if they are not familiar with the specific

49

50

A

Real System

A

A

Model A

B

Input UI

Representation
(System) UI

Output UI

Logic & Data Engine

Simulation Package

C C

C

B BModel B

B

X

Model C

Input UI

Representation
(System) UI

Output UI

Logic & Data Engine

Simulation Package Y

C

simulation software package. The resulting executable models will either be difficult or

impossible to interpret by others.

Figure 4.1 General Interaction Strategy for Current Practice

Commercial discrete-event simulation packages are represented in the right-hand

portion of Figure 4.1. This conceptual representation shows that users interface with the

software in three ways, by: 1) providing model logic in package-specific ways and

providing system parameter and variable values (represented by Case A in the figure), 2)

viewing the software’s representation of the model using its own constructs (Case B), and

51
3) receiving output resulting from execution of the model (Case C). As in also shown in

Figure 4.1, each simulation package contains its own unique internal logic and

methodologies for representing models. Similarly, each package also includes its own

unique engine for executing the simulation models.

Input UI

Representation
(System) UI

Output UI

Logic & Data Engine

Input UI

Representation
(System) UI

Output UI

Logic & Data Engine

Interface

Interface

Schema XML

Visual
Modeling

Tool

Conceptual
Framework

Simulation Package Y

Simulation Package X

Common
User

Interface

Graphical
Representation

Common Data
Representation

Model C

Model A

Software-Neutral Model Data

Interaction at
Formulation

Interaction at
Application

Theoretical
Foundation

Components

Figure 4.2 General Interaction Strategy for the Proposed Approach.

As mentioned earlier, the proposed approach addresses interaction issues at both

the application and formulation stages; this is depicted in Figure 4.2. The visual modeling

tool and common user interface (shown in the right-hand portion of Figure 4.2) permits

52
model builders to share their observation of the real system and also allows non-modelers

to interact with models. Thus the proposed approach can facilitate interaction at

formulation stage. After the models are built, they can be transferred to software-neutral

model data, as shown in the left-hand side of Figure 4.2. These models are saved in a

common format that makes interaction easier. It is also possible to upload these models to

various simulation packages. To demonstrate this capability, a model of the Bully Books

problem described in Section 6.1.1 is developed, saved in the proposed framework

format, and then uploaded to QUEST® . Due to the length of the model listings, they are

not provided in this dissertation, but are available upon request.

The three main components of the proposed approach are:

� conceptual framework for representing discrete-event simulation models,

� graphical representation of simulation models, and

� common data representation of simulation models.

The conceptual framework is the basis for constructing a graphical representation and

common data representation. As shown in Figure 4.2, in order to implement the three

main components, the proposed approach requires: 1) a visual modeling tool, 2) a

common user interface, 3) software-neutral model data, and 4) interfaces to commercial

simulation software packages. The theoretical foundation components (conceptual

framework, graphical representation, data representation, and software-natural model

data) and the software implementations (visual modeling tool, common user interface,

and interfaces to simulation packages) are building blocks to the proposed approach; their

relationships can be further described, as shown in Figure 4.3.

53
Component A (common model elements and relationships) is the basis for the

proposed approach. Based on Component A, a structural modeling (SM) schema

(Component B) that serves as conceptual framework is developed. Based on the SM

schema, a common data representation and software-neutral model data (Component C

and D) are developed. Also based on the SM schema, a common graphical representation

(Component F) is created. With a software-neutral model data, the interfaces to

commercial simulation packages can be built (Component E). And the availability of a

common graphical representation also enables the development of a graphical modeling

tool (Component G).

The components shown in Figure 4.3 can be subdivided into theoretical

foundation components (Component A, B, and F) and software implementations

(Component C, D, E, and G). The theoretical foundation components are introduced in

the following sections and the software implementations are discussed in Chapter 5.

54

I

Graphical Modeling
Tool (Implemented

in Visio)

Visio Drawing File

Model Data
(XML Format) XML

Parser

Software Controller

Common
User Interface

Simulation Package

D
at

a
Ex

tra
ct

M
od

el
 U

pl
oa

d

Save Edit

Save Restore?

Structural
Modeling (SM)

Schema

Common
Graphic

Elements

Common Model
Elements &

Relationships

AB

C

D EG

H

XML DTD
F

Figure 4.3 Components of Proposed Approach to Facilitate Simulation Model
Interactions

Before developing a simulation package-independent common model structure,

the most common simulation elements and their relationships must be defined. In Figure

4.3, component “A” represents an entity-relationship (ER) diagram that contains the most

common elements of discrete-event simulation models, and the relationships between

them. The common data elements are discussed in Section 4.2 while the relationships are

discussed in Section 4.3. Based on “A”, a SM schema (Component B in Figure 4.3) is

created. The detail of SM schema is discussed in Section 4.4. This model schema forms

55
the basis of the overall structure. In order to increase the interoperability and portability

of simulation models, eXtensible Markup Language (XML) is used to store model

information because of its structure and wide acceptance. In addition, XML documents

are easy to maintain, read, write, and validate.

Component “C” is an XML Document Type Definition (DTD) that is based on

the model schema and is used to verify the model information. A detail discussion of

XML DTD is provided in Section 5.1. It is quite straightforward to transfer a model

schema to XML DTD because both follow object-oriented principles. Component “D”

represents the simulation model files stored in XML format, a example is given in

Section 5.2. Component “E” is the common user interface (CUI) that allows modelers to

edit and create models in a software-independent environment. This common user

interface facilitates “application” interoperability. It reads and writes XML model files

through Microsoft™ XML parser. It also contains a simulation software-specified control

for uploading and extracting models to and from a specific simulation package

(Component I in Figure 4.3). With the software specific control, models can be extracted

from disparate simulation software and modified through the common user interface.

Only the software controller needs to be changed in order to utilize different simulation

software. ProModel® and QUEST® are used in this research because they provide

ActiveX controls and batch control language (BCL) respectively that facilitate

establishing connections to the CUI.

A finite set of common graphic elements (F) is derived from the model schema.

With the common graphic icons, a graphical modeling tool (G) is developed that contains

56
a Visio template and macros. Modelers can create conceptual models by dragging and

dropping the graphical icons that represent simulation elements onto a drawing. The

drawing also serves as a communication tool between stakeholders that have varying

levels of simulation expertise. The graphical modeling tool not only saves the drawing to

Visio format drawing files (H) but also contains macros for exporting the Visio files into

standardized XML model files. Ideally, the XML model files can then be uploaded and

executed using any simulation software package. Visio templates serve three purposes:

they 1) facilitate “formulation” interactions, 2) limit simulation scope due to the finite set

of model elements (no single discrete-event simulation representation can contain all the

elements from all simulation packages), and 3) provide a means of documentation.

4.2 The Common Model Elements

This section defines the first step in building a common model structure --

determining the basic simulation elements and their relationships (Component A in

Figure 4.3). Some research has focused on trying to define the basic simulation elements.

Law identifies the most common model elements in a manufacturing system [46].

Bartolottan proposes an information exchange and interface protocols that contain

required simulation information for solving manufacturing integration problems [47].

McLean at NIST developed a Machine Shop Data Model (MSDM) that defines the

information requirements for a manufacturing system [38]. Among these proposed

common data elements, MSDM is the most promising one, in that it may be promoted as

a standard for all simulators by NIST.

57
The goal of the proposed framework is to create a bridge between all

stakeholders. Thus, the framework should adopt both simulation and manufacturing

experts’ viewpoints. Therefore, the common model elements will represent a compromise

between manufacturing (MSDN) and simulation (ProModel® and QUEST®). Also, it is

believed no simulation representation can satisfy all simulation packages. The proposed

framework should be as general as possible. The ProModel® information that is used to

construct the framework is taken from [48] and [9]. The QUEST® information is taken

from [49] and [50].

In the following sections of this chapter, the common simulation model elements

are identified and defined. The same elements exist in QUEST® , ProModel® , and MSDM

but may have different names, definitions, or characteristics. Establishing commonality,

including critical properties of the elements, is essential for interoperability. The result of

this step is a list of common simulation element names, properties, and definitions. It is

recommended that the reader view Figure 4.4, the entity-relationship diagram of common

data elements, first to get the overall view of the common data elements and the

relationships between them.

4.2.1 General Information

General information stores the metadata of the model. In Table 4.1, the first row

shows the application names, i.e., ProModel® , QUEST® , and MSDM. The last field in the

first row, Framework, denotes the common model elements. The second row of Table 4.1

denotes the major elements of the application, and the properties of each element.

ProModel® consists of several model elements; each element has attributes. QUEST® is

58
composed of element classes; each element class has properties. MSDM is a hierarchical

structure, with the top-most level being the data structure; it may consist of multiple

levels of complex data elements. The basic data elements are the lowest level in the

hierarchy. Since later in this chapter, an ER diagram is used to represent the relationships

between common model elements, ER diagram terminologies are used in the framework.

The framework consists of eight elements; each element has its own set of properties.

Table 4.1 General Information Elements Included in the Framework

ProModel QUEST® MSDM Framework
Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data element

(Basic) Data
element

Elem-
ent

Property

G
en

er
al

 In
fo

rm
at

io
n

Title

G
en

er
al

 In
fo

rm
at

io
n

Model Name
Time units Time units Units of

measurement
Time duration
units

Time Unit

Distance
units

Length units Distance Unit

Date
Builder

Model
notes

Model
description

Notes

From Table 4.1, the common properties are: time unit, distance unit, and model

description. Some properties are not shown under ProModel® or QUEST® , but are

implicitly implemented are model name, date, and builder. For example, the date

property, when saving a ProModel® or QUEST® model, a date is automatically

embedded. Note in QUEST® , the time units and model description are placed at the same

level as other element classes, thus they are placed under element class field.

59
In ProModel® there are initialization and termination logic sections that are not

supported by the framework. These two properties are too programming-oriented and are

usually used by experimental design experts; thus they are excluded from the framework.

4.2.2 Entity

Entities are objects that are routed and processed through the model. They are

called parts in QUEST® and MSDM and transactions in SLAM II. In Table 4.2, the

common properties are: name, attribute, and notes. Attributes denote a characteristic of

the entity. Although it is not shown under MSDM, it is implicitly included in MSDM

(e.g., bill-of-material). The speed property is a unique characteristic of ProModel® .

ProModel® tries to simplify the modeling process by omitting some modeling details. In

QUEST® , to move an entity from one machine to another, a dynamic resource (labor)

must be assigned, or there will be no move time between two machines. In ProModel® ,

the entities can move by themselves (without the use of dynamic resources). The speed

property is used to simplify the model, thus is adopted by the proposed framework.

Table 4.2 Entity Elements Included in the Framework

ProModel QUEST MSDM Framework

Elem-
ent

Attribute Element
class

Property Data
structure

Complex data
element

(Basic) Data
element

Elem-
ent

Property

Entity Name Part Name Parts Name Entity Name
Attribute User attribute Attribute
Speed Speed

Notes Descriptions Descriptions Notes

60
Five QUEST® properties are not included in the framework: priority, routing labor

requirement, routing sub-resource (SR) requirement, associated SR class, and required

process. Priority is considered an advanced model feature, to keep the framework simple,

it is excluded. The routing labor requirement, routing SR requirement, associated SR

class, and required process define the resource requirement to move and process an

entity. They are not required within entity definition because they are also defined in

routing and process logics. Thus they are excluded from the entity element in the

framework.

4.2.3 Static Resource

Static resources are places where entities are processed using certain

manufacturing resource, e.g., machines. They are called locations in ProModel® ,

machines and buffers in QUEST® , and machines and stations in MSDM. In the proposed

framework, they are referred to as static resources in contrast to dynamic resources (e.g.,

labor) because they do not move within the system. As shown in Table 4.3, the common

properties are: name, type, capacity, units, downtime, repair, sequence rule, attribute, and

notes. The type property denotes the class of static resource. Location in ProModel® may

be a machine, buffer, conveyor, tank, etc. In QUEST® , machines, buffers, and conveyors

are viewed as different element classes. Machine and stations are considered resources in

MSDM. To handle different types of static resources, the proposed framework adopts a

type property. Currently, the type property only supports buffer and processing unit. The

conveyor is not supported because the specifications of conveyor are too complex and

different simulation software packages implement them differently. Besides, the

61
conveyor can be modeled as a buffer with delays to simplify the model. The fluid-process

relative resources (e.g., tank) are not included in the framework because most

manufacturing systems do not use fluid processes. The type property enables the

framework to expand and support more types of static resources as needed.

Table 4.3 Static Resource Elements Included in the Framework

ProModel QUEST MSDM Framework
Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data element

(Basic) Data
element

Elem-
ent

Property

Lo
ca

tio
n

Name Buffer,
Machine

Name
M

ac
hi

ne
, s

ta
tio

ns

Name

St
at

ic
 R

es
ou

rc
e

Name
(Machine or
Buffers)

(Machine or
Stations)

Type

Capacity Buffer Part Capacity Work piece
capacity or
employee
capacity

Capacity

Units No. of elements Number Units
Downtime
logic

Failure Reliability
statistics

MTBF Downtime
(TBF)

Downtime
logic

Repair
process

Reliability
statistics and
Maintenance
definition

MTTR,
estimated
duration,
Maintained
resource

Repair (TTR
and repair
resource)

Rules Buffer Logics (queue
logic)

Sequence Rule

Attribute Machine
, Buffer

Attribute Attribute
Notes Description Description Notes

In ProModel® and QUEST® , users can define the downtime and repair properties

in great detail, e.g., scheduled downtime. To keep the framework simple and general,

only three properties are supported: time between failures (TBF), time to repair (TTR),

and repair resource. Also, ProModel® and QUEST® support multiple downtime for

each static resource. Currently, the framework only supports one downtime and one

62
repair logic to simplify the framework, but the support of multiple downtimes and

repairs can be easily added to the framework.

Elements that are not supported by the framework are shown in Table 4.4. In

ProModel® , rules include incoming entity selection rules, output queuing rules, and static

resource selection rules. The framework only supports the output queuing rules because it

is most commonly used. In QUEST® , logics include: process logic, part input logic, route

logic, initial logic, request input logic, queue logic, and request logic. The framework

only supports route logic and queue logic. Other logics are left for future expansion of the

framework. Shifts and costs are usually considered as advanced simulation features and

are left for future expansion. Most manufacturing systems do not use fluid processes, thus

this feature is also left for future expansions. Setup process, load process, and unload

process are discussed in Section 4.2.7. In MSDM, the shift (schedule) information is

defined in great detail; it is left for future expansions.

63

Table 4.4 Static Resource Elements Not Included in the Framework

ProModel QUEST MSDM

Element
.

Attribute Element
class.

Property Data
Structure

Complex
data element

(Basic) Data element

Location Rules QUEST Logics
Shifts Shifts Shift break Schedules Resource

section
Station-schedule

Daily schedule Machine-schedule
Multi-day
schedule

Crane-schedule

Employee-schedule
Work section Order-schedule

Job-schedule
Task-schedule
Maintenance-order-schedule
Pick-order-schedule
Tool-order-schedule

Cost Resource Hourly-rate
Fluid
process

Fluid
process
Setup
process

Setup
definition

Load
process
Unload
process

Several unique QUEST® properties are not included in the framework, they are:

priority, part initial stock, process percentage, process group, thresholds, delay time,

request routing, and dedicated labors. Priority is not included in the framework because it

is an advanced feature. Part initial stock is an advanced modeling feature and belongs

more to experimental design, thus is left for future expansions. The process percentage is

not included in the framework because it is assumed all processes are executed in

sequence. Process group is a unique feature of QUEST® that puts multiple processes

together. This may facilitate the modeling process. This feature is not included in order to

64
keep the framework simple. Thresholds are also a unique feature to QUEST®; they define

the safety inventory level for a buffer class. This feature is only available in pull systems

and thus, is not included in the framework. Delay time is a unique attribute for the buffer

class. It serves the same purpose as processes, thus is not included in the framework.

Request routing is only available for pull systems and is not included by the framework.

Dedicated labor is a unique attribute for QUEST® . The labor requirements are also

defined in process and routing, thus this attribute is not necessary and is not included in

the framework.

4.2.4 Dynamic Resource

Dynamic resources are objects that move around in the system to facilitate

processing, moving entities, or maintaining resources. They are referred to as resources in

ProModel® , labors in QUEST® , and employees or cranes in MSDM. In ProModel® , a

resource can represent an operator, a truck, or anything that moves around in the system.

In QUEST® , it explicitly divides dynamic resource into three resource classes: labor,

automatic guided vehicle (AGV), and carrier. These three element classes are very

similar except that AGV and carrier classes require a path system. Path systems are

usually considered an advanced simulation feature, thus AGV, carrier, and path systems

are not included in the framework. In MSDM, there are two types of dynamic resources:

employees and cranes. These are very similar except that cranes have downtime/repair

logics and employees have personal information, such as telephone numbers. The

common properties shown in Table 4.5 are: name, units, downtime, repair, and notes.

These common properties were discussed in the previous section.

65
Table 4.5 Dynamic Resource Elements Included in the Framework

ProModel QUEST MSDM Framework
Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data element

(Basic) Data
element

Elem-
ent

Property

R
es

ou
rc

es

Name Labor Name Crane Name

D
yn

am
ic

 R
es

ou
rc

e

Name
Units No. of

Elements
Employees Number Units

Downtime
s

Failure Crane Reliability
statistics

MTBF Downtime
(TBF)

Repair
process

Reliability
statistics and
Maintenance
definition

MTTR,
estimated
duration,
Maintained
resource

Repair (TTR
and dynamic
resource)

Notes Labor Description Description Notes

Table 4.6 contains the elements that are not included in the framework. In

ProModel® , specifications define the path network and motions of resources. The search

property contains the searching logic in the path network. The logics define entry and exit

behaviors on the path network. The points property defines the positions of a resource’s

traveling path. All of the above features are related to path network systems and are

considered advanced modeling features, thus are left for future expansion.

66

Table 4.6 Dynamic Resource Elements Not Included in the Framework

ProModel QUEST MSDM
Element Attribute Element

class
Property Data Structure Complex data

element
(Basic) Data
element

Resource Specifications Labor Resource
(employees) Search

Logics
Points Logics

Controller
Part capacity
Shifts
Speed
Priority
Load process
Unload process
Rotation speed

Skills definitions

In QUEST®, a controller class contains the logics of the labor class. It allows users

to define the behavior of the labor class in great detail. It is considered an advanced

feature and is left for future expansion. Priority and shifts were discussed in the previous

section. Unload process, load process, and part capacity are unique features of QUEST®

that are left for future expansion. The labor speed and rotation speed are also unique

features of QUEST®; they can be combined with the distances between static resources to

calculate the move time automatically. The features are being considered for addition to

the framework in the near future.

4.2.5 Linkage

Linkages define the input and output relationships between two static resources.

They are referred as connections in QUEST® and paths in MSDM. As shown in Table

4.7, the common properties are: “begin loc.”, “end loc.”, distance, and notes. In

67
ProModel® and QUEST® , the distance is implicitly implemented; the distance between

static resources is automatically calculated. The distance property facilitates automatic

calculation of move time if entity speed or dynamic resource speed are presented.

Table 4.7 Linkage Elements Included in the Framework

ProModel QUEST MSDM Framework

Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data element

(Basic) Data
element

Elem-
ent

Property

Proc-
ess

Location

C
on

ne
ct

io
n

Starting
element

La
yo

ut

Paths Path route

Li
nk

ag
e

Begin loc.

R
ou

tin
g Destination Ending element Path route End loc.

Distance

Notes

4.2.6 Routing

In ProModel® , the processing element consists of process and routing. In

QUEST® , routing logics are included in static resources. It is challenging to extract the

routing information because both ProModel® and QUEST® have different modeling

views. Table 4.8 contains the common properties for routing: linkages (which contain

duration, dynamic resource, and user-defined logics), route entity, routing rules, quantity

each, and notes. Routings are logics that define how entities (route entity) should move

between static resources (linkages). In ProModel® , linkages would refer to the location

(in the process definition) and destination (in the routing definition). In QUEST® ,

linkages refer to outputs. The sub-properties, i.e., durations, dynamic resource

requirements, and user-defined logics define the duration and required resource to move

68
the entity along the linkage; they all have their corresponding fields in ProModel® ,

QUEST® , and MSDM. The routing rules in the framework only support commonly used

rules (i.e., next free, by turns, random, least utilized, and percentage); other routing rules

are left for future development. The attribute “Qty-each” defines the routing quantity.

QUEST® only supports the routing of one entity per time.

The framework does not support pull systems. Thus, several QUEST® properties

are not supported, they are: pull inputs, pull outputs, request routing, and request input

logic.

Table 4.8 Routing Elements Included in the Framework

ProModel QUEST MSDM Framework
Elem-
ent

Attribute Element
class

Property Data
structure

Complex data
element

(Basic)
Data
element

Elem-
ent

Property

R
ou

tin
g

M
ac

hi
ne

, B
uf

fe
r

Outputs

Pr
oc

es
s p

la
n

Routing sheet
(plan definition)

R
ou

tin
g

Linkages

Move
logic

Labor move
time

Routing sheet
(plan definition)

Estimated
duration

Linkage
(Duration)

Move
logic

Labor
requirements

Routing sheet
(plan definition)

Resources
required

Linkage
(Dynamic
resource)

Move
logic

Route logic
(User function)

Routing sheet
(plan definition)

Linkage (User
logic)

Output Part routing
(restrictions)

Routing sheet
(plan definition)

Route Entity

Rule Logic (route
logic)

Routing sheet
(plan definition)

Rule

Rule Batch
sizes

Qty Each

Description Notes

69
4.2.7 Operation

Operations define the tasks performed at static resources that turn entities into

products or work-in-process (WIP). Operations are referred to as processes in

ProModel® , cycle processes in QUEST® , and process-plan in MSDM. Table 4.9 contains

the common properties, they are: Process (includes sub-properties duration, dynamic

resource, and user-defined logics), Op. Location (static resource where operations are

performed at), InEntity (entity that operations are performed on), OutEntity (products),

and notes.

In ProModel® , the process definition is a segment of code, thus users can define

multiple processes. In QUEST® , a static resource can have multiple process elements.

Thus, the framework also allows for multiple processes.

Table 4.9 Operation Elements Included in the Framework

ProModel QUEST MSDM Framework
Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data element

(Basic) Data
element

Elem-
ent

Property

Pr
oc

es
s

Operation Cycle
process

Cycle time

Pr
oc

es
s-

pl
an

 (O
pe

ra
tio

n-
sh

ee
t)

Plan-
definition
(plan-steps)

Plan-step
(estimated
duration)

O
pe

ra
tio

n

Process
(Duration)

Operation Labor
requirement

Plan-
definition
(plan-steps)

Resource
required

Process
(dynamic
resource)

Operation Plan-
definition

Process (user
logic)

Location (Associate with
Machine)

Operation-
definition

Station Op. Location

Entity Part
requirements

Plan-
definition

InEntity

R
ou

t-
in

g

Output Products Plan-
definition

OutEntity

Description Description Notes

70
As mentioned earlier, QUEST® also includes a fluid cycle process, setup process,

repair process, load process, and unload process. As discussed earlier, the framework

does not support fluid process. Repair process is partially supported in the repair property

in static and dynamic resources. The setup process, load process, and unload process are

essentially the same as the cycle process except they are resource-oriented. Since the

framework supports multiple processes, the setup process, load process, and unload

process are combined with processes to simplify the framework.

4.2.8 Arrival

Arrival defines entity creation logic in a simulation. Note MSDM does not have

any corresponding elements, because it is based on a manufacturing view. As in the real

world, orders always come before entities, i.e., orders create the arrivals of the entities. In

MSDN, two elements are related to arrival logics: works (including jobs, tasks, orders,

maintenance orders, pick-orders, and tool-orders) and bill-of-materials. In QUEST® , the

source class is the combination of arrival logic and a buffer class. The framework only

takes the arrival logic part. Table 4.10 shows the common properties: ArvEntity (arrival

entity), ArvLocation (arrival location), QtyEach (quantity each arrival), Frequency,

FirstTime, Occurrence, and User-defined logic. These properties are self-explanatory.

71

Table 4.10 Arrival Elements Included in the Framework

ProModel QUEST MSDM Framework

Elem-
ent

Attribute Element
class

Property Data
structure

Complex
data
element

(Basic) Data
element

Elem-
ent

Property

A
rr

iv
al

Entity
So

ur
ce

Name

A
rr

iv
al

ArvEntity
Location ArvLocation
Qty each Lotsize QtyEach
Frequency IAT* Frequency
FirstTime Start Offset FirstTime

Occurrences Max. Part Count Occurrence
Logic UserLogic

* Inter-arrival time.

In QUEST® , a source can create multiple parts (part fraction). To keep the

framework simple, ProModel®’s approach is taken, i.e., an arrival element only supports

one type of entity.

4.2.9 Non-Supported Elements

Table 4.11 contains the elements that are not supported by the framework and

have not been discussed earlier. In ProModel® , variables, arrays, sub-routines, and

macros are significantly programming-oriented, and thus are excluded from the

framework. In QUEST® , a sink is an element class used to collect statistical data and

generate orders for pull systems. Currently, the framework does not support pull systems

and statistical data collections, thus the sink class is not included. QUEST®’s accessory

class is for animation purposes only. The AGV controller, labor controller, and SR

controller are unique features of QUEST® . They contain the logic for AGV, labor, and

72
sub-resource classes. They are considered auxiliary data and are left for future expansion.

The AGV and carrier require the use of network system and thus are not included.

Decision points are auxiliary locations that allow user-defined logic. It is

considered an advanced feature and is excluded from the framework. Layout is for

display purposes only and thus is not included in the framework. QUEST®’s sub-

resources correspond to the tool and fixture catalogs in MSDM. These are considered as

advanced modeling features and are left for future expansions.

Because of different viewpoints, MSDM has several data elements that are not

seen often in simulation software: inventory, procurement, process-plan, time sheets,

references, organization directory, departments, and calendars. These data elements are

primarily manufacturing-oriented and are not included in the framework.

73

Table 4.11 Elements that are Not Supported by the Framework

ProModel QUEST MSDM

Element Attri-
bute

Element class Property Data Structure Complex data
element

(Basic)
Data
element

Variables
Arrays
Sub-routines
Macros

Sink
Accessory
AGV controller
Labor controller
SR controller
AGV
Carrier
Decision points
Group
Layout
Sub-Resource Resource Tool catalog

Fixture catalog
Inventory tool-inventory

fixture-inventory
part-inventory
materials-inventory

Procurements
Process-plans routing-sheets

operation-sheets
machine-programs

Time sheets
References
Organization directory
Departments
Calendars

74
4.3 The Entity-Relationship Diagram

The second step of developing the proposed framework is determining the

relationships between common data elements. In previous sections, eight framework

elements are defined: general information, entity, static resource, dynamic resource,

arrival, operation, linkage, and routing. Among these, the general information contains

the metadata of the model, and thus does not have a direct relationship to other elements.

Under the definition of SM, entity, static resource, and dynamic resource are primitive

entities because they do not call other elements. In other words, they are not based on the

definition of other elements. By contrast, arrival, operation, linkage, and routing are

compound entities because they reference other elements. Arrival is a compound entity of

static resource (ArvLocation) and entity (ArvEntity). Operation is based on static

resource (OpLocation) and entity (InEntity and OutEntity). Linkage defines the

relationship between two static resources (BeginLoc and EndLoc). Routings reference a

set of linkages and an entity (RouteEntity).

 As shown in Figure 4.4, each primitive entity, identified above, is presented as an

entity (represented as squares) in the ER-diagram, and compound entities are represented

as a relationship (represented as diamonds). The ovals represent attributes of the entities.

The heavier weighted ovals means the attribute can be defined multiple times. In a

standard ER, when a relationship needs to reference to another relationship, aggregation

needs to be used. The purpose of the dashed lined box in Figure 4.4 is to allow the

routing element to reference the linkage element. There are two elements that are not

considered in standard ER diagrams, i.e., dotted lines and arrowed dashed lines. In Figure

75
4.3, the dotted lines represent the selection among options. For example, static resource

may be a processing unit or a buffer. The arrowed dashed lines represent references. For

example, the dash arrowed line from repair resource of static resource to dynamic

resource means that the repair requires a specific dynamic resource.

The sequence rules of static resources are very similar between ProModel® and

QUEST® . Table 4.12 contains the sequence rules in ProModel® and QUEST® , and

identifies those that the two software have in common. The proposed framework only

supports the common sequence rules.

Table 4.12 Common Sequence Rules

ProModel® QUEST® Framework
No queuing
FIFO FIFO FIFO
LIFO LIFO LIFO
By Type
Highest attribute value Ascending order By Att (Inc)
Lowest attribute value Descending order By Att (Dec)

User function

The routing rules vary considerabley between ProModel® and QUEST® . Table

4.13 contains the routing rules in ProModel® and QUEST® . Again, the framework only

supports the four common routing rules.

Figure 4.4 Relationships between common data elements

76

Fi
gu

re
 4

.4

R
el

at
io

ns
hi

ps
 B

et
w

ee
n

C
om

m
on

 D
at

a
El

em
en

ts

77
Table 4.13 Common Routing Rules

ProModel® QUEST® Framework
First available Next free Next free
Most available
By turn Cyclic order By turn
Random
If join request
If load request
If send
Longest unoccupied Least utilized Least utilized
Until full
If empty
Probability Proportions By percentage
User condition User function

Maximum room
Minimum queue
Minimum waiting
Priority
Fixed routing
First allowed output

The ER diagram not only facilitates the representation of relationships between

common data elements, but it also facilitates the collection of performance

measurements. Figure 4.5 contains the same common data elements as in Figure 4.4,

expect that each element is attached to a list of performance measurements associated

with the element. Although statistical data collection is beyond the scope of this research,

Figure 4.5 would allow the users to select the performance measurements of interest and

is thus useful in the experimental design portion of the simulation modeling process.

Figure 4.5 Performance Measurements of Common Data Elements

78

Fi
gu

re
 4

.5

Pe
rfo

rm
an

ce
 M

ea
su

re
m

en
ts

 o
f C

om
m

on
 D

at
a

El
em

en
ts

79

4.4 The Structural Modeling Schema

A SM schema (Component B in Figure 4.3) defines the relationships of model

elements and indicates how the model elements should be stored. In this research the

intent is to create a generic framework that can represent both the static and the dynamic

parts of a simulation model. The static parts of a simulation are the information that will

not change over simulated time. For example, the name of a machine is usually the same

throughout the execution of a simulation. However, the dynamic parts of a simulation are

the information that will change over execution time. For example, the state of a machine

may become idle, busy, and/or down during a simulation execution. The SM is capable of

handling the static part of the discrete-event simulation, but is not able to capture the

dynamic part. As discussed in Section 3.2, several research efforts try to extend the SM to

capture the dynamic part of simulation. The result is an extremely complex model

representation that requires a tremendous amount of memory because they develop

methods to: 1) describe how to perform certain operations or; 2) capture the state of the

models at each time point in the simulation.

The proposed framework does not intend to capture the transient state of

simulation models nor instruct the computer how to perform some tasks, as is done in

extended structured modeling and condition specification. It is assumed that a solver (i.e.,

simulation software) when provided with high-level instructions, is available to read the

generic model, simulate it, and generate results. The simulation software provides the

transient state information automatically. Therefore, the model representation results

80
from the framework is concise and easy to understand because it only lists the tasks that

need to be done instead of describing how to accomplish the tasks.

An SM schema is a set of rules that specifies how a model should be stored. To

handle the dynamic part of a simulation, compound entities are used to represent logic.

The logic property contains tasks that need to be done during the simulation. The logic

property may be plain text that contains user-defined code, or consist of selections of

predefined options. For example, the sequence rule may have first-in-first-out (FIFO) or

last-in-first-out (LIFO) as a predefined option. Figure 4.6 contains a portion of the SM

schema that represents the static resource part. A full SM schema is provided in

Appendix A. As shown in Figure 4.6, the second line /pe/ means static resource is an

primitive entity. The third line Name(Static_Resourcei) /a/ : text means name is an attribute

(/a/) of static resource; the format is text (or string). The I+ in Figure 4.6 means that data

type is positive integer. The line DownTime(Static_Resourcei) /ce/ means downtime is an

attribute and a compound entity (/ce/) of static resource. At the bottom of Figure 4.6, the

compound entity downtime and sequence rules are defined. For the entire SM schema

syntax, refer to Geoffrion [10].

81
&Static_Resource Static Resource Data
Static_Resourcei /pe/ There are i static resource in the model.
Name(Static_Resourcei) /a/ : text Name of static resource.
Type(Static_Resourcei) /a/ : text Type of static resource.
Capacity(Static_Resourcej) /a/ : I+ Capacity of static resource.
Unit(Static_Resourcei)/a/ : I+ Units of location.
DownTime(Static_Resourcei) /ce/ Down time logic of the location.
Repair(Static_Resourcei) /ce/ Repair logic of the location.
SequenceRules(Static_Resourcei) /ce/ Dispatch rules.
Notes(Static_Resourcei) /a/ : text Description of the location.

&DownTime Downtime data
DownTimej (Static_Resourcei)/ce/ j downtime logics associated to static resource.
TBF(DownTimej) /a/ : text Time between failure.

&SequenceRules Sequence rules
SequenceRulesk (Static_Resourcei) /ce/ k sequence rules associated to static resource
SeqRule(SequenceRulek) /a/ : text sequence rule.

Figure 4.6 Example SM Schema

The reason for using SM schema to construct the framework is that the calling

sequence is useful in simulation debugging and presentation. For example, if one tries to

debug or view the flow of an entity in a model, the calling sequence tracks all of the

operations performed on that entity. This is possible since operation is a compound

entity, it reference an entitie and a static resource. Thus, the calling sequence tracks all of

the static resources that were used to perform operations on entities. In the end, anything

that is relative to the entity is found.

When transferring from framework to simulation software environments, a parser

is needed to translate the text strings that contain user-defined code into specific

modeling language syntax. Chapter 7 discusses a means to prevent the loss of data and

avoid translation errors. Because the logic properties are saved as plain text, decision-

makers can write the logic in their own words, and then model builders can interpret the

82
text and translate it into a proper format description using the syntax from the

implantation language.

4.5 Common Graphic Elements

The common graphic elements (Component F in Figure 4.3) are the basis for

graphic representation. They provide the pictorial display for common model elements

and relationships. They are developed as a Visio stencil and are considered a part of the

implementation of the proposed framework. Implementation is discussed in Chapter 5.

4.6 Summary

In this chapter, the common simulation elements are defined by combining

viewpoints from manufacturing and simulation software using MSDM, ProModel® , and

QUEST® . The relationships among the elements are defined using an ER diagram. A

structural modeling schema is used to construct the proposed framework. This chapter

defines and describes all of the theorectial components of the proposed framework,

except the common graphic elements. The graphical elements are defined in Chpater 5,

along with other components of implementation.

CHAPTER V

IMPLEMENTATION OF PROPOSED SIMULATION INTERACTION APPROACH

In this section, the implementations of the proposed framework are discussed. The

XML DTD (Component C in Figure 4.3) is discussed in Section 5.1. A sample XML file

(Component D in Figure 4.3) is given in Section 5.2. There are two major parts to the

software implementation: the Common User Interface (Component E in Figure 4.3) and

the Graphical Modeling tool (Component G in Figure 4.3). These are discussed in

Section 5.3 and 5.4, respectively.

5.1 The XML DTD

 An XML DTD (Component C in Figure 4.3) is used to verify if an XML

document follows a certain format. It defines the structure of an XML document with a

list of legal elements. An XML DTD is developed according to the SM schema; in fact,

the SM schema and XML DTD are very similar. Figure 5.1 is an example of a XML

DTD file that defines the dynamic resource element. The full XML DTD file is provided

in Appendix B.

83

84
<!ELEMENT Static_Resource (Name, Type, Capacity, Units, DownTime?, Repair?,
SequenceRule, Attribute*, Note?)>

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Capacity (#PCDATA)>
<!ELEMENT Units (#PCDATA)>
<!ELEMENT SequenceRule (SeqRule, SeqAttribute?)>

<!ELEMENT SeqRule(#PCDATA)>
<!ELEMENT SeqAttribute(#PCDATE)>

<!ELEMENT DownTime (TBF)>
<!ELEMENT TBF(#PCDATA)>

<!ELEMENT Repair (TTR, RepairResource?)>
<!ELEMENT TTR(#PCDATA)>
<!ELEMENT RepairResource(#PCDATA)>
<!ELEMENT Note (#PCDATA)>

<!ELEMENT Attribute (ID, Type, Note?)>

Figure 5.1 Example XML DTD

The line “<!ELEMENT Static_Resource (Name, Type, Capacity, Units, DownTime?, Repair?,

SequenceRule, Attribute*, Note?)>” means each static resource has only one name property,

one type property, one capacity property, zero or one downtime property, zero or one

repair property, a SequenceRule property, zero or more attributes, and zero or one notes

property. The line “<!ELEMENT Capacity (#PCDATA)>” means the capacity property only

accepts parsed character data, i.e., string type data.

If an XML document does not follow this rule, software, such as Microsoft

Internet Explorer, issues an error and notifies the user that there is an error in the XML

document. This is useful when transferring the simulation models from one environment

to another. Because of the structural nature of the SM schema and XML DTD, it is

straightforward to translate from one to the other.

85
5.2 The XML file

An XML file (Components D in Figure 4.3) is used to store the simulation model

data in the proposed framework format and serves as a bridge between software

implementations (Components G and E in Figure 4.3). An evolving research area is the

use of XML to build an open-architecture model-exchange environment [51]. XML was

originally designed to support large-scale publishing because XML has the following

characteristics:

• simplicity – XML documents are easy to read and modify,

• extensibility – the format of an XML document can be easily extended to
include more data, and

• interoperability – XML is widely accepted and works on various platforms
and software.

The XML also plays an increasingly important role in various forms of data exchange

[52]. Figure 5.2 is a portion of a sample XML file. The full file can be found in Appendix

C.

86

<Location>
<Name>Factory1</Name>
<Type>ProcessingUnit</Type>
<Capacity>5</Capacity>
<Units>1</Units>
<DownTime>

<TBF>5 hr</TBF>
</DownTime>
<Repair>

<TTR>10 min</TTR>
<RepairResource></RepairResource>

</Repair>
<SequenceRule>FIFO</SequenceRule>
<Attribute>

<ID>SSAR</ID>
<Type>Real</Type>
<Note></Note>

</Attribute>
<Note>A Factory</Note>

</Location>

Figure 5.2 Example XML file

5.3 Graphical Modeling Tool

Graphical modeling is certainly not a new idea. However, previous graphical

modeling practices usually do not have a direct relationship between the graphical

symbols and real world objects [21] [22] [23]. For example, the SLAM II network model

only shows the operation and routing logic. By just looking at the network, one may not

know whether it represents a machine shop or a hospital. As a result, it is not intuitive to

interpret the resulting representation of real world systems. The three primitive entities

(entity, static resource, and dynamic resource) in the proposed framework are based on

real world objects. The four compound entities (arrival, operation, linkage, and routing)

are also associated with real world activities. Since the icons of the proposed graphical

87
representation are derived from the proposed framework, the resulting graphical

representation should be more intuitive and easier to associate with a real world system.

The graphical representation provides a standardized methodology for conceptual

modeling. Thus, stakeholders can better communicate and more easily share their

understanding of the system. In addition, because various software vendors have

different world views and terminologies, there is a need to restrict the scope of the

simulation modeling process. With a finite set of standardized graphical icons, the scope

of the simulation can be limited. The graphical representation also provides standardized

simulation terminology, which will reduce conflicts at the application stage.

The graphical modeling tool (GMT) is developed using Microsoft™ Visio

because it provides a well-developed drawing environment and supports Visual Basic for

Application (VBA). Thus, VBA is used to develop customized functions. In GMT, some

customized functions are developed to facilitate simulation data collection and

input/output management. For example, in GMT, when a entity icon is dragged and

dropped from the stencil to the drawing area, the icon is added to the drawing area

(default action) and a form, created using VBA, pops up and requests the user to input

simulation relative information.

Based on the proposed framework, a set of common graphical elements

(Component F in Figure 4.3) is developed. A Visio stencil that contains seven

corresponding masters to common model elements, as shown in Figure 5.3, is created. In

the stencil, a rectangle represents a static resource, an arrowed line represents a linkage, a

circle represents a routing, a rounded rectangle represents an entity, an ellipse represents

88
a dynamic resource, a database shape represents an arrival, and a box shape represents an

operation. Note that general information is not included in the stencil; it is distributed on

the drawing area, as shown in Figure 5.4.

Figure 5.3 Visio Stencil of Model Elements

The graphical modeling tool allows modelers to build simulation models by

dragging and dropping icons from the stencil to the drawing area. Each master (icon in

the stencil) contains its own attributes. These attributes were defined in Chapter 4 and are

shown in Figure 4.4. When an icon is dropped onto the drawing area, a form pops up and

asks the user to fill in the required simulation information. After a drawing is complete,

users can save it as a Visio drawing or in the proposed framework format (i.e., XML file).

This is accomplished using a VBA macro. Currently, the Visio drawings only save the

information such as icons, lines, and positions; they do not store the simulation related

data. The XML file stores simulation relative data as well as pictorial information. A

VBA macro converts the XML files into Visio drawings.

As mentioned earlier, the purpose of the GMT is to create a high-level model.

Thus, users do not have to fill in every single piece of simulation related information.

89
Only the required information is needed, such as the name of the machine, so the

program can reference it to the icon. Because the GMT is based on the proposed

framework, the sequence of dropping the icons into the drawing is restricted. At least one

primitive element (entity, static resource, and dynamic resource) should be dropped

before compound elements (arrival, linkages, routing, and operation) because compound

elements reference primitive elements. For example, an arrival is a compound element

that references an entity (what it generates) and a static_resource (where to create an

entity). One cannot drop an arrival icon into the drawing if there are no entities and static

resources already in the drawing.

A demonstration model is shown in the GMT environment in Figure 5.4. The left-

hand side of Figure 5.4 contains the stencil. The right-hand side is the drawing area.

Users can drag the icons from the stencil and drop them onto the drawing area to create a

model. If an icon is selected on the drawing, the icons that reference the selected icon

turn dark to show the reference relationship. As shown in Figure 5.4, when entity “Part1”

is selected, arrival, operations, and routings that reference it turn dark. When entity

“Part2” is selected, the set of icons that pertain to it turn dark, as shown in Figure 5.5.

Currently, this feature only applies to primitive entities, i.e., entity, static resource, and

dynamic resource.

In Figure 5.4, there are entities (i.e., part1 and part2) defined, as can be seen in the

top left corner of the drawing. The text “Part1: Part1_Buff” in the database shape

(arrival) contains the arrival logic of entity “Part1” at static resource “Part1_Buff”.

“Link1” through “Link4” are the linkages; note that “Link4” leads to the exit of the

90
system. The circle shapes “R1” through “R5” defines the routing logic. The text in the

box shape (operation) “Process1: Part1” defines the operation logic of entity “Part1” at

static resource “Process1”. Note the operation “Process2: All” defines the operation logic

for all entity types at static resource “Process2”. The “All” option is included in the GMT

to simplify the modeling process.

To view the detail definition of each simulation element in the GMT, one can

right click the icon and select the VBA function “Edit Properties”. In the future, the

GMT should display more information on the drawing so that users do not have to click

on each icon for simulation related data.

91

Figure 5.4 Graphical Modeling Tool Environment with Part1 Selected

92

Figure 5.5 Graphical Modeling Tool Environment with Part2 Selected

Three macros were developed to control the environment: Initialize, ReadFile,

and SaveModel. They are accessed from the Visio menu Tools-> Macros->

PublicDeclarations. The initialize macro cleans the drawing area and sets the memory to

an initial state. The ReadFile macro reads an existing XML file and restores it as Visio

drawing. The SaveModel macro saves the current drawing into an XML file.

The GMT is able to present the basic simulation elements and their relationships

in a structured and intuitive way. The advantages of visual modeling include: facilitating

model development, increasing the usage of simulation modeling, aiding in model

93
validation and verification, facilitating understanding and learning of existing models,

and facilitating model documentation.

5.4 Common User Interface

Figure 5.6 shows the overall structure of the common user interface (CUI). The

CUI is the bridge between XML files (in the proposed framework format) and simulation

packages. The CUI contains 3 major parts: the user interface, the Microsoft XML parser,

and the simulation package controllers. The user interface and the Microsoft XML parser

are discussed in the following section. The ProModel® controller is discussed is Section

5.4.2. The QUEST® Controller is discussed in Section 5.4.3.

XML File

XML Parser

QUEST
Controller

ProModel
Controller

XML File
Common User
Interface (CUI)

ProModel

QUEST

Figure 5.6 Overall Structure of the Common User Interface

5.4.1 The User Interface and XML Parser

The CUI serves two purposes:

1) provides a software independent model modification environment, and

2) facilitates the interaction between XML files and simulation packages.

94
 Figure 5.7 is a screenshot of the CUI. The eight buttons allow users to modify all

eight common simulation elements defined in the proposed framework. When a button is

clicked, a form pops up that allows users to add, delete, or modify the simulation

elements. The text box in the bottom shows the file being edited.

Figure 5.7 Common User Interface

There are six management functions in the CUI in the File menu. They are shown

in Figure 5.8 and include: open, save, XML->ProModel, ProModel->XML, XML-

>QUEST, and QUEST-> XML. The open function reads an existing XML file into the

CUI using the Microsoft XML parser (Document Object Model approach). It allows

users to modify the content of the XML file. The save function can write the modified

file to disk. The XML->ProModel and ProModel->XML functions are provided in the

ProModel Controller and are discussed in Section 5.4.2. The XML->QUEST and

QUEST->XML functions are contained in QUEST® Controller and are discussed in

Section 5.4.3.

95

Figure 5.8 Management Functions in the Common User Interface

5.4.2 The ProModel Controller

The ProModel Controller is responsible for uploading XML files into the

ProModel® application and extracting data from ProModel® into XML files. ProModel®

provides an ActiveX control for creating intra-application communications [53]. Because

everything in ProModel® is stored in tabular format, it is simple to access data within

ProModel® through the ActiveX control. The biggest challenge with the ProModel

Controller is that almost all operation, routing, and downtime related information is

written using ProModel® specific code; therefore, a translator is needed to parse the code

and map the data to the right places in the framework. Currently, the ProModel Controller

can only recognize a few keywords: wait, get, free, move for, and move with. In Figure

5.9, the left-hand side is a section of a ProModel® model listing. Note that all simulation

data is extracted from the ProModel® environment via ActiveX, instead of parsing them

from the text file. Figure 5.9 is only for illustration purposes. When extracting a

ProModel® model to the proposed framework, three files are generated: a log file, an

interpreted XML file, and an uninterpreted XML file. The log file contains the translation

96
history, the interpreted XML file stores the simulation data supported by the framework,

and the uninterpreted XML files stores the non-supported data. Details of these three files

are discussed in Section 7.5.

Figure 5.9 Transferring ProModel Files to the Proposed Framework

The supported data elements, shown as (1) in Figure 5.9, are placed in the

interpreted XML file. The non-support data elements, shown as (3) in Figure 5.9, are

placed in the uninterpreted XML file. As mentioned earlier, the ProModel Controller only

recognizes a few keywords. Thus, (2) in Figure 5.9 illustrates that only the recognized

logic (i.e., WAIT U(1,.5)*24 hr) is transferred, the unrecognized logic (i.e., “GRAPHIC

97
3” and “JOIN 1 consumption_order”) is dumped to the UserLogic node. The reason that

unrecognized code is placed in the interpreted XML file instead of uninterpreted XML

file is that the CUI does not support the editing of the uninterpreted XML file, and the

information contained in UserLogic node is critical to model execution. The UserLogic

node is for storing customized code written in any language. Currently, the CUI does not

include a standard language for writing customized code.

5.4.3 The QUEST Controller

The QUEST® Controller is responsible for uploading XML files to QUEST® and

extracting QUEST® models to XML files. When uploading an XML file to QUEST® , a

QUEST® wrapper class that contains a socket interface (developed by Travis Hill) is used

to create an instance of QUEST® . The QUEST® Controller parses the model elements

contained in the XML file and translates them into batch control language (BCL)

statements [54]. Because the model data in QUEST® is distributed among multiple

element classes instead of structurally stored in one place, such as tables in ProModel® , it

is difficult to generate correct BCL statements. Once generated, the statements are sent to

QUEST® via the socket interface in the QUEST® wrapper one statement at a time. After

each statement is sent, QUEST® responds with a status message. The QUEST® Controller

creates a log file to record the transformation history and exceptions. A detailed

discussion of exception handling is given in Section 7.5. Currently, the QUEST®

Controller does not support the user-defined code translations because the code is not

saved with the model file. An issue left for future development is that QUEST®-specific

98
code is written using simulation control language [55]. In order to fully translate the code,

a lexical analyzer and a complier are needed.

QUEST® provides limited functions and BCL statements for extracting

information from the QUEST® environment. They are essentially useless if one does not

know the content of the QUEST® model being extracted. Fortunately, the QUEST®

models are saved in plain text format and it is possible to parse the model files into XML

format. The results are three files: the log file, the interpreted XML file, and the

uninterpreted XML file. A detailed discussion of these files is given in Section 7.5.

CHAPTER VI

ILLUSTRATION OF PROPOSED APPROACH

In this section, various simulation models are used to demonstrate the capabilities

of the proposed framework and the software implementation. The models are built using

the graphical modeling tool, then through the common user interface, uploaded to both

QUEST® and ProModel® . Unless explicitly mentioned, the models can be properly

uploaded to both QUEST® and ProModel® environments without any problems. Due to

the length of the resulting models, they are not included in this document, but are

available upon request. The graphical modeling tool generates two outputs: one Visio

drawing and one XML file. The Visio drawings are shown with each problem in this

chapter because they provide a good representation of the model. The XML files are

available upon request.

6.1 Test Set 1

For Test Set 1, problems of different difficulty levels were selected from various

sources in order to demonstrate the capabilities of the proposed framework. The purpose

is to fully test the proposed framework, and identify the limitations of the framework.

This will help to identify future research needs.

99

100

6.1.1 BullyBooks

This problem is taken from an exam (Text #2, Spring 2005 semester) of

Mississippi State University’s Simulation I class (IE4773/6773). This problem is

relatively simple and requires the use of all seven model elements of the proposed

framework, making it a good exercise for testing and demonstrating the basics of the

framework.

Problem statement:

BullyBooks, Inc. (BBI) sells books through both a phone-in system and via
the Internet. Order fulfillment for the phone orders is basically a three-step
process: incoming orders arrive and are processed by order takers, they are then
forwarded on to order fillers who collect the books in the order, and finally orders
are packed in preparation for shipment. Internet orders do not require order
takers; they go directly to order fillers and then are packed. The time between
Internet orders is 4 minutes and the time between phone orders is 2.5 minutes,
both exponentially distributed. The time to process phone orders by the 2 order
takers is assumed to be uniformly distributed between 2 and 6 minutes. The
estimates on the time to process each type of order by the 12 fillers are provided
in the following table.

Minimum Maximum Most Likely
Phone 12 21 15
Internet 8 25 15

The time to process an order by the order packers is normally distributed with
a mean of 4 minutes and a standard deviation of 1 minute. The simulation will be
run for 40 hours.

101

Figure 6.1 Graphical model of Bully Books

The key characteristics of this problem are that it requires the use of all seven

model elements and involves no user-defined logic. Two arrival logics (shown as databse

shape in Figure 6.1) define the creation of two types of entities (phone orders and internet

orders) that enter the system in specific places (static resource: Phone_Buffer and

Order_Fill_Buffer). There are five static resources in the system (shown as rectangle in

Figure 6.1) and two types of dynamic resources (order taker and order filler, shown as

ellipse in Figure 6.1) that process the orders at various static resources. The linkages

(shown as arrowed line in Figure 6.1) are very straightforward; each static resource

except Phone_Order_Buffer has one incoming and one outgoing linkage. The routing

(shown as circle in Figure 6.1) is also very straightforward, each routing node contains

only one linkage, the parts are sent to the next static resource whenever it is possible.

102
Four operation logics (shown as box shape in Figure 6.1) are defined: 1) Order_Taking

specifies the processing logic for phone orders, 2) two Order_Filling logics for one for

each type of entity, and 3) Order_Packing for all types of orders. Since the processing

time is the same for both types of orders, the “All” option is used to simplify the

modeling process and the Visio drawing (two operation icons versus one operation icon).

As discussed in Section 4.1, this problem is also built in ProModel® and extracted

to a XML file in the framework format. The XML file is then uploaded to QUEST® to

demonstrate that the proposed framework is able to facilitate model interactions at

application stage.

6.1.2 Quarry problem

This problem is taken from Law and Kelton [7, pp 187]. The exercise requires the

use of entity attributes and a minimal amount of user-defined logic. This model uses

perpetual entities; i.e., entities that continuously flow through the model. This is in

contrast to using a large number of entities that are created, processed, and destroyed as

the model executes. Also, the routing and sequence rules are more complex. This

problem demonstrates additional capabilities of the proposed framework and

implementations.

Problem statement:

In a quarry, trucks deliver ore from three shovels to a single crusher. Trucks
are assigned to specific shovels, so that a truck will always return to its assigned
shovel after dumping a load at the crusher. Two different truck sizes are in use,
20 and 50 tons. The size of the truck affects its loading time at the shovel, travel

103
time to the crusher, dumping time at the crusher, and return-trip time from the
crusher back to its shovel, as follows (all times are in minutes):

20-ton truck 50-ton truck
Load Exponentially distributed

with mean 5
Exponentially distributed
with mean 10

Travel Constant 2.5 Constant 3
Dump Exponentially distributed

with mean 2
Exponentially distributed
with mean 4

Return Constant 1.5 Constant 2

To each shovel is assigned two 20-ton trucks and one 50-ton truck. The
shovel queues are all FIFO, and the crusher queue is ranked in decreasing order
of truck size, the rule’s being FIFO in case of ties. Assume that at time 0 all
trucks are at their respective shovels, with the 50-ton trucks just beginning to be
loaded. Run the simulation model for 8 hours and estimate the expected time-
average number in queue for each shovel and for the crusher. Also estimate the
expected utilizations of all four pieces of equipment. Use streams 1 and 2 for the
loading times of the 20-ton and 50-ton trucks, respectively, and streams 3 and 4
for the dumping times of the 20-ton and 50-ton trucks, respectively.

104

Figure 6.2 Graphical Model of Quarry Problem

In this problem, trucks return to their assigned shovels. Thus, there are three types

of entities, one for each shovel: Shovel_1_Truck, Shovel_2_Truck, and Shovel_3_Truck.

Each shovel is assigned two 20-tons trucks and one 50-ton truck. There are different

ways to model this problem; one way is to have two types of entities (20-ton and 50-ton

truck), another way is to use entity attributes. Here, entity attributes are used. A weight

attribute is assigned to entities to distinguish the different size trucks. Upon the creation

of the entities, i.e., arrival logic, the weight attribute is assigned a value of 20 or 50,

respectively. Note there are six arrivals defined in Figure 6.2, each shovel has two

105
arrivals that create the trucks when that simulation starts and assigns their weight

attribute. In QUEST® , to assign a value to an entity attribute, one must write and compile

user logic in a separate file. The QUEST® Controller within the Common User Interface

(CUI) does not support this. To overcome this, using a manual transfer is required. The

CUI provides a log file that contains a warning message if one tries to upload models that

contain user-defined logic to QUEST® . Uploading to ProModel® is much easier because

user logic is located in the same model file. Upon uploading user logic to ProModel® , the

CUI still create a log file that contains warning messages. The message is displayed even

though the ProModel Controller places the user-defined logic in the correct field because

it does not perform a syntax check. Therefore, ProModel® may not understand the user-

defined logic.

Another reason for using the entity attribute approach in this problem is that the

sequence rule of the crusher queue is ranked in decreasing order of truck weight, the

weight attribute is a required variable. There are eight static resources in the system. The

sequence rules are all FIFO (i.e., First In First Out) except for the crusher_queue. The

routing logic is more complicated in this problem. There are travel times between static

resources that are defined in the routing element. Also, after dumping at the crusher, the

trucks return to their original shovel. Note there are three routing logics (R8, R9, and R10)

at the end of the crusher; each routes the specified trucks to the right path back to the

original shovels.

106
6.1.3 Shuttle bus problem

The shuttle bus problem is taken from an MSU Ph.D. comprehensive exam. This

is an advanced test of the framework because it requires the use of global variables and a

considerable amount of user-defined logic.

Problem statement:

A bus shuttles students from a remote parking facility to campus every 15
minutes. The capacity of the bus is 60 students. If students at the remote parking
area are unable to board the bus because it is full, then they nearly always wait
for the next bus because it takes more than 15 minutes to walk to campus.

Students have complained that the buses do not run frequently enough and
they often have to wait for a second bus. The university would like to determine
how frequently it needs to pick up students in order to keep up with demand. To
do this, it would like to know how often the bus reaches capacity, and how many
students are left waiting, if it picks up at 15, 12, and 10-minutes intervals.
Therefore, evaluate the impact of using 15, 12, and 10 minute intervals for the
buses and make a recommendation for the interval that should be used. Also,
provide a detailed report of your methodologies, assumptions, etc.

Note that students arrive sporadically. A brief study was performed the
following time gaps between arrival of students to the bus stop (in seconds). The
following times were recorded: 18, 45, 27, 9, 11, 12, 17, 30, 8, 17, 14, 3, 2, 15,
1,26, 9, 18, 3, 9, 63, 10, 30, 9, 1, 58, 31, 11.

The original model uses numerous global variables and user-define logic for: 1)

calculating load/unload time, 2) counting the number of students that must wait for the

second bus, 3) calculating bus utilization, and 4) scheduling the bus to arrive at specific

intervals. But, the framework does not support global variables because they are too

programming language-oriented. Including global variable into the framework will result

in a very complex model representation, such as in the condition specification [13]

approach. In order to model this problem without using global variables, some changes

107
need to be made. The load/unload time can be replaced by the average load/unload time.

The bus interval can be replaced by average traveling time. However, to count the

number of students that have to wait for the second bus, a global variable is needed. Also,

a global variable is needed to record the number of students on bus. Thus, the proposed

framework cannot solve this problem because the global variables are involved. This

limitation will be discussed in the next chapter.

6.2 Test Set 2

In Test Set 2, exercises taken from various sources are used to test the proposed

framework and the software implementation. This approach is biased because the

exercises are not randomly selected; only the ones that fit into the framework’s

capabilities were chosen. In order to test the proposed framework and the software

implementation more properly and completely, exercises are taken from Chapter 5 of a

well-known Arena® textbook [56]. Arena® is a very popular discrete-event simulation

software package. In Chapter 5 of [56], there is a set of 14 of exercises that utilize most

of the features in Arena® and are designed to demonstrate the capability of Arena® . Thus,

they can also be used to demonstrate the capabilities and the limitations of the proposed

framework and its implementation. Also, because the software implementation only

contains ProModel® and QUEST® controllers, if the proposed framework can solve the

exercises in the Arena® textbook, then the generality of the proposed framework is also

demonstrated. In each of the following sections, the framework is evaluated as to how

well it represents each problem/exercise. For example, section 6.2.1 considers Exercise

5.1 in the textbook.

108
Note that some exercises require the simulation be terminated after a specified

time or to collect specific statistical data. For example, Exercise 5.1 asks to run the

simulation for 16 hours and to collect the time the traveler is in system, number of

passengers completing check-in, etc. Because simulation termination and statistical data

collection are a part of the experimental design aspect, they are beyond the scope of this

research.

6.2.1 Exercise 5.1

Problem statement:

Travelers arrive at the main entrance door of an airline terminal according to
an exponential interarrival-time distribution with mean 1.6 minutes. The travel
time form the entrance to the check-in is distributed uniformly between 2 and 3
minutes. At the check-in counter, travelers wait in a single line until one of five
agents is available to serve them. The check-in time follows a normal distribution
with mean of 7 minutes and standard deviation of 2 minutes. Upon completion of
their check-in, they are free to travel to their gates. Create a simulation model,
with animation, of this system. Run the simulation for 16 hours to determine the
average time in system, number of passengers completing check-in, and the
average length of the check-in queue.

This is a very typical queuing system problem. The graphical model is shown as

Figure 6.3.

109

Figure 6.3 Graphical Model of Exercise 5.1

There are three notable challenges. First, there is a travel time from the entrance

to the check-in. Second, the exercise uses two types of distributions: uniform and normal

distributions. Third, there are five agents at the check-in counter. Note the number of

agents is not shown in Figure 6.3. In future work, users should be allowed to choose what

information is displayed in the drawing.

The first two challenges can be handled by the proposed framework in the routing

and operation logics. There are couple ways to model the third challenge. One can model

the check-in counter as a processing unit with capacity of five, or model it as five

processing units each with a capacity of one. In Figure 6.3, the check-in counter is

modeled as a processing unit with a capacity of five entities that require a dynamic

resource (an agent) to complete the check-in process.

110
6.2.2 Exercise 5.2

Problem statement:

Develop a model of a simple serial two-process system. Items arrive at the
system with a mean time between arrivals of 10 minutes. They are immediately
sent to Process 1, which has an unlimited queue and a single resource with a
mean service time of 9 minutes. Upon completion, they are sent to Process 2,
which is identical to Process 1. Items depart the system upon completion of
Process 2. Performance measures of interest are the average numbers in queue at
each process and the system cycle time. Using replication length of 10,000
minutes, make the following four runs and compare the results:

Run 1: exponential interarrival times and exponential service times
Run 2: constant interarrival times and exponential service times
Run 3: exponential interarrival times and constant service times
Run 4: constant interarrival times and constant service times

This is also a very typical queuing system problem. The main purpose of this

exercise is to let the users observe the effect of changing parameters on the behavior of

the system. Changing system parameters can be done easily with the GMT. The model is

shown in Figure 6.4.

Figure 6.4 Graphical Model of Exercise 5.2

111
6.2.3 Exercise 5.3

Problem statement:

Modify the Exercise 5.1 check-in problem by adding agent breaks. The 16
hours are divided into two 8-hour shifts. Agent breaks are staggered, starting at
90 minutes into each shift. Each agent is given one 15-minute break. Agent lunch
breaks (30 minutes) are also staggered, starting 3.5 hours into each shift.
Compare the result of this model to the result without agent breaks.

This exercise is the extension of Exercise 5.1. The main challenge of this exercise

is the addition of work shifts to the system. However, the proposed framework does not

support shifts because, in most simulation software packages, it is considered an

advanced modeling option. Work shifts can be modeled as downtime, but it requires the

use of multiple downtime logic. Currently, the framework only supports a single

downtime for each dynamic resource. Also, shifts affect resource availability but not the

overall flow and operation of the system. A key aspect of the GMT during the model

formulation stage is to capture the flow and operations logic and not necessarily resource

availability. Different shift availabilities can be captured as notes to be implemented later

in a specific simulation package. In future research, work shifts can be adopted as an

attribute for certain model elements, such as static and dynamic resources. This is listed

in Chapter 7 as future research needs.

6.2.4 Exercise 5.4

Problem statement:

Two different part types arrive at the same system for processing. Part Type 1
arrives according to a lognormal distribution with a log mean of 11.5 hours and
log standard deviation of 2.0 hours. These arriving parts wait in a queue
designated for Part Type 1’s only until an operator is available to process them.

112
The processing time follows a triangular distribution with parameters 5, 6, and 8
hours. Part Type 2 arrives according to an exponential distribution with mean of
15 hours. These parts wait in a second queue until the same operator is available
to process them. The processing time follows a triangular distribution with
parameters 3, 7, and 8 hours. After being processed by the operator, all parts are
sent for processing to a second operation that does not require and operator,
triangular with parameters of 4, 6, and 8 hours. Completed parts exit the system.
Assume that the times for all part transfers are negligible. Run the simulation for
5,000 hours to determine the average cycle time for all parts and the average
number of items in the queues designated for the arriving parts.

This exercise has two major challenges. First, there are two types of entities. As

shown in Figure 6.5, there are two operations defined in the first processing station and

only one operation defined in the second processing station. Different types of entities

may or may not require different operations. The GMT provides an “all” option in

operation and routing element that allows assigning the same operation or routing logic to

different types of entities, which simplifies the modeling process and also results in a

cleaner drawing. The second challenge is that different entities share the same dynamic

resource (an operator). The framework is able to capture this behavior.

113

Figure 6.5 Graphical Model of Exercise 5.4

6.2.5 Exercise 5.5

Problem statement:

During the verification process of the airline check-in system from Exercise
5.3, it was discovered that there were really two types of passengers. The first
passenger type arrives according to an exponential interarrival distribution with
mean 2.4 minutes and has a service time following a normal distribution with
mean of 6 minutes and standard deviation of 1.5 minutes. The second type of
passenger arrives according to an exponential distribution with mean 4.4 minutes
and has a service time following a normal distribution with mean of 11 minutes
and standard deviation of 2 minutes. Modify the model from Exercise 5.3 to
include this new information. Compare the results.

This exercise is an extension of Exercise 5.3, which contains shift information

that the proposed framework cannot handle. Assuming there are no shifts in the system,

the exercise can be modeled as shown in Figure 6.6.

114

Figure 6.6 Graphical Model of Exercise 5.5

This exercise does not implement any new features. But it demonstrates that the

GMT can modify existing models easily when new information becomes available.

6.2.6 Exercise 5.6

Problem statement:

Parts arrive at a single workstation system according to an exponential
interarrival distribution with mean 20 seconds. After being transferred to the
workstation, the parts are processed. The processing time distribution is TRIA(16,
19, 22) seconds. There are several easily identifiable visual characteristics that
determine if a part has a potential quality problem. These parts, about 10%, are
transferred to a station where they undergo an extensive inspection. The
remaining parts are considered good and are transferred out of the system. The
inspection time distribution is NORM(120, 12) seconds. About 14% of these
parts fail the inspection and are transferred to scrap. The parts that pass the
inspection are classified as good and are transferred out of the system. Assume
all transfer times are 2 minutes. Run the simulation for 10,000 seconds to
determine the number of good parts that exit the system, the number of scrapped
parts, and the number of parts that are inspected.

115
This exercise has two new major challenges. The first one is the use of percentage

routing logic, which is handled by the proposed framework. The second challenge is the

use of an entity attribute to denote the part quality. This exercise could be modeled

without using attributes by putting two dummy dynamic resources at the end of the model

to collect the total scrap and good part counts. To illustrate the capability of the proposed

framework, user attributes are used to model the exercise. User attributes facilitate

defining complex user-defined logic in certain places. For example, in the routing

element, user-defined routing rules are very common. In the proposed framework, there

is no standard modeling language defined, users may need to translate the user logic

manually to the desired commercial simulation package environment using its proper

syntax. In the CUI, when users try to upload the model that contains user logic to either

QUEST® or ProModel® , a log file containing warning message is created to indicate that

user logic may require manual translation. The model is shown in Figure 6.7.

116

Figure 6.7 Graphical Model of Exercise 5.6

6.2.7 Exercise 5.7

Problem statement:

A proposed production system consists of five serial automatic workstations.
The processing times at each workstation are constant: 11, 10, 11, 11, and 12 (all
times given in this problem are in minutes). The part interarrival times are
UNIF(13,15). There is an unlimited buffer in front of all workstations, and we
will assume that the downstream transfer time is zero. The unique aspect of this
system is that at workstations 2 through 5 there is a chance that the part will need
to be reprocessed by the workstation that precedes it. For example, after
completion at workstation 2, the part can be sent back to the queue in front of
workstation 1. When this occurs, the transfer requires 3 minutes. The probability
of revisiting a workstation is independent in that the same part could be sent back
many times with no change in probability, the same for all four workstations, will
be between 5% and 10%. Develop the simulation model and make six runs of
10,000 minutes each for probability of 5, 6, 7, 8, 9, and 10%. Using the results,
construct a plot of the average cycle time (system time) against the probability of
a revisit. Also include the maximum cycle time for each run on your plot.

117
This exercise primarily uses percentage routing. The model is shown in Figure 6.8.

Figure 6.8 Graphical Model of Exercise 5.7

The model in Figure 6.8 looks very complex. It is hard to explain to others about

the material flow of the system. Assume it is a physical layout of the real world system.

With the graphical modeling tool, the model layout can be rearranged into a flowchart-

like drawing. By easily dragging the model elements around, the physical layout drawing

can be reformatted into Figure 6.9, a flowchart-like drawing, which is much easier to

understand. This illustrates another advantage of the graphical modeling tool. Based on

the perspective of users, the drawing can be modified easily to facilitate the

understanding of different stakeholders.

118

Figure 6.9 Flow Chart of Exercise 5.7

6.2.8 Exercise 5.8

Problem statement:

A production system consists of four serial automatic workstations. All
transfer times are assumed to be zero and all processing times are constant. There
are two types of failures: major and jams. The data for this system are given in
the table below (all times are in minutes). Use exponential distributions for the
up-times and uniform distributions for repair times (for instance, repairing jams
at workstation 3 is UNIF(2.8, 4.2)). Model the major failures using the failure
constructs (time with wait option) and the jams using the downtimes constructs.
Run your simulation for 10,000 minutes to determine the percent of time each
resource spends in the failure states and the ending status of each workstation
queue.

119
Mean Major Failures Jams

Number Process Time MTBF Repair MTBF Repair

1 8.5 475 20, 30 47.5 2, 3

2 8.3 570 24, 36 57 2.4, 3.6

3 8.6 665 28, 42 66.5 2.8, 4.2

4 8.6 475 20, 30 47.5 2, 3

This exercise uses two downtime and repair times for each station. The proposed

framework only supports one downtime and one repair logic for each resource. It is not

hard to modify the framework to support multiple downtimes and repair logic. However,

the purpose of this research is to illustrate the usefulness of the proposed framework and

its implementations. Multiple downtimes and repair logics will be listed as a future

research need.

The purpose of this exercise is to get users more familiar with the downtime and

repair logic capability in Arena® . Also, if there is no buffer between stations, the impact

of downtime is more critical. Also, because the arrival time is not given, assume mean

time between arrivals is constant eight minutes. Because the proposed framework only

supports single downtime and repair logic, only the major failure is modeled. The model

is shown as Figure 6.10.

120

Figure 6.10 Graphical Model of Exercise 5.8

6.2.9 Exercise 5.9

Problem statement:

An office that dispenses automotive license plates has divided its customers
into categories to level the office workload. Customers arrive and enter one of
three lines based on their residence location. Model this arrival activity as three
independent arrival streams using an exponential interarrival distribution with
mean of 10 minutes for each stream. Each customer type is assigned a single
clerk that processes the application forms and accepts payment. The service time
in UNIF(8, 10) minutes for all three customer types. After completion of this step,
all customers are sent to a second clerk who checks the forms and issues the
plates. The service time for this activity is UNIF(2.66, 3.33) minutes for all
customer types. Develop a model of this system and run the simulation for 5,000
minutes.

A consultant has recommended that the office eliminate the step of
differentiating between customers and use a single line with three clerks who can
process any customer type. Develop a model of this system, run it for 5,000
minutes, and compare the results with the first system.

The purpose of this exercise is to observe the difference between two customer

service policies. Figure 6.11 shows the system with different lines for each type of

https://UNIF(2.66

121
customer. Figure 6.12 shows the system with a single line for all customers. This exercise

does not use any new characteristic of the proposed framework.

Figure 6.11 Exercise 5.9 With Lines for Different Customers

122

Figure 6.12 Exercise 5.9 with One Line for All Customers

6.2.10 Exercise 5.10

Problem statement:

Customers arrive at an order counter with exponential interarrivals with a
mean of 10 minutes. A single clerk accepts and checks their orders and processes
payments, UNIF(8,10) minutes. Upon completion of this activity, orders are
randomly assigned to one of two available stock persons who retrieve the orders
for the customers, UNIF(16, 20) minutes. These stock persons only retrieve
orders for customers who have been assigned specifically to them. Upon
receiving their orders, the customers depart the system. Develop a model of this
system and run the simulation for 5,000 minutes.

A bright, young engineer has recommend that they eliminate the assignment
of an order to a specific stock person and allow both stock persons to select their
next activity from a single order queue. Develop a model of this system, run it for
5,000 minutes, and compare the results to the first system.

The purpose of this exercise is to observe the difference between two order

processing polices. In Figure 6.13, there are separate buffers for each stock person.

Customers are sent to the buffers randomly. In Figure 6.14, there is only one buffer prior

123
to the stock persons. All customers are sent to the buffer then processed by the first

available stock person.

Figure 6.13 Graphical Model of Exercise 5.10 With Orders Randomly Assigned

124

Figure 6.14 Graphical Model of Exercise 5.10 With Order Assigned to First Available

6.2.11 Exercise 5.11

Problem statement:

Using the model from Exercise 5.2, set the interarrival-time distribution to
exponential and the process-time distribution for each process to normal with a
mean of 9 minutes. Setting the standard deviation of the normal distribution to
values of 1, 2, and 3. Make three different runs of 10,000 minutes each and
compare the results.

The main purpose of this exercise is to observe the effect of modifying model

parameters on system behavior. This has been demonstrated earlier.

6.2.12 Exercise 5.12

Problem statement:

125
Using the model from Exercise 5.11, assume the process time has a mean of 9

and a variance of 4. Calculate the parameters for the gamma, uniform, and
normal distributions that will give these values. Make three runs (one for each
distribution) and compare the results.

The calculation of statistical distribution parameters is not a part of this research.

6.2.13 Exercise 5.13

Problem statement:

Using the Input Analyzer, open a new window and generate a new data file
containing 50 points for an Erlang distribution with parameters: ExpMean equal
to 12, k equal to 3, and Offset equal to 5. Once you have the data file, perform a
best fit. Repeat this process for 500, 5,000, and 25,000 data points, using the
same Erlang parameters. Compare the results of the best fit for the four different
sample sizes.

This exercise provides practice in probability distribution fitting and utilizes two

support applications that come with Arena® . Statistical distribution fitting is not a part of

this research.

6.2.14 Exercise 5.14

The problem statement of this exercise is skipped for brevity. This exercise uses

shifts and schedules that cannot be handled by the proposed framework.

6.3 Summary of the Chapter

In this chapter, the limitations and the benefits of the proposed approach are

identified. The framework does not support the shuttle bus problem in Test Set 1 because

global variables are involed. In Test Set 2, nine exercises are fully applicable and three

are out of scope of this research. Exericse 5.3 is not applicable because of the use of work

126
shifts. Exercise 5.8 is partially applicable because the framework only supports single

dowmtime and repair logic for each static resource. The limitations of the framework are

further discussed in the next chapter.

CHAPTER VII

LIMITATION OF THE PROPOSED APPROACH

In this chapter, the performance of the proposed framework and its

implementations using ProModel® and QUEST® are discussed. In Figure 7.1, there are

four opportunities for the proposed framework to interact with QUEST® and ProModel®:

1) from the XML file, through the ProModel® Controller within Common

User Interface (CUI), to ProModel,

2) from the XML file, through the QUEST® Controller within CUI, to

QUEST® ,

3) from ProModel® , through the ProModel® Controller within CUI, to

XML file, and

4) from QUEST®, through the QUEST® Controller within CUI, to XML file.

QUEST
Controller

ProModel
Controller

XML File Graphical Modeling
Tool

Common User
Interface (CUI)

ProModel

QUEST

1

2

3

4

 Figure 7.1 Relationships Between Simulation Packages and Implementations

127

128
In Figure 7.1, the shadowed part in the XML file icon means only the XML files

generated by the graphical modeling tool (GMT) can be edited by the GMT because the

position information that is required to place the icons in the Visio drawing may be

missing. For example, in ProModel® , processes are not shown on the model layout, thus

they do not have position information. The extent to which the proposed framework can

support these interaction opportunities are examined in detail in the following sections.

Subsequently, in Section 7.5, the methodology for how exceptions of translations

between the proposed framework and simulation software are discussed.

A series of tables are used to illustrate the performances of the proposed

framework. There are eight major elements in the framework: general information, entity,

static resource, dynamic resource, arrival, operation, linkage, and routing. Each table

contains the properties that are a part of each major element. For example, the general

information element contains model name, time units, distance unit, date, builder, and

notes. These properties are represented as rows, each row contains four columns:

property name, default value, support, and notes. A filled circle, , in the support field

means this property is fully supported. A half filled circle, , means it is partially

supported. An empty circle, , means it is not supported. X means the property is not

considered because of different modeling view or referencing purpose. The notes field

explains why the property is partially supported or not supported.

Commercial simulation packages usually contain elaborate 2D/3D graphical icons

or objects to represent simulation elements, such as machines. These display relevant data,

such as CAD objects and colors, are excluded from this chapter because they are software

129
specific and are not critical to the execution of simulation models. Also, simulation

software applications usually allow users to select a collection of performance

measurements. This functionality belongs to the experimental design side and are

therefore out of the scope of discussion of this chapter.

7.1 Compatibility from Framework to ProModel (Opportunity 1)

Tables 7.1 through 7.8 illustrate the translation capability between the various

framework elements to ProModel® . Almost everything except that which contains user-

defined logics can be translated from the framework to ProModel® . The user-defined

logics have limited support; in fact, the CUI only recognizes a few keywords: wait, move

for, move with, get, and free. The “-” in the default value field means there is no default

value for the property or the default value is an empty string.

Table 7.1 General Information Compatibility from Framework to ProModel

Property name Default value Support Note
Model name -
Time unit “Minute”
Distance unit “Feet”
Date -
Builder - ProModel does not have a builder

field.
Notes -

130

Table 7.2 Entity Resource Compatibility from Framework to ProModel

 Property name Default value Support Note
Name -
Speed -
Notes -

Table 7.3 Static Resource Compatibility from Framework to ProModel

Property name Default value Support Note
Name -
Type “Processing

unit”
Capacity 1
Units 1
Downtime -
Repair -
Sequence rule “FIFO”
Notes -

Table 7.4 Dynamic Resource Compatibility from Framework to ProModel

Property name Default value Support Note
Name -
Units 1
Downtime -
Repair -
Notes -

131

Table 7.5 Arrival Compatibility from Framework to ProModel

Property name Default value Support Note
AID - X For reference purpose only.
ArvEntity - Arrival entity.
ArvLocation - Arrival location.
QtyEach 1 Arrival quantity.
Frequency -
FirstTime -
Occurrence “Inf”
UserLogic - Limited support.

Table 7.6 Linkage Compatibility from Framework to ProModel

Property name Default value Support Note
LID - X For reference purpose only.
BeginLoc - Begin location.
EndLoc - End location.
Notes - ProModel does not have notes field

for linkage in process.

Table 7.7 Routing Compatibility from Framework to ProModel

Property name Default value Support Note
RID - X For reference purpose only.
Linkage - Duration and dynamic resource are

supported. User logic is limited
supported.

RouteEntity “All”
Rule - Routing rule is supported.
QtyEach 1 Route quantity.
Notes - ProModel does not have notes field

for routing in process.

132

Table 7.8 Operation Compatibility from Framework to ProModel

Property name Default value Support Note
OID - X For reference purpose only.
Process - Duration and dynamic resource are

supported. User logic has limited
support.

OpLocation - Operation location.
InEntity “All” Incoming entity.
OutEntity “All” Outgoing entity.
Notes - ProModel does not have notes field

in process.

7.2 Compatibility from Framework to QUEST (Opportunity 2)

Tables 7.9 through 7.16 contain the translation performance from the framework

to QUEST®. The format of these tables is similar to the ones in the previous section.

Table 7.9 General Information Compatibility from Framework to QUEST

Property name Default value Support Note
Model name - There is no model name filed in

QUEST.
Time unit “Minute”
Distance unit “Feet”
Date - There is no date field in QUEST.
Builder - There is no builder field in QUEST.
Notes -

133

Table 7.10 Entity Compatibility from Framework to QUEST

Property name Default value Support Note
Name -
Speed - QUEST does not support part speed.
Notes -

Table 7.11 Static Resource Compatibility from Framework to QUEST

Property name Default value Support Note
Name -
Type “Processing

unit”
Support both machine and buffer
class in QUEST.

Capacity 1 *
Units 1
Downtime -
Repair -
Sequence rule “FIFO” *
Notes -
* In QUEST, machine class only has capacity of one. Thus there is no sequence rule.
Buffer class can have more than one capacity, and can define sequence rules.

Table 7.12 Dynamic Resource Compatibility from Framework to QUEST

Property name Default value Support Note
Name - *
Units 1
Downtime - **
Repair - **
Notes -
* QUEST supports three types of dynamic resources: labor, AGV, and carrier. Only the
labor class is supported in the proposed framework.
** In QUEST, users need to write and compile Simulation Control Language code for
downtime and repair logic in labor.

134

Table 7.13 Arrival Compatibility from Framework to QUEST

Property name Default value Support Note
AID - X For reference purpose only.
ArvEntity - Arrival entity.
ArvLocation - Arrival location.
QtyEach 1 Arrival quantity.
Frequency -
FirstTime -
Occurrence “Inf”
UserLogic - *
* In QUEST, users need to write and compile Simulation Control Language codes for
arrival logics.

Table 7.14 Linkage Compatibility from Framework to QUEST

Property name Default value Support Note
LID - X For reference purpose only.
BeginLoc - Begin location.
EndLoc - End location.
Notes -

Table 7.15 Routing Compatibility from Framework to QUEST

Property name Default value Support Note
RID - X For reference purpose only
Linkage - Duration and dynamic resource are

supported. User logic is not
supported.

RouteEntity “All”
Rule - Routing rule is supported
QtyEach 1
Notes - *
* In QUEST, routing is embedded in machine and buffer classes, and thus does not have
an independent field for routing descriptions.

135

Table 7.16 Operation Compatibility from Framework to QUEST

Property name Default value Support Note
OID - X For reference purpose only.
Process - Sub-properties duration and dynamic

resource are supported. Sub-item user
logic is limited supported.

OpLocation - Operation location.
InEntity “All” Incoming entity.
OutEntity “All” Outgoing entity.
Notes - QUEST does not have note field in

process.

7.3 Compatibility from ProModel to the Framework (Opportunity 3)

The major model elements in ProModel® are: general information, locations,

entities, resources, path networks, processing, arrivals, shifts, attributes, global variables,

arrays, macros, subroutines, path-networks, and cost. The proposed framework does not

support shifts, path-networks, and costs because they are considered advanced features.

The framework does not support global variables, macros, and subroutines because they

are too programming or scripting oriented. All other major ProModel® elements are

supported and are discussed in this section.

7.3.1 General Information

Table 7.17 shows the compatibility of the general information elements in terms

of the interaction from ProModel® to the framework. The general information contains

the metadata about the model. The framework supports everything except the

initialization logic and termination logic. It is not difficult to include them in the

136
framework; however these two logic blocks are more relative to the experimental design

aspect of simulation, and thus are excluded.

Table 7.17 General Information Compatibility from ProModel to Framework

Property name Default value Support Note
Title -
Time Units Minutes
Distance Units Feet
Initialization logic - Not supported by the framework.
Termination logic - Not supported by the framework.

7.3.2 Entities

Table 7.18 shows the entity compatibility from ProModel® to framework. It is

fully supported by the framework.

Table 7.18 Entity Compatibility from ProModel to Framework

Property name Default value Support Note
Icon -
Name -
Speed -
Notes -

7.3.3 Locations

Locations correspond to static resources in the framework. The compatibility of

locations is shown in Table 7.19. In ProModel® , downtimes can be defined based on

clock time, entries, usages, and setup downtime. Only one clock downtime per location is

supported in the framework. Also, the logic field within the downtime property allows

137
users to write their own user-defined logic. The framework is limited to time to repair

(TTR) logic and the associated resource required for repair. The rules property in

ProModel® contains incoming entities selection rules and queuing for output rules. The

framework does not support incoming entities selection rules.

Table 7.19 Location Compatibility from ProModel to Framework

ProModel attribute Default value Support Note
Name -
Capacity 1
Units 1
Downtimes - Limited support. *
Rules - Select incoming rules are not supported.
Notes -
* Only supports single downtime and repair logics. First time, priority, and scheduled
downtimes are not supported.

7.3.4 Resources

The resources correspond to the dynamic resources in the framework. Table 7.20

shows the compatibility of resources. Downtimes have limited support, as described in

the previous section. There are two properties that are not supported by the framework:

specifications and points. The specifications option contains information on such things

as path networks, resource search rules, entity search rules, and motion data. The points

option defines the resource traveling positions during model execution. It is mainly for

animation purpose, thus is not included in the framework.

138

Table 7.20 Resource Compatibility from ProModel to Framework

ProModel attribute Default value Support Note
Name -
Units 1
Downtimes - *
Specifications - Not supported.
Points - Not supported.
Notes -
* Only supports single downtime and repair logics. First time, priority, and scheduled
downtimes are not supported.

7.3.5 Arrival

The compatibility of arrival properties is shown in Table 7.21. The framework

supports everything except user-defined logic.

Table 7.21 Arrival Compatibility from ProModel to Framework

ProModel attribute Default value Support Note
Entity -
Location -
Qty each 1
First time 0
Occurrences “Infinite”
Frequency -
Logic - Limited support.

7.3.6 Process

The process element in ProModel® is a combination of three elements in the

proposed framework: linkage, routing, and operation. It is challenging to subdivide

process information and place them in the right place in the framework, but the ProModel

139
Controller is able to manage this. The operation and move logic properties in the process

element allow users to write user-defined logic, thus they have limited support in the

framework. The framework also only supports a subset of the ProModel® routing rules.

Table 7.22 Process Compatibility from ProModel to Framework.

ProModel attribute Default value Support Note
Entity -
Location -
Operation - User-defined logic has limited support.
Output -
Destination -
Routing rule - Limited support. Framework supports first

available, by turns, probability, and random
routing.

Move logic - User-defined logics are limited supported.

7.4 Compatibility from Quest to the Framework (Opportunity 4)

QUEST® is a very powerful and open simulation software package. It allows users

to modify almost anything, thus it contains a considerable number of features that are not

likely to be used by most model builders. QUEST® supports 2D and 3D simulation

environments. As such, it contains features for display and animation purposes, such as

CAD tools that are included within the package for creating 2D/3D objects and kinematic

elements. Specifically, these features includes:

� Accessory – This element class adds 2D/3D objects into a model for display

purposes only.

� Stack direction, stack points, and stack factor – These attributes affect the

stacking mechanism of parts in buffer or source.

140
� Way points, labor points, and via path – These features are used to define the

traveling path and standing points of the labor classes. It may affect

the traveling time of labor classes if the traveling time is based on the

labor speed. The framework uses fixed travel time. These features are

for animation purposes only.

These features are excluded from this section, because they are not critical to the

execution of simulation and the complexity involved makes it out of the scope of this

research.

In this section, only major QUEST® elements critical to model execution are

discussed, they are: general information, parts, machine, buffer, source, sink, conveyor,

connections, labor controller, automated guided vehicle (AGV) controller, labor, AGV,

carrier, path network system, shifts, cycle process, fluid process, repair process, setup

process, load/unload process, and failure. As mentioned earlier, the framework does not

support conveyors, path network systems, and shifts. General information element is

discussed in Section 7.4.1. The part element is discussed in Section 7.4.2. The machine

and buffer elements are discussed in Section 7.4.3. The source element is discussed in

Section 7.4.5. The sink element is a unique to QUEST® . The main purpose of the sink

class is to collect statistical data; therefore, it is excluded. Connections are discussed in

Section 7.4.6. Dynamic resource relative elements (e.g., controllers, AGV, labor and

carrier) are discussed in Section 7.4.4. Operation relative elements (cycle process, fluid

process, repair process, setup process, load/unload process, and failure) are discussed in

Section 7.4.6.

141
Also, QUEST® supports both push and pull systems. Currently, the framework

only supports push systems. Two other unique features that are not supported by the

framework are: group and pop-up. A group allows the grouping of multiple processes

into one process union. A pop-up is a file containing a list of procedures that can be

associated with elements in QUEST® .

7.4.1 General Information

The general information element contains the metadata of the model. As

mentioned earlier, the initial logic and termination logic are not supported. Also, the

distance unit of measure is contained in a QUEST® model.

Table 7.23 General Information Compatibility from QUEST to Framework

Property name Default value Support Note
Developer -
Time/date -
Time unit -
Model description -

7.4.2 Parts

The parts class corresponds to the entity element in the framework. Properties that

are not listed in Table 7.24 are display (e.g., 3D object), and history output file. Priority,

routing labor requirements, routing sub-resource (SR) requirement, associated sub-

resource class, and required processes are unique attributes of QUEST® . The framework

does not support them.

142
Table 7.24 Parts Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
Priority 1 Not supported by the framework.
Routing labor requirement “No Labor” Not supported by the framework
Routing SR requirement “No SR” Not supported by the framework.
Associated sub-resource
class

“None” Not supported by the framework.

User attribute -
Required processes - Not supported by the framework.
Description -

7.4.3 Machine and Buffer

In QUEST® , machine, buffer, and conveyor correspond to static resources in the

framework. As mentioned earlier, conveyors are not included in the framework. Unlike

the framework, the machine and buffer classes are a combination of routing logic and

static resource. Therefore, these classes must be split into two elements in the framework.

The QUEST® Controller that implements the framework manages the splitting.

The compatibility of machine class is shown in Table 7.25. The properties that are

not listed in the table are: “save in”, display, labor parking, SR parking, and random

streams.

143

Table 7.25 Machine Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
No. of elements 1
Input, output type - Only supports push system.
No. of processes 1 Supports multiple processes.
Priority 1 Not supported by the framework.
Part initial stock 0 Not supported by the framework.
Process percentage - Processes are executed in sequence in

the framework.
Process group - Not supported by the framework.
Logics - Use default logics on everything

except route logic.
SR and labor controller - Not supported by the framework.
Shifts - Not supported by the framework.
Part routing -
Cycle Process “Default

process”
Setup process - X Included in multiple cycle processes.
Unload process - X Included in multiple cycle processes.
Failure -
Request routing - Only supports push system.
User attribute -
Labor move time -
Dedicated labors - Not supported by the framework..
Labor depart requirement -
Description -

144
The compatibility of the buffer class is shown in Table 7.26. The properties that

are not listed in the table are: “save in”, display, labor parking, SR parking, and random

streams. Labor parking and SR parking are features for display purposes only.

Table 7.26 Buffer Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
No. of elements 1
Input and output type Only supports push type.
Part capacity “Infinite” In QUEST, machine class only has

capacity of 1. Buffer class can have
capacity of any size.

Priority 1 Not supported by the framework.
Thresholds - Not supported by the framework.
Unload process - Not supported by the framework.
Failures -
Request routing - Pull processes are not supported.
Part initial stock 0 Not supported by the framework.
Load process - Not supported by the framework.
Logics - User default logics only.
SR and labor controller - Not supported by the framework.
Shifts - Not supported by the framework.
Part routing -
Delay time 0 Not supported by the framework.
User attribute -
Labor move time -
Labor depart requirement -
Description -

7.4.4 Labor, AGV, and controllers

Labor corresponds specifically to the dynamic resources in the framework. There

are three types of material handling system (MHS) in QUEST®: labor, AGV, and carrier.

The framework only supports the labor class. There are also two types of controllers in

145
QUEST®: the labor controller and the AGV controller. The controllers contain the logic

associated with the MHS, such as the labor selection logic and labor path selection logic.

In QUEST® , to use the labor construct, at least one labor controller is needed. The

compatibility of the framework with the labor class is shown in Table 7.27. The

properties that are not listed in the table are: “save in”, animation mode, locate labor,

locating space, move time mode, rotation speed, display, and random stream.

Table 7.27 Labor Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
No. of elements 1
Controller - Not supported by the framework.
Priority 1 Not supported by the framework.
Part capacity - Not supported by the framework.
Unload process - Not supported by the framework.
Failure -
Load process - Not supported by the framework.
Logics - Use only default logics.
Shifts - Not supported by the framework.
Move time - X This is also defined in machine and

buffer class.
Speed - Not supported by the framework.
Description -

7.4.5 Source

A source is a combination of arrival logic and a buffer. The framework views a

source only in terms of its arrival logic. Thus, there are different modeling views between

a QUEST® source and the framework. The compatibility of the source class within

146

framework is shown in Table 7.28. The properties that are not listed in the table are:

“save in”, display, SR parking, labor parking, random streams.

147

Table 7.28 Source Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
No. of elements 1
Max. part count 9999999
Start offset 0
Part creation mode “Active” Pull system is not supported.
Output type “Push” Only supports push system.
Priority 1 Not supported by the framework.
Part initial stock 0 X
Lotsize 1
Unload process - X
Failure - X
IAT -
Part fractions - Only supports one type of entity

arrival.
Logics - Only uses default logic.
SR controller - Not supported by the framework.
Shifts - Not supported by the framework.
Part routing - X
User attribute - X
Labor depart requirement - X
Labor move time - X
Description -

148

7.4.6 Connections

Linkage is fully supported by the framework, as shown in Table 7.29.

Table 7.29 Connection Compatibility from QUEST to Framework

Property name Default value Support Note
Begin location -
End location -

7.4.7 Process and Failure

There are six types of processes in QUEST®: cycle, fluid cycle, setup, repair, load,

and unload processes. The framework only supports the cycle and repair processes. The

cycle processes corresponds to the operation in the framework. A machine can contain

multiple processes, which is supported by the framework.

The failure class in QUEST® relates to the resource downtime logic in the

framework. The repair process also matches the resource repair logic in the framework.

These two classes are viewed as processes in QUEST® .

Table 7.30 shows the compatibility of the cycle process. The framework does not

support priority, rejection rate, claim order, AGV requirement, sub-resource requirement,

cycle process group, pop-ups, and user attributes. The framework also allows only one

type of entity to be processed at a time. Likewise, only one type of labor can be claimed

during the process.

149

Table 7.30 Cycle Process Compatibility from QUEST to Framework

Property name Default value Support Note
Name -
Priority - Not supported by the framework.
Rejection rate 0.0% Not supported by the framework.
Claim order - Use default value only.
Part requirement - Only supports processing one type of

part at a time.
AGV requirement - Not supported by the framework.
Labor requirement - Only supports one type of labor.
Sub-Resource req. - Not supported by the framework.
Cycle time -
Products -
Precedence processes -
Cycle process group - Not supported by the framework.
Attached popups - Not supported by the framework.
User attribute - Not supported by the framework.
Description -

Table 7.31 shows the compatibility of failure class with the framework. The

framework only supports time between failures (TBF). Thus, only failure distribution is

fully supported.

150

Table 7.31 Failure Compatibility from QUEST to Framework

Property name Default value Support Note
Name - Failure does not have a name in the

framework.
Failure mode Simulation

time
Only supports simulation time.

First failure by System Only supports system-generated
failures by default.

Schedule failure After repair Only supports scheduled failure after
repair by default.

Repair process -
Priority 1 Not supported by the framework.
Logics - User-defined logic are not supported.
Failure distribution -
Behavior - Use default settings.
User attributes - Not supported by the framework.

Table 7.32 shows the compatibility of the repair class. The framework only

supports time to repair (TTR) and the required dynamic resource. Thus, only two

properties are supported in the table.

Table 7.32 Repair Process Compatibility from QUEST to Framework

Property name Default value Support Note
Name - Repair does not have a name in the

framework.
Priority 1 Not supported by the framework.
Claim order - Use default values only.
Labor requirement - Only supports one type of labor.
AGV requirement - Not supported by the framework.
Sub-resource requirement - Not supported by the framework.
Cycle time -
User attribute - Not supported by the framework.
Description - Not supported by the framework.

151
7.5 Capturing Model Information Not Used in the Framework

When transferring ProModel® or QUEST® models into the framework, there are

are substantial software-specific data that cannot be handled by the framework. To record

the transferring process and provide users with important messages, a log file is

incorporated. Figure 7.2 shows a portion of the log file that illustrates the transfer of one

of ProModel’s demonstration models (distribution.mod) to the framework. The

ProModel® listing of the model contents is provided in Appendix D. A full example log

file is included in Appendix E. To avoid the loss of data during the transferring process,

in addition to the log file, two XML files are created: one that contains the data supported

by the framework (referenced to as the “interpreted” XML file) and one that contains data

that are not supported by the framework (referred to as the “uninterpreted” XML file).

152

Figure 7.2 Log File

In Figure 7.2, the second line “dumping LocStats…” means extracting the non-

supported data, location statistic, into the uninterpreted XML file. Figure 7.3 includes a

portion of the uninterpreted XML file for the ProModel® distribution model. The entire

uninterpreted XML file is provided in Appendix F.

153

Figure 7.3 Portion of the Uninterpreted XML File for ProModel Distribution Model

In Figure 7.2, the message “Processing user-defined logics. Manually translation

may be required” warns the user that the ProModel Controller that parses the model may

not extract the user logic correctly. Users will likely need to manually interpret those

segments of the code. Figure 7.4 is a portion of interpreted XML file for the example

ProModel® distribution model. Note the ProModel Controller that parses the framework

only picks up the duration part of the logic and leaves the unrecognized code in the

UserLogic node. As mentioned earlier, the ProModel Controller only recognizes a limited

number of key words.

154

Figure 7.4 Portion of the Interpreted XML File for ProModel Distribution Model

155
Likewise, when transferring from QUEST® to the framework. Three files will be

created: one log file, one interpreted XML file, and one uninterpreted XML file. The log

file and the interpreted XML file are very similar to that of ProModel® . Figure 7.5 is an

example of an uninterpreted XML file for a QUEST® model. There are two parts to the

XML file: the structured part and the unstructured part. The structured part stores the data

that is recognized as a portion of the model elements but cannot be handled by the

framework. For example, in Figure 7.5 the priority data are recognized, but the data are

not handled by the framework. The unstructured part of the uninterpreted XML file stores

the data that is not recognized. According to QUEST® Customer Service, the unstructured

part is for QUEST® development use only [57]. A full uninterpreted QUEST® XML file

can be found in Appendix G.

When transferring data from the framework to ProModel® or QUEST®

environments, some data will not transfer properly. A log file will also be created to store

the data transferring history; it is very similar to the one illustrated in Figure 7.2.

156

Figure 7.5 Portion of the Uninterpreted XML File for a QUEST Model

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

Discrete-event simulation plays a growing role in the design, analysis and

management of modern enterprises. However, one of the major barriers to further

application is the lack of interoperability of simulation models. There is a clear need for a

means for better interaction between humans and simulation models, and between models

themselves.

In order to address the simulation model interoperability problem, interactions are

identified, defined, and analyzed along three dimensions: “open” versus “closed”,

“formulation” versus “application”, and the type of interaction relationship. Interaction

relationships between models are defined to be of the following types: one-to-one, many-

to-one, one-to-many, parallel, and replacement integration. In addition to the types of

interactions, this research defines possible interaction approaches that can occur in both

formulation and application stages. The interaction approaches in the application stage

includes: link through individual observation, link through distribution, common

structure/common application, and distributed simulation. It is concluded that common

structure/common application and distributed simulation approaches are able to handle all

types of model interaction relationships. There are three opportunities for interactions

between humans and simulation models: visual means, common model representation,

157

158
and commercial simulation software package. After reviewing the existing graphical

modeling approaches and common model representations, it is concluded that only the

common structure/common application approach is able to facilitate model interactions at

both the formulation and application stages.

One of the main contributions of this research is a means for simulation models to

interact that is based on the common structure/common application approach. The

proposed approach includes a set of theoretical foundational components and components

that enable the approach to be implemented in software. A very basic building block of

the proposed approach is the definition of common simulation elements and their

relationships, this step is done by combining elements from manufacturing and

simulation (i.e., ProModel® and QUEST®). The resulting common simulation elements

lead to a structure that represents the elements and relationships as well as a set of

standard visual objects that facilitate use and understanding among more stakeholders.

The major components of the software implementations are the graphical

modeling tool (GMT) and common user interface (CUI). The GMT facilitates the

development and communication of the conceptual modeling phase. The CUI allows

users to develop and modify simulation models in a simulation package neutral

environment. It also contains controllers for interacting with commercial simulation

software packages that enables the translation between the simulation packages and

common data representations.

The capabilities of the proposed approach were tested on various simulation

models. This not only illustrates the usefulness of the proposed framework and the

159
software implementations, but also identifies their limitations. It is shown that the

proposed framework is compatible with simulation packages (i.e., ProModel® and

QUEST®). The compatibility is illustrated through a series of tables that maps the

capability of the framework to simulation packages and via versa. Also, methods are

developed to capture model information that is not used in the framework.

The proposed approach serves as a bridge between stakeholders with varying

levels of simulation expertise, and thus increases simulation interoperability at both

formulation and application stages. The proposed approach that provides a solid

foundation to simulation model interoperability is a prototype for future research and

development. Improvement in the approach’s capabilities can be made in three areas:

framework, GMT, and CUI.

� The proposed framework can be extended to include:

� more simulation elements, such as: work shifts, dynamic resource

move/travel time, multiple downtimes and repair logic.

� more routing and operation options, such as: join, combine, and send.

� a simple programming language to describe the user-defined logic.

� The GMT can be enhanced by:

� displaying more information in the Visio drawing view or allowing

users to choose the information to be displayed.

� providing a plain text summary of the model in addition to XML files;

Extensible Stylesheet Language (i.e., XSL) can be used to provide the

translation.

160
� integrating the GMT with the CUI and providing more controls and a

more user-friendly interface.

� improving the error proofing in GMT. For example, the GMT should

generate an error message when two linkages have the same start and

end locations.

� improving the transferring capability from XML files to Visio drawings.

The line representing linkages only contains the start and end positions.

As a result, the line representing linkages in the Visio file may change

positions after restoring XML files based on the location of other

objects.

� improving the display of information in Visio file when a simulation

package model is input. When XML files are generated from a

simulation package, the position information is likely not available and

thus cannot be read by the GMT. It is possible to solve this problem by

using relative positions. For example, entities are always placed at the

top left corner of a drawing, even if the position information of entities

is missing in the XML file, the entities can still be placed within a

specific distance from the top left corner.

� The CUI can be improved by:

� integrating CUI with a DSS to facilitate experimental design and

statistical data collection. Performance measurement is a critical part to

simulation.

161
� incorporating a simple standard syntax dictionary or lookup table. For

example, in ProModel® , the uniform distribution function is represented

as U(mean, half range) while in QUEST® , it is represented as U(min,

max) in QUEST® and in Arena® .

� improving error proofing, as in the GMT. For example, the duplicate

names can occur in both the GMT and CUI.

� providing more functionality in the CUI. For example, including a

report generation function that allows tracking of the flow of entities in

a model is useful.

REFERENCES

[1] Integrated Manufacturing Technology (IMTR) Roadmapping Modeling and
Simulation Workshop Group and IMTR Roadmapping Project Team, 1998,
“IMTR Roadmap for Modeling and Simulation,” IMTR Project Office, Oak
Ridge Centers for Manufacturing Technologies, Oak Ridge, TN; in McLean,
Charles, R. “Manufacturing Simulation and Visualization” program status report,
NIST. http://www.mel.nist.gov/proj/msv.htm. (Accessed January 3, 2004)

[2] C. McLean and S. Leong, “The Expanding Role of Simulation in Future
Manufacturing,” Proceedings of the 2001 Winter Simulation Conference, Vol. 7,
2001, pp. 1478-1486.

[3] J.P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R.Sharda, and C.Carlesson,
“Past, Present, and Future of Decision Support Technology,” Decision Support
Systems, Vol. 33, 2002, pp. 111-126.

[4] D.A. Sadowski and M.R. Grabau, “Tips for Successful Practice of Simulation,”
Proceedings of the 1999 Winter Simulation Conference, 1999, pp. 60-66.

[5] R. Blanning, “Model Management Systems: An Overview,” Owen Graduate
School of Management, Vanderbilt University, Working Paper No. 89-23,
November 1989.

[6] J. Banks, J. Carson, B.L. Nelson, and D. Nicol, Discrete-Event System Simulation,
Prentice Hall, 4th Edition, 2004.

[7] A.M. Law, and W.D. Kelton, Simulation Modeling and Analysis, New York,
McGraw-Hill, 2000.

[8] R.E. Shannon, Systems Simulation the Art and Science, New Jersey, Prentice-
Hall, 1975.

[9] C.R. Harrell, B.K. Ghosh, and R.O. Bowden, Simulation Using ProModel,
Boston, McGraw-Hill Company, July 2003.

[10] A. Geoffrion, “An Introduction to Structured Modeling,” Management Science,
Vol. 33, No. 5, May 1987, pp. 547-588.

[11] S. Moorthy, “Integrating The CAD Model with Dynamic Simulation: Simulation
Data Exchange,” Proceeding of the 1999 Winter Simulation Conference, 1999,
pp. 276-280.

162

http://www.mel.nist.gov/proj/msv.htm

163
[12] D. Sly and S. Moorthy, “Simulation Data Exchange (SDX) Implementation and

Use,” Proceedings of the 2001 Winter Simulation Conference, 2001, pp.1473-
1477.

[13] M. Overstreet and R. Nance, “A specification language to assist in analysis of
discrete event simulation models,” Communications of the ACM, 1985, pp.190-
201.

[14] J. Heim, “Integrating Distributed Simulation Objects,” Proceedings of the 1997
Winter Simulation Conference, 1997, pp. 532-538.

[15] C. McLean and F. Riddick, “The IMS Mission Architecture for Distributed
Manufacturing Simulation,” Proceedings of the 2000 Winter Simulation
Conference, 2000, pp. 1539-1548.

[16] J.S. Dahmann, R.M. Fujimoto, and R.M. Weatherly, “The Department of Defense
High Level Architecture,” Proceedings of the 1997 Winter Simulation
Conference, 1997, pp. 142-149.

[17] W.J. Davis and G.L. Moeller, “The High Level Architecture: Is There A Better
Way?” Proceedings of the 1999 Winter Simulation Conference, 1999, pp. 1595-
1601.

[18] R.E. Nance, “The Conical Methodology and the Evolution of Simulation Model
Development,” Annals of Operations Research, Vol. 53, 1994, pp. 1-45.

[19] J. Ma, Q. Tian, and D. Zhou, “An Object-Oriented Approach to Structured
Modeling,” 1998 Information Resources Management Association International
Conference, May 1998, pp. 406-413.

[20] M.L. Lenard, “A Prototype Implementation of a Model Management System for
Discrete-Event Simulation Models,” Proceedings of the 1993 Winter Simulation
Conference, 1993, pp. 560-568.

[21] A. Pritsker, Modeling and Analysis Using Q-Gert Networks, New York, John
Wiley & Sons, Inc., 1977.

[22] A. Pritsker, Introduction to Simulation and SLAM II, New York, John Wiley &
Sons, Inc., 1995.

[23] T.J. Schriber, An Introduction to Simulation Using GPSS/H, New York, John
Wiley & Sons, 1991.

164
[24] L. Schruben, and E. Yucesan, “Complexity of Simulation Models: a Graph

Theoretic Approach,” Proceedings of the 1993 Winter Simulation Conference,
1993, pp. 641-649.

[25] R.C. Crain, “Simulation With GPSS/H,” Proceedings of the 1998 Winter
Simulation Conference, 1998, pp. 235-240.

[26] A.E. Rizzoli, J.R. Davis, and D.J. Abel, “Model and data integration and re-use in
environmental decision support systems,” Decision Support Systems, Vol. 24,
1998, pp. 127-144.

[27] A. Chang, C.W. Holsapple, and A.B. Whinston, “Model management issues and
directions,” Decision Support Systems, Vol. 9, 1993, pp. 19-37.

[28] J.M. Pearson and J.P. Shim, “An empirical investigation into DSS structures and
environments,” Decision Support Systems, Vol. 13, 1995, pp. 141-158.

[29] M.J. Ginzberg and E.A. Stohr, “Decision support systems: issues and
perspectives,” In Ginzberg, M.J., Reitman, W., and Stohr, E.A., eds. Decision
Support Systems, Amsterdam: North-Holland, 1982, pp. 9-31.

[30] M.L. Lenard, “An Object-oriented approach to model management,” Decision
Support Systems, Vol.9, 1993, pp. 67-73.

[31] A.M. Geoffrion, “Structured Modeling: Survey and Future Research Directions,”
http://www.anderson.ucla.edu/faculty/art.geoffrion/home/csts/index.htm, June 1,
1999. (Accessed May 15, 2002)

[32] E.J. Derrick, “Conceptual Frameworks for Discrete Event Simulation Models,”
M.S. Thesis, Dept. of Computer Science, Virginia Tech, Blacksburg, VA, Aug.
1988.

[33] G.K. Yeo, and G. Li, “On Discrete Time Modeling,” IASTED International
Conference on Modeling, Simulation, and Optimization, Gold Coast, Australia,
May 1996.

[34] M.L. Lenard, “Extending the Structured Modeling Framework for Discrete-Event
Simulation,” Proceeding of the 26th Hawaii International Conference on System
Sciences, Vol. 3, Jan. 1992, pp. 494-503.

[35] R.F. Lu, G. Qiao, and C. McLean, “NIST XML Simulation Interface
Specification at Boeing: a Case Study,” Proceedings of the 2003 Winter
Simulation Conference, 2003, pp. 1230-1237.

http://www.anderson.ucla.edu/faculty/art.geoffrion/home/csts/index.htm

165
[36] Y.T. Lee, C. McLean, and G. Shao, “A Neutral Information Model for Simulating

Machine Shop Operations,” Proceedings of the 2003 Winter Simulation
Conference, 2003, pp. 1296-1304.

[37] C. McLean, A. Jones, T. Lee, and F. Riddick, “An Architecture for a Generic
Data-Driven Machine Shop Simulator,” Proceedings of the 2002 Winter
Simulation Conference, 2002, pp. 1108-1116.

[38] McLean, C., Lee, T., Shao, G., Riddick, F., and Leong, S., “Shop data model and
interface specification,” Draft, Manufacturing Systems Integration Division,
Manufacturing Engineering Laboratory, National Institute of Standards and
Technology, Revision Feb. 24, 2003, from Simulation Standards Consortium
Kickoff Meeting.

[39] G. Qiao and F. Riddick, “Modeling Information for Manufactureing-Oriented
Supply-Chain Simulations,” Proceedings of the 2004 Winter Simulation
Conference, 2004, pp. 1184-1188.

[40] P.P. Chen, “The Entity-Relationship Model: Toward a Unified View of Data,”
ACM Trans. on Database Systems, Vol. 1, No. 1, March 1976, pp. 1-36.

[41] D.R. Dolk, “Data as Models: An Approach to Implementing Model
Management,” Decision Support Systems, Vol. 2, 1986, pp. 73-80.

[42] O.B. Kwon and S.J. Park, “RMT, A modeling support system for model reuse,”
Decision Support Systems, Vol. 16, 1996, pp. 131-153.

[43] D.P. Bischak and S.D. Roberts, “Object-Oriented Simulation,” Proceedings of the
1991 Winter Simulation Conference, 1993, pp. 194-203.

[44] B.P. Zeigler, “Hierarchical, Modular Discrete-Event Modeling in an Object-
Oriented Environment,” Simulation, Vol. 50, pp. 219-230.

[45] W.A. Muhanna., “An object-oriented framework for model management and DSS
development,” Decision Support Systems, Vol. 9, 1993, pp. 217-229.

[46] A.M. Law, “Simulation of Manufacturing Systems,” Proceedings of the 1999
Winter Simulation Conference, 1999, pp. 56-59.

[47] A. Bartolotta, C. McLean, and Y.T. Lee, “Production Systems Engineering:
Requirements Analysis for Discrete-Event Simulation,” NISTIR 6154, National
Institute of Standards and Technology, Gaithersburg, MD, 1998.

166
[48] R.N. Price, and C.R. Harrell, “Simulation Modeling and Optimization Using

ProModel,” Proceedings of the 1999 Winter Simulation Conference, 1999, pp.
208-214.

[49] M.R. Barnes, “An Introduction to QUEST,” Proceedings of the 1997 Winter
Simulation Conference, 1997, pp.619-623.

[50] DELMIA Corporation, QUEST User Manual, 2002.

[51] H. Kim, “An XML-based modeling language for the open interchange of decision
models,” Decision Support Systems, Vol. 31, No. 4, October 2001, pp. 429-441.

[52] L. Quin, “Extensible Markup Language (XML),” http://www.w3.org/XML, 2003
(Accessed July 19, 2005) .

[53] PROMODEL Corporation, ProModel ActiveX User Guide, 2003.

[54] DELMIA Corporation, QUEST Batch Control Language Reference, 2002.

[55] DELMIA Corporation, QUEST Simulation Control Language Reference Manual,
2002.

[56] D. Kelton, R. Sadowski, and D. Sadowski, Simulation with Arena, Boston,
McGraw-Hill, 2003.

 [57] Personal email, September 12, 2005, from DELMIA Customer Service
Department.

http://www.w3.org/XML

APPENDIX A

STRUCTURAL MODELING SCHEMA

167

168
&GeneralInfo

GeneralInfo /pe/
ModelName (GeneralInfo) /a/ : text
TimeUnit (GeneralInfo) /a/ : text
DistanceUnit (GeneralInfo) /a/ : text
Date (GeneralInfo) /a/ : text
Builder (GeneralInfo) /a/ : text
Note (GeneralInfo) /a/ : text

&Entity
Entityh /pe/
Name (Entityh) /a/ : text
Speed (Entityh) /a/ : real+
Attributea (Entityh) /ce/

ID (Attributea) /a/ : text
Type (Attributea) /a/ : text
Note (Attributea) /a/ : text

Note (Entityh) /a/ : text

&Static_Resource
Static_Resourcei /pe/
Name (Static_Resourcei) /a/ : text
Type (Static_Resourcei) /a/ : text
Capacity (Static_Resourcei) /a/ : I+
Units (Static_Resourcei) /a/ : I+
DownTime (Static_Resourcei) /ce/

TBF (DownTime, Static_Resourcei) /a/ : text
Repair (Static_Resourcei) /ce/

TTR (Repair, Static_Resourcei /a/ : text
RepairResource (Repair, Static_Resourcei) /a/ : text

SequenceRule (Static_Resourcei) /ce/
SeqRule (SequenceRule, Static_Resourcei) /a/ : text
AeqAttribute (SequenceRule, Static_Resourcei) /a/ : text

Attributea (Static_Resourcei) /ce/
ID (Attributea) /a/ : text
Type (Attributea) /a/ : text
Note (Attributea) /a/ : text

&Dynamic_Resource
Dynamic_Resourcej /pe/
Name (Dynamic_Resourcej) /a/: text
Units (Dynamic_Resourcej)/a/ : I+
DownTime (Dynamic_Resourcej) /ce/

TBF (DownTime, Dynamic_Resourcej) /a/ : text
Repair (Dynamic_Resourcej) /ce/

TTR (Repair, Dynamic_Resourcej) /a/ : text
RepairResource (Repair, Dynamic_Resourcej) /a/ : text

Notes (Dynamic_Resourcej) /a/ : text

&Operation
Operationk (Static_Resourcei, Entityh) /ce/
OpLocation (Operationk) /a/ : text
InEntity (Operationk) /a/ : text
Processp (Operationk) /ce/

Duration (Processp) /a/ : text
DynamicResource (Processp) /a/ : text
UserLogic (Processp) /a/ : text

OutEntity (Operationk) /a/ : text
Note (Operationk) /a/ : text

&Linkage
Linkagel (Static_Resourcei, Static_Resourcei) /ce/
LID (Linkagel) /a/ : text
BeginLoc (Linkagel) /a/ : text
EndLoc (Linkagel) /a/ : text
Distance (Linkagel) /a/ : text

169
Note (Linkagel) /a/ : text

&Routing
Routingr (Entityh, Linkagel) /ce/
RID (Routingr) /a/ : text
Linkn (Linkagel) /ce/

LID (Linkn) /a/ : text
Duration (Linkn) /a/ : text
DynamicResource (Linkn) : text
UserLogic (Linkn) : text

RouteEntity (Routingr) /a/ : text
Ruleu (Routingr) /ce/

RoutingRule (Ruleu) /a/ : text
Rlinkd (Ruleu) /ce/

LID (RLinkd) /a/ : text
Percentage (RLinkd) /a/ : text

QtyEach (Routingr) /a/ : text
Note (Routingr) /a/ : text

&Arrival
Arrivala (Entityh, Static_Resourcei) /ce/
ArvEntity (Arrivala) /a/ : text
ArvLocation (Arrivala) /a/ : text
QtyEach (Arrivala) /a/ : text
Frequency (Arrivala) /a/ : text
UserLogic (Arrivala) /a/ : text
FirstTime (Arrivala) /a/ : text
Occurrence (Arrivala) /a/ : text
Note (Arrivala) /a/ : text

APPENDIX B

XML DTD

170

171
<!DOCTYPE Model [

<!-- **** Model Definition **** -->
<!ELEMENT Model (GeneralInfo, Entity*,Static_Resource*, Dynamic_Resource, Operation*,

Linkage*, Route*, Arrival*)>
<!ELEMENT GeneralInfo (ModelName?, TimeUnit?, DistanceUnit?, Date?, Builder?, Note?)>
<!ELEMENT ModelName (#PCDATA)>
<!ELEMENT TimeUnit (#PCDATA)>
<!ELEMENT DistanceUnit (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Builder (#PCDATA)>

<!-- **** General Definition **** -->
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Units (#PCDATA)>
<!ELEMENT DownTime (TBF)>
<!ELEMENT TBF(#PCDATE)>
<!ELEMENT Repair (TTR, RepairResource?)>
<!ELEMENT TTR(#PCDATA)>
<!ELEMENT RepairResource(#PCDATA)>
<!ELEMENT Icon (IconType, XPosition?, YPosition?, Width, Height)>
<!ELEMENT IconType (#PCDATA)>
<!ELEMENT XPosition (#PCDATA)>
<!ELEMENT YPosition (#PCDATA)>
<!ELEMENT Width (#PCDATA)>
<!ELEMENT Height (#PCDATA)>
<!ELEMENT Stats (#PCDATA)>
<!ELEMENT Note (#PCDATA)>
<!ELEMENT Attribute (ID, Type, Note?)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Speed (#PCDATA)>
<!ELEMENT QtyEach (#PCDATA)>
<!ELEMENT Duration(#PCDATA)>
<!ELEMENT DynamicResource(#PCDATA)>
<!ELEMENT UserLogic(#PCDATA)>
<!ELEMENT QtyEach (#PCDATA)>

<!-- **** Static_Resource Definition **** -->
<!ELEMENT Static_Resource (Name, Type, Capacity, Units, Icon?, DownTime?, Repair?,

SequenceRule?, Attribute*, Note?)>
<!ELEMENT Capacity (#PCDATA)>
<!ELEMENT SequenceRule (SeqRule, SeqAttribute?)>
<!ELEMENT SeqRule(#PCDATA)>
<!ELEMENT SeqAttribute(#PCDATA)>

<!-- **** Entity Definition **** -->
<!ELEMENT Entity (Name, Speed?, Icon?, Attribute*, Note?)>
<!ELEMENT Speed(#PCDATA)>

<!-- **** Dynamic_Resource Definition **** -->
<!ELEMENT Dynamic_Resource (Name, Units, DownTime?, Repair?, Icon?, Note?)>

<!-- **** Operation definition **** -->
<!ELEMENT Operation (OID, OpLocation, InEntity, Process+, OutEntity, Note?)>
<!ELEMENT OID(#PCDATA)>
<!ELEMENT OpLocation (#PCDATA)>
<!ELEMENT InEntity (#PCDATA)>
<!ELEMENT Process (Duration, DynamicResource, UserLogic)>
<!ELEMENT OutEntity (#PCDATA)>

<!-- **** Linkage definition **** -->
<!ELEMENT Linkage (LID, BeginLoc, EndLoc, Distance?, Note?)>
<!ELEMENT LID (#PCDATA)>
<!ELEMENT BeginLoc (#PCDATA)>
<!ELEMENT EndLoc (#PCDATA)>

172
<!ELEMENT Distance (#PCDATA)>

<!-- **** Routing definition **** -->
<!ELEMENT Routing (RID, Linkage+, RouteEntity, Rule, Icon, QtyEach, Note?)>
<!ELEMENT RID (#PCDATA)>
<!ELEMENT Linkage (LID, Duration, DynamicResource, UserLogic)>
<!ELEMENT RouteEntity (#PCDATA)>
<!ELEMENT Rule (RoutingRule, Linkage*)>
<!ELEMENT RoutingRule (#PCDATA)>
<!ELEMENT Linkage (LID, Percentage)>
<!ELEMENT Percentage (#PCDATA)>

<!-- **** Arrival Definition **** -->
<!ELEMENT Arrival (AID, ArvEntity, ArvLocation, QtyEach, Frequency, UserLogic?,

FirstTime?, Occurence?, Note?)>
<!ELEMENT AID (#PCDATA)>
<!ELEMENT ArvEntity (#PCDATA)>
<!ELEMENT ArvLocation (#PCDATA)>
<!ELEMENT Frequency (#PCDATA)>
<!ELEMENT FirstTime (#PCDATA)>
<!ELEMENT Occurence (#PCDATA)>

]>

APPENDIX C

A SAMPLE XML FILE

173

174
- <Model>

- <GeneralInfo>

<ModelName>Exercise 5.4</ModelName>

<TimeUnit> hour</TimeUnit>

<DistanceUnit> Feet</DistanceUnit>

<Date>8/15/2005</Date>

<Builder>By Tai-Chi Wu</Builder>

<Note />

</GeneralInfo>

- <Entity>

<Name>Part1</Name>

<Speed />

<Note />

- <Icon>

<IconType>Entity</IconType>

<XPosition>1.2500 in.</XPosition>

<YPosition>6.6250 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Entity>

- <Entity>

<Name>Part2</Name>

<Speed />

<Note />

- <Icon>

<IconType>Entity</IconType>

<XPosition>2.7500 in.</XPosition>

<YPosition>6.6250 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Entity>

- <Static_Resource>

<Name>Part1_Buff</Name>

<Type>Buff</Type>

<Capacity>inf</Capacity>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

- <Repair>

<MTTR />

<RepairResource />

</Repair>

- <SequenceRule>

<SeqRule>FIFO</SeqRule>

<SeqAttribute />

</SequenceRule>

<Note />

- <Icon>

<IconType>Static_Resource</IconType>

<XPosition>2.5000 in.</XPosition>

<YPosition>4.8750 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Static_Resource>

175
- <Static_Resource>

<Name>Part2_Buff</Name>

<Type>Buff</Type>

<Capacity>inf</Capacity>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

- <Repair>

<MTTR />

<RepairResource />

</Repair>

- <SequenceRule>

<SeqRule>FIFO</SeqRule>

<SeqAttribute />

</SequenceRule>

<Note />

- <Icon>

<IconType>Static_Resource</IconType>

<XPosition>2.5000 in.</XPosition>

<YPosition>3.6250 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Static_Resource>

- <Static_Resource>

<Name>Process1</Name>

<Type>ProcessingUnit</Type>

<Capacity>1</Capacity>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

- <Repair>

<MTTR />

<RepairResource />

</Repair>

- <SequenceRule>

<SeqRule>FIFO</SeqRule>

<SeqAttribute />

</SequenceRule>

<Note />

- <Icon>

<IconType>Static_Resource</IconType>

<XPosition>4.5000 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Static_Resource>

- <Static_Resource>

<Name>Process2_Buff</Name>

<Type>Buff</Type>

<Capacity>inf</Capacity>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

176
- <Repair>

<MTTR />

<RepairResource />

</Repair>

- <SequenceRule>

<SeqRule>FIFO</SeqRule>

<SeqAttribute />

</SequenceRule>

<Note />

- <Icon>

<IconType>Static_Resource</IconType>

<XPosition>6.2500 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Static_Resource>

- <Static_Resource>

<Name>Process2</Name>

<Type>ProcessingUnit</Type>

<Capacity>1</Capacity>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

- <Repair>

<MTTR />

<RepairResource />

</Repair>

- <SequenceRule>

<SeqRule>FIFO</SeqRule>

<SeqAttribute />

</SequenceRule>

<Note />

- <Icon>

<IconType>Static_Resource</IconType>

<XPosition>7.7500 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Static_Resource>

- <Linkage>

<LID>Link1</LID>

<BeginLoc>Part1_Buff</BeginLoc>

<EndLoc>Process1</EndLoc>

<Distance />

<Note />

- <Icon>

<IconType>Linkage</IconType>

<XPosition>3.5000 in.</XPosition>

<YPosition>4.5625 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>-0.6250 in.</Height>

<BeginX>3.0000 in.</BeginX>

<BeginY>4.8750 in.</BeginY>

<EndX>4.0000 in.</EndX>

<EndY>4.2500 in.</EndY>

177
</Icon>

</Linkage>

- <Linkage>

<LID>Link2</LID>

<BeginLoc>Part2_Buff</BeginLoc>

<EndLoc>Process1</EndLoc>

<Distance />

<Note />

- <Icon>

<IconType>Linkage</IconType>

<XPosition>3.5000 in.</XPosition>

<YPosition>3.9375 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.6250 in.</Height>

<BeginX>3.0000 in.</BeginX>

<BeginY>3.6250 in.</BeginY>

<EndX>4.0000 in.</EndX>

<EndY>4.2500 in.</EndY>

</Icon>

</Linkage>

- <Linkage>

<LID>Link3</LID>

<BeginLoc>Process1</BeginLoc>

<EndLoc>Process2_Buff</EndLoc>

<Distance />

<Note />

- <Icon>

<IconType>Linkage</IconType>

<XPosition>5.3750 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>0.7500 in.</Width>

<Height>0.2500 in.</Height>

<BeginX>5.0000 in.</BeginX>

<BeginY>4.2500 in.</BeginY>

<EndX>5.7500 in.</EndX>

<EndY>4.2500 in.</EndY>

</Icon>

</Linkage>

- <Linkage>

<LID>Link4</LID>

<BeginLoc>Process2_Buff</BeginLoc>

<EndLoc>Process2</EndLoc>

<Distance />

<Note />

- <Icon>

<IconType>Linkage</IconType>

<XPosition>7.0000 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>0.5000 in.</Width>

<Height>0.2500 in.</Height>

<BeginX>6.7500 in.</BeginX>

<BeginY>4.2500 in.</BeginY>

<EndX>7.2500 in.</EndX>

<EndY>4.2500 in.</EndY>

</Icon>

</Linkage>

- <Linkage>

<LID>Link5</LID>

178
<BeginLoc>Process2</BeginLoc>

<EndLoc>Exit</EndLoc>

<Distance />

<Note />

- <Icon>

<IconType>Linkage</IconType>

<XPosition>8.7500 in.</XPosition>

<YPosition>4.2500 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.2500 in.</Height>

<BeginX>8.2500 in.</BeginX>

<BeginY>4.2500 in.</BeginY>

<EndX>9.2500 in.</EndX>

<EndY>4.2500 in.</EndY>

</Icon>

</Linkage>

- <Arrival>

<AID>Part1 : Part1_Buff</AID>

<ArvEntity>Part1</ArvEntity>

<ArvLocation>Part1_Buff</ArvLocation>

<QtyEach>1</QtyEach>

<Frequency>lognormal(11.5,2.0)</Frequency>

<FirstTime />

<Occurence>inf</Occurence>

- <Icon>

<IconType>Arrival</IconType>

<XPosition>1.2708 in.</XPosition>

<YPosition>4.8906 in.</YPosition>

<Width>0.9583 in.</Width>

<Height>0.7188 in.</Height>

</Icon>

<UserLogic />

</Arrival>

- <Arrival>

<AID>Part2 : Part2_Buff</AID>

<ArvEntity>Part2</ArvEntity>

<ArvLocation>Part2_Buff</ArvLocation>

<QtyEach>1</QtyEach>

<Frequency>exp(15)</Frequency>

<FirstTime />

<Occurence>inf</Occurence>

- <Icon>

<IconType>Arrival</IconType>

<XPosition>1.2708 in.</XPosition>

<YPosition>3.6406 in.</YPosition>

<Width>0.9583 in.</Width>

<Height>0.7188 in.</Height>

</Icon>

<UserLogic />

</Arrival>

- <Routing>

- <Linkage>

<LID>Link1</LID>

<Duration />

<DynamicResource />

<UserLogic />

</Linkage>

<RID>R1</RID>

179
<RouteEntity>Part1</RouteEntity>

- <Rule>

<RoutingRule>Next Free</RoutingRule>

</Rule>

<QtyEach>1</QtyEach>

<Note />

- <Icon>

<IconType>Routing</IconType>

<XPosition>3.1875 in.</XPosition>

<YPosition>5.1875 in.</YPosition>

<Width>0.3750 in.</Width>

<Height>0.3750 in.</Height>

</Icon>

</Routing>

- <Routing>

- <Linkage>

<LID>Link2</LID>

<Duration />

<DynamicResource />

<UserLogic />

</Linkage>

<RID>R2</RID>

<RouteEntity>Part2</RouteEntity>

- <Rule>

<RoutingRule>Next Free</RoutingRule>

</Rule>

<QtyEach>1</QtyEach>

<Note />

- <Icon>

<IconType>Routing</IconType>

<XPosition>3.1875 in.</XPosition>

<YPosition>4.0000 in.</YPosition>

<Width>0.3750 in.</Width>

<Height>0.3750 in.</Height>

</Icon>

</Routing>

- <Routing>

- <Linkage>

<LID>Link3</LID>

<Duration />

<DynamicResource />

<UserLogic />

</Linkage>

<RID>R3</RID>

<RouteEntity>All</RouteEntity>

- <Rule>

<RoutingRule>Next Free</RoutingRule>

</Rule>

<QtyEach>1</QtyEach>

<Note />

- <Icon>

<IconType>Routing</IconType>

<XPosition>5.1875 in.</XPosition>

<YPosition>4.5625 in.</YPosition>

<Width>0.3750 in.</Width>

<Height>0.3750 in.</Height>

</Icon>

</Routing>

180
- <Routing>

- <Linkage>

<LID>Link5</LID>

<Duration />

<DynamicResource />

<UserLogic />

</Linkage>

<RID>R5</RID>

<RouteEntity>All</RouteEntity>

- <Rule>

<RoutingRule>Next Free</RoutingRule>

</Rule>

<QtyEach>1</QtyEach>

<Note />

- <Icon>

<IconType>Routing</IconType>

<XPosition>8.4375 in.</XPosition>

<YPosition>4.5625 in.</YPosition>

<Width>0.3750 in.</Width>

<Height>0.3750 in.</Height>

</Icon>

</Routing>

- <Dynamic_Resource>

<Name>Operator</Name>

<Units>1</Units>

- <DownTime>

<MTBF />

</DownTime>

- <Repair>

<MTTR />

<RepairResource />

</Repair>

<Logic />

<Note />

- <Icon>

<IconType>Dynamic_Resource</IconType>

<XPosition>5.5000 in.</XPosition>

<YPosition>6.6250 in.</YPosition>

<Width>1.0000 in.</Width>

<Height>0.7500 in.</Height>

</Icon>

</Dynamic_Resource>

- <Operation>

- <Process>

<Duration>T(5,6,8)</Duration>

<DynamicResource>Operator</DynamicResource>

<UserLogic />

</Process>

<OID>Process1 : Part1</OID>

<OpLocation>Process1</OpLocation>

<InEntity>Part1</InEntity>

<OutEntity>Part1</OutEntity>

<Note />

- <Icon>

<IconType>Operation</IconType>

<XPosition>4.4688 in.</XPosition>

<YPosition>5.2500 in.</YPosition>

<Width>0.9375 in.</Width>

181
<Height>0.6250 in.</Height>

</Icon>

</Operation>

- <Operation>

- <Process>

<Duration>T(3,7,8)</Duration>

<DynamicResource>Operator</DynamicResource>

<UserLogic />

</Process>

<OID>Process1 : Part2</OID>

<OpLocation>Process1</OpLocation>

<InEntity>Part2</InEntity>

<OutEntity>Part2</OutEntity>

<Note />

- <Icon>

<IconType>Operation</IconType>

<XPosition>4.4688 in.</XPosition>

<YPosition>3.3125 in.</YPosition>

<Width>0.9375 in.</Width>

<Height>0.6250 in.</Height>

</Icon>

</Operation>

- <Operation>

- <Process>

<Duration>T(4,6,8)</Duration>

<DynamicResource />

<UserLogic />

</Process>

<OID>Process2 : All</OID>

<OpLocation>Process2</OpLocation>

<InEntity>All</InEntity>

<OutEntity>All</OutEntity>

<Note />

- <Icon>

<IconType>Operation</IconType>

<XPosition>7.7188 in.</XPosition>

<YPosition>5.2500 in.</YPosition>

<Width>0.9375 in.</Width>

<Height>0.6250 in.</Height>

</Icon>

</Operation>

</Model>

APPENDIX D

ProModel® LISTING

182

----------------------- -------- ----- ----------- ---------- ------------

----------------- ------------ ----------- ------------

-------- ----------- ---------------- -------- -------- ---- ---------- ------------

183
**
* *
* Formatted Listing of Model: *
* C:\Program Files\ProModel\Models\Demos\Distribu.mod *
* *
**

Time Units: Minutes
Distance Units: Feet
Initialization Logic: ACTIVATE daily_ordering ()

ANIMATE 100
VIEW "Full"

**
* Locations *
**

Name Cap Units Stats Rules Cost

oklahomacity_production 500 1 Time Series Oldest, ,
seattle_production 500 1 Time Series Oldest, ,
sanfrancisco_customer INF 1 Time Series Oldest, ,
boston_customer INF 1 Time Series Oldest, ,
tampa_customer INF 1 Time Series Oldest, ,
minneapolis_customer INF 1 Time Series Oldest, ,
phoenix_customer INF 1 Time Series Oldest, ,
raleigh_warehouse 200 1 Time Series Oldest, ,
stlouis_warehouse 200 1 Time Series Oldest, ,
detroit_warehouse 200 1 Time Series Oldest, ,
slc_warehouse 200 1 Time Series Oldest, ,
dallas_warehouse 200 1 Time Series Oldest, ,
neworleans_warehouse 200 1 Time Series Oldest, ,
chicago_warehouse 200 1 Time Series Oldest, ,
boise_warehouse 200 1 Time Series Oldest, ,
albuquerque_warehouse 200 1 Time Series Oldest, ,
order_E2 INFINITE 1 Time Series Oldest, ,
order_E8 INFINITE 1 Time Series Oldest, ,
order_E7 INFINITE 1 Time Series Oldest, ,
order_E3 INFINITE 1 Time Series Oldest, ,
order_E6 INFINITE 1 Time Series Oldest, ,

**
* Entities *
**

Name Speed (fpm) Stats Cost

product_1 2500 Time Series
consumption_order 150 Time Series

**
* Path Networks *
**

Name Type T/S From To BI Dist/Time Speed Factor

Net1 Passing Speed & Distance N1 N2 Bi 843317.06 1
N2 N3 Bi 1611816.97 1
N3 N4 Bi 2072924.43 1
N4 N5 Bi 2453348.13 1
N5 N1 Bi 4383024.73 1
N4 N6 Bi 2827068.80 1
N5 N6 Bi 4622741.79 1

https://4622741.79
https://2827068.80
https://4383024.73
https://2453348.13
https://2072924.43
https://1611816.97
https://843317.06

---------- ---------- -----------------------

-------- ----- -------- ------- ------ ---------- ----------------------- ------------

----------------- ----------------------- ------------------ ---- ----------------- --------------------- ------- ------------

184
N6 N7 Bi 2058540.23 1
N7 N8 Bi 2734545.80 1
N8 N9 Bi 894472.82 1
N8 N10 Bi 2745685.46 1
N10 N11 Bi 1623467.49 1
N11 N12 Bi 1290302.66 1
N11 N13 Bi 2235946.07 1
N13 N14 Bi 3909327.87 1
N14 N15 Bi 3486195.55 1
N15 N16 Bi 4055509.58 1
N16 N17 Bi 3150838.72 1
N17 N10 Bi 3655533.90 1
N9 N17 Bi 3512620.76 1
N4 N12 Bi 7594014.10 1

**
* Interfaces *
**

Net Node Location

Net1 N1 seattle_production
N5 sanfrancisco_customer
N3 boise_warehouse
N4 slc_warehouse
N6 phoenix_customer
N7 albuquerque_warehouse
N8 oklahomacity_production
N9 dallas_warehouse
N17 neworleans_warehouse
N10 stlouis_warehouse
N11 chicago_warehouse
N12 minneapolis_customer
N13 detroit_warehouse
N14 boston_customer
N15 raleigh_warehouse
N16 tampa_customer

**
* Resources *
**

Res Ent
Name Units Stats Search Search Path Motion Cost

Truck 50 By Unit Closest Oldest Net1 Empty: U(3260,1200) fpm
Home: N1 Full: U(2640,800) fpm

**
* Processing *
**

Process Routing

Entity Location Operation Blk Output Destination Rule Move Logic

ALL seattle_production WAIT 24*3 hr 1 ALL boise_warehouse SEND 1 MOVE WITH Truck
THEN FREE

ALL slc_warehouse SEND MOVE WITH Truck THEN FREE
ALL albuquerque_warehouse SEND MOVE WITH Truck THEN FREE
ALL chicago_warehouse SEND MOVE WITH Truck THEN FREE
ALL stlouis_warehouse SEND MOVE WITH Truck THEN FREE
ALL dallas_warehouse SEND MOVE WITH Truck THEN FREE

https://7594014.10
https://3512620.76
https://3655533.90
https://3150838.72
https://4055509.58
https://3486195.55
https://3909327.87
https://2235946.07
https://1290302.66
https://1623467.49
https://2745685.46
https://894472.82
https://2734545.80
https://2058540.23

185
ALL detroit_warehouse SEND MOVE WITH Truck THEN FREE
ALL raleigh_warehouse SEND MOVE WITH Truck THEN FREE
ALL neworleans_warehouse SEND MOVE WITH Truck THEN FREE

ALL oklahomacity_production WAIT 24*3 hr 1 ALL dallas_warehouse SEND 1 MOVE WITH Truck
THEN FREE

ALL albuquerque_warehouse SEND MOVE WITH Truck THEN FREE
ALL slc_warehouse SEND MOVE WITH Truck THEN FREE
ALL boise_warehouse SEND MOVE WITH Truck THEN FREE
ALL stlouis_warehouse SEND MOVE WITH Truck THEN FREE
ALL chicago_warehouse SEND MOVE WITH Truck THEN FREE
ALL detroit_warehouse SEND MOVE WITH Truck THEN FREE
ALL raleigh_warehouse SEND MOVE WITH Truck THEN FREE
ALL neworleans_warehouse SEND MOVE WITH Truck THEN FREE

ALL raleigh_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL stlouis_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL detroit_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL slc_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL boise_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

--------- --------------------- ---------- ---------- ----------- ---------- ------------

186
ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL albuquerque_warehouse GRAPHIC 2 1 ALL sanfrancisco_customer SEND 1 MOVE WITH Truck
THEN FREE

ALL phoenix_customer SEND MOVE WITH Truck THEN FREE

ALL minneapolis_customer SEND MOVE WITH Truck THEN FREE

ALL tampa_customer SEND MOVE WITH Truck THEN FREE

ALL boston_customer SEND MOVE WITH Truck THEN FREE

ALL sanfrancisco_customer GRAPHIC 3
JOIN 1 consumption_order
WAIT U(1,.5)*24 hr

1 ALL EXIT FIRST 1 INC done_at_E2

ALL

ALL

phoenix_customer GRAPHIC 3
JOIN 1 consumption_order
WAIT U(1,.5)*24 hr

1 ALL
tampa_customer GRAPHIC 3

JOIN 1 consumption_order
WAIT U(1,.5)*24 hr

1 ALL

EXIT

EXIT

FIRST 1 INC done_at_E8

FIRST 1 INC done_at_E6

ALL minneapolis_customer GRAPHIC 3
JOIN 1 consumption_order
WAIT U(1,.5)*24 hr

1 ALL EXIT FIRST 1 INC done_at_E7

ALL boston_customer GRAPHIC 3
JOIN 1 consumption_order
WAIT U(1,.5)*24 hr

1 ALL EXIT FIRST 1 INC done_at_E3

consumption_order order_E2 1 consumption_order sanfrancisco_customer JOIN 1
consumption_order order_E8 1 consumption_order phoenix_customer JOIN 1
consumption_order order_E6 1 consumption_order tampa_customer JOIN 1
consumption_order order_E3 1 consumption_order boston_customer JOIN 1
consumption_order order_E7 1 consumption_order minneapolis_customer JOIN 1

**
* Arrivals *
**

Entity Location Qty Each First Time Occurrences Frequency Logic

product_1 boise_warehouse 40 0 1 1
product_1 slc_warehouse 40 0 1 1
product_1 albuquerque_warehouse 40 0 1 1
product_1 dallas_warehouse 40 0 1 1
product_1 stlouis_warehouse 40 0 1 1
product_1 chicago_warehouse 40 0 1 1
product_1 detroit_warehouse 40 0 1 1
product_1 raleigh_warehouse 40 0 1 1
product_1 neworleans_warehouse 40 0 1 1

**
* Variables (global) *
**

ID Type Initial value Stats

---------- ------------ ------------- -----------

---------------------------------- ------------

-------------- ------------ ---------- ------------ ------------------

187

done_at_E2 Integer 20 Time Series
done_at_E3 Integer 20 Time Series
done_at_E6 Integer 20 Time Series
done_at_E7 Integer 20 Time Series
done_at_E8 Integer 20 Time Series

**
* Macros *
**

ID Text

raleigh_warehouse_level 28
stlouis_warehouse_level 198
detroit_warehouse_level 161
slc_warehouse_level 57
dallas_warehouse_level 47
neworleans_warehouse_level 115
chicago_warehouse_level 105
boise_warehouse_level 42
albuquerque_warehouse_level 154
oklahomacity_production_level 334
seattle_production_level 58

**
* Subroutines *
**

ID Type Parameter Type Logic

daily_ordering None top:
WAIT 24 hr

ORDER N(8, 1) consumption_order TO order_E2
ORDER N(8, 1) consumption_order TO order_E3
ORDER N(8, 1) consumption_order TO order_E6
ORDER N(8, 1) consumption_order TO order_E7
ORDER N(8, 1) consumption_order TO order_E8

SEND done_at_E2 product_1 TO minneapolis_customer
SEND done_at_E3 product_1 TO boston_customer
SEND done_at_E6 product_1 TO phoenix_customer
SEND done_at_E7 product_1 TO sanfrancisco_customer
SEND done_at_E8 product_1 TO tampa_customer

IF raleigh_warehouse_level-CONTENTS(raleigh_warehouse)>0 THEN SEND
raleigh_warehouse_level-CONTENTS(raleigh_warehouse) product_1 TO raleigh_warehouse

IF stlouis_warehouse_level-CONTENTS(stlouis_warehouse)>0 THEN SEND
stlouis_warehouse_level-CONTENTS(stlouis_warehouse) product_1 TO stlouis_warehouse

IF detroit_warehouse_level-CONTENTS(detroit_warehouse)>0 THEN SEND
detroit_warehouse_level-CONTENTS(detroit_warehouse) product_1 TO detroit_warehouse

IF slc_warehouse_level-CONTENTS(slc_warehouse)>0 THEN SEND slc_warehouse_level-
CONTENTS(slc_warehouse) product_1 TO slc_warehouse

IF dallas_warehouse_level-CONTENTS(dallas_warehouse)>0 THEN SEND
dallas_warehouse_level-CONTENTS(dallas_warehouse) product_1 TO dallas_warehouse

IF neworleans_warehouse_level-CONTENTS(neworleans_warehouse)>0 THEN SEND
neworleans_warehouse_level-CONTENTS(neworleans_warehouse) product_1 TO neworleans_warehouse

IF chicago_warehouse_level-CONTENTS(chicago_warehouse)>0 THEN SEND
chicago_warehouse_level-CONTENTS(chicago_warehouse) product_1 TO chicago_warehouse

IF boise_warehouse_level-CONTENTS(boise_warehouse)>0 THEN SEND boise_warehouse_level-
CONTENTS(boise_warehouse) product_1 TO boise_warehouse

188
IF albuquerque_warehouse_level-CONTENTS(albuquerque_warehouse)>0 THEN SEND

albuquerque_warehouse_level-CONTENTS(albuquerque_warehouse) product_1 TO albuquerque_warehouse

ORDER oklahomacity_production_level product_1 TO oklahomacity_production
ORDER seattle_production_level product_1 TO seattle_production

done_at_E2 = 0
done_at_E3 = 0
done_at_E6 = 0
done_at_E7 = 0
done_at_E8 = 0

GOTO top

APPENDIX E

SAMPLE LOG FILE

189

190
Extracting GeneralInfo.

dumping GenInfoGLibFile...

dumping GenInfoInitLogic...

End extracting general information.

Extracting location :oklahomacity_production

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

dumping downtime data...

processing repair logic, manually translation may be needed...

End extracting location.

Extracting location :seattle_production

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :sanfrancisco_customer

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :phoenix_customer

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :raleigh_warehouse

dumping LocStats...

191
dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :dallas_warehouse

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :albuquerque_warehouse

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :order_E2

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting location :order_E8

dumping LocStats...

dumping LocIncoming...

dumping LocSelectUnit...

End extracting location.

Extracting entity : product_1

dumping EntStats...

End extracting entity.

Extracting entity : consumption_order

192
dumping EntStats...

End extracting entity.

Dumping pathnetwork : Net1

End extracting pathnetwork.

Extracting arrival for entity: product_1 at boise_warehouse

dumping ArrivalCycle...

dumping ArrivalDisable...

End extracting arrival.

Extracting arrival for entity: product_1 at slc_warehouse

dumping ArrivalCycle...

dumping ArrivalDisable...

End extracting arrival.

Extracting arrival for entity: product_1 at albuquerque_warehouse

dumping ArrivalCycle...

dumping ArrivalDisable...

End extracting arrival.

Extracting arrival for entity: product_1 at dallas_warehouse

dumping ArrivalCycle...

dumping ArrivalDisable...

End extracting arrival.

Extracting arrival for entity: product_1 at raleigh_warehouse

dumping ArrivalCycle...

dumping ArrivalDisable...

End extracting arrival.

Extracting arrival for entity: product_1 at neworleans_warehouse

dumping ArrivalCycle...

193
dumping ArrivalDisable...

End extracting arrival.

Dumping variable : done_at_E2

Extracting operation at stlouis_warehouse for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at detroit_warehouse for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at slc_warehouse for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at dallas_warehouse for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at sanfrancisco_customer for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at phoenix_customer for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at tampa_customer for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

194
Extracting operation at minneapolis_customer for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at boston_customer for entity ALL

Processing user-defined logics. Manually translation may be required.

End extracting operation.

Extracting operation at order_E2 for entity consumption_order

End extracting operation.

Extracting operation at order_E7 for entity consumption_order

End extracting operation.

Extracting routing for entity: ALL at seattle_production

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: ALL at oklahomacity_production

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

195
Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: ALL at raleigh_warehouse

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: ALL at stlouis_warehouse

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: ALL at detroit_warehouse

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

196

Extracting routing for entity: ALL at albuquerque_warehouse

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: ALL at tampa_customer

dumping RtgPriority...

Processing user-defined logics. Manually translation may be required.

End extracting routing.

Extracting routing for entity: consumption_order at order_E7

dumping RtgPriority...

End extracting routing.

Extracting resource : Truck

dumping ResStats...

dumping specifications...

End extracting resource.

Dumping Subroutine : daily_ordering

End extracting subroutine.

APPENDIX F

SAMPLE UNINTERPRETED PROMODEL® XML FILE

197

198
- <UnableToHandle>

- <GeneralInfo>

- <NotSupported>

<GenInfoGLibFile>distrib.glb</GenInfoGLibFile>

<GenInfoInitLogic>ACTIVATE daily_ordering () ANIMATE 100 VIEW

"Full"</GenInfoInitLogic>
<GenInfoTermLogic />

</NotSupported>

</GeneralInfo>

- <Location>

<Name>oklahomacity_production</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

- <DownTime>

<DTFirstTime />

<DTPriority>99</DTPriority>

<DTScheduled>0</DTScheduled>

<DTDisable>0</DTDisable>

</DownTime>

</NotSupported>

</Location>

- <Location>

<Name>seattle_production</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>phoenix_customer</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>raleigh_warehouse</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>stlouis_warehouse</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>detroit_warehouse</Name>

- <NotSupported>

199
<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>boise_warehouse</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>albuquerque_warehouse</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>order_E2</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Location>

<Name>order_E6</Name>

- <NotSupported>

<LocStats>3</LocStats>

<LocIncoming>1</LocIncoming>

<LocSelectUnit>0</LocSelectUnit>

</NotSupported>

</Location>

- <Entity>

<Name>product_1</Name>

- <NotSupported>

<EntStats>3</EntStats>

</NotSupported>

</Entity>

- <Entity>

<Name>consumption_order</Name>

- <NotSupported>

<EntStats>3</EntStats>

</NotSupported>

</Entity>

- <PathNet>

<Name>Net1</Name>

<PathColor>16711680</PathColor>

<PathVisible>0</PathVisible>

<PathType>1</PathType>

<PathBasis>1</PathBasis>

</PathNet>

- <Arrival>

- <NotSupported>

200
<ArrivalCycle />

<ArrivalDisable>0</ArrivalDisable>

</NotSupported>

<ArrivalEntName>product_1</ArrivalEntName>

<ArrivalLocName>boise_warehouse</ArrivalLocName>

</Arrival>

- <Arrival>

- <NotSupported>

<ArrivalCycle />

<ArrivalDisable>0</ArrivalDisable>

</NotSupported>

<ArrivalEntName>product_1</ArrivalEntName>

<ArrivalLocName>slc_warehouse</ArrivalLocName>

</Arrival>

- <Arrival>

- <NotSupported>

<ArrivalCycle />

<ArrivalDisable>0</ArrivalDisable>

</NotSupported>

<ArrivalEntName>product_1</ArrivalEntName>

<ArrivalLocName>albuquerque_warehouse</ArrivalLocName>

</Arrival>

- <Arrival>

- <NotSupported>

<ArrivalCycle />

<ArrivalDisable>0</ArrivalDisable>

</NotSupported>

<ArrivalEntName>product_1</ArrivalEntName>

<ArrivalLocName>raleigh_warehouse</ArrivalLocName>

</Arrival>

- <Arrival>

- <NotSupported>

<ArrivalCycle />

<ArrivalDisable>0</ArrivalDisable>

</NotSupported>

<ArrivalEntName>product_1</ArrivalEntName>

<ArrivalLocName>neworleans_warehouse</ArrivalLocName>

</Arrival>

- <Routing>

- <NotSupported>

<RtgPriority />

</NotSupported>

<RouteEntity>ALL</RouteEntity>

<Location>raleigh_warehouse</Location>

</Routing>

- <Routing>

- <NotSupported>

<RtgPriority />

</NotSupported>

<RouteEntity>ALL</RouteEntity>

<Location>dallas_warehouse</Location>

</Routing>

- <Routing>

- <NotSupported>

<RtgPriority />

</NotSupported>

<RouteEntity>ALL</RouteEntity>

<Location>neworleans_warehouse</Location>

201
</Routing>

- <Routing>

- <NotSupported>

<RtgPriority />

</NotSupported>

<RouteEntity>ALL</RouteEntity>

<Location>chicago_warehouse</Location>

</Routing>

APPENDIX G

SAMPLE UNINTERPRETED QUEST® XML FILE

202

203
<UnableToHandle>
<Entity>
<Name>Item</Name>
<NotSupported>
NUM_DISPLAY 1
PRIORITY 1
PART_HISTORY 0
DEVICE_CREATION_MODE 1
DISPLAY_INDEX 0
PART_COLOR 'White'
PART_RENDER_MODE 1
PART_DISPLAY_BBOXES 0
PART_DISPLAY_BACKFACE 0
PART_DISPLAY_EDGES 0
PART_GEOMETRY 'default'
PCLASS_LBR_REQMT 'NO_LABOR'
PCLASS_SR_REQMT 'NO_SR'
</NotSupported>
</Entity>
<Operation>
<OID>Process1All</OID>
<NotSupported>
PRIORITY 1
REJECTION_RATE 0.000000
PREEMPT_LEVEL ASSIGNMENT_FUNC 'Distributions' 'Constant'
ARG 304, 1.000000
END_ASGNMT
WGT_CLAIM CLAIM_AS_AVAIL, FIRST
LBR_CLAIM CLAIM_AS_AVAIL, SECOND
SR_CLAIM CLAIM_AS_AVAIL, FOURTH
AGV_CLAIM CLAIM_AS_AVAIL, THIRD
FLUID_PROCESS 0
SCLHOOK ASSIGNMENT_FUNC 'Start Process' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Match Exact Part' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'End Requirement' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Start Cycle' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Start Production' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'End Process' 'None'
END_ASGNMT
CREATED_BY 1
</NotSupported>
<Process/>
</Operation>
<Operation>
<OID>Process2All</OID>
<NotSupported>
PRIORITY 1
REJECTION_RATE 0.000000
PREEMPT_LEVEL ASSIGNMENT_FUNC 'Distributions' 'Constant'
ARG 304, 1.000000
END_ASGNMT
WGT_CLAIM CLAIM_AS_AVAIL, FIRST
LBR_CLAIM CLAIM_AS_AVAIL, SECOND
SR_CLAIM CLAIM_AS_AVAIL, FOURTH
AGV_CLAIM CLAIM_AS_AVAIL, THIRD
FLUID_PROCESS 0
SCLHOOK ASSIGNMENT_FUNC 'Start Process' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Match Exact Part' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'End Requirement' 'None'

204
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Start Cycle' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Start Production' 'None'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'End Process' 'None'
END_ASGNMT
CREATED_BY 1
</NotSupported>
<Process/>
</Operation>
<Labor_Controller>
<Name>LC1</Name>
<NotSupported>
LENGTH 1123.421265
WIDTH 885.909668
HEIGHT 1785.747803
PRIORITY 1
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROCESS_LOGIC ASSIGNMENT_FUNC 'Labor Controller Process Logic' 'Default Labor Ctlr Logic'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Selection' 'Closest Labor'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Path Selection' 'Minimum Distance Path'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Part Route' 'Part Route Default'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Departure' 'Minimum Part Departure'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Destination' 'Last Part with Destination'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Ctlr Event Selection' 'First Pending Event for Labor'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Parking' 'Park At Current Location'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Failure' 'Default Failure'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Reroute' 'Default Reroute'
END_ASGNMT
SCLHOOK ASSIGNMENT_FUNC 'Labor Selection By Preemption' 'Labor Moving to Load'
END_ASGNMT
SR_PT_START_INDEX 1
CREATED_BY 1
NUM_ELEMENTS_IN_CLASS 'LC1' 1
</NotSupported>
</Labor_Controller>
<Buffer>
<Name>Buff1</Name>
<NotSupported>
LENGTH 939.799988
WIDTH 1016.000000
HEIGHT 114.300003
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROCESS_LOGIC ASSIGNMENT_FUNC 'Buffer Process Logic' 'Default Buffer Logic'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Pull Buffer Process Logic' 'Default Pull Buffer Process'
END_ASGNMT
ROUTE_LOGIC ASSIGNMENT_FUNC 'Route Logic' 'Next Free'

205
END_ASGNMT
PULL_ROUTE_LOGIC ASSIGNMENT_FUNC 'Pull Route Logic' 'Default Pull Route'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Buffer Request Logic' 'Default Buffer Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
INPUTS 1
PULL_INPUTS 0
PULL_OUTPUTS 0
INPUT_TYPE PUSH
OUTPUT_TYPE PUSH
SCLHOOK ASSIGNMENT_FUNC 'Request Propagation' 'Where Part Available'
END_ASGNMT
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 1.651733, -1.210052, 114.300003, 1.000000
SR_PT_START_INDEX 1
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 1.651764, -1.210037, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Buffer>
<Machine>
<Name>Process1</Name>
<NotSupported>
LENGTH 1040.152100
WIDTH 1075.000000
HEIGHT 1725.000000
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROC_OCCURENCE 'Process1All' 100.000000 , 0
PROCESS_LOGIC ASSIGNMENT_FUNC 'Machine Process Logic' 'First Possible Process'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Pull Machine Process Logic' 'Default Pull Machine Process'
END_ASGNMT
ROUTE_LOGIC ASSIGNMENT_FUNC 'Route Logic' 'Next Free'
END_ASGNMT
PULL_ROUTE_LOGIC ASSIGNMENT_FUNC 'Pull Route Logic' 'Default Pull Route'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Machine Request Logic' 'Default Machine Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
INPUTS 1
PULL_INPUTS 0
PULL_OUTPUTS 0
INPUT_TYPE PUSH
OUTPUT_TYPE PUSH
SCLHOOK ASSIGNMENT_FUNC 'Request Propagation' 'Where Part Available'
END_ASGNMT
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 8.059203, -239.391739, 850.316956, 1.000000
SR_PT_START_INDEX 1

206
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 128.135239, -3.391754, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Machine>
<Buffer>
<Name>Buff2</Name>
<NotSupported>
LENGTH 939.799988
WIDTH 1016.000000
HEIGHT 114.300003
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROCESS_LOGIC ASSIGNMENT_FUNC 'Buffer Process Logic' 'Default Buffer Logic'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Pull Buffer Process Logic' 'Default Pull Buffer Process'
END_ASGNMT
ROUTE_LOGIC ASSIGNMENT_FUNC 'Route Logic' 'Next Free'
END_ASGNMT
PULL_ROUTE_LOGIC ASSIGNMENT_FUNC 'Pull Route Logic' 'Default Pull Route'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Buffer Request Logic' 'Default Buffer Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
INPUTS 1
PULL_INPUTS 0
PULL_OUTPUTS 0
INPUT_TYPE PUSH
OUTPUT_TYPE PUSH
SCLHOOK ASSIGNMENT_FUNC 'Request Propagation' 'Where Part Available'
END_ASGNMT
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 1.651733, -1.210052, 114.300003, 1.000000
SR_PT_START_INDEX 1
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 1.651764, -1.210037, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Buffer>
<Machine>
<Name>Process2</Name>
<NotSupported>
LENGTH 1040.152100
WIDTH 1075.000000
HEIGHT 1725.000000
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROC_OCCURENCE 'Process2All' 100.000000 , 0
PROCESS_LOGIC ASSIGNMENT_FUNC 'Machine Process Logic' 'First Possible Process'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Pull Machine Process Logic' 'Default Pull Machine Process'

207
END_ASGNMT
ROUTE_LOGIC ASSIGNMENT_FUNC 'Route Logic' 'Next Free'
END_ASGNMT
PULL_ROUTE_LOGIC ASSIGNMENT_FUNC 'Pull Route Logic' 'Default Pull Route'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Machine Request Logic' 'Default Machine Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
INPUTS 1
PULL_INPUTS 0
PULL_OUTPUTS 0
INPUT_TYPE PUSH
OUTPUT_TYPE PUSH
SCLHOOK ASSIGNMENT_FUNC 'Request Propagation' 'Where Part Available'
END_ASGNMT
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 8.059203, -239.391739, 850.316956, 1.000000
SR_PT_START_INDEX 1
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 128.135239, -3.391754, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Machine>
<Source>
<AID>ItemBuff1</AID>
<NotSupported>
LENGTH 1228.710205
WIDTH 1045.617432
HEIGHT 1676.400024
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROCESS_LOGIC ASSIGNMENT_FUNC 'Source Process Logic' 'Default Source Logic'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Passive Source Process Logic' 'Default Passive Source Process'
END_ASGNMT
ROUTE_LOGIC ASSIGNMENT_FUNC 'Route Logic' 'Next Free'
END_ASGNMT
PULL_ROUTE_LOGIC ASSIGNMENT_FUNC 'Pull Route Logic' 'Default Pull Route'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Source Request Logic' 'Default Source Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
OUTPUTS 1
PULL_INPUTS 0
INPUT_TYPE PUSH
OUTPUT_TYPE PUSH
NUM_PART_FRACTIONS 1
PART_FRACTION 'Item' 100.000000
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000
SR_PT_START_INDEX 1

208
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Source>
<Sink>
<Name>Sink1</Name>
<NotSupported>
LENGTH 1168.400024
WIDTH 897.904297
HEIGHT 1676.400024
PRIORITY 1
KINEMATIC NO
GEO_FILE 'default'
NUM_ICONS 1
ICON_FILE 1 'default'
CLASS_COLOR 'Yellow'
PROCESS_LOGIC ASSIGNMENT_FUNC 'Sink Process Logic' 'Default Sink Logic'
END_ASGNMT
PULL_PROCESS_LOGIC ASSIGNMENT_FUNC 'Pull Sink Process Logic' 'Default Pull Sink Process'
END_ASGNMT
REQUEST_LOGIC ASSIGNMENT_FUNC 'Sink Request Logic' 'Default Sink Request'
END_ASGNMT
STACK_DIRECTION STACK_Z_AXIS
STACK_FACTOR 1.000000
INPUTS 1
PULL_OUTPUTS 0
INPUT_TYPE PUSH
IRT ASSIGNMENT_FUNC 'Distributions' 'Constant'
ARG 304, 1.000000
END_ASGNMT
REQ_LOTSIZE ASSIGNMENT_FUNC 'Distributions' 'Constant'
ARG 304, 1.000000
END_ASGNMT
MAX_REQ_COUNT 10000000
REQ_START_OFFSET 0.000000
SCLHOOK ASSIGNMENT_FUNC 'Request Propagation' 'Where Part Available'
END_ASGNMT
NEED_LABOR_CONTROLLER YES
RES_LABOR_CONTROLLER 'LC1' 1
NEED_SR_CONTROLLER NO
NUM_STACK_POINTS 1
STACK_POINT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000
SR_PT_START_INDEX 1
NUM_LABOR_POINTS 1
LBR_PT_XFORM 1, 1, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000,
1.000000, 0.000000, 8.334778, 9.375381, 0.000000, 1.000000
CREATED_BY 1
</NotSupported>
</Sink>
<Unrecognized>
MAGIC_NO
1125972047
MDL_VERSION 5
SCL_FUNC SUB_set_get_part_dest 411

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS
CREATED_BY 1
END_DEFINE

RAND_STREAM REQUEST_PERCENTAGE 1
RAND_STREAM ROUTE_PERCENTAGE 1
ROUTING_MODE FROM_CLASS

209
REQUESTING_MODE FROM_CLASS
CREATED_BY 1
END_DEFINE

RAND_STREAM REJECTION_RATE 1

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS

END_DEFINE

RAND_STREAM REQUEST_PERCENTAGE 1
RAND_STREAM ROUTE_PERCENTAGE 1
RAND_STREAM PROC_OCCURENCE 1

CREATED_BY 1

RAND_STREAM REQUEST_PERCENTAGE 1

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS

END_DEFINE

RAND_STREAM ROUTE_PERCENTAGE 1

CREATED_BY 1

RAND_STREAM REJECTION_RATE 1

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS

END_DEFINE

RAND_STREAM REQUEST_PERCENTAGE 1
RAND_STREAM ROUTE_PERCENTAGE 1
RAND_STREAM PROC_OCCURENCE 1

CREATED_BY 1

RAND_STREAM ROUTE_PERCENTAGE 1

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS

END_DEFINE

RAND_STREAM PART_FRACTION 1

CREATED_BY 1

RAND_STREAM REQUEST_PERCENTAGE 1

ROUTING_MODE FROM_CLASS
REQUESTING_MODE FROM_CLASS

END_DEFINE

RAND_STREAM REQUEST_FRACTION 1

CREATED_BY 1

FINAL_ASSMBLY_MODE NO

SIM_TIMES 1000.000000, 1, 1, 2, 0, 1.000000, 60.000000, 0.000000, 0, 0.000000

MODEL_UNITS 0, 0, 0, 0, 0, 0, 0
SIM_MODES 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
SIM_MODES2 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0
STATE_PRIORITY 'Idle' 21
STATE_PRIORITY 'Idle - Parked' 20
STATE_PRIORITY 'Busy - Processing' 5
STATE_PRIORITY 'Busy - Loading' 6
STATE_PRIORITY 'Busy - Unloading' 7
STATE_PRIORITY 'Busy - Setup' 8
STATE_PRIORITY 'Busy - Repair' 9
STATE_PRIORITY 'Busy - Transferring' 10
STATE_PRIORITY 'Busy - Loaded Travel' 11
STATE_PRIORITY 'Busy - Empty Travel' 12
STATE_PRIORITY 'Blocked - Travel Block' 13
STATE_PRIORITY 'Blocked - Unload Block' 14
STATE_PRIORITY 'Blocked - Requirement Block' 15
STATE_PRIORITY 'Blocked - Depart Requirement Block' 16

210
STATE_PRIORITY 'Blocked - Claim Block' 17
STATE_PRIORITY 'Blocked - Requirement Preempted' 18
STATE_PRIORITY 'Blocked - Wait Block' 19
STATE_PRIORITY 'Unavailable - Shift Out' 2
STATE_PRIORITY 'Unavailable - Shift Break' 3
STATE_PRIORITY 'Unavailable - Failed' 4
STATE_PRIORITY 'Unavailable - Not Considered' 1

NUM_RAND_SEEDS 100
RAND_SEED 1, 1088421888
RAND_SEED 2, 2176843776
RAND_SEED 3, 3265265664
RAND_SEED 4, 58720256
RAND_SEED 5, 1147142144
RAND_SEED 6, 2235564032
RAND_SEED 7, 3323985920
RAND_SEED 8, 117440512
RAND_SEED 9, 1205862400
RAND_SEED 10, 2294284288
RAND_SEED 11, 3382706176
RAND_SEED 12, 176160768
RAND_SEED 13, 1264582656
RAND_SEED 14, 2353004544
RAND_SEED 15, 3441426432
RAND_SEED 16, 234881024
RAND_SEED 17, 1323302912
RAND_SEED 18, 2411724800
RAND_SEED 19, 3500146688
RAND_SEED 20, 293601280
RAND_SEED 21, 1382023168
RAND_SEED 22, 2470445056
RAND_SEED 23, 3558866944
RAND_SEED 24, 352321536
RAND_SEED 25, 1440743424
RAND_SEED 26, 2529165312
RAND_SEED 27, 3617587200
RAND_SEED 28, 411041792
RAND_SEED 29, 1499463680
RAND_SEED 30, 2587885568
RAND_SEED 31, 3676307456
RAND_SEED 32, 469762048
RAND_SEED 33, 1558183936
RAND_SEED 34, 2646605824
RAND_SEED 35, 3735027712
RAND_SEED 36, 528482304
RAND_SEED 37, 1616904192
RAND_SEED 38, 2705326080
RAND_SEED 39, 3793747968
RAND_SEED 40, 587202560
RAND_SEED 41, 1675624448
RAND_SEED 42, 2764046336
RAND_SEED 43, 3852468224
RAND_SEED 44, 645922816
RAND_SEED 45, 1734344704
RAND_SEED 46, 2822766592
RAND_SEED 47, 3911188480
RAND_SEED 48, 704643072
RAND_SEED 49, 1793064960
RAND_SEED 50, 2881486848
RAND_SEED 51, 3969908736
RAND_SEED 52, 763363328
RAND_SEED 53, 1851785216
RAND_SEED 54, 2940207104
RAND_SEED 55, 4028628992
RAND_SEED 56, 822083584
RAND_SEED 57, 1910505472

211
RAND_SEED 58, 2998927360
RAND_SEED 59, 4087349248
RAND_SEED 60, 880803840
RAND_SEED 61, 1969225728
RAND_SEED 62, 3057647616
RAND_SEED 63, 4146069504
RAND_SEED 64, 939524096
RAND_SEED 65, 2027945984
RAND_SEED 66, 3116367872
RAND_SEED 67, 4204789760
RAND_SEED 68, 998244352
RAND_SEED 69, 2086666240
RAND_SEED 70, 3175088128
RAND_SEED 71, 4263510016
RAND_SEED 72, 1056964608
RAND_SEED 73, 2145386496
RAND_SEED 74, 3233808384
RAND_SEED 75, 27262976
RAND_SEED 76, 1115684864
RAND_SEED 77, 2204106752
RAND_SEED 78, 3292528640
RAND_SEED 79, 85983232
RAND_SEED 80, 1174405120
RAND_SEED 81, 2262827008
RAND_SEED 82, 3351248896
RAND_SEED 83, 144703488
RAND_SEED 84, 1233125376
RAND_SEED 85, 2321547264
RAND_SEED 86, 3409969152
RAND_SEED 87, 203423744
RAND_SEED 88, 1291845632
RAND_SEED 89, 2380267520
RAND_SEED 90, 3468689408
RAND_SEED 91, 262144000
RAND_SEED 92, 1350565888
RAND_SEED 93, 2438987776
RAND_SEED 94, 3527409664
RAND_SEED 95, 320864256
RAND_SEED 96, 1409286144
RAND_SEED 97, 2497708032
RAND_SEED 98, 3586129920
RAND_SEED 99, 379584512
RAND_SEED 100, 1468006400

mdl_end_of_info
10
0 0 1 10 892.874
0 0
1
3
1
0
0
0
0
7
LC1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

212

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
-8000 8000 0 1
1
3
0
0
0
0
Buff1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
-3250 125 0 1
1
3
0
0
0
2
Buff1_1s_way_pts
2
0
4
3
0
0
0
Buff1_1s_lbr_pts
5
0
4
3
0
0
0
Process1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1

213
1 0 0 0
0 1 0 0
0 0 1 0
-1750 125 0 1
1
3
0
0
0
2
Process1_1s_way_pts
2
0
4
3
0
0
0
Process1_1s_lbr_pts
5
0
4
3
0
0
0
Buff2 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
250 125 0 1
1
3
0
0
0
2
Buff2_1s_way_pts
2
0
4
3
0
0
0
Buff2_1s_lbr_pts
5
0
4
3
0
0
0
Process2 1
1 0 0 0

214
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
1750 125 0 1
1
3
0
0
0
2
Process2_1s_way_pts
2
0
4
3
0
0
0
Process2_1s_lbr_pts
5
0
4
3
0
0
0
ItemBuff1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
-4520.7998046875 140.6000061035156 0 1
1
3
0
0
0
2
ItemBuff1_1s_way_pts
2
0
4
3
0
0
0

215
ItemBuff1_1s_lbr_pts
5
0
4
3
0
0
0
Sink1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1

10 327684 262145
-4 1
1 1 1
-1 -1 -1
-1 -1 -1
1 0 0 0
0 1 0 0
0 0 1 0
8000 0 0 1
1
3
0
0
0
2
Sink1_1s_way_pts
2
0
4
3
0
0
0
Sink1_1s_lbr_pts
5
0
4
3
0
0
0
0
17
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
2350.44 4530.1 75501.7 0.804202 7565.27 1237.68 42
-1
-1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0.5 0.866025 0.523599 0
0 0.547576 0.921903
0.476122 0.333573 0.282585

216
0 -1 8198 0 1 1 1.5 60 0
9
1 2 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.250000 0.000001 90.000000 1
0 0 0 0 -1
1 0 0.550000 0.550000 0.550000
-0.043978 -0.135349 0.989821 0.000000 0.000000 1.000000
1.427997 -0.314159 0.550000 0.000001 90.000000 1
0 0 0 0 -1
1 0 0.400000 0.400000 0.400000
0.332374 -0.690182 0.642788 0.000000 0.000000 1.000000
0.698132 0.448799 0.400000 0.000001 90.000000 1
0 0 0 0 -1
1 0 0.400000 0.400000 0.400000
0.700629 0.404509 0.587785 0.000000 0.000000 1.000000
0.628319 2.094395 0.400000 0.000001 90.000000 1
0 0 0 0 -1
1 0 0.400000 0.400000 0.400000
-0.769421 0.250000 0.587785 0.000000 0.000000 1.000000
0.628319 4.398230 0.400000 0.000001 90.000000 1
0 0 0 0 -1
0 1 0.400000 0.400000 0.400000
0.000000 0.000000 1.000000 0.000000 0.000000 1.000000
1.570796 0.000000 0.400000 0.000001 90.000000 1
0 0 0 0 -1
0 1 0.400000 0.400000 0.400000
0.000000 0.000000 1.000000 0.000000 0.000000 1.000000
1.570796 0.000000 0.400000 0.000001 90.000000 1
0 0 0 0 -1
0 1 0.400000 0.400000 0.400000
0.000000 0.000000 1.000000 0.000000 0.000000 1.000000
1.570796 0.000000 0.400000 0.000001 90.000000 1
0 0 0 0 -1
0 1 0.400000 0.400000 0.400000
0.000000 0.000000 1.000000 0.000000 0.000000 1.000000
1.570796 0.000000 0.400000 0.000001 90.000000 1
0 0 0 0 -1
0 -8 1.000000 1.000000 1.000000 1.000000
1 3 0
0
0
0
0
0
5
****** START ANNOTATION NAMES AND ARROWS ******
2
2
0
****** END ANNOTATION NAMES AND ARROWS ******
0
0
3
4
0 0 0 0 0
20 8000 3 1e+008 0.523599 32
20 3000 20 3000 1 20000
200 10000 50 25000 3 500
3
1
0 3 50000
1
0 10 1.5 1.5 100
1
0 200 50 20

217
0
0
</Unrecognized>
</UnableToHandle>

	Definition, Analysis, And An Approach For Discrete-Event Simulation Model Interoperability
	Recommended Citation

