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ABSTRACT

Distributed terrestrial computer systems employ middleware software to provide commu-

nications abstractions and reduce software interface complexity. Embedded applications

are adopting the same approaches, but must make provisions to ensure that hard real-time

temporal performance can be maintained. This thesis presents the development and vali-

dation of a middleware system tailored to spacecraft flight software development. Our

middleware runs on the Generalized Flight Operations Processing Simulator (GFLOPS)
and is called the GFLOPS Rapid Real-time Development Environment (GRRDE).
GRRDE provides publish-subscribe communication services between software compo-

nents. These services help to reduce the complexity of managing software interfaces. The

hard real-time performance of these services has been verified with General Timed

Automata modelling and extensive run-time testing. Several example applications illus-

trate the use of GRRDE to support advanced flight software development. Two technol-
ogy-focused studies examine automatic code generation and autonomous fault protection

within the GRRDE framework. A complex simulation of the TechSat 21 distributed space-

based radar mission highlights the utility of the approach for large-scale applications.

Thesis Advisor:
Prof. David. W. Miller (chair)
Dept. of Aeronautics and Astronautics
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Chapter 1

INTRODUCTION

Space engineering is simultaneously one of the most innovative and conservative techni-

cal fields. Designers are asked to produce revolutionary systems, yet at the same time they

must be cautious, since mistakes in design and manufacturing are extremely costly. With

satellites routinely costing on the order of at least $100 million (and some even several bil-

lion dollars), there is great reluctance to stray very far from proven solutions. This trend is

particularly apparent in the development of spacecraft flight software (FSW).

Innovative mission concepts stretch the capabilities of conventional flight software to

their limits. Greater software complexity promises both greater performance and greater

risk. In this thesis we examine some of the issues involved in the confluence of advanced

flight software and distributed satellite systems. Specifically, we present an approach to

managing software communicationsi complexity, suitable for the high-reliability, real-

time environment of spacecraft systems.

1.1 Motivation

In the design of complex systems, software requirements are often ambitious and fluid.

These trends are difficult to avoid, since the modem computer is the ultimate general pur-

1. The term 'communications' within this thesis refers to the exchange of data between software compo-
nents and not just a satellite 'communications subsystem' (e.g. receiver, transmitter, antenna, etc.).
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pose machine. There are few intuitive limits to the tasks assigned to software. Functions

difficult to implement mechanically could be embedded into an electronic control system,

or stubborn electrical noise might be digitally filtered, rather than eliminated at the source.

It is also not uncommon to see software requirements changing long after hardware speci-

fications have been fixed [Shore, 1986]. Functional flexibility has its drawbacks, since

additional responsibilities create sub-system couplings that, in turn, increase overall sys-

tem complexity. The greater the system complexity, the easier it is to introduce errors in

design [Leveson, 2001]. Undiscovered system-level software errors can lead to cata-

strophic failures, such as the first launch of the Ariane 5 [Lions, 1996].

Building software that works most of the time is relatively simple; building software that

works all the time is very difficult. Advanced software capabilities require innovative

development methodologies to ensure success.

1.1.1 Promise of Software

Flight software has the capability of performing many tasks, both wondrous and mundane.

Advanced mission concepts are currently being developed that would autonomously

explore the seas thought to lie beneath kilometers of ice on Europa [Doyle, 1998]. Even

smaller missions, such as the Pluto Fly-by concept, contemplate giving the on-board soft-

ware the capability of prioritizing and planning its own scientific observations. The chal-

lenges of these systems are truly daunting.

Researchers have recognized for several decades that space-systems can benefit consider-

ably from 'smarter', more capable software [Marshall, 1981]. Concerns about reliability

have limited the applications of autonomy to situations in which traditional methods have

proved completely inadequate. Suitable applications would include the critical phases of

an interplanetary mission where propagation delays prevented traditional ground-based

commanding. When employed, autonomy techniques were applied in a minimalist fash-

ion; engineers used only as much sophistication as was necessary. Recently, interest is
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growing in expanding autonomy's role to routinely control a wider range of spacecraft

activities.

Not all goals of flight software development are so lofty. Future plans for the Global Posi-

tioning System (GPS) navigation satellites call for advances in on-board software. Daily

operation of the satellite constellation is presently a very labour-intensive task. Next gen-

eration GPS satellites must maintain their effectiveness for several weeks or months with-

out input from the ground [Fisher & Ghassemi, 1999]. Instead of human operators they

must rely on their own software and on communication with their peers. Even more prosa-

ically, the history of the Galileo spacecraft provides a clear example of the flexibility of

software. Crippled by the failed deployment of its High Gain Antenna, this multi-billion

dollar mission still returned amazing science data, due largely to extensive modifications

to the onboard software's data processing and communications routines [Marr, 1994].

Flight software fills many roles in space systems. The above examples demonstrate some

of the potential flexibility. Software in the Europa mission adds wholly new capabilities.

The enhancements to the Pluto mission facilitates operations made difficult by long time

delays. It can be used for automation and even, to a degree, for upgrading and repair.

Unfortunately, these capabilities do not come without a price. Although advanced soft-

ware promises a large degree of flexibility, it also imposes an ample amount of risk.

Project managers shoulder the responsibility for mission success and must be particularly

careful about adopting new, unproven technology.

1.1.2 Distributed Satellite Systems

One focus of research at the Space Systems Laboratory at the Massachusetts Institute of

Technology, is the application of distributed approaches to space systems engineering.

Starting with the basic principles of distributed systems, we have examined some of the

resulting implications for space mission design. The chief considerations are:

- Architecture. For millennia, it has been understood that "form follows func-
tion" [Vitruvius, 1960]. Missions using sparse aperture sensors [Das &
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Cobb, 1998] [Beichman, et al, 1999], or providing global communications
[Garrison, et al, 1995] are immanently suited for distributed implementa-
tions.

- Composability. Since distributed satellite systems are composed of separate
spacecraft, they can be tested, deployed [Miller, et al, 2001] or replaced
[Shaw, et al, 1999] progressively.

e Fault Tolerance. Many traditional systems rely on a single central compo-
nent. Mission assurance depends on making this device (or satellite) very
reliable. Distributed systems, in contrast, are designed to exhibit graceful
and gradual degradation in performance as component satellites fail [Shaw,
1998].

- Extensibility. It is usually easier to augment the capabilities of distributed
rather than centralized missions [CDIO, 2001]. This principle applies during
the operation of a system as well as during design when requirements may
change.

When we consider the software requirements for distributed spacecraft systems, parallels

can be drawn to the history of terrestrial computing. As popular design practice moved

from centralized to distributed architectures, the importance of communications grew

immensely [Verissimo & Rodrigues, 2001]. Communications pathways were needed, not

only to relay information, but to manage system coordination as well.

1.1.3 Communications Complexity in Software Systems

One of the principal characteristics of systems engineering is the management of com-

plexity [Booton & Ramo, 1984]. The entire discipline grew out of the difficulties encoun-

tered when building large, elaborate systems; projects that resisted simple comprehensive

designs. Complexity management is doubly important in software systems, since software

is frequently used to deliberately create couplings between independent components

[Shore, 1986]. For example, consider the role of anti-lock brake systems in modem cars.

In a traditional brake system, pressure on the brake pedal is translated, fairly directly, into

friction force on the wheels. With anti-lock brakes, there is now a software-based feed-

back loop that modulates the brake actuation based on the observed wheel speed. Cou-

pling these two behaviours together provides a benefit to the driver, but makes the whole

system more complex.
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Modem software engineering emphasizes the importance of modular design. Common

functional elements are grouped together, and clearly delineated interfaces describe

allowed interactions. Adding new functions to a system typically adds more modules.

With new modules, come new interfaces, whose numbers can grow non-linearly. This

compounds system complexity. The situation becomes even worse when the system is dis-

tributed. Within a CPU, communication between processes is an abstraction; in a distrib-

uted system, physical communication is a necessity.

Despite the popularity of various software engineering methodologies, building complex,

reliable software systems is still very difficult. That software was directly responsible for

the failure of several recent space missions suggests shortcomings of the prevailing devel-

opment culture [Leveson, 2001]. Interconnections between software components are one

of the leading causes of errors in complex software. Studies documenting the validation of

spacecraft show that interface errors account for 20-35% of all flight software flaws [Lutz,

1992]. Clearly, developers must devote much of their attention to the correctness of soft-

ware connectivity.

In his book, "Augustine's Laws ", former Lockheed-Martin CEO, Norman Augustine pro-

poses the following maxim:

Law XLVIII: The more time you spend talking about what you have been
doing, the less time you have to spend doing what you have been talking
about. Eventually, you spend more and more time talking about less and
less until finally you spend all your time talking about nothing. [Augustine,
1997]

With a little creative reinterpretation, what was true for management, can be applied to

software. Each additional software connection that must be managed by the developers

creates overhead that detracts from productivity. The more time you spend managing

interfaces, the less time you spend implementing function.

Communications complexity can affect flight software on several levels. Concurrent tasks

on a single processor must share the available computational resources while communi-
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cating effectively with each other. Within a satellite, managing cooperating processors can

also be challenging [Crew, 2002]. Coordinating separated spacecraft can be even more

problematic, especially if real-time performance is required. When the Iridium communi-

cations system came online, users' calls were often dropped, as software attempted to pass

control of the call to another satellite [Mills, 1998]. As distribution, either within, or

between satellites, becomes commonplace, we expect to see a demand for complexity

management in software communications. We suggest that the aerospace industry should

follow the example of terrestrial distributed systems and use abstract communications ser-

vices to reduce the burden of communications complexity in spacecraft software.

1.2 Middleware for Complexity Management

When functional modules are connected together, assumptions must be made about the

way in which interactions take place and how information is exchanged. Depending on the

computing architecture, the user may employ shared variables, inter-process messages,

function invocation, or a combination of the above. When software modules are distrib-

uted across separate processors, the possible interaction mechanisms multiply. If the

details of each software interconnection must be handled individually, the design and

implementation of the software is made much more complex. Furthermore, the migration

of certain components to different processors, or the addition of extra functions, may

require extensive modifications to the existing software. This is the problem that middle-

ware addresses.

Middleware commonly refers to software that manages interconnections between the

user's software applications (Figure ). A standardized interaction mechanism abstracts

away some details of the connection. Middleware operates in networked environments

and provides interface transparency to the user. Thus, the designer needs to specify that

Module-A is connected to Module-B, but they need not worry about the precise imple-

mentation, or even which processors the modules run on. Middleware may be integrated

into the operating system, or it may exist as a separate "service" layer.
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OS OS

Hardware Hardware

Network

Figure 1.1 The Middleware concept. Middleware software allows
user applications (modules A and B) to transparently
span processor boundaries.

Designers of middleware systems usually select a particular interaction model as the basis

for their system. Some examples include: distributed objects (e.g. CORBA, DCOM)

[OMG, 2000] [Hortsmann & Kirtland, 1997], message passing (e.g. MPI) [Snir, et al,

1995], transactions (e.g. Tuxedo) [Hall, 1996], and distributed shared memory (e.g. BRA-

ZOS) [Speight & Bennett, 1998].

When choosing a middleware system, users must be mindful of the desired level of

abstraction and the underlying conceptual model. Generally, abstract systems such as the

popular Common Object Request Broker Architecture (CORBA) hide many implementa-

tion details from the user, and greatly reduce interface management tasks. The code and

data that implements a CORBA object may reside on a remote machine, but users can cre-

ate, manipulate, and invoke the objects as if they were local. Conversely, concrete mecha-

nisms such as message passing provide the user with a precise mental model of what the

system is doing, but leave more tasks to the user. Any particular interaction metaphor will

facilitate certain applications, but may hinder others [Lee, 2000]. Object-based methods,

despite their popularity, are not always a good design metaphor for embedded systems

[Wright & Williams, 1993].

Middleware choices affect testing and validation as much as they affect design. Each mid-

dleware implementation provides the developer with different performance guarantees.

Deterministic memory and processing overhead, bounded temporal performance, and

27
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compatibility with existing software engineering techniques are all vital to real-time appli-

cations. Thus, systems with the best combination of service flexibility and performance

guarantees will be ideal for space applications.

1.3 Objectives

Spacecraft' represent a distinctive class of embedded systems. High reliability is essential,

and fail-safe operation may be difficult to ensure. Consequently, engineers require a fine

degree of control over how the software behaves. Physical interaction with the hardware is

essentially impossible, thus faults must be handled automatically or remotely. Lastly, com-

plex spacecraft have elaborate control systems with hard real-time requirements. This

makes deterministic and efficient temporal performance a priority. As the demands of dis-

tributed implementations and advanced capabilities aggravate system complexity, new

tools and approaches will be required to manage software interactions. The primary objec-

tives of this thesis are to develop flight software engineering approaches that will:

e Reduce unproductive workload of managing software interfaces.

e Reduce software complexity to enhance reliability or mitigate risks of
advanced capabilities.

* Respect the constraints of the flight software engineering domain.

We approach these goals by developing middleware for space applications. State-of-the-

art middleware systems (Section 2.3) typically provide flexible services, and only modest

real-time assurances, or extensive real-time validation, but limited complexity manage-

ment. Advanced space systems need both qualities. Our middleware provides publish-sub-

scribe services with hard real-time bounds on latency and jitter.

Establishing a tool's suitability for the space domain is not a trivial task. First, the middle-

ware concept must be developed and implemented. Second, extensive validation and char-

acterization must be used to ensure the safety and predictability of the system as well as to

1. Our study focuses on spacecraft software but this approach would likely benefit aircraft software as well.
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assess the 'cost' (e.g. processing, memory, performance) of the system. Finally, we must

demonstrate, through examples, how the tool can be used to manage software complexity.

1.3.1 GFLOPS

Flight programs are difficult to come by, and not surprisingly, difficult to freely experi-

ment with. Even if we were assigned the task of developing middleware for a particular

mission, it is unlikely that we would be afforded the freedom required to explore the range

of software concepts valuable to academic research. Instead, we adopt a more modest but

versatile application: spacecraft simulation.

This research constitutes part of the Generalized FLight Operations Processing Simulator

(GFLOPS) program. GFLOPS's goal is to produce a software testbed suitable for high-

fidelity, real-time simulation of distributed spacecraft systems. GFLOPS allows the user to

develop sophisticated simulations and prototype flight software in a hard real-time envi-

ronment. During development of the testbed, we identified the need for a software envi-

ronment that would support rapid application development. High-performance embedded

middleware was our solution.

1.3.2 GRRDE

Our middleware system is called the GFLOPS Rapid Real-time Development Environment

(GRRDE). The conceptual model behind GRRDE is a publish-subscribe architecture.

Software module interfaces are specified in terms of particular classes of data-products.

An output data-product is said to be published. Modules needing these data as inputs, can

request a subscription from the GRRDE middleware. The data in question are then auto-

matically delivered to the subscriber. Subscribers can request updates at preset intervals or

whenever the source value changes. These services provide sufficient abstraction to

reduce the effort needed to manage module connections, yet are concrete enough to main-

tain consistent mental models of operation. The publish-subscribe model also provides a
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more natural mapping than objects for many common flight software functions. Examples

include digital control systems, monitoring, sequencing, and data processing.

Although a spacecraft simulation is not the same thing as an actual spacecraft, we have

endeavoured to build into GRRDE consideration of its final destination. Every attempt

was made during development to integrate the requirements of embedded systems. Never-

theless, GRRDE is still a 'pre-release' system. All essential technologies have been vali-

dated, but polishing the system to the point of commercial viability would require

additional resources.

1.3.3 Validation

Software for use in embedded real-time environments must be tested more extensively

than everyday applications for personal computers. Since so much depends on "getting it

right the first time," flight software engineering is an extremely conservative field. To put

this in perspective, consider that many spacecraft still use cyclic executives to control pro-

cessing rather than process-based operating systems. It is incumbent on us, as designers of

a new tool for space systems, to provide strong assurances about the performance of our

product.

We approached the validation of GRRDE from three perspectives: conventional software

testing, formal analysis, and traditional real-time analysis. Software testing consisted of

thorough static analysis, example cases, and stress tests. This testing was used to identify

and correct bugs, as well as measure temporal performance parameters such as timing jit-

ter. We supplemented the online testing with formal analysis. Using the General Timed

Automata (GTA) [Lynch, 1996] modelling technique, we were able to prove safety and

performance properties of our algorithms. Included in these results are upper bounds on

system jitter. Finally, we suggest strategies for applying real-time analysis techniques,

such as rate monotonic analysis, to GRRDE-based systems. This combined approach

allows the designer to build confidence in the GRRDE services and predict system perfor-

mance.
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1.3.4 Applications

The primary goal of GRRDE is to provide a complexity management tool. Validation

establishes its suitability for embedded applications. To complement this effort, a number

of application studies were conducted to assess its usability. As a baseline mission, we

developed a detailed simulation of the TechSat 21 experimental radar satellites using

GRRDE. Smaller studies examined the use of GRRDE in conjunction with other advanced

flight software techniques.

TechSat 21 is a distributed satellite demonstrator mission. This experimental radar pro-

gram uses a cluster of small satellites and interferometry techniques to do highly accurate

ground and air moving target indication (GMTI/AMTI) [Das & Cobb, 1998]. The space-

craft must be capable of complex on-board processing and high accuracy formation-fly-

ing. TechSat 21 represents a challenging and complicated mission that will highly stress

on-board processing capabilities. Our simulation captured orbit and attitude dynamics and

control, as well as the complex radar processing. We found that GRRDE was a significant

asset in the design and implementation of this large system.

The complexity management properties of GRRDE can be viewed in two ways. First, that

lower software complexity makes a given system safer and more reliable. Alternately, this

complexity management can be employed as an enabler; i.e to permit software that nor-

mally would be too complex or risky.

We chose two examples to examine this latter property. The first used automatic code gen-

eration tools, to directly create GRRDE-enabled control systems from Simulink models.

The information mobility provided by the middleware complemented the rapid-develop-

ment capabilities of our code generation tools. Our final study integrates GRRDE with an

autonomous fault diagnosis engine. The use of GRRDE middleware allows the supervi-

sory functions of the diagnostic engine to be minimally intrusive with respect to existing

software. The results of these studies are encouraging and show the effectiveness of

GRRDE during development and integrations of complex software systems.
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1.4 Outline

We begin with a discussion in Chapter 2 of previous work and general theory of real-time

systems, flight software, and middleware. Chapter 3 presents the engineering of the

GFLOPS testbed. The structure of the GRRDE middleware is developed in Chapter 4.

Formal analysis in Chapter 5 proves essential system properties and the on-line testing in

Chapter 6 backs up the offline validation with direct measurements of system behaviour.

The system-level ramifications of GRRDE are detailed in Chapter 7. System design and

characterization is supplemented by several application studies, notably an exercise in

automatic code generation (Chapter 8), fault diagnosis (Chapter 9), and large scale simula-

tion development (Chapter 10). We conclude with a summary of our accomplishment and

suggestions for future work.



Chapter 2

BACKGROUND

The primary objective of this thesis is to provide a tool that will help manage software

communications complexity in advanced space systems. In the previous chapter, we dis-

cussed current directions in space flight software and the promise of distributed satellite

systems. The GFLOPS Rapid Real-time Development Environment (GRRDE) provides a

number of helpful, abstract services, reinforced with extensive analysis. This chapter

places our engineering efforts in perspective with background information about space

systems, embedded software and middleware. We present several examples of conver-

gence in space and terrestrial embedded systems that support our expectation of the

emerging need for these tools.

2.1 Flight Software Engineering

Writing flight software is one of the most difficult varieties of software engineering. Flight

software, like other spacecraft components, must meet high performance standards and be

extremely reliable. Even conventional embedded systems do not possess the particular

combination of design constraints that makes space software so challenging. Partly due to

culture, partly due to necessity, spacecraft software, though punctuated with innovations,

is nonetheless fairly staid and conservative. The state of the art in embedded and distrib-

uted systems has advanced with modem techniques. Flight software engineering might

follow their example and capitalize on these advances too.

33
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2.1.1 Space Engineering

Space system applications add an additional layer of considerations to the process of soft-

ware engineering. The distinctive characteristics of the space industry make software

development difficult. These challenges not only apply to on-board flight software, but to

ground support software as well. High risks and high costs create a very cautious design

mentality, punishing environments strain processor capabilities, and low product volumes

necessitate designs both correct and fault tolerant.

Few other engineering environments are as demanding as space systems. Once launched a

spacecraft is on its own for as much as a decade or more. Except in very specialized cir-

cumstances, such as the Hubble telescope, repairs are out of the question. For a commer-

cial satellite, a failure may mean bankruptcy. Consequently, the development environment

is very risk averse. The benefits of any new technology must be carefully weighed against

the potential for introducing failures. Unless critical for mission success, new techniques

are unlikely to be adopted.

Harsh radiation makes the orbit environment an unfriendly place for modem electronics.

Any device intended for launch must either be protected with heavy shielding, or subject

to extensive and costly 'radiation hardening'. Consequently, the state of the art in space-

craft processors is often a decade or more behind their terrestrial counterparts.The dangers

of radiation are not limited to the direct degradation of components. High energy particles

are known to flip bits in memory or microprocessor registers. Some actions can be taken

to detect and correct most of these errors, but undetected problems of this type can be very

serious. The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) spacecraft was

nearly lost when a high-energy particle scrambled computer calculations [Robertson, et al,

2000].

Other products, such as aircraft or power plants, share the same or greater criticality as

spacecraft, but certain factors set the space industry apart. All large systems must undergo

a period of qualification and testing before deployment, but it is very difficult to test space
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hardware in the same environment in which it will be deployed. Hence, greater reliance is

placed on component and subsystem testing. Careful systems analysis must be employed

to foresee undesirable interactions between system segments. Furthermore, the relatively

low volumes of spacecraft produced make it difficult to work out all the problems with a

design before it is obsolete.

An understanding of the constraints on embedded systems and the particular characteris-

tics of spacecraft design establish the necessary background for enhancing the process of

FSW development. The next few sections build upon this foundation and introduce the

particular formalisms and tools introduced in the GRRDE. The aim of these advances is to

reduce the development time and increase the quality of FSW.

2.1.2 Real-Time, Embedded Software Engineering

Common misconceptions about real-time computing abound. Many people, even in tech-

nical fields, equate real-time with 'fast' [Zita Haigh, et al, 2000]. Although efficiency of

implementation is certainly important [Rajkumar, et al, 1995], fast code alone does not

define real-time software. Above all else, real-time systems must be predictable. The

requirement spans temporal performance, memory and system-level interactions.

Time of course places a vital role in the operation of real-rime systems. Effective software

must be both predictable and efficient. In most cases real-time software can be classified

[Kopetz, 1997] according to how stringent the temporal determinism must be. Hard real-

time systems are most stringent about the system's predictability under all foreseeable

operating conditions. Bounding worst-case behaviour is critical and low variability (jitter)

is important. Violating the temporal bounds can have extreme consequences. At the other

extreme is the notion of soft real-time systems. These systems value predictability, but can

usually tolerate a fair degree of temporal variance in performance, especially under high-

load conditions. Some other variants are firm real-time systems (strict deadlines, less criti-

cality) and anytime systems (minimal response temporally guaranteed, high performance

results computed if time permits). In hard-realtime systems, algorithmic efficiency is only
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a consideration after bounded execution time has been established. Code optimization can

be used to save money (e.g. with a cheaper processor) [Stewart, 1999] or meet CPU utili-

zation budgets, but should not be regarded as an end in itself.

Memory is another carefully rationed resource in embedded systems. A necessary part of

guaranteeing predictable performance is ensuring that memory usage remains bounded

[Stewart, 1999a]. Many embedded systems have tightly constrained memory budgets.

Space systems, even in the last decade, frequently have less than a megabyte of on-board

memory [Wagner, 1998]. In most cases dynamic memory allocation is forbidden by design

standards, since running out of memory would be disastrous.

Finally, we come to the most important, defining feature of real-time systems: testing. All

the characteristics that typify embedded and real-time systems, especially for space appli-

cations relate back to the need for testing and analysis. Since failure in safety-critical soft-

ware can lead to loss of both property and lives, designers have professional, ethical, and

legal responsibilities to make sure that products are tested adequately. Temporal perfor-

mance must be tested. Memory requirements must be tested. Assembled systems must be

tested, not just against the requirements, but against the intentions behind them [Leveson,

2001]. Although there is never time to test everything, a well conceived test program is

critical to mission success.

In the interests of clarity, let us stop and consider a manner of vocabulary. The terms 'real-

time' and 'embedded' are used interchangeably in this thesis. Although the meaning of the

terms are similar they are not always the same thing. Kopetz [Kopetz, 1997] identifies the

following classes of real-time systems:

e Embedded systems. This class of software systems involve the operation of a
particular, special purpose device or 'intelligent product'. Applications range
from electric shavers, to microwaves to medical diagnostic equipment. Con-
figuration and function are fairly static.

- Plant automation. These systems are typically larger and often distributed.
As the name suggests, they typically govern the operation of manufacturing
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machinery. Digital feedback control is common in these systems. Produced
in low volumes, these systems are heavily customized for each installation.

Multimedia Systems. In recent years, as internet popularity has increased,
interest in high-quality soft real-time systems for video and audio delivery.
This class of systems is not relevant to us.

Space systemsi, the focus of this thesis, combine characteristics of both plant automation

and embedded devices. Satellites are device-centric, static in (hardware) configuration and

involve a large amount of process control. Thus, the labels of 'embedded' and 'real-time'

are equally valid for spacecraft.

2.1.3 Traditional Approaches to Flight Software

Flight software, like other embedded programs are designed for a particular processing

model. Such a model dictates the environment in which the source code will run. We will

call this environment the operating system (OS), even though properties offered by the

environment may be much less comprehensive than those of most personal computers

(PCs). The primary task of this operating system is to allocate processor resources to the

various computational functions that must be performed.

Execution Models

During design, software responsibilities are divided into manageable pieces. Most early

software responsibilities consisted of doing the same job repetitively, in a regular cycle

[Bernstein, 1996]. Each periodic task can be then be programmed as its own subroutine.

The earliest types of operating systems know as cyclic executives would sequentially exe-

cute each task2 in a perpetual, timed loop (Figure 2.1).The logic might match this simple

pseudocode:

loop
dotask_A()
dotask_B()
dotask_C()

1. This observation could be applied to aeronautical systems as well.

2. Although some make a distinction, we shall discuss tasks, processes and threads as equivalent concepts.
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cycle period

Figure 2.1 Execution of a cyclic executive.

waituntil (nextcycle)
end loop

Unfortunately, a number of problems plague these systems [Locke, 1992]. First, all task

periods must be a multiple of the shortest task. The greater the variation in cycle times the

more complex the loop structure must be. Second, this arrangement makes it difficult to

separate the relative importance of different tasks. If one task takes too long, other, more

important processes, may not finish their work in time. Third, tasks with long computation

times must be divided into sub-tasks of more manageable duration. Generally, this

approach, while simple, scales poorly as software functions expand.

Concurrency is a concept that removes many of the restrictions of cyclic executives, but

imposes difficulties of its own. In concurrent or multi-processing systems, each task is

viewed as an entity executing in parallel with the other tasks in the system. This is merely

a conceptual model, since single processor systems cannot maintain multiple threads of

execution. The illusion of concurrency is provided by a run-time software component that

selectively gives each task control of the processor (Figure 2.2). Although this added flex-

ibility avoids the complexity of elaborate cyclic systems, we lose the ability to tell exactly

what all other tasks are doing at a given instant. Thus, if more than one task shared a cer-

tain resource (e.g. some memory or an 1/0 device), step must be taken to avoid two tasks

trying to use it at once.

Coordinating processor access for the various tasks is not always straightforward. On one

hand, we wish this scheduler to add minimal overhead to the system, yet we want it to be
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Figure 2.2 Conceptual model of concurrent processing.

as effective and efficient as possible in switching between tasks. Table 2.1 details some of

the arbitration mechanisms and their relative heritage in space systems. Time-sliced sys-

tems are probably the most common mechanism employed in spacecraft after cyclic exec-

utives [Malcom & Utterback, 1999]. These systems eliminate many of the shortcomings

of cyclic executives, and are still inherently simple to design and analyze. Preemptive,

dynamic (priority-based) scheduling is probably one of the most popular schemes for ter-

restrial systems. One of the primary benefits of these systems is the ability to increase sys-

tem responsiveness to aperiodic tasks, i.e. those triggered by events rather than the

passage of time.

Of the static priority schemes, rate monotonic priority assignment (RMPA) [Liu & Lay-

land, 1973], is probably the most popular. The RMPA scheduler is simple to construct and

has low computational complexity. It can guarantee deadlines for any set of tasks with a

net processor load of less than about 70%, and most1 task sets with net utilization of 88%

or less [Lehoczky, et al, 1989]. This technique has been studied extensively in the litera-

ture for both periodic and aperiodic tasks.

Although this technique is quite popular in terrestrial applications, it has still not been uni-

versally adopted in space systems. Conversations with flight software engineers suggest

1. I.e. for most random sets of tasks with utilization of 88%, RMPA guarantees scheduability. For any par-

ticular set of tasks, we can definitively assess RMPA scheduability.
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TABLE 2.1 Task Scheduling Methods

Task Space
Switching Scheduling Operation description Heritage

Non-Preemptive Static This is essentially a cyclic executive Extensive (e.g
Space Shuttle

[Spector & Gif-
ford, 1984])

Preemptive Static Processes are assigned fixed percentages of Moderate (e.g.
execution time. When a time-slice expires, Hete-2 [Crew,
execution of the task is suspended until the 2002])
next time-slice.

Non-Preemptive Dynamic Tasks may execute to completion but selec- None known
tion of next task to run is performed at run-
time.

Preemptive Dynamic Task selection usually based on dynamic or Some (e.g. Mars
static priority system. Highest priority Pathfinder
enabled task gets the use of the CPU. Can be [Stolper, 1999])
very efficient.

that this due mainly to risk tolerance. Using commercial operating systems in spacecraft is

now quite commonplace [Malcom & Utterback, 1999] and interest in preemptive multi-

tasking is growing [Kolcio, et al, 1999].

Terrestrial embedded systems have generally adopted these flexible process models.

Moreover, researchers are increasingly concerned with execution, not just on uniprocessor

systems but in real-time distributed networks [Sha, et al, 1994]. It is generally acknowl-

edged that robust, flexible communications services are essential areas of development to

manage the complexity of these systems [Kopetz, 2000] [Lee, 2000]. Middleware soft-

ware has been used successfully to add communications abstraction to conventional dis-

tributed systems. There is increasing interest in applying it to aeronautical [Harrison, et al,

1997] and missile systems [Clark, 1991]. We conclude from this trend that space applica-

tions will likely follow.
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2.2 Distributed Systems and Middleware

Many factors have contributed to the rise of distributed computing. Traditionally, most

distributed systems used for banking, aircraft reservations, corporate databases, etc., were

distributed for fault tolerance and traffic management. This represents the classic princi-

ples of distribution. Lately, however, distributed ubiquitous computing has taken on a life

of its own. Fast, capable personal computers have de-emphasized the need for powerful

local servers [Bernstein, et al, 1987]. Connectivity is everywhere - Local Area Net-

works, Wide Area Networks, Wireless Networks, etc. - and is growing more complex

and unpredictable by the day. Communications between all of these heterogeneous com-

ponents requires some help.

In Chapter 1 we discussed the role of abstraction in communications services. In this sec-

tion we explore how abstraction facilitates transparency. Transparency is an essential fea-

ture of distributed systems and can be used in a number of ways. Choosing a middleware

system means choosing a level of abstraction and a communication metaphor. Several

common approaches are examined in the context of embedded and space applications.

2.2.1 Middleware and Transparency

The goal of middleware systems is to provide communications abstraction for the user or

application developer. Abstraction relieves the user from the responsibility of managing

the details of implementation and allows one to concentrate on what is important. Disk

drive structures and directories are abstractions that many people use every day. Commu-

nication abstractions remove the particulars about connections between software compo-

nents. Thus, the developer may spend his time implementing functional, rather than

physical, coordination.

Take for example the simple system shown in Figure 2.3. As a developer you are charged

with creating the software component A which must interact with a preexisting compo-

nent B. Transparency is a type of abstraction that allows the developer a consistent inter-
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face to another software component, regardless of how or where the other component is

implemented. In our example, the interface between A and B is transparent if our interac-

tions remain for many possible implementations of B. Many types of transparency are

possible, and some are more important to distributed systems than others.

interface

I

Figure 2.3 A very simple illustration if software interaction.

I ~

mcesI ~ -oato
Figure 2.4 Dimensions of Distributed Systems Transparency. (Taken from [ISO/IEC, 1996] Dimen-

sions highlighted in green (dark-boxes) are priorities identified for embedded space systems.

An International Standards Organization study on Open Distributed Processing [ISO/IEC,

1996] identified eight dimensions of transparency (Figure 2.4). These areas are interre-

lated and build upon each other. They describe properties of distributed systems of varying

Concurrency
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complexity and importance. We can briefly state the characteristics of each type of trans-

parency [Emmerich, 2000a]:

e Access. Software can interact in the same manner (i.e. exchange informa-
tion), regardless of where it is (local or remote) or how it is implemented.

- Location. Software components can find other components regardless of
location.

" Migration. We can move a component from one host to another without
affecting interaction.

- Replication. Multiple copies of the destination component may exist on dif-
ferent networked machines.

- Concurrency. Users need not be aware of ongoing interactions between other
software and the destination component.

e Scalability. System can grow substantially (more connections, more compo-
nents), yet maintain the same basic interaction mechanism and architecture.

- Performance. Mechanism by which performance is obtained is hidden from
users. May include dynamic load balancing

. Failure. Destination components may fail without affecting consistency of
local component.

Not all of these properties can (or should) be found in all distributed systems. The suitabil-

ity of different varieties of transparency depends on the application. For embedded space

systems, this is especially true. In some situations, a particular type of transparency is not

a priority; in other situations there is considerable justification for not making particular

interactions transparent. After a point, too much transparency works against most real-

time and embedded systems, since fundamentally, the purpose of these systems is centered

around the operation of a particular device. When you load a web page, you don't care

which one of the Wall Street Journal web-servers sends you the information, but when you

print a document, you want it to appear on the printer next to your desk.

We make the following assumptions about transparency in space systems. Access and

location transparency are generally useful in embedded systems. Migration transparency

is useful within the system's requirements for latency and timing jitter. For space applica-

tions, migration might allow certain software functions to be transferred from ground to

43
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the satellite [Jones, et al, 1998]. Replication is probably not a priority due to the fairly

localized nature of most satellite systems. Some missions may require this more than oth-

ers (e.g in telephony systems, the handset should interface transparently to any satellite

overhead). Concurrency is fairly important when several layers of control systems must be

monitored and coordinated. At the highest level, only scalability is applicable to most

space missions. Even still, the degree to which we need scalability is limited. Making

allowance for anticipated services, or system upgrades is sensible, but over-design is

wasteful. Another important consideration is range of scalability needed. Terrestrial sys-

tems may scale by several orders of magnitude, but the requirements for space systems is

typically much less. We do not consider performance transparency of primary importance

to space systems, but it may be useful to distributed telecommunications systems. Finally,

we specifically omit failure transparency due to the nature of real-time systems. This is not

to say that space systems should not be fault-tolerant, rather that they should rarely be

transparently so. Designers of hard real-time systems need explicit control of the recovery

or compensation mechanism in the event of a fault or failure.

Each middleware product conveys these properties to a greater or lesser extent. The extent

to which system transparency matches the needs of embedded systems will determine its

usefulness.

2.2.2 Common Middleware

There are countless examples of middleware systems in use today. Each presents the user

with some degree of transparency. Although all provide certain types of communications

abstraction there are a number of ways in which they achieve this. Different systems use

different metaphors for communication. These metaphors define the types of services that

are provided and the way in which the users' programs interact with each other. Choosing

a middleware system involves matching the interaction mechanism to the application;

some tasks are more naturally expressed using a particular middleware. Other consider-

ations, like platform support, and heritage may be important, depending on the applica-
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tion. With patience, it's possible to mimic one metaphor with metaphor. At best this

wastes otherwise productive time, at worst, it's possible to introduce errors [Lee, 2000].

Examples and explanations of common middleware systems are shown in Table 2.2. The

next section considers in detail, those systems most appropriate for embedded space sys-

tems.

TABLE 2.2 Comparison of Common Middleware Systems

Metaphor Explanation Examples Pros Cons

Transactional Transactions are con- IBM's CICS Very robust Narrow type of
ducted between clients [Hudders, fault tolerance, communica-
and servers. Two-phase 1994], BEA's concurrency tion. High over-
commit [Bernstein, et al, Tuxedo [Hall, control and scal- head, awkward
1987] ensures integrity of 1996] ability. implementation
databases, banking, etc. of arbitrary ser-

vices.

Procedural Remote clients can Sun's RPC Many sup- Limited types of
invoke specified proce- [Sun, 1988] ported plat- interaction. poor
dures on host computer. forms, very scaling and fault

mature design. tolerance.

Message-Passing Sender writes message Java Message Flexible, con- Not very trans-
and then sends to Queue [Hapner, ceptually sim- parent, poor
receiver. Messages et al, 2001], ple, can be used scaling, can lead
queued at destination PVM [Geist et to implement to deadlock.
until asynchronous al 1996], and other systems.
receive is executed. many other vari-

ants

Distributed Service provides illusion Berkeley's Net- Very intuitive Scales poorly,
Shared Memory of large, shared memory work of Work- approach for not very

space. stations high-perfor- abstract, effi-
[Anderson, et al, mance comput- ciency depen-

1995], Brazos ing., efficient, dent on fairly
[Speight & Ben- fault tolerant. predictable syn-

nett, 1998] chronization.

Publish-Sub- Servers advertise data CORBA event Simple, fault Constrained
scribe services and update pub- service [OMG, tolerant, fairly interaction

lished values, clients sub- 2001], RT-PS scalable and mechanism.
scribe to services to [Rajkumar, et al, easily analyzed.
receive copies of values. 1995]

Object Clients may create, CORBA [OMG, Flexible, intui- High overhead.
invoke, and reference 2000], DCOM, tive approach Forces object-
remotely-implemented [Hortsmann & for many sys- oriented
objects. Objects have per- Kirtland, 1997] tems. Widely approach.
sistence on server. supported, pow-

erful.
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2.3 Selected Prior Work

This thesis explores the development of real-time middleware for advanced space sys-

tems. Communications abstractions built into the software allow rapid-prototyping of

high-fidelity simulations and help reduce the effort programmers must devote to managing

software interconnections. Presently, few research programs exist that explicitly consider

middleware for space applications, but parallels can be drawn from real-time middleware

research and general efforts to improve flight software development.

2.3.1 Space Software Systems

Significant interest in software innovation exists within the scientific and small satellite

communities. The former might adopt new technology as part of the mission definition,

the later, because of budget limitations. While research into spacecraft autonomy is proba-

bly the most high-profile effort to improve flight software engineering, a number of other

efforts address software development in general.

Mission Data Systems (MDS)

MIDS is a research program at the Jet Propulsion Laboratory. Its initial definition identified

thirteen software architecture themes [Dvorak, et al, 1999] that would define a common

framework for flight software design and implementation. Examples of prominent MDS

principles include: state-centric design, explicit use of models, goal-directed behaviour,

and separation of data management from transport. MDS is closely tied to many of the

autonomy research programs at JPL. We acknowledge that much of the initial inspiration

for the GRRDE middleware system stemmed from the early conceptual definition of

MIDS. Our emphasis on explicit state specification and mobility (Section 4.1.2) is derived

from MDS concepts. However, as the MIDS concept matured [Dvorak, et al, 2000], it

became less of a design approach, and more of a comprehensive product. Although useful

for autonomy development, its reliance on goal-attainment and model-based behaviours

suggested a substantial 'buy-in' threshold for designers. Our approach provides an incre-

mental rather than revolutionary benefit, by facilitating rather than replacing current
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design practice. So, while GRRDE shares some founding principles with MIDS, but the

focus of implementation is very different.

SuperMOCA

The Space Project Mission Operations Control Architecture (SuperMOCA) was devel-

oped at the Jet Propulsion Laboratory [Jones, et al, 1998]. SuperMOCA is not specifically

described as a middleware, but many of the services the system provides serve the same

purpose. The system is designed to provide abstract, self identifying interfaces between

users and remote devices. Any device connected to the SuperMOCA network is encapsu-

lated by direct I/O drivers and an 1/0 abstraction layer. Generic monitor and control mech-

anisms are then available to system operators, who can operate the spacecraft or

instrument, without the need for device-specific training. The architecture is object based,

includes a data-transport protocol and has provisions for transparent migration of func-

tionality from ground to space. The status of the program goals is unclear, but the

approach seems promising for high-level interaction.

Autonomy Testbed Environment (ATBE)

Also developed at JPL, ATBE is an approach to real-time simulation development for

autonomous flight software systems [Biesiadecki, et al, 1997]. It integrates the simulation

capabilities of the award-winning Dynamics Algorithms for Real-Time Simulation

(DARTS) toolkits [Jain & Man, 1992], the DARTS-shell (Dshell), and component models

into a common architectural framework for real-time simulation. The system is object-ori-

ented and allows extensive visibility into the running simulation. Simulation elements are

reconfigurable at run-time, which makes it a simple matter to inject faults or examine dif-

ferent operational approaches. ATBE has been used both in prototyping new missions and

working around faults in existing ones. While the architecture interfaces with existing

flight software, it is not designed to be included as part of the deployed flight software.
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Object Agent

The Object Agent (OA) concept has been developed by researchers at Princeton Satellite

Systems [Surka, et al, 2001]. OA is an agent-based approach to developing spacecraft

flight software for distributed satellite systems. The authors describe a common frame-

work for self-organization and flexible communication between software components.

Each software agent obsesses a number of skills that execute concurrently and implement

the functions of the agent module. Communication between agents is through natural-lan-

guage messages. These messages contain data, addressing information, and time-stamps.

They also contain a semantic identifier that specifies the structure, content, and intention

of the message body. Simulations using OA software has demonstrated cluster formation-

flying and collision avoidance algorithms.

2.3.2 Distributed Embedded Systems

Distributed implementations of embedded software are on the rise. Researchers see oppor-

tunities to apply the techniques of conventional distributed computing to advance the

capabilities of physical devices [Bates, 1998]. Reconfigurable and composable systems

are desirable goals [Kopetz, 2000], but experts acknowledge that transitions are not

always easy. Temporal performance analysis is generally not composable [Lee, 2000] and

local optimization can easily lead to mediocre global behaviour [Sha, et al, 1994]. In this

section we examine several current approaches to real-time middleware.

Common Object Request Broker Architecture (CORBA)

CORBA is an open, distributed computing standard developed by the Object Management

Group. As part of the general specification, it includes specific provision for real-time

implementations [OMG 2000]. CORBA is an object-based middleware service, designed

to allow user client and server software to operate transparently with different, vendor-

supplied transport mechanisms (i.e. the object request brokers or ORBs). So long as ORB

implementations conform to the basic specifications, vendors are free to make different
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design and domain optimizations. Space does not permit an exhaustive discussion of

CORBA architecture, but many tutorials are available1 .

CORBA is probably the single most popular middleware system in use today, thanks to its

extensive library of optional services and cross-platform support [Bates, 1998]. A good

survey of Real-Time CORBA research is provided by Fay-Wolfe, et al [Fay-Wolfe, et al,

2000]. Several ORB implementations have been marketed as real-time, but many are still

unsuited for hard real-time applications. Researchers at the University of Washington

[Schmidt, et al, 1997] have designed The ACE ORB (TAO) from scratch to provide pre-

dictable and differentiated services in hard real-time environments. Testing results from

this show promise of achieving acceptable real-time performance.

In addition to the basic ORB functions, the CORBA specifications also detail optional dis-

tributed services which ORB vendors may include with their products. The CORBA Event

Service [OMG, 2001] specification adds extra client mechanisms to the basic ORB ser-

vices. Normal interaction between client and server is through synchronous invocation.

The event service allows asynchronous, 'push' type group communication similar to pub-

lish-subscribe systems [Emmerich, 2000]. Studies are underway examining the use of the

CORBA event service with aeronautical flight control systems [Harrison, et al, 1997].

Simplex

The Simplex architecture was developed at the Software Engineering Institute (SEI) at

Carnegie Mellon University [Seto, et al, 1998]. Simplex is a robust approach to reconfig-

urable control systems. The architecture allows designers to build modular control sys-

tems with variable levels of performance and analytic redundancy. Key components

include I/O modules, control modules, switching logic, and the underlying communica-

tions system. Users provide several control modules, typically including some with low

performance but high robustness. The switching logic is designed to exchange control-

1. www.corba.org is a good place to start.
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laws 'on-the-fly' if the safety or stability of the system is at risk. This also allows the user

to upgrade these control modules, while the system is running with guarantees of system

stability. Researchers [Polze, et al, 2000] have integrated simplex components with

CORBA to create tele-laboratory environments.

Supporting Simplex communications is a real-time publish-subscribe architecture devel-

oped by Rajkumar, et al [Rajkumar, et al, 1995], also from the Software Engineering Insti-

tute. It provides dependable real-time event-driven services between a network of

processing nodes. Clients can publish or subscribe to named services. The designers pro-

vide enough transparency in the system operation to support conventional real-time analy-

sis techniques.

2.4 The GRRDE Approach

We feel that the GRRDE approach is valuable, not just as useful middleware product, but

as a demonstration of technology transfer between conventional embedded applications

and the space industry. GRDDE improves the state of space-based middleware in a num-

ber of ways.

Information architectures for distributed space systems are only slowly being examined in

methodical ways. Current plans to enhance software development, such as MDS, require

significant risk and commitment from the systems developer. In traditional applications

such as geostationary communications satellites the promised benefits may not outweigh

the risks. In comparison, the services that GRRDE offers are both intuitive and can be

scrutinized by normal software engineering methods. As programs move toward distrib-

uted computation, or simply want to reduce the programmers' ancillary workload, abstract

communications services are valuable.

Both SuperMOCA and Object Agent offer communications abstractions to the software

engineer. Although they address the distributed nature of emerging space systems, they do

not deal directly with hard real-time concerns. These systems acknowledge the role of
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hard real-time software, but consider it a localized, encapsulated part of the system. Con-

sequently, the communication services are not presented with hard guarantees, or precise

semantics. In contrast, GRRDE specifically targets distributed real-time systems. Our ser-

vices are designed to aid development of the real-time software itself, and not just the

high-level coordination.

CORBA and other object-based middleware, despite their popularity, may not be the best

solution for all embedded applications. First, from an engineering perspective the overuse

of object-oriented (00) techniques has been criticized in high reliability systems [Hatton,

1998]. Furthermore, the functional metaphor of 00-design is usually more appropriate to

conventional data-oriented software than function oriented real-time software [Wright &

Williams, 1993]. Second, testing and validation can be difficult. As systems become

increasingly abstract the fine-grain testing required for flight systems becomes difficult.

This problem is exacerbated if the ORB source-code is not available. Third, CORBA adds

significant overhead to systems that may not need all of its properties. GRRDE services

are designed to produce low computational and memory overhead.

Simplex, is a perhaps the closest competitor to GRRDE and offers a similar collection of

services. The differences between the two systems and the specific benefits of GRRDE are

best understood after a careful examination of the GRRDE services and design. Therefore,

we shall defer a comparison to this system until Chapter 11.
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Chapter 3

THE GFLOPS TESTBED

This chapter presents the design of the simulator testbed known as the Generalized FLight

Operations Processing Simulator (GFLOPS). Conceived as part of a study on distributed

satellite systems, GFLOPS was to be a simulation testbed used to study the information

processing requirements of collaborative satellite missions. Early analysis of missions

such as TechSat 21 [Enright, et al, 1999] suggest that on-board processing capabilities will

be crucial in systems that must digest large volumes of data. The original GFLOPS con-

cept was to provide a generic platform with which to study information processing archi-

tectures for such missions. It was during the construction and early operation of the

testbed that we identified the need for a system like GRRDE. In this chapter we examine

the goals of the GFLOPS program, the construction of the testbed, and the evolution of the

GRRDE middleware concept.

3.1 GFLOPS Formulation

The mandate of the GFLOPS program was to develop a software testbed suitable for sim-

ulating computationally intensive space missions. Its role was to facilitate software design

and provide a feasible migration path from software simulation, through 'hardware-in-the-

loop-testing', to deployed flight code. Balanced with the requirement for direct applica-

tion was the desire to build a system capable of supporting not one, but an entire class of

missions. Reconciling the requirements of generality and specificity appeared difficult.

53
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The fundamental question was that of architecture; what would the testbed look like? Like

any engineering process, this development required trade-offs. Accurate representation of

certain capabilities precluded incorporation of others. The demands of traceability and

accuracy suggested real-time software and embedded processors, while usability and flex-

ibility considerations favoured other configurations. Moreover, the mechanism for the

simulation side of the testbed operation had to be considered. Flight software would be

useless without an environment with which to interact.

After consultation with industry and Air Force sponsors, the GFLOPS architecture was

conceived. The simulator 'flight'-software would run in a real-time environment on pro-

cessor families with space experience. System flexibility would be maintained, by select-

ing technologies that reflect projected future capabilities in space-qualified processors

rather than current norms. Simulator tasks would be performed by conventional PCs.

These PCs would also serve as the user's primary interface to running simulations.

Since our targeted missions involved distributed satellites, it was only natural that the sim-

ulation framework be inherently distributed as well. This provided three key benefits.

First, flight-software and simulation software are physically separated. The distinct sepa-

ration adheres to the "fly as you test, test as you fly" maxim, and removes the temptation

to tailor flight software changes to the quirks of the simulator. It also helps to ensure that

errors are not inadvertently introduced when moving from simulation to flight hardware.

Second, distribution would allow additional flexibility in representing different spacecraft

bus structures. The range of architectures that could be represented include distributed

processing within a spacecraft, tightly coupled collaboration for a cluster of spacecraft, or

quasi-independent computation for a constellation.

Finally, 'transparent' distribution facilitates the migration of advanced software capabili-

ties from the ground into space. Modules developed and scrutinized on the earthbound

side of the command/data path, can later be moved onto the spacecraft without affecting

the overall structure of data flow.
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The following sections explore the details of the GFLOPS construction, its capabilities

and limitations, and the emergence of the GRRDE middleware concept.

3.2 Testbed Anatomy

Although the GFLOPS testbed is primarily a software simulator, attempts were made in

design to reflect the demands of the embedded computing environment. GFLOPS is

founded on system processors chosen based on traceability to space-qualified hardware.

Although many spacecraft still employ cyclic executives, such a solution did not grant us

the flexibility that we required. Instead, we selected a modem, commercial real-time oper-

ating system (RTOS). Finally, software coding standards were developed to provide the

user with guidance in simulation development.

3.2.1 Physical Architecture

The physical architecture of the testbed includes three primary elements: the mock space-

craft processors, support and simulation computers, and a high-speed network

(Figure 3.1). All spacecraft flight software executes on the embedded processors and the

simulation tasks are performed by conventional PCs. All of these components are con-

nected by a high speed network.

The current hardware configuration for the GFLOPS system consists of both embedded

and conventional computers as well as high-speed networking technology. Eight,

400MHz PowerPC750 processors were selected to represent advanced but attainable

spacecraft processors. The computers are manufactured by Force Computing and at the

time of purchase were considered high-end embedded processors. Each embedded com-

puter is equipped with 256 MB of memory, 512KB of non-volatile memory (NVRAM),

two serial ports and a 10OBase-T network adapter. These processors use big-endian byte-

ordering, an extra concern when moving data between the mock spacecraft and the little-

endian ground computers. The processors are capable of a peak processing throughput of

approximately 500 million floating point operations per second. The PPC750 is in the
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Switched
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Embedded Processors (x8)

Figure 3.1 The Physical Testbed Architecture.

same processor family as the PPC603E, a design that is currently being radiation hardened

[Brown, 2001].

The embedded computers are not attached to a mass storage device (e.g. a hard disk)

although the operating system simulates such a device with a ram-disk. At present, the

operating system and user applications are loaded from the network at system start. Such a

configuration was deemed appropriate in a prototyping system such as GFLOPS.

Simulation tasks and ground station monitoring is performed by a number of conventional

personal computers. These computers serve a dual purpose. First, they act as development

workstations when the testbed is not in operation. Software development is accomplished

with standard editing tools, and executable code is produced with the Green Hills MULTI

cross-compiler. Second, during simulation operation, the PCs perform the various simula-

tion tasks and act as an interface to the running simulation. The current configuration of

the GFLOPS testbed employs three of these support computers. Typical task divisions are

depicted in the above figure. One terminal acts as a user terminal, operating in context of
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the simulation. The other two machines comprise the simulator. Environmental and 'engi-

neering' simulation is performed on one computer, while the other replicates the payload

operation.

Linking the computers is a local area network connected with 10OBase-T ethernet. The

network switch provides 100Mbps (duplex) capacity to each node. This network carries

two types of data. The primary traffic is information transferred in the context of the simu-

lation and carries inter-processor, inter-satellite, or satellite-to-ground messages. Second-

ary traffic represents connections to the simulators, that is, data collocated from sensors or

destined for actuators.

Although this network design is not indicative of actual connection topologies or capaci-

ties in most systems, it was judged to be the best way to ensure testbed flexibility. The

point-to-point throughput is comparable to some inter-satellite link capacities [Garrison, et

al, 1995] and the selective connectivity or availability can always be accommodated in the

flight-software design (Section 7.1).

3.2.2 Operating System

Historically, embedded systems such as spacecraft typically operate with a minimal oper-

ating system [Burns & Wellings, 1996], if they have any at all. Simple systems such as

cyclic executives execute tasks in a fixed order and timing. While this approach is justifi-

able in deployed systems where processing and memory resources are highly constrained,

it lacks the flexibility needed for rapid software prototyping. Additionally, management of

the task sequencing can become quite burdensome for the developer as the project size

grows [Verissimo & Rodrigues, 2001]. Consequently, we selected a robust modern operat-

ing system that provided hard real-time guarantees, but permitted more flexible computa-

tional models.
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The RTOS selected was the OSE1 operating system provided by ENEA Systems. The pro-

cess model is based upon preemption and static priority assignments. Prioritized processes

are designed to handle the bulk of system load, but other process types are also supported

(i.e. timer or hardware interrupts, background). Flexible memory protection is offered and

the designer can group related processes into common address spaces. OSE is a modem

real-time OS that supports many features that make it particularly appealing for use in dis-

tributed systems. Inter-Process Communication (IPC) in OSE is achieved through mes-

sage passing (termed signals in the OSE parlance). Furthermore, the IPC for OSE operates

transparently across memory protection boundaries and through network links. The oper-

ating system also supports the capacity to load executable code at runtime. This facility is

a boon to simulation debugging by permitting correction of small errors without the need

for rebuilding the entire system.

Users of GFLOPS are assumed to have a working knowledge of OSE. The Enea website 2

provides high level information about the operating system, and the product manuals pro-

vide a good tutorial material. OSE is a modular operating system; developers may include

only features that they require. Two methods of application development are supported. In

monolithic kernels, the user's applications and the operating system are compiled together

into one binary file. Processes may be created dynamically, but all executable code is

loaded into memory at once. This approach is most efficient in its use of system memory.

Alternately, OSE also supports the creation of loadable modules. The operating system

must still be compiled into a binary file, and loaded at system start, but user applications

can be compiled separately. The application modules can be stored externally and loaded

into system memory (e.g. from network or hard drive) while the system is running. This

approach reduces compile times for user applications, and allows flexible system configu-

ration. Using loadable modules will incur some memory overhead since some executable

code must be duplicated in each module, and the kernel must support the extra routines to

1. To the best of our knowledge OSE is not an acronym.

2. www.enea.com
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handle loading and unloading the modules. However, it is a simple matter to use loadable

modules for prototyping and early development, and then transition to a monolithic kernel

later in the project. This approach is typical of GFLOPS development.

The following is a list of the commonly used OSE packages:

- Link Handler: Provides transparent network and serial connections to sup-
port message passing between processors. Users can write driver software to
integrate OSE with non-standard network designs.

- Real-time clock: This is a coarse timing service. It generates notification
'alarms' at Is granularity, but these can be set a long time in advance (e.g.
days or more).

e Time-out server: This is a complimentary service to the real-time clock. The
Time-out server provides notifications at 1 ms granularity, but are inefficient
for very long intervals (several hours)

- OSE name-server: This package provides a distributed service registry for a
network of computers running OSE kernels'. Processes may register ser-
vices with the local name server. These services are identified by a text
string. Other processes, either local or remote, may query the name-server to
obtain the identity of the provider.

e Program Handler/Loader: This package manages loading and running exe-
cutable modules. Modules can be loaded automatically by configuration
scripts, or in an ad hoc fashion by the user.

There is a common dilemma in the development of embedded software. The more one

commits to a particular operating system, the greater the range of tools and services the

designer has to choose from; i.e. the less they have to develop themselves. Unfortunately

these specialized features are often particular to the specific OS. Code or tools developed

for one operating system will not transfer easily to another. Development of GFLOPS and

GRRDE adopts an inelegant, but pragmatic solution. Since the number of software devel-

opers was limited, OSE capabilities were exploited whenever possible.

In defense of this approach, it can be argued that the promise of effortless embedded soft-

ware portability is largely illusory. Even if corresponding functions exist, their temporal

1. It is not the same thing as a Domain Name Server



60 THE GFLOPS TESTBED

behaviour may differ requiring additional redesign or re-validation. Furthermore, when

developer resources are constrained, one must make every effort to use available tools.

Fully exploiting the capabilities of OSE provided the most effective return on our invest-

ment of time (i.e. it saved development time) and money (i.e. we had already paid for

those extra capabilities).

3.2.3 Language Support

Choosing languages and coding conventions for real-time development is not always easy.

This choice must balance traditional RT concerns of determinism, speed and space effi-

ciency with more modern interests in readability, extensibility and expressiveness. On the

other hand, object-oriented languages offer abstraction, encapsulation and the promise of

reusability.

Despite the elegance that this strategy offers, the relatively risk-averse space community

has typically been reluctant to adopt object-oriented programming on a large scale.

Embedded systems frequently run into trouble when trying to employ source code not

designed or particularly well suited for reuse. The failure of the maiden voyage of the Ari-

ane 5 can be directly attributed to just such an occurrence (Lions, 1996).

The language selection philosophy of GLFOPS is to take an aggressive approach to adopt-

ing contemporary software engineering techniques, while retaining credibility with the

spacecraft software community. To achieve these goals the suggested language convention

is that of Embedded C++. EC++ is a subset of modern C++ that includes many of the

important features of object-oriented programming (OOP) while acknowledging that the

eventual target for the code is an embedded application. The restrictions on code content

are driven by the following rationale:

1. Minimize memory usage and code size: Embedded processors typically pos-
sess only a fraction of the speed or memory of desktop computers. Further-
more for economic reasons it is desirable to maintain high processor loading
(> 80%). Some C++ constructs and features can lead to significant inflation
in both executable size and memory usage.
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2. Maintain determinism: Timing and sequencing are critical to the successful
operation of embedded systems. Wherever possible these guarantees must be
maintained.

3. Promote a specification appropriate to the application: There are some fea-
tures of C++ that do not truly contribute to run-time overhead, yet are not
directly useful in embedded applications.

The following list describes the features of C++ that have been omitted from the EC++

specification:

- Mutable Specifier

- Exception Handling

- Runtime Type Identification

- Namespaces

- Templates

- Multiple and Virtual Inheritance

The interested reader is encouraged to refer to the official specification for further infor-

mation [EC++, 2002].

Certain strictures are commonly enforced when developing software for space or embed-

ded applications [e.g TRW, 1994]. The most striking of these is the prohibition against

dynamic memory allocation. Generally speaking, the allowable behaviours are more

structured and restricted. Determinism dominates flexibility. This need for determinism

spans both time and space. Memory garbage collection can create poorly characterized

delays, and running out of memory can be disastrous. Many RTOSs do not have heap

management facilities at all. For similar reasons, the use of recursive algorithms are usu-

ally forbidden. Developers must maintain precise control over memory resources and pro-

cessor access.

Some latitude can be permitted with regards to the strictness of these conventions. In

many real scenarios it will be up to the lead software engineer to determine the limits of

acceptable coding. Restrictions can be relaxed for some applications. For instance OSE
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has an optional heap manager capability and EC++ has variants that allow templates and

exception handling. Careful consideration should temper the use of such facilities.

3.2.4 Style and Naming Conventions

Many resources are available, providing tips and suggestions for good general program-

ming practice. Some of the practices adopted for general programming are applicable to

embedded systems. Other techniques must also be adopted to reflect particular idiosyncra-

sies of the real-time programming environment. Included in the appendix are several

papers to this effect. One can summarize the suggestions into four general areas:

1. Process. These tips concern the practice of engineering entire software sys-
tems. When the system is complex and under concurrent development by
many parties, steps are needed to ensure compatibility and ease of debug-
ging.

2. Style. These suggestions relate to the physical appearance and structure of
the code itself. Debugging one's own code may take an hour; debugging
someone else's may take all day. Maintaining uniform and readable code can
greatly increase the maintainability of software projects. While presently
there is not an enforced style, adopting the suggested expression and com-
menting suggestions is encouraged. Regarding bracing it is suggested that
users choose from either the KNR or One-True-Brace styles (Figure 3.2).

KNR Bracing:

if (foo (int a, char b))
{

float baz;

}

One-True-Bracing:

if (foo(int a, char b))
float baz;

}
Figure 3.2 The two suggested bracing styles. Either one is accept-

able.
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3. Variable Naming. Related to the previous point, conventions on naming vari-
ables, promote readable, maintainable code. For example SERTS naming
convention [Stewart, 1999a] is an insightful specification. While not all
existing code conforms to this standard, it is suggested that it be adopted for
further projects. To further enhance readability the type-specific prefixes
given in Table 3.1 are encouraged.

TABLE 3.1 Suggested Naming prefixes for GRRDE

Variable Type Name Prefix Example

int i iCount

unsigned int n nColumns

float f fSum

double d dInput

char * or string s sName

Custom Struct st stAddress

Custom Class c cMyObject

PROCESSa pr prLeader

bool b bActive

pointer p pCurrent

atomic objectb ao aoAttitude

class/struct data m_? miIndex
member

a. OSE Specific

b. GFLOPS Specific

3.3 Strengths and Limitations

All testbeds and simulations must make some pragmatic concessions to scope. Almost by

definition, a testbed must abstract away certain details of the system that you are trying to

represent so that you can explore the questions of interest. Thus, it is insightful to reflect

on the capabilities of the GFLOPS architecture and to determine those features of space

systems that it can represent well and those whose investigation would require another

facility. Recognition of the limitations to a simulation technology are necessary to prevent

situations where undue effort is expended to try and implement behaviours that the simu-
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lator is ill-equipped to represent. Worse still, is a temptation to tailor a flight software solu-

tion to the peculiarities of the simulator rather than the real world environment.

The particular strengths of the GFLOPS architecture are best illustrated in comparison to

some of its deficiencies. The least representative component of the GFLOPS systems is

the network that connects the processors. Network capacity must be shared between con-

textual traffic and simulated data. The topology of the network is essentially a

'star'(Figure 3.3). There is nothing physically stopping any processor from talking

directly to another member of the network regardless of the availability of such a connec-

tion in the real system. Furthermore, the latency and error rates of these communications

links are qualitatively different than those likely to be encountered in a space system.

Figure 3.3 GFLOPS Network Configuration. Not
shown.

all nodes are

It is true that GFLOPS does not have the capability of easily representing these details, but

these problems are of only minor concern from the point of view of the software designer.

Careful design and abstraction limits the extent to which the developer must deal with

these issues directly.
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System limitations must sometimes be expressed directly in software. For example, since

satellites can only communicate to the ground-station when it is in view, then it only

makes sense for the satellite to try and communicate when it knows that the ground-station

is visible. This knowledge can be conveyed to the flight software through simulated 'car-

rier-detect' sensors, for example. That the operating system provides certain connectivity,

does not mean the user has to use the link until there is reason to believe that it is present.

The same argument might be used when discussing link capacity. If the simulated mission

has data pathways with less capacity than the GFLOPS network provides, it is incumbent

on the developer to ensure that the flight software uses only the design bandwidth.

Although the delivery timing may be different in GFLOPS, effective functional represen-

tation of low-capacity links is not outside the capabilities of GFLOPS.

To account for other discrepancies between GFLOPS networking and simulated commu-

nication systems, developers can use the same principles of abstraction that are employed

in real designs. Distributed systems have long employed functional layering to hide cer-

tain communications details from the developer. For instance, the Open Systems Intercon-

nect (OSI) [ISO/IEC, 1994] model allows web-page developers to ignore error correction,

data routing, and a host of other details of the internet's internal operation. All of these

functions are performed by low levels of software. The same holds true for a space sys-

tem. Specialized communication hardware and low level software handle the framing,

error checking, re-transmit requests, and other similar concerns. To the developer writing

processing software, all they need to know is: which satellite they have links to, and the

capacity that they are permitted on each link.

Another area in which GFLOPS does not provide a perfect simulation is directly at the

hardware/software interface. Although GFLOPS tries to provide a platform capable of

detailed, bit-level I/O, not all types of interactions are possible. Representing interrupt

driven 1/0 is difficult. OSE allows the creation of software-triggered interrupts, but their

responsiveness is not equivalent to hardware interrupts. Second, since the GFLOPS 1/0

interface is 'piped' through the network, sophisticated, time-dependent interactions with
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external devices may not be feasible. Neither of these should cause much of a concern to

the developer for two reasons. First, over-reliance on interrupt driven 1/0 represents a poor

design in the first place [Stewart, 1999a]. Second, embedded software that provides a

layer of 1/0 abstraction is generally regarded as being conducive to system reliability

[Sha, et al, 1994]. GFLOPS can be used to simulate sensors and actuators at an abstraction

layer. Hence, during system deployment, this abstraction layer must be replaced, but most

of the remaining software can potentially remain intact.

Despite the difficulty in representing some details of system interfaces to hardware,

GFLOPS can significantly aid the software development process in the middle to late

stages of program development. As different elements of mission software migrate from

offline prototypes to real-time environments, GFLOPS provides an excellent platform for

performing embedded software engineering. Developers can map functions to processes,

resolve task interactions and implement system timing functions and yet retain flexibility

in the overall software configuration. Additionally, GFLOPS can support development

when certain software modules are more evolved than others. For example, designers can

begin implementing control algorithms with abstract implementations of sensors and actu-

ators. As the development progresses and the interfaces mature, these details can be added

to the simulation.

3.4 Emergence of the GRRDE Concept

During the definition and construction of the GFLOPS testbed, we realized that if

GFLOPS was to deliver on its promises improving the software engineering process, we

would have to develop a common framework for developing simulations. We assumed

that users would adopt a modular development approach, but this alone would not be

enough to significantly improve the software engineering process. Even with a common

operating system and formalized programming conventions, software interactions would

still need to be laboriously managed (Figure 3.4a).
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Figure 3.4 The Emergence of the GRRDE concept. On its own, each process must explicitly manage

its connectivity (a). GRRDE provides a structured, abstract bridge between user software
modules (b).

It was at this point that the GRRDE concept first emerged. OSE enabled transparent inter-

processor message passing, but GRRDE would go a step further and provide powerful

abstract communications services that would 'glue' a simulation together (Figure 3.4b).

The challenge was to provide a common approach to developing simulations that would

promote:

- Progressive Development. If each software module is relatively indepen-
dent, this testing and development can be decoupled. Secondary system
functionality can be added to simulations once key systems are proven.

* Rapid Reconfiguration. Different implementations of the same functional
block can be exchanged so long as the external interface remains consistent.

" Functional Layering and Migration. Abstract monitoring and supervision
can be introduced without affecting low-level software operation.

A middleware (Section 2.2) system seems to offer the best means of achieving transparent

interoperability, but the constraints of developing software for embedded applications

could not be overlooked. Some existing middleware offered real-time implementations,

but the services they provided did not seem to be ideally matched to typical flight software

design. Thus was the GRRDE concept conceived.
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Chapter 4

THE DESIGN OF THE GRRDE REAL-
TIME MIDDLEWARE

GFLOPS promotes efficient, reliable flight software development through a flexible and

capable real-time simulation environment. Processing and memory constraints common to

deployed flight software can conflict with the needs for instrumentation and reconfigura-

tion during development. To address this problem, GFLOPS adds a minimally invasive

service layer to the embedded operating system that promotes debugging and allows rapid,

modular prototyping. This is the GFLOPS Rapid Real-Time Development Environment

(GRRDE) middleware.

GRRDE provides publish-subscribe communications services to user supplied software

modules. This strategy affords the user great flexibility in sub-function design and imple-

mentation while reducing the effort spent in managing software interfaces. This chapter

presents the communications services offered by GRRDE. We begin with a discussion of

modular software design in general. We then present a functional description of the two

classes of publish-subscribe services that GRRDE offers. Finally, we consider the internal

design of the software and examine the role that the user must play in constructing soft-

ware modules.

4.1 Approaches to Software Design

The GRRDE middleware concept was conceived as a means of standardizing the

approach to developing simulations with GFLOPS. The GRRDE run-time components
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provide a glue that binds simulations together, but before it can be effective, flight soft-

ware and simulators must exist. At the core of this design approach is modular functional

decomposition. In this section, we present a summary of this common technique and the

variations that we suggest for GRRDE-based development. We do not claim any particular

innovation the theory of modular software design. Our changes represent shadings of phi-

losophy adopted to make the resulting design more compatible with the GRRDE services.

4.1.1 Modular Software Design

The techniques known as modular software design have become so commonplace that

they are rarely spoken of as such. They are simply called software design techniques. It is

easy to forget that it was not too long ago that they were considered revolutionary ideas

[Parnas, 1972] [Bergland, 1981]. Instead of belabouring what is essentially, common

knowledge, this section first presents a quick overview of the essential features of modular

design. We then discusses the near ubiquitous trend towards object oriented design and

programming and finish with a consideration of how embedded applications influence the

design process.

Modular software design refers simply to the structured and iterative decomposition of

system function into identifiable sub-functions. Each sub-function should be responsible

for a single task and have a clearly defined interface to other components [Bergland,

1981]. Effective design minimizes the interconnections between functional elements.

Fewer couplings between modules creates systems that are less complex and less prone to

error. Software structured in this manner can be implemented by separate teams, is easier

to test, and is more suitable for reuse from one project to the next.

A complimentary effort to functional decomposition is the process of interface definition.

Good software modules are black boxes; from the outside, the substitution or refinement

of an internal algorithm should not have a direct effect on other components. They should

encapsulate functionality. Not only is it necessary to document the data paths between

modules, but the real-time nature of the application requires that temporal information be
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specified as well. Careful attention should be paid to the units of measurement implicit in

measured or calculated quantities. Temporal specifications typically include quantities

such as task period, response time, and criticality. Explicit enumeration of all dependen-

cies and interactions helps reduce the potential for hidden interfaces, known to be prime

contributors to software-related failures [Leveson 1995].

Conventional software engineers commonly use object-oriented techniques to manage the

complexity of large projects. These schemes provide a unifying metaphor for analysis,

design and implementation that remains effective as the problem size grows. Object-ori-

ented (00) methods build on techniques of encapsulation and data abstraction developed

for modular design. Instead of simply adopting these principles as conventions, 00 pro-

gramming languages implement these features directly in the language definition.

Several remarks must be made that relate specifically to design techniques appropriate for

embedded systems. First, many traditional software applications are data-oriented, and

strict 00 analysis maintains that "objects are nouns". In contrast, real-time systems are

generally oriented towards function more than data [Wright & Williams, 1993]. Thus,

some of the more rigorous 00 design techniques must be adapted for embedded systems.

Second, embedded software engineering has been reluctant to embrace full fledged object-

oriented programming (OOP) languages. It is worth noting that 00 analysis and design

can be beneficial, even without a full commitment to OOP. Implementation-neutral meth-

ods such as those proposed by Coad/Yourdan [Coad & Yourdan, 1991] are particularly

suitable.

An example can provide insight into the modular design process. Consider the design of a

controller for a simple water heating system (Figure 4.1). It should be noted that this is not

a good design for such a system, it simply illustrates some principles of functional decom-

position. The system must maintain the water level and temperature in a holding tank (R).

Water is drawn into the tank by turning on the motorized pump M. Float sensors (L1,L2)

indicate low and high water marks respectively. An unspecified and time-varying dis-
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charge (Q) removes water from the tank. The controller must regulate the temperature of

the water with the aid of a variable power heating element (P), and a temperature sensor

(). Lastly, the controller must be aware of the potential danger of low water level and

high temperature. This represents an alarm monitor (A).

R

T
L232

P

SM

Figure 4.1 A simple control system example.

A possible decomposed design for this systems is shown in Figure 4.2. The level estimator

performs some simple filtering on the binary data from the float sensors and outputs a

qualitative estimate of water level (e.g. high, nominal, low). The motor controller turns the

pump on and off based on the level of water in the tank. In a practical system, this may

involve a particular start-up sequence for the motor that isn't captured in the simple figure

(Figure 4.1). The temperature controller adjusts the power output to the heater to maintain

the reservoir temperature at a constant level. Overseeing these two modules is an alarm

monitor, whose job is to check for potential safety violations and issue override com-

mands to the low level controllers if anomalous conditions are detected (e.g. automatically

shut off heater if water level is too low). While the design solution to this example is fairly

trivial, it does illustrate principles of modular functional allocation.
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Figure 4.2 Functional decomposition for water heater example.

If GRRDE is to appeal to the embedded community, and flight software developers in par-

ticular, we must acknowledge the role of any existing design culture. Companies develop-

ing software for spacecraft will have their own heritage of design strategies and

conventions. Methodologies requiring drastic changes to the users' design approach are

difficult to sell when reliability and predictability are important. Consequently, GRRDE

attempts to be minimally prescriptive in regulating the user's approach. GRRDE does

require a commitment to modular software design. Without clearly defined interfaces, and

segmented software functionality, the benefits of GRRDE communications services are

lost. Although we have used the Embedded C++ language (Section 3.2.3) in developing

the GRRDE run-time components, user applications need not be object-oriented. Only one

other restriction is made on design. GRRDE is most effective when combined with design

that emphasizes the flow of state information.

4.1.2 State Centric Design

From the design process, specifications can be developed for each functional block. The

specification process describes the abstract function of each module (including timing

information), its inputs, its outputs, and lastly, any external dependencies. A central tenet
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of the GRRDE design process is to think of these features in terms of state information (or

simply state).

The GRRDE concept of state is an extension of the concepts discussed in the previous sec-

tion. Traditional state machine notations used in Object Oriented Analysis and Design

[Costain, 1995] deal with discrete states and transitions. One can think of this in terms of

the mode an object or system is in. In embedded applications it is necessary to reason

about continuous quantities as well. Spacecraft have continuous orbital elements, a chem-

ical reactor may have an internal temperature, etc. Defined generally, a state is a set of

internal variables that reflect a module's perception of some aspect of the system. The

level of state abstraction varies greatly depending on the particular application. Thus,

"The status register of the star-tracker contains OxffecOOO1," represents a possible state as

is, "The spacecraft altitude is 500.021 km," or "The +Z reaction wheel is acting errati-

cally." The level of abstraction can be adapted to the maturity of the design or the degree

of abstraction at which a particular software component operates.

Blocks cannot operate completely independently. Inputs and outputs identified in the

design process should be expressed in terms of state as well. Inputs represent the state

information that the block requires. This interface can either be directly to hardware (i.e. a

sensor reading) or to another software module. Outputs are likewise a specification for a

certain type of information that a module can provide. The data flow through a system can

be charted by identifying the sources (i.e. providers) and sinks (i.e. consumers) of state

information.

Using this emphasis on state information, a block's function can be viewed as operations

on its state (Figure 4.3). In this formulation, each functional module will consist of input

and output states, optional internal states, and logic that provides transformations between

them. Common functions of embedded software include:

- Signal Conditioning. 1/0 interfaces often involve elements of signal process-
ing. Incoming sensor data is frequently filtered or combined with other sen-
sors to provide a synthesized estimate of a more useful quantity. Similarly,
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Figure 4.3 Viewing a module's functions as state transformation.

discrete actuators can be used to provide analog-like performance when
pulse-modulated.

. Control Systems. Digital control systems are features common to many
spacecraft. These feedback driven systems can be used to maintain attitude,
steer antennas and solar arrays, suppress vibration, charge batteries, and reg-
ulate temperature. Control systems must take command inputs, and sensor
readings and produce appropriate output commands to system actuators. All
of these quantities express types of state information

* Monitoring and Sequencing. Elaborate systems have complex control struc-
tures. Different control relations typically hold when devices are in a steady
state than when they are maneuvering dynamically. Functional modules may
have discrete states that track the current internal mode of the device. High
level modules can track these status indicators as a means of coordinating
elaborate behaviours.

Although the GRRDE concept of state centric design is quite flexible, it does not capture

all the allowable interactions between modules. Designers are free to make use of direct

interaction between modules or processes if the application warrants it.

Adequate representation of the full range of system characteristics may require additional

tools. To aid in the specification and design of GRRDE-based systems, the use of a formal



THE DESIGN OF THE GRRDE REAL-TIME MIDDLEWARE

specification standard such as Input/Output Automata (IOA) modelling [Lynch, 1996] or

SpecTRM-RL [Leveson, 2000] is encouraged. These techniques are structured formalisms

to specify and analyze systems and their interfaces. In Chapter 5, we actually employ a

variation of IOA to validate the GRRDE services. Formal analysis can be used to verify

the correctness and completeness of both requirement specifications as well as detailed

designs. These specifications can enhance or replace some of the traditional OOAD prod-

ucts such as state transition diagrams (STDs).

4.2 The GRRDE Publish-Subscribe Services

The concepts discussed in Section 4.1.2 describe required changes in design emphasis, but

offer little insight on transforming design into implementation. The key innovation that

GRRDE provides is a set of communications services designed to facilitate rapid and

robust development. This section presents a functional overview of these tools and illus-

trates their application to simulation design.

4.2.1 The Subscription Concept

In the previous section, we examined the role of state information in the GRRDE approach

to modular simulation design. Simply identifying module interfaces does not, in itself,

make development much easier, or a design more extensible. Middleware adds value to a

system by introducing transparency (Section 2.2.1) and abstraction in the interfaces

between components. Consider the simple system illustrated in Figure 4.4. We have a sim-

a. b. c.

Figure 4.4 Key dimensions of GRRDE transparency. Modules in a simple system (a), may be moved to
remote processors (b), or connected to additional monitors (c).
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ple module that takes the input k and computes /k. In our initial design (Figure 4.4a), we

have one module B, that needs to use the value 1k. What happens when design revisions

force the module B to a different processor (Figure 4.4b)? or when enhanced functionality

dictates that modules A and C also need access to fk (Figure 4.4c)? In the GFLOPS sys-

tem, the first scenario is adequately handled by the OSE link-handler, the OS' transparent

messaging service. The second is a little more complex.

The question that arises is one of responsibility. Which module is responsible for the data

pathways shown in Figure 4.4b (or c)? Is it the duty of the server module? This solution is

troublesome, since it appears to break the encapsulation of the square-root module.

Changing the internal software each time another destination is added or removed seems

laborious and error-prone. On the other hand, the burden of maintaining the link may lie

with the client modules. If this is the case, then they will need a means to access the value

of 1k. This solution seems promising, but some connectivity issues remain. These are:

- Persistence. Data connections in an embedded system are usually perma-
nent. Ad hoc information access is not unknown, but not usually of primary
concern. We would like to store enough persistent information about the link
so that regular state access to 1k has low overhead.

- Communications Metaphor. This is related to the previous point. Data access
is frequently repetitive. We would like ways to simplify data access mecha-
nisms in the client software.

- Data Access. Exactly how are data made available to the clients? Shared
memory offers some potential, but is only available for local processes. In
addition these solutions can constrain how modules are implemented. For
example a shared memory solution requires calculation of k at least once
for every new value of k. However, in some situations, we may want to cal-
culate 1k only when a client wants to know about the value.

The GRRDE publish-subscribe are services used to automate the delivery of state infor-

mation. Servers tell GRRDE about the types of state information that they publish and

how to access the information. Clients can then request subscription contracts for a partic-

ular data service, subject to certain constraints. GRRDE will then collect and disseminate

the information based on the parameters of the contract. The GRRDE publish-subscribe
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system (GPSS) allows subscribers of state information to receive updates of state informa-

tion without disturbing the operation of the publisher. These features decouple the process

of operating on state information from the act of distributing it. Thus, the logic of a mod-

ule can be written without reference to the precise origin or destination of the state infor-

mation.

Cyclic low-level processing is common to embedded systems. Many use periodic digital

controllers that monitor and control a physical process or other quantity. Higher level

functions, such as those that change operating modes, are aperiodic. Both schemes rely on

the movement of structured information, be it a velocity measurement, a status report or a

command directive. To maintain modularity and promote system reconfiguration, the

GPSS allows the information pathways to be configured dynamically. Sources and sinks

can be addressed abstractly, and additional data flow can be added with minimal distur-

bance. This creates three main benefits:

- Progressive Development. The relative independence of each module allows
subsystem testing and development. Secondary system functionality can be
added to simulations once key systems are proven.

- Rapid Reconfiguration. Different implementations of the same functional
block can be exchanged so long as the external interface remains consistent.

- Functional Layering and Migration. Abstract monitoring and supervision
can be introduced without affecting low-level control.

The OSE operating system provides a distributed service registry (Figure 4.5). Operating

across multiple processors, a process or block' may register one or more named services

(e.g. text strings) with the registry. These services typically describe some function of the

source block. For instance, a block may register itself as an "Ephemeris-propagator."

Other processes query the registry for services that they require. If matching entries exist,

the registry service will provide the querying process with an identifier with which to con-

tact the service provider. This service name must be part of the module specification. The

interface documentation for each block must also specify the data products that it can pro-

1. A block is a collection of processes in the OSE operating system
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Distributed Service Registry

Registe Query

Block A lock B

Outputs Inputs

Figure 4.5 The OSE Nameserver. State producers register output
types with registry service. State consumers query regis-
try to locate producer.

vide. This specification must include a label for the type of data as well as a detailed

description of the data format. The latter may include actual data type-declarations. Some

simple examples are given in Table 4.1.

The role of the output specification is quite straightforward. If a block publishes certain

data products then any external process may obtain the published data products by invok-

ing the GPSS. Upon initialization, the source block provides the GPSS with access rou-

tines to obtain the pertinent information. The GPSS will pack the data into a formatted

signal and send it to the destination process when requested. The destination process or

block must be prepared to accept and interpret the contents of the message. This mecha-

nism is detailed in Section 4.3.

Two important restrictions affect the interface definition process. In any system configura-

tion, all named services should have a unique provider. For example, no two modules

should be named "Attitude Estimator." Furthermore, there is no formal semantic structure

to the service identifiers. The identifier "position-of spacecraft_1" has no relation to the

identifier "position-of spacecraft_2" as far as the service registry is concerned. Although

it would be theoretically possible to implement software to remove these restrictions and

allow more flexible information brokering, such service has been deliberately avoided. In

an embedded system any such arbitration should be handled explicitly by the user. Deter-
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TABLE 4.1 Sample Block Output Specifications

Service Data Product Format

Ephemeris OrbitalElements structure OrbEls
{
double Time (seconds)
double a (metres)
double e (unit-less)
double i (degrees)
double RAAN (degrees)
double omega (degrees)
double MnAnom (degrees)

PositionVelocity structure PosVel
{
double Time(s)
double X (m)
double Y (m)
double Z (m)
double Xdot (m/s)
double Ydot (m/s)
double Zdot (m/s)
}

Momentum TorqueOutput double Torque (Nm)
Wheel Con-

trol

minism must take priority over flexibility. Consequently, modules needing to receive

inputs in this manner must have knowledge of the service name, data product name and

message format.

The GPSS brokers agreements between source and sink for repeated delivery of a certain

data product. The resulting agreement is called a subscription contract. Contracts can take

one of two forms: periodic and aperiodic. Periodic contracts send regular updates of the

data at fixed intervals. They may run indefinitely or for a specified amount of time. Con-

tinuous variables are typically represented with periodic contracts. Aperiodic contracts, by

comparison, will send updates only when the state value changes. Discrete states such as

mode or status are ideally captured by an aperiodic contract. Periodic and aperiodic con-
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tracts can also be referred to as time-triggered and change-triggered contracts, respec-

tively. The type of contract that a given data product will support must appear in the

specification. The GPSS does not allow one data product to support both types of con-

tracts. This was a necessary compromise to ensure efficient message dispatching and to

restrict unnecessary message traffic. These two varieties of subscription are examined in

Section 4.2.2 and Section 4.2.3.

Not all inter-process communication requires message contracts. Operations such as issu-

ing commands or handshaking are best performed directly through direct signal (message)

exchange. It should be noted that complicated protocols are more susceptible to logical

design errors and may be difficult to characterize temporally. Designers are therefore

encouraged to use the GPSS whenever possible.

This state delivery mechanism makes the systems developed with GRRDE inherently

modular. The information paths (i.e. state delivery) can be configured at runtime, eliminat-

ing the need to break encapsulation to make the appropriate connections. Functionally

identical blocks can be interchanged if they both provide the same public state outputs.

The resulting modularity promotes rapid and effective simulation development through

the complete development process.

4.2.2 Time-Triggered (Periodic) Subscriptions

Time-triggered contracts are most commonly encountered in low-level control systems.

Situations where information updates are expected at regular intervals suggest the use of

this type of contract. Specification of the service will include the update rate of the pub-

lishing module. Subscribers typically request a time-triggered contract at this rate or

slower. Faster rate contracts are not prohibited, but are unlikely to be effective since they

lead to duplicate values being delivered to the clients. Users must also be aware of the

potential for under-sampling time domain phenomena when slow sampling rates are used.

Synchronization issues are discussed in Section 7.2.3.
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Possible uses for time triggered contracts include:

* Sensor Polling

e Control Actuator Commanding

- Telemetry Logging

- Watchdog Services

4.2.3 Change-Triggered (Aperiodic) Subscriptions

Change triggered contracts are useful for data abstraction and status indication. For exam-

ple, a sequencer may give the attitude control system (ACS) a command to change orien-

tation. The ACSstatus may then indicate values of slewing and then CoarsePointing

and finally FinePointing as the system stabilizes. Subscribers receive an updated copy

of the subscribed variable whenever the value is changed. In essence, this type of service

is a primitive form of multicast (one-to-many) communication. These subscriptions are

useful for communicating with supervisory modules as well as peers.

Possible uses include:

e Qualitative status or health

" Operating mode

e Command feedback

e Multicast

4.3 GRRDE Internals

We have discussed the services that the GRRDE middleware provides. Periodic and aperi-

odic subscriptions allow a module to publish state information for general consumption. In

this section, we examine the composition of the GRRDE system and consider how sub-

scriptions are initiated and filled. The most important parts of the middleware are the

mechanisms that allow a module to publish and distribute its data. We also discuss con-

tracts from the subscriber's perspective and consider how incoming messages are handled.

We conclude with some general observations about the middleware architecture.
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4.3.1 Dispatch Functions

GRRDE relieves the user from managing incoming data requests or contract subscrip-

tions. If the middleware is to take on this responsibility, the user must tell GRRDE how to

find the information it needs. To publish a particular type of data the user must register a

Dispatch Function with the GPSS and associate it with a Data Product Name. Dispatch

functions must allocate signal storage, fill the signal with appropriate state information

and send it to the destination process provided in its calling parameters. One dispatch

function is typically required for each data product name that a module provides. A lim-

ited parameterization of the function's behaviour allows a measure of flexibility in provid-

ing slightly different responses to different contracts.

Upon initialization, a block must register the dispatch functions along with their identify-

ing text labels. This information is placed into a table which associates a numerical index

with the text name and the memory address of the dispatch function code. This table is

used by two processes that manage contracts and block outputs. The Message Negotiator,

a low-priority process, receives requests for new contracts and records the details (e.g.

period, destination, etc.) in a second table. Each contract is associated with an entry in the

dispatch function table.

The high-priority Message Dispatcher function invokes the dispatch functions associated

with active contracts. The dispatch of periodic subscriptions is triggered by a system

timer. Aperiodic contracts are triggered when their constituent variables are changed. The

operation of the dispatch mechanism is depicted in Figure 4.6.

A dispatch function for a periodic publication is straightforward to implement. Its only

responsibility is to generate the data signal and send it to its destination. The signal con-

tents are typically read from a shared variable inside the software block. The logic pro-

cesses update this variable periodically, and the dispatch function reads the current value

and sends it to the subscribers. Special Embedded C++ classes called atomic objects guar-

antee exclusive access to the data during read and write operations. Dispatch functions
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Functional Module 2

Dispatch I
Fcn 3

4 0

Local State

Figure 4.6 GPSS Operation. On initialization (1), module registers dispatch function
with GPSS. External data or contract requests (2) trigger function (3)
which reads (4) and transmits state information (5).

may perform calculations or access multiple variables, but optimal performance is

achieved when they are as simple as possible

Aperiodic contracts are substantially more complicated. Let us first consider how the dis-

patch signals are generated for these contracts. Associated with each named data service is

one or more atomic2 objects. These are implemented as classes derived from the simple

atomic objects described above. In addition to providing safe, concurrent read and write

access to their contents, atomic2 objects generate dispatcher notifications. Consider the

dispatch sequence shown in Figure 4.7. When the module's logic process writes a new

value to the atomic2 object, a trigger signal is sent to the message dispatcher. The dis-

patcher then invokes the dispatch functions for all contracts that reference that object.

These dispatch functions must read the atomic variable, and send off the appropriate sig-

nal to the subscriber.

One atomic2 object may be referenced in several dispatch functions, but each dispatch

function may access more than one atomic2 object. We must ensure that each contract

that references the atomic2 object is dispatched exactly once. The dispatcher does not

know the details of these dependencies, and so it attempts to invoke every active aperiodic

contract. It is the responsibility of the dispatch function to decide whether to send out the

dispatch signal.
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Figure 4.7 Dispatching an aperiodic contract. Numbers indicate the execution
sequence.

Associated with every contract is an unsigned integer tag. This tag is passed to the dis-

patch function from the message-dispatcher. Each atomic2 object contains a flag that is

toggled between '0' and '1' every time a new value is written. When invoked, the dispatch

function checks the flags on each atomic2 object that it references, and concatenates the

flags into a single binary value'. This number represents the new tag for the current con-

tract. If it matches the old tag, the dispatch function should not send out a publish mes-

sage. A different tag value indicates that at least one of the dependant variables has

changed, and a publish message should be sent to the subscriber. The new tag value is

stored with the contract record.

This strategy complicates the process of writing dispatch functions, but carries several

benefits. All the knowledge about data dependency is encapsulated within the dispatch

function. The functions may be complex, but the complexity is purely local. Moreover, we

have developed convenient functions that automate the process of tag generation. The user

simply provides a list of the component atomic objects. Since the flag evaluation order is

the same every time the function is called, the tag values are consistent. Using this type of

1. Thus, the current configurations limits each type of subscription to depend on a maximum of 32 atomic2
objects. This was judged to be sufficient for most systems.
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structured interaction means the message-dispatcher does not need to know any details

about the data product composition.

4.3.2 The Input Arbiter

Signal inputs to a module are less automated than output publications. During initializa-

tion, a module will create a dummy or phantom process that acts as the address for all

incoming communication. OSE allows this process to contain no executable code, just

redirection information for incoming signals. When a module registers a named service, it

presents this dummy block as its address. This addressing mechanism hides internal

implementation details from the outside world. The GPSS is able to catch any of its own

messages such as contract requests at this level. Remaining incoming messages are redi-

rected automatically to a user-supplied input arbiter process.

The input arbiter's job is to copy the incoming messages into local state storage, or redi-

rect them to the appropriate internal process. Frequently, these processes consist of noth-

ing more than a check for incoming signals and a large 'switch' statement in a perpetual

loop. The message tag is checked against the supported values, and the incoming data is

routed to the appropriate location. Atomic objects are used to manage concurrent access

between the arbiter process and internal module logic. The input arbiter logic can be used

to implement synchronization between software modules (see Section 7.2.3).

4.3.3 The GRRDE Middleware Architecture

The GRRDE middleware adds several processes to each user module. The Message Dis-

patcher and Message Negotiator handle outgoing publications and the Input Arbiter

directs incoming traffic. Although we use the OSE NameServer as a distributed service

registry, the core GRRDE components are essentially localized and do not interact with

one another. Each module handles all of its own outgoing communication and relies on the

message-passing built into the operating system. Once signals leave a module, they are

delivered like any other OSE message. Some of our synchronization tools implement dis-
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tributed algorithms, but the essential GRRDE services are self-contained. This has the fol-

lowing ramifications:

* GRRDE is fault tolerant. Since communication is handled locally, the effects
of a failure of a process, a processor, or a communications link are only seen
locally.

* GRRDE operations are easily monitored. Since GRRDE exploits the native
communications services, existing profiling and debugging tools can be used
directly.

e GRRDE is interoperable. Since GRRDE uses native message-passing,
GRRDE modules can publish data to non-GRRDE clients.

e GRRDE Communication is most efficient in hierarchical software designs.
Since the internal GRRDE processes do not coordinate their message deliv-
ery efforts, multiple remote recipients of the same data product will generate
extra network traffic. Consequently, we discourage ad hoc, peer-to-peer sub-
scriptions. Instead, we encourage system designs that explicitly recognize
inter-processor coordination as a distinct type of software function (e.g. a
module that has the specific task of estimating cluster geometry, by collect-
ing position data from each satellite).

This last point, in particular, may be viewed as a disadvantage, but we believe that the

overall structure of the middleware is consistent with the needs of embedded space appli-

cations.

4.4 Interface Definition

We have discussed how GRRDE is founded upon the principle of information mobility.

Section 4.2 detailed how a formalized input/output design can be converted to a corre-

sponding modular implementation that decouples the generation of state information from

its delivery. This section details the contents of the interface specifications. Each entry in

the interface specification must describe an input or an output. When a system is com-

posed of several modules, the inputs to all blocks should appear in the output specification

of others. The run-time GRRDE components then form the appropriate data pathways.
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4.4.1 Interface Classification

These inputs and outputs can be labeled in terms of the type of connection that they

assume. Many types of inter-module communication can be described by one of three

types of exchanges; these are: time-triggered, change triggered, and command. The first

two categories refer to 1/0 that can support subscriptions. Time-triggered contracts are

updated at regular intervals and usually carry pseudo-continuous state information such as

position. Thus, a time-triggered output is a specification that a given module will make a

certain data product available at a given rate. Input specifications document instances that

a module will request that a particular type of data is delivered at a specified rate. It is per-

missible that the input rate be slower than the rate specified in the output specification of

the source block. Change-triggered contracts typically correspond to discrete states such

as an operational mode. They are updated aperiodically, and subscribers are only notified

when the value changes. Command inputs and outputs are also aperiodic but differ in phi-

losophy. In contrast to a change-triggered contract, commands usually carry imperative

content. Thus, a formalized command input may specify that the Attitude Control System

module can accept SLEWTO directives. Command relations, coupled with change-trig-

gered monitors represent a useful architectural element. For example a supervisor module

may issue a MOVETOXY command to a control module and then monitor the subordi-

nate's mode to check for completion (i.e. the mode changes from MOVING to IDLE).

Realistically, we acknowledge that there may be situations where the above taxonomy

does not adapt well. In fact, Chapter 10 introduces two types of communication not cov-

ered by this classification Specialized communication is permitted but should be

employed with care, since the user must manage all the details of the interaction.

4.4.2 The GRRDE Interface Specification

Successful integration of disparate modules depends upon effective management of the

interface documentation. The specification process requires several steps. First, system

functions should be decomposed and allocated to modules. This outlines the major func-
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tional units of the software and their scopes. A second phase examines each module to

determine the data that it requires to operate. The identified types of information are

grouped with related quantities. In the third phase, the specification is formalized with

emphasis on module outputs. Modules become responsible for providing particular types

of information. We allow a single source to provide data to multiple sinks, but prohibits

the converse. For example, many modules might use POSITION but only one is allowed

to provide POSITION. Thus, the specification of an output element defines a new type of

data service, but the specification of an input element is made only in reference to a previ-

ously defined output. The implications of this distinction will be revisited after describing

the specification.

The following items must be specified for each interface element.

Service Name and Data-Product Name

The two primary characteristics of an output or source element are the service name (SN)

and data-product name (DPN). These two categories enforce a loose structure on a sys-

tem's interfaces. A sink module locates a source module by querying the operating system

with the SN. If the service is found, the sink may then contact the source to access the

interface element identified with the DPN. For change- and time-triggered interfaces, the

semantics of the DPN are directly meaningful since the contract setup mechanism uses the

DPN as an identifying character string. DPNs used in command specifications are mean-

ingful only during design and are not used by the GRRDE run-time components.

GRRDE allows non-unary mapping between SNs and DPNs. First, several DPNs may be

associated with a single SN. For example, Module-A may provide a service with

SN = MOTIONESTIMATE, associated with two output interface elements:

DPNI = POSITION and DPN 2 = VELOCITY. Second, GRRDE allows multiple SNs

to provide the same set of DPNs. This property can be used to identify specific copies of

duplicated modules in a distributed system. For instance, a group of networked aircraft

may share common software. To avoid confusion, the SNs in each aircraft are appended
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with a unique identifier (e.g. AUTOPILOT-l, AUTOPILOT_2, etc.), yet they share the

same set of DPNs. Such SNs are denoted SN = BASE_NAME_UID#.

It is important to note that the association between SN and DPN is purely a design-time

formalism. The SN functions as a lookup mechanism to find a particular module. The

DPN is used when querying a particular module for its data products. If MODULE-A's

specification lists SN-1 associated with DPN-1 and SN-2 associated with DPN-2, there is

no run-time protection against finding the module with an "SN-1" query and then using

the result to obtain the DPN-2 data (rather than doing a second query for "SN-2"). Design-

ers must be careful to avoid such shortcuts since any redistribution of functionality

between modules may render the initialization logic invalid.

Element Type

This specification parameter simply identifies the type of interface element (Time-Trig-

gered, Change-Triggered, Command, or Other) and whether it is an input or output. Most

interfaces will use one of the three basic types. Elements of type 'Other' require supple-

mental documentation of the interface operation.

Signal Number (SigNo)

The signal number is the OSE identification tag that labels the inter-process signals. Each

interface element should have a unique SigNo.

Structure

Since GRRDE inter-process communication uses the OSE signal interface, it is important

to describe the information content of each type of signal. Each signal must be referenced

to a C-language structure definition. Two acceptable formats are:

typedef struct {

double X;

double Y;

} my-data-type;

typedef struct {
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SIGSELECT SigNo;

mydatatype Data;
} mysignal-type;

or simply,

typedef struct

SIGSELECT SigNo;

double X;

double Y;

} mycombined-type;

Both of the styles presented above have a SIGSELECT definition as the first entry in the

structure used directly as a signal. It is a numeric tag that identifies the type of message.

The first format separates the declarations into a signal declaration, and a 'payload' decla-

ration. It is a convenient notation when the entire contents of the signal will be moved or

used at once. The second format employs only one structure. It results in notationally

compact code (fewer levels of indirection) when parts of the data are examined or entered

separately.

The following list addresses some stylistic concerns:

- Both structure definitions do not require the same amount of storage.
Because of byte ordering, direct type-casts between my-combinedjtype and
my-signal-type, may not work. Using mixed representations for the same
signal is not encouraged, since the potential for errors is high.

e As a matter of form, the type definitions are not required but can be used to
enhance readability.

e When the sizes of basic data types are nonstandard, specifications using
unambiguous, pseudo-code data-types (i.e. Int32 for a signed 32-bit integer)
should be used.

- Designers must be aware of any byte-ordering concerns in the system. It is
standard practice for GRRDE modules to convert all output data to so-called
network-ordered (big-endian) format. Any deviations from this practice
should be noted.

e The units used in any physical quantities should also be specified in this sec-
tion. They can be included as source-code comments:
typedef struct {
double dPosition[3]; //Geocentric, Cartesian (in m)

} my-struct
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Period

This quantity is only meaningful for time-triggered elements. For an output specification,

the period defines the time interval in ms between successive updates of a data-product.

The period specification for input elements describes the period of the message contract

that will be delivered. In general the relation

Psource P sink (4.1)

should be maintained. GRRDE permits the source period to be longer than the sink period,

but this results in the delivery of redundant, repeated data.

ARGC, ARGV

The GSCA permits a limited degree of parameterization during contract setup. The inter-

nal mechanisms allow one numeric parameter, and one arbitrary parameter to be specified

during contract setup. These parameters are passed to the dispatch function when the con-

tract is triggered. ARGC is a 32-bit integer, and ARGV is a character string (although it

can carry arbitrary contents). The interface specification for an output must specify

whether the parameters are used or ignored, the range of permitted values, and how they

are interpreted. Input specifications must explain the values that will be used when the

contract is established. It is not necessary to specify the precise values during the interface

definition process, but the origins of the quantities should be clear (i.e. UID, etc.).

Interface Definition Filename

To simplify interfacing between modules, it is helpful to share the data structure declara-

tions and signal-number definitions. GRRDE has adopted the OSE practice of naming sig-

nal definition files with a ". sig" extension. These files are included in a program

through the customary "#include" directive. Unless specified otherwise, all definitions

for a given SN will be found in a common file.

Example specifications are provided in Appendix B.
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4.5 Summary

This chapter began by introducing the GRRDE approach to analysis and design. This was

followed by an examination of the suggested implementation approach and tools. The

emphasis on independent, well specified, functional modules has been stressed throughout

the process. Particular attention has been paid to how aspects of design reflect in latter

stages. Although module independence is critical to producing better code, it is also

important that the design not become fragmented. Chapter 7 revisits the process of analy-

sis and design with an eye for engineering the architecture of the simulation as a whole.

Meanwhile, we wish to examine the performance of the middleware system.

The GRRDE publish subscribe system provides simulations with low-overhead, low-

maintenance state mobility. The next few chapters explore these properties of the GRRDE

system. We begin with formal specification and validation of the essential publish-sub-

scribe algorithms in Chapter 5. This is followed by testing results in Chapter 6. By assem-

bling the program modules and communication primitives, a complete simulation design

can be synthesized. Special attention must be paid to the flight-software/simulator inter-

face to ensure that the deployment process is as straightforward as possible. These system-

level issues are discussed in Chapter 7.
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Chapter 5

FORMAL VALIDATION OF GRRDE
RUN-TIME SERVICES

The defining characteristic that sets embedded software apart from conventional programs

is the focus on determinism (see Section 2.1.2). As part of the validation process, software

systems are scrutinized using a variety of methods. Not only must the program's behav-

iour be logically correct, but its usage of system resources, such as CPU time or memory,

must be well characterized and bounded. Therefore, tools like GRRDE, that are intended

to support embedded software development, must lend themselves to the same sort of

analysis and rigor.

This chapter describes the formal validation of the GRRDE runtime services. Together

with run-time testing presented in Chapter 6, these derivations provide precise character-

ization of GRRDE to support subsequent analysis in the users' applications. We begin by

considering a formal analysis of the GRRDE algorithms. In Chapter 7, we consider how

these results can be used in a wider real-time analysis framework.

5.1 Formal Analysis Using General Timed Automata

General Timed Automata (GTA) is an analysis technique suitable for partially-synchro-

nous, distributed systems. In this section we apply G1A modelling technique to the pub-

lish-subscribe services provided by GRRDE. This serves two objectives. First, by

constructing an abstract automaton describing the GRRDE services, we have and un-

ambiguous, formal specification of the properties that the system guarantees. Second, we
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produce hierarchical proofs that validate the correctness of the algorithms implemented in

the GRRDE source code. We have proved basic timing and safety properties of both time-

triggered and change-triggered contracts. Timing properties are parameterized by con-

stants that are measured in the next chapter (Chapter 6).

5.1.1 Context of GTA Modelling

Hierarchical proofs can be used as a means of increasing the utility of automaton-based

formal methods. Readers unfamiliar with the automaton-based proof techniques are

encouraged to read Lynch [Lynch, 1996]. This proof technique requires several steps.

First, we specify an abstract, or specification, automaton. This automaton must satisfy the

properties that we are interested in, yet make as little commitment as possible to the way

in which the properties are satisfied. These properties are typically stated as logical invari-

ants and proven through induction. Next, we formulate the detailed, or implementation,

automaton. This may be a single automaton or a composition. Showing a rigorous corre-

spondence, or simulation relation, between the states and behaviours of the specification

and implementation automata, is enough to prove that the implementation automaton sat-

isfies the same invariants and properties. The premise behind this approach is that it is

usually more tractable to prove properties of the specification than the implementation

itself.

This process can be repeated several times through successive steps of simulation and

composition (Figure 5.1). If a precise simulation relation can be provided for each stage,

the underlying constructions can be formally verified. Thus, you could prove that your

algorithm matches your specification, that your source code correctly implements an algo-

rithm, and that your compiler produces exactly the correct machine instructions from code

that you write [Erkkinen, 1999]. In theory, this process can be extended all the way from

specification to hardware, but the effort required to do this for realistic systems is prohibi-

tive.

96



Formal Analysis Using General Timed Automata 97

S Source Machine
SpecificationF Algorith~m SoreMahn Hardware

Figure 5.1 Levels of Abstraction in simulation proofs. If the semantics at each stage can be specified
precisely, each level can be formally verified.

Several factors contribute to these limitations: state explosion makes large models

unwieldy and the lack of formal semantics for some computer languages hampers the use-

fulness of the process. More importantly, the more complex the system, the easier it is to

make mistakes in the formal analysis [Tanenbaum, 1976]. Finally, since most software-

related failures can be traced to design and implementation errors [Lutz, 1992], conven-

tional testing is less costly and more effective than exhaustive formal analysis during these

development stages.

This leads us to consider how to effectively use formal analysis to support verification of

the GRRDE services. How much analysis do we need? We have used GTA models to

prove properties of the GRRDE service specifications and algorithms. These stages are

easiest to model and are most crucial to the elimination of system level errors. Thus, we

gain the maximum benefit from a modest amount of effort.

In Section 5.2, we present our analysis of the GRRDE specifications. We examine the

publish-subscribe services as abstractions and establish key timing and correctness prop-

erties. We discuss both time-triggered and change-triggered contracts. In Section 5.3, we

present detailed automata that represent the implementation of GRRDE and show that

they maintain the same properties.
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5.1.2 Notational Conventions

Before embarking on a detailed discussion the automata models, it is worth clarifying a

few mathematical conventions that we have employed in our proofs.

Sequence Data Types

Many of the models use the primitive data type known as a sequence. A sequence, S, is an

ordered set of elements, sn, of arbitrary type. Thus:

S = {SO, SP, ... , SN-11 n N- (5.1)

The following sequence operators are useful. Given the sequence S, the head operator

refers to the first element:

head(S) = so (5.2)

while the tail operator refers to the remainder of the sequence. I.e.,

tail(S) = s N- (5.3)
{s}n = I

Similarly, the last operator returns the final element,

last(S) = sN- 1 (5.4)

and the init operator returns the start of the sequence:

init(S) = s N-2 (5.5)

We may also append,

S a a = {so, sn, ... , sN-p1, a (5.6)

and prepend elements

(5.7)
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Two sequences can also be concatenated to form a new sequence:

A || B {ao, a,, ... , a. 1,bo bl, ... , bN-1} (5.8)

Relations Between Sequences and Elements

Elements that are members of a sequence, S = {s, I can obey a predecessor relation:

a = b e# a = sg, b = sj, i s j (5.9)

Sequences can also be related to one another. We define the following two relations

between sequences. It is unclear whether there are canonical notations for these relations,

but the following definitions are use in our proofs.

We say that A is a subsequence of B, if the elements of A are contiguous elements of B,

i.e.:

A = {aO, a,, ... , am} = {b,} +M-1 (5.10)
n=j

This is denoted A 5 B.

A looser relation is to say that A is a subset of B (Denoted A c B). This allows us to con-

struct A from B by omitting arbitrary elements. Thus all elements of A are found in B,

Vs, s E A => s E B (5.11)

and this preserves the pair-wise successor relations between elements:

V(ai, aj) E A, ai: a, =>~3(bm, bn) e B, ai = b, Aaj = bn A bm 5 bn (5.12)

5.1.3 IOA Pseudocode

The automata specifications presented in this chapter were developed with the Input-Out-

put Automata Toolkit (IOA Toolkit) [Garland & Lynch, 2000]. IOA defines a structured

pseudocode in which the user can write automata models. This package performs syntax

checking, type-setting and can interface with a number of theorem proving tools.
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Although the advanced features of the IOA Toolkit do not yet support GTA models, we

adopted this pseudocode standard to give our specifications a consistent appearance.

5.2 Analysis of GRRDE Specifications

GRRDE provides two types (SECTION) of communications services: time-triggered and

change-triggered. Modules seeking to establish contracts with server blocks, first looked

up the services and then initiated a contract request. Stepping back from the details of

implementation that we saw in Chapter 4, we can consider a slightly abstracted version of

this service interaction (Figure 5.2, Figure 5.3).

- ~subscribe, 1) "
publishi(x) _

pub-rev,( -C sub ok,

cancel -

U2

Figure 5.2 Time-Triggered Publish composition. Model consists of user automata (Uj), as well as the
service (Publish) and channel (C) automata.

These figures shows three types of automata. The finite set of user processes, U, i e I,

represent the interface to the publish-subscribe system. We do not model any processing

by the user, simply the interaction with the GRRDE service. Rather than depict the sub-

scription selection, the service automaton, Publish, simply provides subscriptions to the

single variable, X. We can view a full system as a parallel composition of several of these

service automata, but a single type of subscription is sufficient for purposes of validation.
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The modelling of the delivery mechanism includes a reliable, first-in-first-out (FIFO)

channel automaton C to capture effects of finite propagation time.

subscribe

pubrcv(x Ci subok

Ul cel-"k U

X . canceli - - - -

Figure 5.3 The Change-Triggered Automata. Identical to time-triggered service, save that subscribe is
not parameterized.

Three types of interactions are depicted. The first concerns the subscription process. This

includes the subscribe, subok, cancel, and cancelok actions. The time-triggered sub-

scribe action is parameterized by the quantity, t, which represents the requested delivery

period. The Cancel action ends a current subscription and the other two actions are simply

confirmations. The second type of interactions allows writing a new value, v, to X, and

the associated confirmation. In this model we allow any process to perform a write action

even though write permissions are restricted in the actual GRRDE environment. The last

phenomenon modelled is the delivery process. Publish notifications are emitted from the

publish server and propagate through the channel automaton C, to the user. It should be

noted that all of these actions are available to each user process. The figure just separates

them for simplicity.
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5.2.1 Channel Modelling

One might notice from the preceding figures that the message propagation channels are

explicitly modelled only for publish actions and not for the other interactions. This was

done to simplify the analysis. Inter-process traffic under the OSE operating system is

essentially multiplexed. Messages from all senders are deposited in a common input queue

at the destination process. However, we model most interactions as direct connections

between automata. It is worth taking a moment to examine the justification for this ideali-

zation.

A B A B

a. b. 4
resp onse

msg,

A B

response,

C.

Figure 5.4 Abstractions of message channels. Examples include multiplexed channels,
(a), parallel channels (b), and direct 1/0 connections, (c).

Figure 5.4 shows the progressive abstractions that we use to model inter-process commu-

nication under the OSE operating system. The most accurate representation is given by

Figure 5.4a. All inter-process messages are multiplexed onto common FIFO channels. We

contend that this behaviour can be represented by either parallel FIFO channels

(Figure 5.4b) or direct 1/0 connections (Figure 5.4c). Parallel channels are appropriate

when propagation time is important and the effect of the input actions at B are indepen-

dent. I.e. for all states s the execution fragments al = (s, rcvl, s 2, rcv2, s') and

a 2 = (s, rcv2, s3, rcvl, s') give the same end state s'. In other situations, where ordering
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is important, we make the assumption that only one message of each type is in transit at a

time and that these actions have paired acknowledgements. In these situations we can con-
1vert the channels into direct 1/0 connections

This reasoning behind this last argument can be expanded. Consider the interaction

between two automata (Figure 5.5). In this example there are two sets of grouped interac-

tions: (invoke,, response1 ), and (invoke2, response2). The automaton B processes

incoming invocations independently taking several internal actions. However, both inputs

may affect common state variables of B. In distributed systems, where asynchrony makes

timing unpredictable it is common to assume that interactions are well-formed. Well-

formedness assumptions restrict the allowable interactions between automata. For

instance we may impose that following an invoke, action, automaton A must wait to

receive a responseI before generating another invoke1 , but is free to make an invoke2

in the meantime. Alternately, we might enforce that any invoke must receive a response

before further outputs can take place. We might also make further restrictions and require

interactions to follow the pattern of invoke,, response,, invoke2, response2.

response

invoke,

AB

invoke2

response
2

Figure 5.5 Parallel automata interactions.

1. When only one message is in transit at a time, we can account for transmission delays as an extra internal
step at either A or B.
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The purpose of these assumptions is twofold. First, they make automata specifications

simpler, since we do not need exhaustively enumerate the handling of malformed interac-

tions'. Second, enforcing invoke-response pairing is a principle of good algorithm design

and allows the automata to maintain a consistent view of system operations. Thus, when

A waits for a responseI , it is assured that the preceding invoke, has been processed by

B. Furthermore, both A and B will have the same view of the global action sequence.

Consequently, the GRRDE specifications make well-formedness assumptions about inter-

actions with client processes and can employ direct connections in many situations

This abstraction process greatly simplifies the modelling of GRRDE services. Removing

the elaborate OSE message queues allows us to model direct, intuitive interfaces to the

service automata. The parts of the user's algorithms that we have abstracted away, are typ-

ically just a conditional branching structure based on the identifiers in the incoming mes-

sages. Correctness of this code could be established with additional formal modelling or

standard testing techniques.

5.2.2 Time-Triggered Specification

A pictorial representation of the time-triggered subscription service was given in

Figure 5.2. Note that most of the interaction between users and the service automaton is

through direct commands and responses. Only the dispatched messages utilize a channel

for delivery. This allows us to reason about dispatch messages in transit. Transit times for

commands and responses are accounted for implicitly. Our aim, in analyzing the code, is

to prove basic safety and consistency properties of the dispatched values as well as timing

properties for the delivery mechanism.

IOA pseudocode for the specification automaton is given in Figure 5.8. This automaton

encapsulates and publishes the shared variable x e X. This variable is a tuple

X= [v, seqno], v e V, seqno e N where v is the actual data component of the service

1. The designer may want to include such logic when considering tolerance for lost messages, failures, etc.,
but it is useful to consider failure-free situations first.
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and is of arbitrary type, while seqno is a unique sequence number. Each action,

write(i, v'), causes a change in stored value of x such that x'.v = v' and

x'.seqno = x.seqno + 1. Sequence numbers allow us to precisely relate the contents of

publish notifications to a unique write event.

This automaton is actually a manual composition of the three types of automata depicted

earlier. This composition includes the actual service automaton publish, as well as the

channel automata C;, and the user automata, U1 . Since input actions are subsumed by

composition, all of actions are considered outputs'. The state declarations describe the

internal state of the composed automaton. We compose the automaton in this way to per-

mit analysis of the traces of the central publish automaton. In this analysis the user

automata exist only to maintain an external log of subscription notifications and to enforce

well-formedness on system invocations.

There are several types of state variables in the pseudocode:

- Constants. The IOA language used in these examples does not allow the def-
inition of symbolic constants (e.g. the use of Amax to represent a upper
bound on delay). These variable are used mostly to specify parameters in
invariant statements. The numeric values in the pseudocode were used only
for testing purposes and should be ignored.

e Time Bounds. GTA automata use explicit variables such as first or last to
restrict when certain actions can take place. These variables are a standard
feature of GTA models, but do not represent "real" variables.

e Log Variables. Many interesting automaton properties are naturally
described by discussing the system traces and execution (i.e. the steps an
algorithm takes). However, state invariants are the most straightforward
properties to prove. We can convert trace properties into state invariants by
introducing artificial log variables. Thus, as an automaton takes an action, it
records an entry in this state variable. This useful contrivance creates a com-
mon framework for all of our proofs, but these variables are not reflected in
our software.

1. Readers unfamiliar with automata techniques are encouraged to refer to Lynch, 1996 for a summary of
key principles and techniques
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e Constraints. Well-formedness assumptions about the automaton interactions
can be made explicit in the specification. Certain state variables are attrib-
uted to the user processes and inhibit further commands while confirmation
for a current command is still pending.

e Core Variables. These state variables are intended to have some physical
realization in an implemented system. Abstract, specification automata will
typically have few state components of this type.

We also define the following additional variable types:

e WriteRec = [x, i, t], x E X, i e I, t E 91 0. This tuple is used to keep
records of the incoming write actions. We record the value, x, the process
index, i, and the timet.

- TimeBound = [lb, ub], lb, ub e 91 0. This tuple is used to record lower
and upper timing bounds. These variables can record relative or absolute
time.

* TxRec = [x, bound], x e X, bound e TimeBound. These tuples are used
to transmit published values through the transit queues from the service
automaton to the clients. The first element contains the published data while
the second gives the earliest and latest delivery times.

- RcvRec = [x, k, t], x e X, k e Z+, t e %1 0. These variables are used to log
message delivery in the user automata. We record the data, x, a message
count, k, and the arrival time, t.

Figure 5.9 summarizes the state invariants of the publish automaton. The first set of proofs

establish temporal consistency of the values delivered to the clients. We require that the

unique values delivered to the clients represent an ordered subset of the values written to

the publish automaton This property is depicted graphically in Figure 5.6. Thus, client

records may skip or duplicate values written to the central automaton, but the sequence of

values may not be reordered. The second set of proofs provides bounds on the temporal

accuracy of the client values. This bound defines a sampling window. Sometime within

this window, the true value of x must have been equal to the observed client value. The

last set of proofs describe the periodic performance of the subscription service.

Lemma 5.2.1: In every reachable state of publish, all written values of x, save the initial

value can be associated with a writing process, i.
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master trace

legal user trace

legal user trace

illegal user trace

subscription interval

Figure 5.6 Consistency of user traces. The master trace represents the val-
ues written to the shared variable x. Legal user traces must be
consistent with the ordering of the master trace.

traces of x

P blished value

"sampling" window

Figure 5.7 Temporal accuracy of client values. At some point within the
sampling window, the central value of x must have been equal to
the value delivered to the client.

8
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uses NonDet

uses PublishTypes

uses Nulled(I)

uses Conversions

automaton Publish(vO : Int, Inf:Real)
signature

output
subscribe (i: I, tau: Real),
publish(i:I, T: TxRec),

pub_rcv(i:I, T: TxRec),

cancel(i:I),
sub-ok(i:I),

cancel.ok(i:I),

write(i:I, v:V),

write-ok(i:I)

internal
WriteCommit(i:I),

time-passage
v(t: Real) %Time Passage

states

XThese are really just "contstants"

sub-ok : TimeBound,
cancel-ok TimeBound,

write-ok TimeBound,

xmit: TimeBound,

pub-jitter : Real,
WriteCommitTime: TimeBound,

XRecords each client node

DestSeq: Array[I,Seq[RcvRec]] := constant({}),
PubCount: Array[I, Int] ::= constant(0),
StartTime: Array[I, Real] constant(0),
XTransit Queues

DestQueue: Array[I, Seq[TxRec]] := constant({}),

XHousekeeping to ensure well formedness

Subscribed: Array[I, Bool] := constant(false),
PendingCommand: Array [I, Command] := constant(nil),
Period: Array[I,Real] := constant(O),
PubStarted: Array[I, Bool] := constant(false),
XRecords at server

WriteLog: Seq[WriteRec] := {} I- [[vO, 0], null, 0],

XPublished Variable

pub-value : DataRec := [vo,o],

PendingWriteValue := Array [I,v],

%Time, and GTA bounds

now : Real := 0,
first-cancel-ok: Array [I, Real] := constant(0),
last-cancel-ok: Array[I, Real] constant(Inf), %Inf

first-publish: Array[I, Real] := constant(0),

last-publish: Array[I, Real] := constant(Inf), % Inf

Figure 5.8 Time-Triggered Publish Automaton.
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first-sub-ok: Array[I, Real] := constant(O),
last-sub.ok: Array[I, Real] := constant(Inf), XInf
first-write-ok: Array[I, Real] :=constant(O),
last-write-ok: Array[I, Real] := constant(Inf) XInf

transitions
output subscribe(i:I, T:Real)

pre PendingCommand[i] = nil A -,Subscribed[i]
eff PendingCommand[i] := Sub;
Subscribed[i] := true;
Period[i] := r;
StartTime[i] := now;
%Housekeeping
first-sub.ok[i] now + sub.ok.lb;
last-sub-ok[i] now + sub.ok.ub;
first-publish[i] now + Period[i];
last-publish[i] first-publish[i] + pub-jitter

output subok(i:I)
pre PendingCommand[i] = Sub A now > first.sub.ok[i]

eff PendingCommand[i]: nil;
first.sub-ok[i] 0;

lastsubok[i] Inf
output publish(i:I, T:TxRec)

pre Subscribed[i] A now > first-publish[i]
A T = [pub-value,[now + xmit.lb, now + xmit.ub]]

eff DestQueue[i] DestQueue[i] 1- T;
XHousekeeping

first.publish[i] first.publish[i] + Period[i];
last-publish[i] first-publish[i] + pub-jitter

output pub-rcv(i:I, T:TxRec)
pre T = head(DestQueue i])

A now > head(DestQueue[i]).Delivery.lb
A PendingCommand[i] : Sub

eff DestQueue[i]:= tail (DestQueue [i]);
PubCount [i] = PubCount [i] + 1;
DestSeq[i] DestSeq[i] H [T.X, PubCount[i], now]

output cancel(i:I)
pre Subscribed[i] A PendingCommand[i] = nil
eff Subscribed[i] := false;
first-publish[i] := 0;

last _publish[i] Inf;
PendingCommand[i] Cancel;
first-cancel-ok[i] now + cancel-ok.lb;
last-cancel-ok[i] now + cancel-ok.ub

output cancel_ ok(i:I)
pre PendingCommand[i] = Cancel A now > first-cancel-ok[i]

A DestQueue[i] = {}
eff PendingCommand[i] nil;
PubCount [i] = 0;
DestSeq[i] :{;
first-cancel-ok[i] := 0;

Figure 5.8 Time-Triggered Publish Automaton.
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last- cancel-ok[i] := Inf
output write(i:I, v:V)

pre PendingCommand[i] = nil
eff PendingWriteValue[i] := Data

first-writecommit now + WriteCommmitTime.lb;

last-write-commit := now + WriteCommitTime.ub;
PendingCommand[i] = Commit

internal WriteCommit (i:I)

pre PendingCommand[i] = Commit

eff pub-value := [Data, pubvalue.SeqNo + 1];

WriteLog := WriteLog |- [pub-value, i, now];

PendingCommand[i] Write;

first-write-ok[i] now + write-ok.lb;
last-writeok[i] now + write-ok.ub

output writeok(i:I)

pre PendingCommand[i] = Write A now > first-write-ok[i]

eff PendingCommand[i] := nil;

firstwriteok[i] 0;

last-writeok[i] Inf

time-passage v(t: Real)

pre (V i:I ((now + t) < lastwrite-ok[i]

A (now + t) < last-cancelok[i]
A (now+ t) < lastsub-ok[i]
A (now + t) < lastpublish[i]
A (len(DestQueue[i]) > 0 =>

((now + t) < head(DestQueue[i]) .Delivery.ub))))

eff now := now + t

Figure 5.8 Time-Triggered Publish Automaton.

Proof: This is a fairly trivial assertion and is formally stated as Invariant I1. We consider

an induction on the states of Publish. We can see from the automaton specification that

the invariant holds in the start state. Assuming that the invariant holds in state s we con-

sider the transition (s, n, s') and prove that the invariant hold in the final state s'. The

property is vacuously true in all actions, it, save write, since no other actions alter the

WriteLog variable. Considering this case in more detail we have:

Case 7t = write(i, v). The invariant is clearly true in the final state since
the appended element of WriteLog is tagged with the process index i.

Therefore the invariant assertion holds for all reachable states of Publish.

Lemma 5.2.2: In every reachable state of automaton publish, all values, x' in transit to

clients must have been previously written (i.e. appear in the WriteLog).
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invariant I1 of Publish:

V W: WriteRec (W E WriteLog => (W.i = null -* W = head(WriteLog)))

invariant 12 of Publish:
V T: TxRec (V i:I ((T E DestQueue[i]) =>

(3 W:WriteRec (W E WriteLog A W.X = R.X))))

invariant 13 of Publish:
V R: RcvRec (V i:I C(R E DestSeq[i]) =>

(3 W:WriteRec (W E WriteLog A W.X = R.X))))

invariant 14 of Publish:
V i:I (V m: Int (V n: Int ((m > 0 A m < len(Dest_-Queue[i])

A n > 0 A n < len(DestQueue[i]) A m < n) =>
DestQueue[i][m].X.SeqNo < Dest_Queue[i][n].X.SeqNo)))

invariant 15 of Publish:
V i:I (V m: Int (V n: Int (Cm > 0 A m < len(DestSeq[i])

A n > 0 A n < len(DestSeq[i])

A m < n) => DestSeq[i][m].X.SeqNo < DestSeq[i][n].X.SeqNo)))

invariant 16 of Publish:
V tl:Real (V i:I (V R:RcvRec ((ti = now A R.t = ti A R E DestSeq[i]) -

(pub-value = R.X V
(head(WriteLog).X # R.A A head(WriteLog).t > now - xmit.ub)))))

invariant 17 of Publish:
V i:I (now > StartTime[i])

invariant 18 of Publish:
V i:I (PubCount[i] = len(DestSeq[i]))

invariant 19 of Publish:
V i:I ((len(DestQueue[i]) $ 0) => subscribed[i])

invariant I10 of Publish:
V i:I (3 k:Int ((Subscribed[i] A (k=floor((now-StartTime[i]-pub- jitter)/Period[i]))) =>

(k>PubCount[i] V (k = (PubCount[i] + 1) A (3 T:TxRec (T E Dest _Queue[i]
A T.Delivery.ub < (StartTime[i] + k*Period[i] + pub-jitter + xmit.ub)))))))

invariant Ill of Publish:
V i:I (V R:RcvRec ((R E DestSeq[i]) =>

(R.t > (StartTime[i] + R.K*Period[i] + xmit.lb)

A R.t < (StartTime[i] + R.K*Period[i] + pub-jitter + xmit.ub))))

Figure 5.9 Time-Triggered Automaton invariants.

Proof: This is invariant 12. Consider induction on the states of publish. Since the mes-

sage channels (DestQueueg) are initially empty, the assertion is clearly true in the initial

state. Considering the inductive step we examine the transition (s, n, s'). The assertion is

vacuously true for all transitions save publish;(T) and pub-rcvi(T). We examine these

transitions separately.

e Case 71 = publish;(T). Since the transition specifies that
T.x = head(WriteLog).x, the final state s' must satisfy the invariant.
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- Case n = pub-rcv;(T). This action only removes elements from
DestQueueg , thus s' must satisfy 12.

Lemma 5.2.3: In every reachable state of publish, all published values received by user

automata must have been previously written (i.e. appear in the WriteLog).

Proof: We consider induction on the states of publish. This invariant is 13. In the initial

state of publish, the client records are empty so the assertion is clearly true. For the

inductive step in the proof we consider the state transition (s, 7c, s'). The only actions that

modify the client record DestSeq, are cancel-ok(i) and pubrcv(i, T). For the other

actions, the invariant assertion is vacuously true.

- Case it = cancel okg . Since in s', the client log is empty, i.e.
-,3R, R e DestSeq,, and the invariant 13 still holds.

- Case 7t = pub-rcvi(T). We know from Lemma 5.2.2. that all entries in the
channel queues must correspond to WriteLog entries. Therefore when these
messages are received by the user processes, the correspondence must be
maintained.

Lemma 5.2.4: In every reachable state of publish, the sequence numbers of messages in

transit are non-decreasing.

Proof: We prove invariant 14 by induction on the states of publish. The predicate to the

implication simply picks two valid, ordered indices of messages in transit. Clearly the

invariant holds in the initial state, since the messages channels are initially empty. Assum-

ing that the assertion holds in state s we consider the transition (s, it, s'). Since all actions

save for pub-rcvi(T) and publish;(T), leave the variables DestQueue, unchanged, they

vacuously satisfy the invariant. We consider the two remaining cases.

e Case it = publish;(T). We need only consider the relation between T and
the entry tail(s.DestQueueg), since by the inductive hypothesis, the rest of
the sequence has non-decreasing sequence numbers. If
tail(s.DestQueueg).X = T.X, the invariant is clearly true. Conversely, if
tail(s.DestQueuej).X# T.X then the invariant must also be true since
T.X = tail(WriteLog).X and the WriteLog sequence numbers are mono-
tonically increasing.

112
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e Case 7t = pubrcvi(T). This action only removes elements from
DestQueueg, and thus s' must satisfy 14.

Lemma 5.2.5: In every reachable state of publish, the sequence numbers of messages

delivered to user processes are non-decreasing.

Proof: In order to prove invariant 15, we consider induction on the states of publish. The

predicate to the invariant implication simply picks two valid, ordered indices of messages

in the destination log. Initially, the invariant holds since the DestSeq, sequences are

empty. We consider the state transition (s, it, s') for the inductive step. All transitions 71,

save cancelok(i) and pubrcvi(T) leave the variables DestSeq, unchanged. We exam-

ine the invariant assertion for the remaining cases.

- Case it = cancelokg. Since in s', the client log is empty, i.e.
- 3R, R e DestSeq,, the invariant 14 holds.

e Case n = pub-rcv;(T). To prove that the invariant holds through this tran-
sition, we consider three sub-cases. First, we consider the case where
s.DestSeq, = 0, i.e. the destination record is initially empty. This case
clearly satisfies the assertion since the resulting destination sequence has
only a single element, i.e. s'.DestSeqi = {R}, RE RcvRec, R.x = T.x.
In the second sub-case, we receive a duplicate message, i.e.
T.x = head(DestSeq,).x. This trivially satisfies the assertion. Lastly, we
must examine the case where we receive a new value. Since from
Lemma 5.2.4, we know that the sequence numbers in DestQueue. are non-
decreasing, this property is preserved as we record the incoming values.

Theorem 5.2.1: In every reachable state of publish, the sequence of unique values

recorded by subscribed users, constitute an ordered subset previous values of the shared

variable x. I.e. Vi e I, Unique(DestSeqi.X) _ { WriteLog.X}.

Proof: This property follows directly from Lemma 5.2.3, which shows the correspon-

dence between elements of the user and master records, and from Lemma 5.2.5, which

ensures that the ordering of the elements is preserved. U

We now establish the temporal correspondence between the values recorded at the user

automata and the master log.



FORMAL VALIDATION OF GRRDE RUN-TIME SERVICES

Lemma 5.2.6: In every reachable state of publish, if a published value, x 1 , is received at

time, t1 , by a user process, then either x, = Pub Value, or some process has written a

new value to X with the last xmit.ub time units.

Proof: At some time during the time interval defined by the lemma, the true published

value must have agreed with the received value. We will prove invariant 16 through induc-

tion on the states of publish. This invariant is concerned with the state of the system at

the instant a value is received by the user. In the initial state of the automaton, this asser-

tion holds. We are then left to investigate the inductive step. We assume that the assertion

holds in state s and consider the transition (s, n, s'). There are four non-trivial cases to

consider:

- Case n = pub-rcvi(T). Two possibilities exist. If T.X = R.X, we have
simply duplicated an entry in the user log and the property holds from the
invariant assertion. Alternately, T.X # R.X. Since we know from
Lemma 5.2.1 that we can associate a write action with T, and each message
spends at most xmit.ub time in transit, therefore the assertion must also
hold in s'.

e Case nE = cancelok.. Since s'.DestSeq, = 0, the assertion is trivially
satisfied.

e Case 7c = WriteCommit;. This action clearly satisfies the assertion, since it
directly adds an element to WriteLog.

e Case 7t = v(t). Since t > 0, s'.now # ti . This causes the predicate clause
of the assertion implication to be false. Consequently the assertion becomes
trivially true.

Theorem 5.2.2: In every reachable state of publish, the each value delivered to the user

automata reflects a true value of the publish variable within the preceding time window of

width xmit.ub.

Proof: This property follows directly from the assertion described in Lemma 5.2.6. 0

These two theorems establish basic properties of the GRRDE services. Both types of sub-

scriptions possess the properties described above. Time-triggered contracts possess addi-
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tional behaviours that characterize their periodic nature. We develop these properties with

a further set of state invariants.

Lemma 5.2.7: In every reachable state of publish, the current time is at least as great as

the subscription-start time of any subscribed automaton.

Proof: Assertion 17 is a fairly trivial property. The induction proof proceeds without com-

plexity. The invariant holds in the start state. Thereafter, the only changes to start-time, is

to set it equal to the current time

Lemma 5.2.8: In every reachable state of publish, the variable pubcounti accurately

reflects the number of elements in the DestSeqj log.

Proof: Like the preceding assertion, 18 is proven by a trivial induction on the states of

publish .This assertion is clearly true in the start state. The only actions that modify either

variable are pub-rcv;(T) and cancelokg. We observe from the specification that the rel-

evant variables are modified together.

Lemma 5.2.9: In every reachable state of publish, only subscribed automata have non-

empty message channels.

Proof: Invariant 19 follows from induction on the states of publish. In the start state, no

processes are subscribed and all channels are empty. Thus, the assertion is satisfied. For

the inductive step, we assume that the assertion holds for state s, and consider the transi-

tion (s, 7c, s'). For many actions the assertion is vacuously true. The remaining actions

must be considered individually:

- Case 7E = cancelok.. The precondition for this action requires that mes-
sage channel be empty. Thus, despite the fact that s'.subscribed; = false,
the assertion holds.

1. This behaviour is actually a bit of a contrivance. The precondition that inhibits the cancel ok, action until
the message queue is empty is actual an enforcement of the well-formedness assumptions.
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- Case nt = pub-rcvi(T). Since this action removes elements from the user
channels, it maintains the invariant. If T is the only element of

DestQueue1 , 19 is trivially satisfied. Otherwise, we can observe that
through the transition s.subscribedi = s'.subscribed; = true. This also
satisfies the invariant.

e Case n = publish;(T). This action satisfies the invariant since the precon-
dition for the action includes the provision that subscribedi = true

Lemma 5.2.10: In every reachable state of publish, for all subscribed processes, the ki -

th publish event must occur between StartTime; -k; and StartTime -ki + pub-jitter.

Proof: To prove invariant 110, we consider induction on the states of publish. The pred-

icate to the invariant predicate selects an appropriate value of k. This value is compared to

the count of received messages and current time bounds. Initially the invariant is satisfied

since there are no subscribed processes. For the inductive portion of the proof we consider

the transition (s, it, s'). The non-trivial actions are considered below.

e Case n = publish;(T). From the inductive hypothesis, we must have
already witnessed ki - 1 publish events. If this action is enabled then, the
lower bound of the invariant holds. From the inductive hypothesis the upper
bound must also hold as well. Therefore the assertion holds in s'.

- Case n = v(t). If this action is enabled, then from the preconditions we
know that s.now + t < LastPublishi. Therefore, this action is not enabled if
the time-step would carry now beyond the deadline for the k, -th publish
event. Thus, the assertion is valid.

e Case n = cancelok.. Since this action un-subscribes a user, the invariant is
satisfied in s'.

Lemma 5.2.11: In every reachable state of publish, the ki -th publish message delivered

to a subscribed user is received between now = StartTimei + ki . Period; + xmit.lb

and now = StartTimei+k .Period;+xmit.ub+pub-jitter.

Proof: To prove invariant Ill, we consider an induction on the states of publish. Ini-

tially the assertion is true since there are no subscribers. For the inductive step, we assume

that the assertion holds in state s and consider the transition (s, it, s'). We examine the

following actions:
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e Case n = pubrcv;(T). To satisfy the lower timing bound we note that from
Lemma 5.2.10, that the earliest corresponding Publish event was at
kg * Period and the transit time is at least xmit.lb. The upper bound fol-
lows from a similar argument.

* Case n = cancelok.. This unsubscribes process i, thus satisfying the
assertion

Theorem 5.2.3: Subscribers to time-triggered contracts receive periodic publish messages

with bounded jitter (pub-jitter + (xmit.ub -xmit.lb)

Proof: This property follows directly from the periodic trace history (Lemma 5.2.11), the

timely publishing of each value (Lemma 5.2.10), and the bounded transmission time. 0

5.2.3 Change-Triggered Subscriptions

The IOA code for this automata is given in Figure 5.10 and the invariants are listed in

Figure 5.11. Several of the properties derived for the time-triggered automata hold as well

for the change-triggered services. These could re-derived for this automaton, but in the

interest of brevity we shell omit this duplication. Theorem 5.2.1 and Theorem 5.2.2

remain unchanged. As before, the publish-onchange automaton represents the manual

composition of the actual master publish, composed with channels C and users, U;. We

are interested now in developing the property that is distinct to this automaton, namely its

"exactly once" behavior. That is, each subscribed process will get exactly one copy of

each value written to x.

Lemma 5.2.1: In every reachable state of publish onchange, for each write action, and

for each subscribed user; there will be a dispatched publish message. This message must

be either: waiting to be dispatched, in transit, or received at the user

Proof: To prove assertion 19, we consider induction on the states of publish-on-change.

Initially the invariant is true since there are no subscribed processes. For the inductive step

of our proof, we assume that the assertion holds in state s, and consider the transition

(s, 7t, s'). Non-trivial actions are considered below.
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%This is the abstract specification for the change triggered subscriptions.

uses Conversions

uses PublishTypes

uses Nulled(I)

automaton publish-onchange(vO:V, Inf: Real)

signature
output

subscribe(i:I),
subok(i:I),
cancel(i:I),
cancelok(i:I),
write(i:I, v:V),

writeok(i:I),

publish(i:I, T:TxRec),

pubrcv(i:I, T:TxRec)

internal

WriteCommit(i:I),

GenerateMessages(i:I)

time-passage
v(t:Real)

states
%Constants

sub-ok : TimeBound,
cancel-ok : TimeBound,

writeok : TimeBound,

xmit: TimeBound,

pub-jitter :Real,

dispatch-bound :,
XRecords each client node

DestSeq: Array [I,Seq[RcvRec]] := constant({ }),
PubCount: Array[I, Int] := constant(O),

StartTime: Array[I, Real] := constant(O),

DestQueue: Array[I, Seq[TxRec]] := constant({}),

DispatchSeq: Array[I, Seq[TxRec] := constant({}),

%Housekeeping to ensure well formedness

Subscribed: Array[I, Bool] := constant(false),
PendingCommand: Array [I, Command] := constant (nil),

Generating:I = NULL,
XRecords at server

WriteLog: Seq[WriteRec] := {} F- [[vO, 0], null, 0],

%Published Variable

pub-value : DataRec := [vo,0],

PendingWriteValue : Array[I,V] := constant(vO),

%Time, and GTA bounds

now : Real := 0,
first-cancel-ok: Array[I, Real] : constant(0),

lastcancel-ok: Array[I, Real] := constant(Inf),
first-sub-ok: Array[I, Real] := constant(0),

lastsubok: Array[I, Real] := constant(Inf),

Figure 5.10 Specification for Change-Trigger automaton.



Analysis of GRRDE Specifications 119

first-write-ok: Array[I, Real] :=constant(o),
last-write-ok: Array[I, Real] := constant(Inf)
first-write-commit: Array[I,Real] constant(O),
last-write- commit: Array[I,Real] constant(Inf)

transitions
output subscribe (i:I)

pre PendingCommand[i] = nil A -,Subscribed[i]
eff PendingCommand[i] := Sub;
Subscribed[i] := true;
StartTime[i] now;
XHousekeeping

first-sub-ok[i] now + subok.lb;
last-sub-ok[i] now + sub-ok.ub

output sub.ok(i:I)
pre PendingCommand[i] = Sub A now > first._ subok[i]
eff PendingCommand[i] nil;
first.sub-ok[i] 0;

last-sub-ok[i] Inf
output publish(i:I, T:TxRec)

pre len(DispatchSeq[i]) # 0
A now > head(DispatchSeq[i]).Delivery.lb
A T = [head(DispatchSeq[i]).X,[now + xmit.lb, now + xmit.ub]]

eff DestQueue[i] := DestQueue[i] F- T;
DispatchSeq[i] := tail (DispatchSeq[i])

output pub-rcv(i:I, T:TxRec)
pre Rec = head(DestQueue[i])

A now > head(DestQueue i]).Delivery.lb
A PendingCommand[i] 5 Sub

eff DestQueue[i]:= tail (DestQueue [i]);
PubCount[i] PubCount[i] + 1;
DestSeq[i] := DestSeq[i] F- [T.X, PubCount[i], now]

output cancel(i:I)
pre Subscribed[i] A PendingCommand[i] = nil
eff Subscribed[i] := false;
PendingCommand[i] := Cancel;
first-cancel-ok[i] now + cancel-ok.lb;
last -cancel-ok[i] now + cancel-ok.ub

output cancel-ok(i:I)
pre PendingCommand[i] = Cancel A now > first-cancel-ok[i]

A Dest _Queue[i] = {}
A DispatchSeq[i] = {}

eff PendingCommand[i] nil;
PubCount[i] := 0;
DestSeq[i] := ;
first-cancel-ok[i] := 0;
last-cancel-ok[i] := Inf

output write(i:I, v:V)
pre PendingCommand[i] = nil
eff PendingWriteValue[i] := v;
first-write-commit[i] := now + WriteCommmitTime.lb;

Figure 5.10 Specification for Change-Trigger automaton.
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last.write-commit[i] := now + WriteCommmitTime.ub;

PendingCommand[i] := Commit

internal WriteCommit (i: I)

pre PendingCommand[i] = Commit A now > firstwrite-commit[i] A Generating =nil

eff pub-value := [PendingWriteValue[i], pub.value.SeqNo + 1];

WriteLog := WriteLog I- [pub-value, i, now];

PendingCommand[i] := Write;

Generating:= i;

first-generate[i] := now + generate-bound.lb;

last-generate[i] now + generatebound.ub;

firstwrite-ok[i] Inf; XInhibit write return until generationis done

last -write.ok[i] Inf;

first-write-commit[i] :=0;
last-write- commit [i] := Inf

internal GenerateMessages (i: I)

pre Generating = i A now > first-generate[i]

eff for j:I so that Subscribed[j] do

DispatchSeq[j] := DispatchSeq[j] H

[pub-value, [now + dispatch-bound.lb, now + dispatch.bound.ub]]

od;
Generating := NULL;
first -generate[i] := 0;
last -generate[i] := Inf;

first-write-ok[i] := now + write-ok.lb;

last-write.ok[i] := now + write-ok.ub;

PendingCommand[i] := Write

output write-ok(i:I)

pre PendingCommand[i] = Write A now > first-write-ok[i]

eff PendingCommand[i] := nil;

firstwrite.ok[i] := 0;

last -write.ok[i] := Inf

time-passage v(t: Real)

pre (V i:I ((now + t) < last-write-ok[i]

A (now + t) < last-cancel.ok[i]

A (now+ t) < last-sub-ok[i]

A ((len(DispatchSeq[i]) > 0) =*

((now + t) < head(DispatchSeq[i]).Delivery.ub))

A (len(Dest_-Queue[i]) > 0 =>
((now + t) < head(Dest_Queue[i]).Delivery.ub))))

eff now := now + t

Figure 5.10 Specification for Change-Trigger automaton.

e Case n = WriteCommit.. This actions sets the automaton status,
PendingCommand; = generate. Thus the invariant is satisfied in s'.

- Case n = GenerateMessages,. The effect of this action is to append an
element T, where T.X = tail(WriteLog).X, to each DispatchSeqj where
subscribed, holds. This automatically satisfies the invariant.

- Case 7E = publish;(T) . This action transfers messages from the dispatch
queue to the message channel. If W matches the head of DispatchSeq,
then the invariant holds since we add T to DestQueueg. If the element
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invariant I1 of Publish-on-change:
V W: WriteRec (W E WriteLog => (W.i = null * W = head(WriteLog)))

invariant 12 of Publish-on-change:
V R: RcvRec ((V i:I ((R E DestSeq[i]) =

(3 W:WriteRec (W E WriteLog A W.X.data = R.X.data)))))

invariant 13 of
V R: RcvRec

Publish-on-change:

(V i:I ((R E DestSeq[i]) =>
(3 W:WriteRec (W E WriteLog A W.X = R.X))))

invariant 14 of Publish-on-change:
V i:I (V m: Int (V n: Int ((m > 0 A

A n > 0
A m < n)

m < len(DestSeq[i])
A n < len(DestSeq[i])
=>' DestSeq[i] [m.X.SeqNo < DestSeq[i] [n].X.SeqNo)))

invariant 15 of Publish-on-.change:
V tl:Real (V i:I (V R:RcvRec C(tI = now A R.t = ti A R E DestSeq[i]) =

(pub-value = R.X V
(head(WriteLog).X $ R.X A head(WriteLog).t > now - xmit.ub)))))

invariant 16 of Publish-on-change:
V i:I (now > StartTime[i])

invariant 17 of Publish-onchange:
V i:I (PubCount[i] = len(DestSeq[i]))

invariant 18 of Publish-on-change:
V i:I ((len(DestQueue[i]) # 0) => subscribed(i])

invariant 19 of Publish.on-change:
V i:I (V W:WriteRec (W E WriteLog A subscribed[i] => PendingCommand[i] = Generate V

((3 T:TxRec (T E DispatchSeq[i] A T.X = W.X))
A (3 T:TxRec (T E DestQueue[i] A T.X = W.X))
A (3 R:RcvRec (R E DestSeq[i] A T.X W.X)))))

invariant I10a of Publish-on-change:
V i:I (V W:WriteRec (W E WriteLog => ((3 T:TxRec (T E DispatchSeq[i] A T.X = W.X)) =>

now < (W.t + dispatch-bound.ub))))

invariant IlOb of Publish-on-change:
V i:I (V W:WriteRec (W E WriteLog -> ((3 T:TxRec (T E DestQueue[i] A T.X = W.X)) =>

(now > (W.t + dispatch-bound.lb)
A now < (W.t + dispatch-bound.ub + xmit.ub )))))

invariant I10c of Publishonchange:
V i:I (V W:WriteRec (W E WriteLog -> ((3 R:RcvRec (R E DestSeq[i] A R.X = W.X)) =>

(R.t > CW.t + dispatchbound.lb + xmit.lb)))))

Figure 5.11 State invariants for Change-Triggered automata.

transferred is not the matching one, then the assertion is also clearly true
from the inductive hypothesis.

Case n = pub-rcvi(T). This action satisfies the assertion for similar rea-
sons to that of the publish action. The action either transfers the matching
element to DestSeq,, in which case a different clause of the invariant is sat-
isfied, or it transfers a different element, in which case the assertion is trivi-
ally true.
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Lemma 5.2.2: In every reachable state of publish-on-change, the dispatches spend a

bounded amount of time in DispatchSeqi and DestQueue and must reach the client

within dispatchbound. ub + xmit.ub time units.

Proof: This lemma concerns the assertions made in invariants I10a, I10b and I10c. For

each invariant, we shall consider a separate induction proof, but since the results are simi-

lar, we combine the results into a single lemma. The start conditions for all three invariants

trivially satisfy the assertion, since subscribed = false for all i e I. Let us consider the

inductive step for I10a. We assume that the assertion holds for s and consider the transi-

tion (s, it, s'). All actions save for subscribe(i), 'Commiti, publish(i, T), and v(t)

satisfy the assertion vacuously. The remaining actions we consider individually.

- Case it = subscribe1 . Since it is clear from the pseudocode that

-,W E WriteLog, W.t > now, it follows that there are no elements that sat-

isfy the implication's predicate, i.e. -,3W e WriteLog, W.t > StartTime,.
Thus, the implication is trivially satisfied and the invariant holds in s'

- Case iT = Write Commit. The inductive hypothesis ensures that for all ele-

ments, W already in WriteLog in state s, the assertion must also hold in

s'. In addition, we must consider the extra element W' added to the

WriteLog by the write action. Since W.t = now, this element also satis-

fies the antecedent clause of the implication. Hence, I10a holds in s'.

- Case 7t = publish,(T) .This action removes elements from
DispatchSeqi. Therefore, in s', there are either the same or fewer match-

ing elements in DispatchSeqi and the invariant must hold

- Case 7t = v(t). It is clear that for elements T, and T2 in DispatchSeq,,
that if T1 ::5 T2 then necessarily T.bound s T2 .bound. I.e. the nearest

time-bound is at the front of the queue. For v(t) to be enabled in s,
Vi e I, now + t head(DispatchSeqi).bound.ub. Thus, the assertion

must hold in s'.

The inductive step of the proof of I10b, proceeds in a similar fashion. We assume that the

assertion holds for s, and consider the transition (s, n, s'). The non-trivial actions are

publish,(T), pub-rcvi(T) , and v(t).

e Case n = publish,(T).We consider the effect of the element, T, that we

transfer from DispatchSeq, to DestQueue1 . For this action to be enabled,
the first clause of the conjunction must hold. Also, from I10a, and the effect
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of this action, it is clear that the second conjunctive clause must also hold.
Thus, I10b holds in s'.

- Case 7c = pub-rcvi(T). Since, we only remove elements from
DestQueue, with this action, the invariant is unaffected.

- Case nc = v(t). Invariant I10a, gives an upper bound on the time spent in
DispatchSeq,. Let W;' represent the WriteLog element corresponding to
the head element in the DestQueueg . For v(t) to be enabled
s.now + t head(DestQueueg).bound.ub. We know that this value obeys
head(DestQueue).bound.ub W'.t + dispatchibound.ub + xmit.ub.
Thus, the invariant is satisfied in s'.

Lastly, we consider the arrival of the dispatch messages at the user interface. The non-triv-

ial actions for the inductive step of the proof are pub-rcv;(T) and cancel.ok(i).

- Case n = cancelok.. The effect of this action is to erase the user record.
Thus the assertion is vacuously true.

e Case it = pubrcv;(T). For this action to be enabled, now > T.bound.lb.
From I10b and the effect of publish, if W' is the matching element of
WriteLog then T.bound.lb W'.t + dispatch-bound.lb + xmit.lb. This
satisfies the invariant.

Theorem 5.2.1: Any write invocation of the publish onchange automaton at time to,

results in delivery of exactly one publish message to each subscribed client within the time

window to + dispatchbound.lb + xmit.lb now to + dispatchbound.ub + xmit.ub.

Proof: This theorem follows directly from the previous assertions. Lemma 5.2.1 estab-

lished the uniqueness of the notification, while Lemma 5.2.2 proves the time bounds. 0

This completes the formal analysis of the GRRDE service specifications. We now exam-

ine the algorithms used in the actual GRRDE software and show that they implement

these formalized services.

5.3 Analysis of GRRDE Implementation

The preceding section introduced the formal specification of the GRRDE runtime services

and proved essential properties of their operation. We now provide a more concrete view

of the software running in the GRRDE system. Our goal is to present the algorithms used
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in the source code, and to show, using paired-simulation techniques, that they implement

the abstract services described above. The concrete publish and publish-on-change

automata are developed through the composition of several primitive automata

(Figure 5.12, Figure 5.13). We first examine the functions performed by these components

and then present the simulation proofs that relate the implementations to the specifica-

tions.

Figure 5.12 Composition of the publish automaton.

Figure 5.13 Composition of the publish onchange automaton.
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5.3.1 Atomic Objects

One of the primary building blocks of many distributed systems is the atomic object.

Atomic objects ensure consistent, concurrent access to a variable shared by a number of

processes. In the GRRDE system, an atomic object can only be accessed by processes on a

single CPU. Thus, while GRRDE atomic objects must cope with concurrent access, they

can assume a shared memory, accessible to all the system automata. Distributed atomic

objects, in contrast, must include extra complexity to manage the mirroring of the state

information between different physical locations.

Figure 5.14 Composition of atomic automaton.

We have developed several models of GRRDE atomic objects. There are two primary

varieties AbstractAtomicVar (Figure 5.14) and AbstractAtomicVar2 (Figure 5.15).

These automata are used in the publish and publish onchange services, respectively.

Since atomic objects are extremely important to the correct functioning of the publish-

subscribe services, we present another layer of formal modelling. In the same way in

which the abstract publish service is a composition of several automata, the
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Figure 5.15 Composition of the atomic2 automata.

AbstractAtomicVar automata can also be modelled hierarchically. First, we present an

abstract specification for the atomic objects. Having established the basic properties of the

atomic objects, we then show how these are achieved using the primitive services of the

underlying operating system.

Let us start by examining the basic AbstractAtomicVar automaton. This automaton

allows safe, asynchronous, read and write access to a shared variable of arbitrary type. In

an ideal system, reading or writing to a memory location would be instantaneous. In real-

ity, these operations may take a finite amount of time. For instance, when an automaton

tries to read the atomic object, the request is made by a read, action. Some time later, a

value is returned with a return_valuei(x) event. Similar invocations and responses are

employed for write;(v) actions. When an object is shared by several processes or autom-

ata, the operations may overlap. These overlapping invocations must be handled in a man-
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ner that allows the internal behaviour to be sensibly reconciled with the system's external

behaviour. There must exist an instant, between an action's invocation and response, at

which we can say that the operation took place. Making such assignments creates a total

ordering of the invocations. This process is called serializing. The safety property that we

require is that the operations performed on an atomic variable be serializable [Lynch,

1996]. It is not necessary that these instants be unique; we only require that some total

ordering must exist.

The IOA pseudocode for the AbstractAtomicVar automaton is shown in Figure 5.16.

This automaton supports concurrent interactions from a number of user processes. We

record the current value of X in a DataRec tuple described in the previous section. The

automaton maintains two log variables. The first is WriteLog, a list of all the values writ-

ten to the object. We encountered this variable earlier, in the specification of the publish

automata. Later, we will show the equivalence between the two instances. The other vari-

able of interest is Record. This variable maintains a totally-ordered and time-tagged list

of the read and write invocations. Entries are added to the list during the internal

doread and dowrite actions.

Similarly, the IOA pseudocode for the AbstractAtomicVar2 automaton is shown in

Figure 5.17. The response to read, invocations is similar to the preceding automaton. The

write,(v) behaviour is slightly different. Each time that some automaton writes a value to

this object we generate a notify(i) action. We will show that this action is used to gener-

ate the publish dispatches. The atomic2 automaton must wait for a confirmatory

notifyAck(i) action before resuming normal operations and issuing a write-response.

During the time in which an notification is pending, read invocations are permitted but

write invocations are deferred. The AbstractAtomic Var2 automata maintain WriteLog

and Record variables in a manner similar to the AbstractAtomicVar automata. One

small change should be noted. In addition to recording the read and write events, this

automaton also records the notify periods.
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type ReadReq = tuple of i:I, bnd: TimeBound
type WriteReq = tuple of i:I, v: DataType, bnd: TimeBound
type SimplePC = enumeration of read-wait, read-done, write-wait, writedone, idle

automaton AbstractAtomicVar(vO: V, Inf: Real)
signature

%Interface to user
input

read(i:I),

write(i:I, v:V)
output

readvalue(i:I, x:DataRec),

write-ok(i:I)
time-passage

v(t:Real)
internal

do-read(i:I),
do-write(i:I)

states

Record: Seq[OpRec] := {,
value: DataRec := [v0,0],

pc: Array[I, SimplePC] := constant(idle),
PendingReadValue: Array[I, DataRec] := constant ([v,0]),
PendingWriteValue: Array[I, DataRec] := constant([v0,0])

XTime constants

read-time : TimeBound,

write-time : TimeBound,

read-resp : TimeBound,

write-resp : TimeBound,

%Time accounting

now : Real := 0,
bnd: Array[I, TimeBound] := constant[0,Inf],
firstread.resp :Array[I,Real] := constant(O),
last-read-resp : Array[I, Real] := constant(Inf),
firstwrite.resp : Array[I, Real] := constant(O),
last-write-resp : Array[I, Real] := constant(Inf),
WriteLog: Seq[WriteRec] := {} I- [[vO,0],NULL,0]

transitions

input read(i:I)

eff bnd[i]:=[now + read-time.lb, now + read-time.ub];
pc[i] := read-wait

output read-value(i:I, x:DataRec)
pre (pc[i] = read-done A now > firstread-resp[i] A x = PendingValue[i])
eff pc[i] := idle;
firstread.resp[i] := 0;
last .readresp[i] := Inf

input write(i:I, v: DataType)
eff bnd[i] := [now+ write-time.lb, now + write-time.ub ];
PendingWriteValue[i] := [v,0]; %SeqNo to be filled in later

Figure 5.16 IOA Code for AbstractAtomicVar automaton specification.
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pc[i] write-wait
output writeok(i:I)

pre (pc[i] = write-done A now > first.write.resp[i])
eff pc[i] : idle;

first-write-resp[i] 0;

last-write.resp[i] := Inf

internal do.read(i:I)

pre (pc[i] = read-wait A now > bnd[i].lb)
eff pc[i] := read-done;
PendingReadValue[i] := value;
for j:I do

if pc[j] = read-wait then
bnd[jl.lb = now + read-time.lb

fl
od;
bnd[i] := [0,Inf];
first-read-resp[i] := now + read-resp.lb;
last-read-resp[i] now + readresp.ub;
Record := Record - [readend, i, now]

internal do_ write (i: I)

pre (pc[i] = write-wait A now > bnd[i].lb)

eff value := [PendingWriteValue [i] .v, value.SeqNo + 1];
pc[i] := write-done;
for j:I do

if pc[j] = write-wait then
bnd[j].lb = now + write-time.lb

od;
bnd[i] := [0,Inf];
firstwrite-resp[i] := now + write.resp.lb;

last write..resp[i] := now + write-resp.ub;

Record := Record H [write-end, i, now];
WriteLog := WriteLog H [value,i,now]

time-passage v(t:Real)
pre V i:I ((now + t) < bnd[i].ub A (now + t) < last-write-resp[i]

A (now + t) < last.read-resp[i])

eff now := now + t

Figure 5.16 IOA Code for AbstractAtomicVar automaton specification.

We have not specified explicit invariants for either of these automata. Rather, we are using

these specifications as an intermediate step in our overall formal analysis. Recall that we

have presented the abstract publish services and are now examining their composition.

Atomic objects are one of these components. However, the implementation of the atomic

objects is sufficiently complex that the direct composition of the publish automaton would

be quite confusing. Hence, the simple, abstract atomic objects will be used in the publish

composition while their detailed implementation is described below.
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type ReadReq = tuple of i:I, bnd: TimeBound
type WriteReq = tuple of i:I, v: DataType, bnd: TimeBound
type AbsWritePC = enumeration of write-wait, write_done, idle, notify, notify-done, Idle
type AbsReadPC = enumeration of read-wait, read-done, idle

automaton AbstractAtomicVar2(v0: V, Inf: Real)
signature

%Interface to user
input

read(i:I),
write(i:I, v:V),

notify-ack(i:I)

output

read-value(i:I, x:DataRec),

write.ok(i:I),

notify(i:I)

time-passage
v(t:Real)

internal
do-read(i:I),

do-write(i:I)

states

Record: Seq[OpRec] := {},
WriteLog : Seq[WriteRec] := {} 1- [[vO,0], NULL, 0],

value: DataRec := [v0,0],

pc-read: Array[I, AbsReadPC] := constant(idle),
pcwrite: Array[I,AbsWritePC] := constant(idle),
PendingWriteValue: Array[I, DataRec] := constant([v0,0]),
PendingReadValue: Array[I,DataRec] := constant([vO,0]),
Notifying: Bool := false,
XTime constants

read-time : TimeBound,

write-time : TimeBound,
read-resp : TimeBound,
write-resp : TimeBound,

notify-time: TimeBound,

XTime accounting

now : Real := 0,
bnd: Array[I, TimeBound] := constant[0,Inf],
first.read-resp :Array[I,Real] := constant(0),
last.readresp : Array[I, Real] := constant(Inf),
first-writeresp : Array[I, Real] := constant(0),
last-write-resp : Array[I, Real] := constant(Inf)

transitions
input read(i:I)

eff bnd[i]:=[now + read-time.lb, now + read.time.ub];

pc-read[i] := read-wait
output read-value(i:I, x:DataRec)

pre (pc[i] = read-done A now > first-read-resp[i] A x = PendingReadValue[i])

Figure 5.17 IOA Code for AbstractAtomicVar2 automaton specification.
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eff pc[i] := idle;
first-read.resp[i] 0;
last -read-resp[i] Inf

input write(i:I, v:V)

eff bnd[i] := [now+ write-time.l

PendingWriteValue[i] := [v,0];

pcwrite[i] := write-wait

output write.ok(i:I)
pre (pc-write[i] = notify-done

eff pc.write[i] := idle;
first-write-resp[i] 0;

last write-resp[i] Inf
internal do.read(i:I)

pre (pc.read[i] = read-wait A
eff pcread[i] := read-done;
PendingReadValue[i] := value;
bnd[i] := [0,Inf];

.b, now + writetime.ub];

A now > firstwriteresp[i])

now > bnd[i].lb)

first-readresp[i] now + readresp.lb;
last readresp[i] := now + read-resp.ub;
Record := Record F [read-end, i, now]

internal do-write (i:I)
pre (pc[i] = write-wait A now > bnd[i].lb A -,Notifying)

eff value := [PendingWriteValue[i].v, value.SeqNo];

pc-write[i] := write-done;
bnd[i] [now + notifytime.lb ,now + notify.time.ub];
Record Record F- [writeend, i, now];

Record Record F- [notifystart, i, now];

WriteLog WriteLog F- [value, i, now];
Notifying true

output notify(i:I)

pre pc.write[i] = write-done A now > bnd[i].lb
eff pc-write[i] notify;

bnd[i] := [0, Inf]
input notify-ack(i:I)

eff pc.write[i] := notifydone;
first-write-resp[i] now + write.resp.lb;

last write-resp[i] now + write-resp.ub;
Record := Record F- [notify-end, i, now];
Notifying := false;
for i:I do

if pc-write[i] = write-wait then

bnd[i].lb now + write-time.lb
fi

od
time-passage v(t:Real)

pre V i:I ((now + t) < bnd[i].ub A (now +
A (now +

eff now now + t;

t) < last-write...resp[i]
t) < last-read-resp[i])

Figure 5.17 IOA Code for AbstractAtomicVar2 automaton specification.

The key to constructing an atomic object in a shared memory system is ensuring exclusive

access to the variable storage during the time in which the variable is accessed. For simple
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variables such as integer or floats, memory access in most processors is inherently atomic.

Unfortunately, for more complex variables, such as arrays or structures, this is not the

case. A read that overlaps with a write, may return partly old values and partly new values.

This inconsistency is extremely undesirable. To ensure atomicity, the processes sharing the

variable must execute a mutual exclusion (ME) algorithm. The canonical representation of

such a protocol involves four actions:

1. tryg, in which a process announces its intention to compete for the shared
resource.

2. crit;, in which the ME algorithm grants exclusive access to the resource.

3. exit1 , in which a process currently accessing the resource, releases exclusive
control

4. rem, in which a releasing process is given confirmation of the resource
release.

GRRDE employs operating system semaphores to achieve mutual exclusion.

Semaphores are special types of variables that are accessed through operating system

functions. They are initialized with a starting integer value. This value represents the num-

ber of process allowed to access the resource at once (i.e. one, for mutual exclusion). Pro-

cesses may use try, to attempt to secure the semaphore. The current value is checked. If

the semaphore value is greater than zero, the value is decremented and the process may

proceed. If the value is zero, the process is blocked. When finished, the exit action incre-

ments the counter and allows another process to access the resource. Although, it is not a

universal stipulation of ME, the OSE operating system actually guarantees FIFO response

to try, requests, i.e the waiting processes are queued. The behaviour of OSE semaphores

can be described abstractly by an IOA model (Figure 5.18). The state invariants for the

SemaphoreMutEx automaton are given in Figure 5.19.

Lemma 5.3.1: In every reachable state of SemaphoreMutEx, either if status; = crit

then active = i and the semaphore value is less than 1.
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type region = enumeration of try, crit, exit, rem
type TimeBound = tuple of lb: Real, ub: Real

automaton SemaphoreMutEx (Inf : Real)
signature

input try(i:I), exit(i:I)
output crit(i:I), rem(i:I)
time-passage v (t :Real)

states

X"Constant"
d:Real := 1,
sem-queue: Seq[I],
status: Array[I,region] = constant(rem),

sem...value: Int := 1,
active : I,

now : Real := 0,
Rem: Array[I,TimeBound] := constant([O,Inf])

transitions
input try(i:I)

eff sem-queue := sem-queue - i;
status[i] := try

output crit (i: I)

pre len(sem-queue) # 0 A head(sem-queue) = i A sem-value > 0
eff sem-value := sem-value - 1;
active := i;
sem-queue:= tail(sem-queue);
status[i] := crit

input exit (i: I)
eff status[i] := exit;
Rem[i].ub := now + d;
sem-value := sem-value + 1

output rem(i:I)
pre status[i] = exit
eff status[i] := rem;
Rem[i].ub := Inf

time-passage v (t : Real)
pre V i:I ((now + t) > Rem[i].ub A (sem-value = 0 V status[i] = rem V status = exit))

eff now := now + t

Figure 5.18 The SemaphoreMutEx automaton.

invariant I1 of SemaphoreMutEx:
V i:I ((status[i] = crit) => (V j:I (j=i V status[j] 4 crit)))

invariant 12a of SemaphoreMutEx:
sem-value = 0 V sem-value = 1

invariant 12b of SemaphoreMutEx:
V i:I ((status[i] = crit) => (active = i A sem-value < 1))

Figure 5.19 Invariants of the SemaphoreMutEx automaton.
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Proof: We prove 12b, by induction on the states of SemaphoreMutEx. The invariant

clearly holds in the start state. Proceeding to the inductive step, we assume that the asser-

tion is true in state s and consider the transition (s, it, s'). The actions v(t) and rem; are

vacuously true. We must consider the remaining actions individually:

e Case n = try.. If status = crit, then since we assume that user interac-
tions are well formed, it is necessarily the case that i #j, i.e it was a different
process trying to access the resource. The assertion must therefore hold in
s'. If status; # crit, then the assertion is trivially satisfied.

e Case 7n = critj. If s.status; = crit, then from the invariant assertion, this
action cannot be enabled. If s.semvalue = 1, then this action could be
enabled. Thus s'.status = crit, s'.semvalue = 0, and s'.active = j
and the assertion is satisfied.

e Case it = exit.. From the invariant assertion and the assumption of well-
formedness, if s.status; = crit then i = j. Thus, the assertion is trivially
true in s'.

Lemma 5.3.2: In every reachable state of SemaphoreMutEx, only one process may be in

the critical region at a time.

Proof: The property of assertion Il can be established with a simple induction on the

states of SemaphoreMutEx. The condition is clearly true in the automaton start state.

Thus, proceed with the inductive step. Assuming that the assertion holds in state s, we

must consider the transition (s, 7t, s') and prove that it holds in state s'. The actions in

which the assertion is not vacuously true are critg and exit. All other actions cannot

affect the invariant.

* Case it = critj. If -,i, s.status; = crit, then the assertion will hold in s'.
Otherwise, from Lemma 5.3.1, this action cannot be enabled.

- Case it = exit.. From the invariant hypothesis and the effects of this action
we know that -,ii, s' .status; = crit. Thus, the assertion must hold in s'.

Theorem 5.3.1: The SemaphoreMutEx ensures mutual exclusion.

Proof: Since from Lemma 5.3.2, there cannot be more than one user with

status; = crit, exclusive access is guaranteed. C
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The atomic automaton is constructed by composing one SemaphoreMutEx automaton

a number of interface automata, Atomic VarInterfacei (Figure 5.14) and the shared vari-

able X. The various Atomic VarInterface; automata manage the atomic access to the

variable X and present a distributed interface to the user processes. The IOA model for

Atomic VarInterface; is given in Figure 5.20. The state invariants are found in

Figure 5.21. Although the IOA code represents a number of distributed automata, not all

the state information is split up. The artificial log variables Record and WriteLog are

shared, as is the shared variable X. The operation of the composed automata is straightfor-

ward. After receiving a read, or write;(v) invocation, the interface automata dispatches

a try; action to the semaphore. Once it receives permission to proceed (crit;), the inter-

face will perform the requested operation on X and then issue an exit, to release the lock.

The final rem message from the semaphore permits the operation to complete and the

interface produces a readvalue (x) or writeok. message.

We combine the automata Atomic VarInterface; with a SemaphoreMutEx to produce

the composed automaton AtomicVar. We can prove several state invariants about the

composition.

Lemma 5.3.1: In every reachable state of AtomicVari at most one process is reading or

writing at a given time.

Proof: We prove 13 through induction on the states of AtomicVar1 . Initially, the asser-

tion is clearly true. To establish the inductive step we assume that 13 holds in state s and

consider the transition to state s', i.e. (s, n, s'). The only actions for which the assertion is

not vacuously true are crit and exits.

- Case n = crit;. If there no writing or reading processes in state s, the asser-
tion will be satisfied in s' since the status of only one user changes. If there
is an i such that s.pc, = reading v s.pc; = writing, from Theorem 5.3.1,
we cannot receive this action since that would violate mutual exclusion.
Thus the assertion is satisfied in s'

e Case it = exit1 . This action trivially satisfies the assertion since the predi-
cate of the implication becomes false.
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type Op = enumeration of read-start, read-end, writestart, write-end
type OpRec = tuple of op:ap, i:I, t:Real
type PC = enumeration of idle, write-enable, write-block, writing, write-release,

write-return, read-enable, readblock, reading, readrelease, read-return

automaton AtomicVarInterface(v0 :V, Inf: Real)
signature

%Interface to user
input

read(i:I),
write(i:I, v:V),

crit(i:I), rem(i:I)

output
read-value(i:I, x:DataRec),

write.ok(i:I),

try(i:I), exit(i:I)
time-passage

v(t: Real)
states

XWe have one program counter for each automaton

pc : Array[I, PC] := constant(idle),
value: DataRec := [vO,0],

PendingValue: Array[I, DataRec]:= constant ([vO,0]),
XTimeBound Constants

r-dispatch-bnd: TimeBound,

w-dispatch-bnd: TimeBound,

r_execute-bnd: TimeBound,

w-execute-bnd: TimeBound,

r-return-bnd: TimeBound,

w-return-bnd: TimeBound,

%Time accounting

now : Real := 0,
first-read-dispatch: Array[I, Real] := constant(0),
lastreaddispatch: Array[I, Real] := constant(Inf),
first -write-dispatch: Array[I, Real] := constant(0),
last .write-dispatch: Array[I, Real] := constant(Inf),
firstreadexec: Array[I, Real] := constant(0),
lastreadexec: Array[I, Real] := constant(Inf),
firstwriteexec: Array[I, Real] := constant(O),
last -write-exec: Array[I, Real] := constant(Inf),
first-write-return: Array[I, Real] := constant(0),
last -write -return: Array[I, Real] := constant(Inf),
XAction log

Record : Seq[0pRec] := {,
WriteLog : Seq[WriteRec] := {} F [[v0,0],NULL,0]

transitions
input read(i:I)

eff pc[i] := read-enable;
first read-dispatch[i] := now + r-dispatchbnd.lb;

Figure 5.20 AtomicVarInterface automata pseudocode.
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last -read-dispatch [i := now + r.dispatchbnd.ub

input write(i:I, v:V)
eff pcEi] := write-enable;

first -write-dispatch[i] now + r-dispatch.bnd.lb;
last -write-dispatch[i] now + r.dispatch.bnd.ub;
PendingValue[i] := [v,0] X sequence number assigned later

output try (i: I)
pre ((pc[i] = read-enable A now > firstreaddispatch[i])

V (pc[i] = write-enable A now > first-write-dispatch[i]))
eff if Pc[i] = read-enable then

pc[i] read-block;
first-read-dispatch[i] 0;

last-read-dispatch[i] Inf

else

pc[i] := write-block;
firstwrite-dispatch[i] 0;
last-write-dispatch[i] := Inf

fi
input crit (i: I)

eff if pc [i] = read-block then

pc[i] := reading;
first-read.exec now + r-execute-bnd.lb;
last-read-exec now + r-execute.bnd.ub;
Record Record H [read-start,i, now]

else

pc[i] writing;
first-writeexec[i] now + w-execute.bnd.lb;
last-write-exec[i] now + w-execute-bnd.ub;
Record Record I- [write-start, i, now]

fi
output exit(i:I)

pre ((pc[i] = reading A now > first-read-exec[i])
V (pc[i] = writing A now > first-read-exec[i]))

eff if (pc [i] = reading) then
pc [i := read-release;
PendingValue [i] := value;
first-read-execi]: 0;
last-read-exec[i] := Inf;

Record := Record - [readend, i, now]

else

pc[i] write-release;
value = [PendingValue [i] .v, value. SeqNo+1];

first-write-exec[i] 0;
last -write-exec[i Inf;
Record := Record F [writeend, i, now];

WriteLog := WriteLog H [value,i,now]
if

input rem(i:I)

eff if (pc[i] = read-release) then
pc[i] := read-return;

Figure 5.20 AtomicVarInterface automata pseudocode.
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first-read-return[i] now + rreturn.bnd.lb;
last-read-return[i] now + r-return-bnd.ub

else

pc[i] := write-return;
firstwritereturn [i] now + w.return-bnd.lb;
last-writereturn[i] now + w-return-bnd.ub

fa
output read-value(i:I, x:DataRec)

pre (now > firstread_return[i] A x = PendingValue[i]
A pc[i] = read-return)

eff pc[i] := idle;
first.read-return[i] 0;
last-read-return[i] := Inf

output writeok(i:I)

pre (now > firstwritereturn[i] A pc[i] = writ
eff pc[i] := idle;
first-write-return[i] 0;

last -write-return[i] Inf
time-passage v(t:Real)

pre (V i:I ((now+t) < last-read-return[i]

A (now + t) < last-write-return[i]

A (now + t) < last.write.exec[i]

A (now + t) < firstread-exec[i]
A (now + t) < lastread.dispatch[i]
A (now+t) < last.write-dispatch))

eff now := now + t

e_return)

Figure 5.20 Atomic VarInterface automata pseudocode.

invariant 13 of AtomicVarInterface:
V i:I ((pc[i] = writing V pc[i] = reading) =>

(-,3 j:I (ifj A (pc[j] = writing V pc[j] = reading))))

invariant I4a of AtomicVarInterface:
V m:Int ((m>O A m < len(Record) A Record[m].op = read-start) =>

(Record[m] = last(m)
V (Record[m+1].op = read-end A Record[m].i = Record[m+1].i)))

invariant 14b of AtomicVarInterface:
V m:Int ((m > 0 A m < len(Record) A Record[m].op = writestart) =>

(Record[m] = last(m)
V (Record[m+1].op = write-end A Record[m].i = Record[m+1].i)))

Figure 5.21 Invariants of AtomicVarInterface.

Lemma 5.3.2: In every reachable state of AtomicVari, the logged read and write inter-

vals do not overlap.

Proof: For the sake of clarity we treat the read (14a) and write (14b) intervals sepa-

rately. The automata create a start entry in Record when they receive a crit, message

138



Analysis of GRRDE Implementation

and write an end entry when they send an exit, message. The invariants state that every

start entry must be followed immediately by a corresponding end entry, or it must be the

last element of the log. Since the two invariants are almost identical, we shall sketch out

the proofs in parallel. We prove these properties by induction on the states of

AtomicVar1 . The properties are clearly true in the start state, therefore we may proceed

with the inductive step. Assuming that 14a and 14b are true in s, we consider their validity

under the transition (s, 7c, s'). Only two actions affect Record:

" Case nE = crit;. If the previous interval has been 'closed' then, this action
will add a startwrite or startread entry to Record. Since this new entry
would be the last element of Record, the invariant will hold in s'. If the
previous interval is 'open', this action cannot occur since it would contradict
Lemma 5.3.1.

- Case n = exit1 . Since this action will close any open interval, the invariant
is clearly true in state s'.

Theorem 5.3.1: The AtomicVar composition implements safe atomic access to variable

X.

Proof: Since the access to the variable X is controlled by a mutual exclusion protocol

(Theorem 5.2.1) and the and each operation possess a non-overlapping 'execution' inter-

val (Lemma 5.3.2), each operation can be serialized to any point during interval. Thus, the

atomic automaton correctly implements an atomic object. O

A similar process can be followed to compose the atomic2 automaton. This composition

requires two SemaphoreMutEx automata as well as the interface automata

Atomic VarInterface2. One of the semaphores provide a 'write-lock', and the other pro-

vides a 'read-lock'. To read from the object, a process needs to secure the read-semaphore.

To write to the object a process must obtain both at the same time. Once the physical write

operation is complete, the read-semaphore is released, but the write-semaphore is retained

until the notification process is concluded. The IOA code for the Atomic VarInterface2

automata is given in Figure 5.22.
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type Op = enumeration of read-start, read-end, writestart, write-end, notify-start, notify-end
type OpRec = tuple of op:0p, i:I, t:Real
type ReadPC = enumeration of idle, read-enable, read-block,

reading, read-release, read-return

type WritePC = enumeration of idle, write-enable, writeblock, writing, write-release,
write-return, notify-enable, notifying, notify-release, write-read-enable,

write-read.block, write-read-release

automaton AtomicVarInterface2(vO :V, Inf: Real)
signature

%Interface to user

input

read(i:I),

write(i:I, v:V),

crit-r(i:I), rem-r(i:I),

crit-w(i:I), rem.w(i:I),

notify-ack(i:I)

output
read-valu,e(i:I, x:DataRec),

write-ok(i:I),

try-r(i:I), exit-r(i:I),

try-w(i:I), exit_w(i:I),
notify-ack(i:I)

time-passage
v(t: Real)

states
%We have one program counter for each automaton

pc-read : Array[I, ReadPC] constant(idle),
pw-write: Array[I, WritePC] constant(idle),
value: DataRec := [v0,0],

PendingReadValue: Array[I, DataRec] := constant ([vO, 0]),
PendingWriteValue: Array[I, DataRec] := constant([vO,0]),
XTimeBound Constants

r-dispatch-bnd: TimeBound,

w-dispatch-bnd: TimeBound,

r-execute-bnd: TimeBound,

w-execute-bnd: TimeBound,

r-return-bnd: TimeBound,

w-return-bnd: TimeBound,

XTime accounting

now : Real := 0,
first -read-dispatch: Array[I, Real] := constant(0),
last read-dispatch: Array[I, Real] := constant(Inf),
first.write-dispatch: Array[I, Real] := constant(0),
last-write-dispatch: Array[I, Real] := constant(Inf),
first-read-exec: Array[I, Real] := constant(O),
lastreadexec: Array[I, Real] := constant(Inf),
first-write-exec: Array[I, Real] := constant(0),
last-writeexec: Array[I, Real] := constant(Inf),

Figure 5.22 The Atomic Varlnterface2 automata.
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first-write-return: Array[I, Real] constant(O),
last-write.return: Array[I, Real] constant(Inf),

XAction log

Record : Seq[OpRec] := {O}
transitions

input read(i:I)
eff pc.read[ i] := read-enable;

first -readdispatch [i] now + rdispatch.bnd.lb;

last -read-dispatch[i] now + r.dispatch.bnd.ub
input write(i:I, v:V)

eff pc.write[ i] := write-enable;

first-write-dispatch[i] = now + w-dispatch-bnd. lb;
last .write-dispatch i]: now + w-dispatch.bnd.ub;

PendingWriteValue[i] := [v,0]

output tryr(i:I)
pre ((pc.read[i] = read-enable A now > first-readdispatch [i])

V (pc.write[i] = write-read-enable A now > first-write-dispatch[i]))

eff if pc-read[i] = read-enable then
pc-read[i]: read-block;
first read-dispatchli] := 0;
last-read.dispatch[i] := Inf

else
pc.write[i] := write-read-block;
first writedispatch[i] := 0;

last-write-dispatch[i]: Inf

fi
output try.w(i:I)

pre pc.rite[i] = write-enable A now > first writedispatch [i]

eff pc-write[i] write-block;
first.write.dispatch i]: 0;

last-write-dispatch[i]: Inf

input crit-r(i:I)
eff if pc.read[i] = read-block then

pc-read[i] := reading;
first-read-exec now + r_execute.bnd.lb;
last-read.exec now + r-execute-bnd.ub;

Record := Record I- [read-start,i, now]

else

pc.write[ i] := writing;
first-write-exec[i] now + w-executebnd.lb;

last -write -exec[i] := now + w-executebnd.ub;

Record := Record H [write-start, i, now]

fi
input crit-w(i:I)

eff pc.writeLi] := write-read-enable;

first write-dispatch i] := now + r-dispatch-bnd.lb;

last .write-dispatchLi] now + rdispatch.bnd.ub;

output exit-r(i:I)
pre ((pc-read[i] = reading A now > first-readexec[i])

V (pc-writei] = writing A now > first-read-exec[i]))

Figure 5.22 The AtomicVarlnterface2 automata.



FORMAL VALIDATION OF GRRDE RUN-TIME SERVICES

eff if (pc-read[i] = reading) then

pc-read[i] := read-release;
PendingReadValue[i] value;
first-read-exec[i] 0;

last-read-exec[i] Inf;
Record := Record - [read-end, i, now]

else

fi

pc[i] write-read-release;

value [PendingWriteValue[i].v,
first.writeexec[i] 0;

last-write.exec[i] Inf;
Record Record - [write-end, i,
Record Record - [notify-start,
WriteLog := WriteLog H [value, i,

value.SeqNo + 1];

now];

i, now];
now];

output exit-w(i:I)
pre pc.write[i] = notify-release A now > first-write.exec[i]
eff pc-write[i] write-release;
first.write-exec[i] 0;

last-write-exec[i] Inf;
Record:= Record H [notify-end, i, now]

input rem-r(i:I)

eff if (pc-read[i] = read-release) then
pc-read[i] := readreturn;
first.readreturn[i] now + r-return-bnd.lb;
last-read-return[i] now + r-return-bnd.ub

else

pc-write[i] := notify-enable;
first-write-return[i] now + w-dispatch-bnd.lb;
last-write-return[i] now + w-dispatch-bnd.ub

fi
input rem.wi:I)

eff pc-write := write-return;
first-write-return[i] now + w-return-bnd.lb;
last-write-return[i] now + w-return-bnd.ub;

output read-value(i:I, x:DataRec)
pre (now > firstread-return[i] A x = PendingReadValue[i]

A pc-read[i] = read-return)
eff pc-read[i] := idle;
first-read-return[i] 0;

last-read-return[i] Inf
output write.ok(i:I)

pre (now > first-write-return[i] A pc[i] = write-return)
eff pcwrite[i] := idle;
first-write-return[i] := 0;
last -write-return[i] Inf

output notify(i:I)
pre pcwrite[i] = notify-enable A now > first.write.exec[i]
eff pcwrite[i] := notifying;
first-write-exec[i] := 0;

Figure 5.22 The Atomic Varnterface2 automata.
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last-writeexec Ci] = Inf

input notifyack(i:I)
eff pc.write[i] := notify-release;

first-write-exec[i] now + w.return-bnd.lb;
last write-exec[i] now + w-return-bnd.ub

time-passage v(t:Real)
pre (V i:I ((now+t) < last-read-return[i]

A (now + t) < last-write-return[i]

A (now + t) < last-writeexec[i]
A (now + t) < firstreadexec[i]
A (now + t) < last.readcdispatch[i]

A (now+t) < lastwritedispatch))

eff now now + t

Figure 5.22 The AtomicVarlnterface2 automata.

When the two semaphores are composed with the interface automata, some of their

actions must be renamed to eliminate ambiguity. For instance the try, action for the read-

semaphore has been relabeled try-rg . The invariants in can be proven from the composi-

tion. The composition is called AtomicVar21 .

invariant 13 of AtomicVarInterface2:
V i:I ((pc.write[i] = writing V pc-read[i] = reading) =>

(-,3 j:I (ifj A (pc-write[j] = writing V pc-read[j] = reading))))

invariant 13a of AtomicVarInterface2:
V i:I ((pc.write[i] E

{write.readenable, writereadblock, write-read-release, notifyenable, notifying, notifyrelease}

=> (-3 j:I ( if j A pc.write[j] E

{write.read-enable, writereadblock, write-read-release, notify-enable, notifying, notify.release}))))

invariant I4a of AtomicVarInterface2:

V m:Int ((m O A m < len(Record) A Record[m].op = read-start) =>

(Record[m] = last(m)
V (Record[m+1].op = read-end A Record[m].i = Record[m+1].i)))

invariant I4b of AtomicVarInterface2:
V m:Int ((m > 0 A m < len(Record) A Record[m].op = write-start) =>

(Record[m] = last(m)
V (Record[m+1].op = write-end A Record[m].i = Record[im+1].i)))

invariant I4c of AtomicVarInterface2:
V S:Seq[OpRec ((S -< Record A head(S).Op = notify-start

A ((last(S) = last(Record) A -,3 R:OpRec (R E S A R.op = notify-end))

V (last(S).op = notify-end A -,3 R:OpRec (R E init(S) A R.op = notify-end))))

=> (-3 R:OpRec (R E S A (R.op = write-start V R.op = write-end))))

Figure 5.23 Invariants of AtomicVar2.
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Lemma 5.3.1: In every reachable state of Atomic Var2, only one process may be reading

or writing at the same time.

Proof: To prove 13 we consider induction on the states of AtomicVar2. Clearly the

invariant is true in the start state. We proceed with the inductive step. Assuming that the

invariant holds in state s, we consider the transition (s, 7c, s'). The actions for which the

invariant is not vacuously true are crit-rg and exit_r .

- Case it = crit_rg. Satisfaction of the invariant follows directly from the
mutual exclusion guarantee of the read-semaphore. Either there is no reading
or writing process in s, in which case the execution of this action changes
the status of a single process, or this action cannot occur at all.

e Case it = exit_rg. This action makes the invariant trivially true in s' by
invalidating the predicate to the implication.

Lemma 5.3.2: In every reachable state AtomicVar2, once a process has secured the

write-semaphore, further write operations are deferred until the end of the notification

phase.

Proof: Invariant 13a follows directly from an induction on the states of AtomicVar2.

Clearly the invariant is true in the start state. We must then assume that the assertion holds

in state s and examine the transition (s, it, s'). We need consider only actions crit-w;

and exit-wg. Although there are many transitions between these two events either the

invariant hypothesis precludes them being enabled, or well-formedness assumptions about

the notify, and notify-ack, exchanges prohibits the event.

e Case nT = crit_w. .The satisfaction of the invariant follows directly from the
mutual exclusion guarantee of the write-semaphore. Either there is no read-
ing or writing process in s, in which case the execution of this action
changes the status of a single process, or this action cannot occur.

* Case it = exit_w.. This action makes the invariant trivially true in s' by
invalidating the predicate to the implication.

Lemma 5.3.3: In every reachable state of AtomicVar2, read and write intervals do not

overlap.
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Proof: The proof of invariants I4a and 14b follows an inductive proof similar to

Lemma 5.3.2. The assertion is clearly true in the start state. The non-vacuous actions are

crit-r; and exit_ri.

" Case nt = crit_rg .The satisfaction of the invariant follows directly from the
mutual exclusion guarantee of the read-semaphore. Either there is no reading
or writing process in s, in which case the execution of this action changes
the status of a single process, or this action cannot occur.

" Case n = exit_r ., This action will close an open operation interval. Thus
the assertion becomes trivially true in s'.

Lemma 5.3.4: In every reachable state of AtomicVar2, there are no writestart or

writeend events recorded during a notify period.

Proof: Invariant 14c follows from induction on the states of Atomic Var2. We must con-

sider critri , exitrg, and exit wi.

- Case n = crit_rg. If there is currently an open notify interval in Record,
then only reading processes can execute this action. Writing processes are
barred by Lemma 5.3.3. If there is no open notify interval, the assertion is
trivially satisfied

e Case n = exit_rg. From the preceding case, we cannot open a write interval
in a notify interval. Furthermore, we know that we close the write interval
when we open the notify interval. Thus, only reading processes can execute
this action in an open notify interval. The assertion is satisfied.

e Case n = exit_w. This action will close a notify interval and trivially sat-
isfy the invariant.

Theorem 5.3.1: The AtomicVar2 composition implements safe, atomic access to vari-

able X.

Proof: This follows directly from the mutual exclusion properties of the semaphores

(Theorem 5.2.1) and the serializable read and write operations (Lemma 5.3.3) in

Record .0
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Let us now examine the relation between the abstract and concrete versions of the atomic

objects. We wish to prove that AtomicVar implements the specification provided in

AbstractAtomic Var. To establish this property we consider a paired-simulation proof.

To establish a simulation relation between two automata, A and B, we must introduce a

relation F between their respective states, s and u, such that u e F(s). This relation is

proven inductively. It must hold in the start states of the automata. Furthermore, we must

show that for each transition, (s, 7c, s') of A, there is some execution fragment $ of B

that brings u t u' such that u e F(s) and u' e F(s'). The execution fragment, $, may

consist of zero or more actions of B, but must have the same external trace as 7E.

The mapping function that relates the states s of AtomicVar to the states u of

AbstractAtomicVar is given in Figure 5.24.

automaton AtomicVar(vO: DataType, Inf: Real)
components Interface: AtomicVarInterf ace (v0, Inf)

MutEx: SemaphoreMutEx(Inf),

hidden: try(i), crit(i), rem(i), exit(i)

XSimple assertion of state consistency

invariant I5 of AtomicVar:
V i:I ((MutEx.Status[i] = crit) 4 (Interface.pc[i] = writing V Interface.pc[i] = reading))

forward simulation from AtomicVar to AbstractAtomicVar:
((V i:I (AtomicVar. Interface. PendingReadValue [i] = AbstractAtomicVar. PendingReadValue [iI

A AtomicVar. Interface. PendingWriteValue [i] = AbstractAtomicVar. PendingWriteValue [i]
A (AtomicVar.Interface.pc[i] = read-enable V AtomicVar.Interface.pc[i] = read-block

V AtomicVar.Interface.pc[i] = reading)
t AbstractAtomicVar.pc[i] = readwait

A (AtomicVar.Interface.pc[i] = read-release V AtomicCar.Interface.pc[i] = read-return)
< AbstractAtomicVar.pc = read-done

A (AtomicVar.Interface.pc[i] = write-enable V AtomicVar.Interface.pc[i] = write-block
V AtomicVar.Interface.pc[i] = writing)

* AbstractAtomicVar.pc[i] = write-wait

A (AtomicVar.Interface.pc[i] = write-release V AtomicVar.Interface.pc[i] = write-return )
* AbstractAtomicVar.pc = write-done

A AtomicVar.Interface.pc[i] = idle * AbstractAtomicVar[i] = idle ))
A AbstractAtomicVar.value = AtomicVar.Interface.value A AbstractAtomicVar.now = AtomicVar.now

A AbstractAtomicVar. Record C AtomicVar. Interface. Record
A V R:OpRec (R E AbstractAtomicVar.Record A (R.op = read-done V R.op = write-done)

44' R E AtomicVar.Interface.Record)
A AbstractAtomicVar.WriteLog = AtomicVar. Interface. WriteLog)

Figure 5.24 Simulation relation for the atomic objects.
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Stated informally these are:

- The pending values for each user process are equivalent.

" The program counter values are related.

" The value of X is equivalent.

" The abstract Record log contains all the interval ending entries of the
implementation's log.

- The WriteLog variables are identical

- Time passes identically.

Table 5.1 lists the equivalent program-counter values for the abstract and concrete autom-

ata.

TABLE 5.1 Program Counter Correspondence for Atomic

Abstract State Equivalent States Abstract State Equivalent States

readwait readenable writewait writeenable
readblock writeblock

reading writing

readdone readrelease writedone writerelease
readreturn writereturn

idle idle idle idle

A visual inspection of the start states of both automata is sufficient to indicate that the

relations hold initially. We must now check each possible action n of AtomicVar.

- Case n = read;. The corresponding execution fragment $ is
$ = { read;} . The only variables affected by the change are the pcg. Since
F maps readenable to readwait, the state correspondence is preserved.

e Case 71 = readvalue,(x). The corresponding execution fragment $ is
$ = { read value,(x) }. Since we assume that F holds in the initial state, it
must also hold in the final state since both pc, variables are changed to idle.
No other relevant state changes occur.

- Case 7E = write,(v). The corresponding execution fragment $ is
= {write;}. This step makes equivalent changes to the PendingValue,

variables. Also, the changes to pc, preserve the state correspondence since
writeenable is mapped to writewait.
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- Case nE = writeok. The corresponding execution fragment $ is
6 = {write-ok;}. This step sets pc, to idle in both automata. The corre-
spondence is preserved.

e Case nc = tryi. The corresponding execution fragment p has zero steps.
The state relation is unchanged by this transition.

e Case 7E = crit . The corresponding fragment of 1 has zero steps. Although
the value of AtomicVar.pc; changes, the mapping from F(s) remains the
same.

e Case n = exit;. If AtomicVar.pc; = reading, then 6 = {do-read;}, oth-
erwise AtomicVar.pc, = writing and $ = {do-write;}. Thus, if i is cur-
rently reading, the value of PendingValue, will be updated in both
automata. If the user is writing, the central value of X, i.e. value, is changed
to reflect the new value.

e Case nc = remg. The corresponding execution fragment, $, has zero steps.
Although the value of s.pc, changes the corresponding value of u.pc,
remains the same. Thus, the state correspondence is preserved.

e Case it = v(t). The corresponding execution fragment $ is 6 = {v(t)}.
We permit time to pass identically in the two automata subject to the follow-
ing constraints. The time between steps for both the abstract and concrete is
regulated by the preconditions on v(t). Thus, so long as upper and lower
time bounds are equal, the effective bounds are the same. If N = ||Il , we
can show that the time from an invocation to the execution of an action is
bounded by:

ReadTime.ub = rdispjbnd.ub + (N- 1) - max(rexec_bndub, wexecbnd.ub) + r-execjbnd.ub (5.13)

ReadTime.lb = rdispbnd.lb+ rexecbnd.lb (5.14)

Write Time.ub = wdispbnd.ub + (N- 1) - max(rexec_bnd.ub, wexecbnd.ub) + wexecbnd.ub (5.15)

Write Time.lb = wdispbnd.lb + w_exec_bnd.lb (5.16)

The two upper bound equations tracks the time for a process to: dispatch a
try, request, wait for potentially all the other processes to execute an opera-
tion, and then perform the operation itself. Similarly, the time from the exe-
cution of an action until the external acknowledgement is:

ReadResp.lb = r-returnbnd.lb (5.17)

ReadResp.ub = d+ r_return_bnd.ub (5.18)

WriteResp.lb = wreturn_bnd.lb
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WriteResp.ub = d +w_returnbnd.ub (5.20)

That the AbstractAtomicVar automaton is permitted to take larger time-
steps than the AtomicVar automaton is immaterial. The simulation that we
are proving, operates in the other direction, i.e. nothing prevents
AbstractAtomicVar from taking a series of small steps.

Having completely enumerated the possible steps of automaton AtomicVar, it is clear

that the simulation relation to AbstractAtomicVar is valid.

The same procedure can be used to prove that AtomicVar2 implements

AbstractAtomicVar2. The simulation relation G for these automata is given in

Figure 5.25. Informally, the meanings of the state correspondences are the same as for the

atomic case, but the program counter values are more complex (Table 5.2). From the

inspection of the automata, the start states satisfy u e G(s). As before, we must consider

each allowable step of automaton AtomicVar2 to prove that G is a valid simulation rela-

tion.

TABLE 5.2 Program Counter Correspondence for Atomic2

Abstract State Equivalent States Abstract State Equivalent States

readwait readenable writewait writeenable
readblock writeblock

reading writereadenable
writereadblock

writing

readdone readrelease writedone writereadrelease
readreturn notify-enable

idle idle notify notify

notify-done notify-release
writerelease
writedone

idle idle

* Case n = read;. The corresponding execution fragment $ is
6 = {readi}. The only changed variable that is referenced in the simula-
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automaton AtomicVar2(vO: DataType, Inf: Real)
components Interface:AtomicVarInterface(vO, Inf),

MutEx-r: SemaphoreMutEx(Inf),

MutEx-w: SemaphoreMutEx(Inf)

hidden: try.r(i), try.w(i), crit.r(i), crit-w(i), remr(i), rem-w(i),
exitr(i), exit_w(i)

invariant Ia of AtomicVar2:
V i:I ((MutEx-r.Status[i] = crit) 4*

(Interface.pc-write[i] = writing V Interface.pc-read[i] = reading))

invariant 15b of AtomicVar2:
V i:I ((MutExw.Statue[i] = crit) @

(Interface.pc.write[i] E
{write-read-enable, write_read-block, write_read-release, notify-enable,

notifying, notifyrelease}

forward simulation from AtomicVar2 to AbstractAtomicVar2:
((V i:I (AtomicVar2. Interface. PendingReadValue [i] = Abstract At omicVar2. PendingRe adValue [i]

A AtomicVar2. Interface. PendingWriteValue [i] = Abstract At omi cVar2. PendingWriteValue [i
A (AtomicVar2.Interface.pc-read[i] = read-enable

V AtomicVar2.Interface.pc-read[i] = read-block
V AtomicVar2. Interface. pc -read [i] = reading)

4* AbstractAtomicVar2.pc -read i] = read-wait
A (AtomicVar2.Interface.pcread[i] = read-release

V AtomicVar2.Interface.pc-read[i] = read-return)
* AbstractAtomicVar2.pcread[i] = read-done

A (AtomicVar2. Interface. pc-write [i] = write-enable
V AtomicVar2.Interface.pc-write[i] = write-block
V AtomicVar2. Interface. pc-write [i] = write.read-enable
V AtomicVar2. Interface. pc-write [i] = write-read.block
V AtomicVar2.Interface.pc-write[i] = writing)

- AbstractAtomicVar2.pc-write[i] = write-wait
A (AtomicVar2. Interface.pc-write [i] = write-release

V AtomicVar2.Interface.pc-write[i] = notify-enable )
M4 AbstractAtomicVar2.pcwrite[i] = write-done

A (AtomicVar2.Interface.pc-write[i] = notify)
.4* AbstractAtomicVar2.pcwrite[i] = notify

A (AtomicVar2. Interface. pcwrite [i] = notify-release
V AtomicVar2.Interface.pc-write[i] = write-release
V AtomicVar2.Interface.pcwrite[i] = write-return)

'4* AbstractAtomicVar2.pc-write[i] = notify-done
A AtomicVar2.Interface.pc[i] = idle -* AbstractAtomicVar2[i] = idle ))
A AbstractAtomicVar2. value = AtomicVar2. Interface. value
A AbstractAtomicVar2.now = AtomicVar2.now
A AbstractAtomicVar2. Record C AtomicVar2. Interface.Record
A V R:OpRec ((R E AbstractAtomicVar2.Record

A (R.op = read-done V R.op = write-done
V R.op = notify-start V R.op = notifydone))

' R E AtomicVar2.Interface.Record))

Figure 5.25 Simulation Relation from AtomicVar2 to AbstractAtomicVar2.

tion relation is pcreadi . Since the new values also correspond, the overall
state correspondence holds.
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- Case n = write,(v). The execution fragment, $ is $ = {write1 (v)}. The
new values of Pending Write Value; are equivalent and the new pcwrite,
values obey the mapping G.

" Case n = try-rg. The execution fragment, $, consists of zero steps.
Although the program counter advances in the AtomicVar2 automata, the
corresponding state of AbstracAtomivVar2 remains unchanged. Thus the
state correspondence is preserved.

- Case nt = try-w. The execution fragment, 6, consists of zero steps.
Although pcwrite; advances in the implementation automaton, the abstract
variable remains unchanged.

- Case n = crit_rg. The execution fragment, $, consists of zero steps.
Although the program counter advances in the AtomicVar2 automata, the
corresponding state of AbstracAtomivVar2 remains unchanged and the
state correspondence is preserved.

- Case nt = crit -w;. The execution fragment, $, consists of zero steps.
Although pc-write advances in the implementation automaton, the abstract
variable remains unchanged. This preserves the state correspondence of G.

* Case n = exit-ri. If Atomic Var2.pc_read = reading, then

$ = {do-read;}, otherwise Atomic Var2.pcwritej = writing and
$ = {do-write;}. Both of these options make the appropriate changes to
the pending values, Record, WriteLog, and program counters. This pre-
serves the state correspondence.

. Case iE = exit_w. . This action corresponds to an execution fragment $ of
zero steps. Although s.pc-write, advances, the corresponding abstract value
is unchanged.

e Case it = rem_r.. The execution fragment, $, consists of zero steps.
Although the program counters may advance in the implementation automa-
ton, the abstract variables remains unchanged. This preserves the state corre-
spondence of G.

e Case n = rem_w. . The execution fragment, 1, has zero steps. Reasoning is
identical to the above case.

e Case 7E = readvalue;(x). The corresponding execution fragment $ is
$ = { read valuei(x) }. Since we assume that G holds in the initial state, it
must also hold in the final state since both pcread variables are changed to
idle. No other relevant state changes occur.

- Case n = notify1 . The corresponding execution fragment $ is given by
$ = {notifyi}. Both actions make corresponding changes to Record and
pc_writeg . Thus G is preserved.
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e Case nT = writeok. . The corresponding execution fragment P is
$ = {write-ok;}. This step sets pc-write, to idle in both automata. The
correspondence is preserved.

e Case 7t = notify-ack. . The corresponding execution fragment P is given by
$ = { notifyack;}. his step advances pcwrite, both automata. Thus the
state correspondence is preserved.

- Case 7t = v(t). The corresponding execution fragment $ is P = {v(t) .
As we saw in the examination of atomic. automata, we can relate the time-
bounds from the abstract and specialized automata. The bounds for the read
operations remain the same as those given in Eqns. 5.13, 5.14, 5.17 and 5.18.
Because of the more elaborate write protocol, the write bounds must be re-
derived. These bounds are derived as follows. We first define the quantity W
to be the upper bound on the time from when a process obtains the write-
semaphore to when the process releases the semaphore, assuming there is no
contention for the read semaphore. Thus:

W = (3 -w-disp-bnd.ub) + wexecbnd.ub + d + notify.ub (5.21)

Likewise we define the quantity R to be the time required to complete a read
operation, assuming no contention:

R = rexecbnd.ub (5.22)

Now if there are N processes accessing the object, the longest waiting time
that process i will experience is when N - 1 processes are trying to write at
the same time, and i is last in line for the write semaphore. The first process
will complete in time W, since all the other processes are waiting on the
write-semaphore and cannot contend for the read-semaphore. The next writ-
ing process may have to wait an additional time R, to obtain the read sema-
phore if the first process attempts a read operation in the interim. It can be
shown that the worst-case time for the final process to complete the write
(i.e. to reach exit rg), is:

writewait.ub = w+(N -21) - W + (NR- 1) (N-2)R + wexecbnd.ub (5.23)

The lower bound is simply:
writewait.lb = 2 - w-dispbnd.lb + wexecbnd.lb (5.24)

The completion relations of Eqns. 5.19 and 5.20 are also valid for this
automaton

1. Note that the response time is measured from the end of the notify period.
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Since the state correspondence G holds for all allowable steps of the automaton

AtomicVar2, it must represent a valid simulation relation. Thus, we conclude that

traces(AtomicVar2) C traces(AbstractAtomicVar2).

These simulations are useful for several reasons. First, the close examination of the imple-

mentation, assures us that the shared variable X is accessed in a safe manner. Second, the

abstract atomic objects are easier to compose into the system-level publish automata.

5.3.2 System Timer

The publish service behaviour is periodic. For each subscriber, publish produces a

publish;(x) event, once per subscription period. Since we want to accurately model the

implementation of publish, the dispatch component requires a periodic stimulus to

prompt it generate these publish messages. The timer automaton provides this service

to publish.

The illustration in Figure 5.12, depicts the external signature of the timer automaton. The

IOA code for timer is provided in Figure 5.26. The design of the signature suggests a dis-

tributed interface so that each action, e.g. ticki, goes to a different process P,. Most of the

modelling so far has followed this pattern. In the composition of publish, however, we

connect a single dispatch automaton with a single timer automaton. The action sub-

scripts serve more as a tagging mechanism than an enumeration of distinct actions. We

retain the subscripts for clarity.

Operations on the timer automaton are fairly simple. A timer entry with period, T, is cre-

ated using the TimerSet;(tag, T) action. The timer is identified both by the destination

process i and an arbitrary integer tag. After receiving acknowledgement that the timer

has been created, the remote automaton (dispatch in our case), can start the timer with

TimerStart;(tag). Every t time units, timer will generate a tick,(tag) message. The

remote automaton may also cancel a timer with the TimerStop;(tag) action.
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uses Conversions

type TimeBound = tuple of lb:Real, ub:Real
type Timer = tuple of i:I, tag: Int, period:Real, active:Bool, start: Real, bnd: TimeBound
type TickRec = tuple of i:I, tag: Int, t: Real

automaton Timer (Inf : Real)

signature
input

timerset(i:I, tag: Int, period : Real),
timer-start(i:I, tag: Int),

timer-stop(i:I tag: Int)

output
tick(i:I, tag: Int),

Set0k(i:I, tag:Int),

Stop0k(i:I, tag:Int),

time-passage

v(t: Real)

states

Timers: Set[Timer] := {,
CanceledTimers : Set[Timers] :=

NewTimers : Set[Timers] :=

now : Real,

jitter : Real,

ack-bnd: TimeBound, %Constant bound

record : Array[I,Int,Seq[Real]] := {}
transitions

input timer-set(i:I, tag: Int, period : Real)
eff for T:Timer in Timers do

if (T.i = i A T.tag = tag) then
Timers := delete(T, Timers) XDelete any old timer

fl
od

NewTimers := insert([i,tag, period, false, 0,
[now+ ack-bnd.lb, now + ack-bnd.ub]], NewTimers);

record[i][tag] := {};
input timer-start(i:I, tag:Int)

eff for T:Timer in Timers do
if (T.i = i A T.tag = tag) then

Timers:= delete(T, Timers);
T := set-active(T, true);
T := set-start(T, now);

T := set-bnd(T, [now + T.period, now + T.period + jitter]);
Timers := insert(T, Timers)

fl
od

output Set0k(i:I, tag:Int)
choose T:Timer where (T E NewTimers)

pre T E NewTimers A now > T.bnd.lb
eff NewTimers := delete(T, NewTimers);
Timers := insert([T.i, T.period, T.active, T.start, [0,Inf]] , Timers)

Figure 5.26 IOA specification of the timer automaton.
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output Stop0k(i:I, tag:Int)
choose T:Timer where (T E CanceledTimers)
pre T E CanceledTimers A now > T.bnd.lb

eff CanceledTimers := delete (T,CanceledTimers)

input timer-stop(i:I, tag: Int)

eff for T:Timer in Timers do
if (T.i = i A T.tag = tag) then

Timers := delete(T, Timers);

CanceledTimers := insert([T.i, T.period, false, T.start,
[now + ack-bnd.lb, now + ack.bnd.ub]] , CanceledTimers)

fi
od

output tick(i:I, tag: Int)
choose T:Timer where (T E Timers)

pre (T E Timers A T.i = i A T.tag = tag A T.active A T.bnd.lb < now)

eff Timers := insert([T.i, T.tag, T.period, T.active, T.start,

[T.bnd.lb+ T.period, T.bnd.lb + T.period + jitter]] , delete(T,Timers))
record[i][tag] := record[i][tag] - now

time-passage v(t:Real)
pre V T:Timer ((T E Timers V T E NewTimers V T E CanceledTimers) =>

((now + t) < T.bnd.ub))

eff now := now + t

Figure 5.26 IOA specification of the timer automaton.

GTA models permit the user to reason about and affect the timing between events through

the use of the first or last variables. Using GTA to directly influence an algorithm is

potentially confusing since these variables are a reflection of the partially-synchronous

network model, rather than an a direct algorithmic tool. By convention, the first and last

variables are artificial. They are a contrivance that allows sets upper and lower bounds on

when an action is enabled. Manipulation of the time-passage action was used to generate

subscriber notifications in the abstract specification of publish, however we wish to pro-

vide a more accurate depiction of the implementation. In our example, dispatch requests

timing services of the operating system through the timer automaton. The internal opera-

tion of timer is not important, only its interface and external properties. This distinction

differentiates between 'real' components and artefacts of the modelling process and

improves the clarity of our implementation automata.
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The timing related properties of this automaton (Figure 5.27) can be proven with our usual

inductive approach. The task is made easier by using an artificial record array, that

records tick,(tag) events as they occur.

Invariant It of Timer:

V T:Timer ((T E Timers A T.active)=>
((now > T.start + len(record[T.i][T.tag])*T.period)
A (now < T.start +(len(record[T.i][T.tag])+1)*T.period + jitter)
A (T.bnd.lb = (len(record[T.i][T.tag])+1)*T.Period + T.Start)
A (T.bnd.ub = (len(record[T.i][T.tag])+2)*T.Period + T.Start + jitter)))

invariant 12 of Timer:
V T:Timer (V j:Int ((T E Timers A T.active A j 0 A j<len(record[T.i][T.tag]))

=> ((record[T.i][T.tag][j] - T.start) (j+1)*T.period)
A (record[T.i][T.tag][j] - T.start) < ((j+1)*T.period + jitter)))

Figure 5.27 Invariants of the timer automaton.

Lemma 5.3.1: In every reachable state of timer, the time variable now is bounded by the

currently active timers.

Proof: Invariant Il is proven through induction on the states of timer. Since initially

there are no active timers, the start state clearly satisfies the invariant. Proceeding with the

inductive step, we assume that the invariant holds in state s and consider the transition

(s, 7c, s'). We must consider each possible action.

- Case n = TimerSet,(tag, T). Since the timer added by this action is not yet
active, the invariant is clearly true in s.

e Case 71 = TimerStart,(tag). Since this action resets the Record and timer
structures T, the assertion must hold in s'.

- Case n = TimerStop,(tag). This action will disable an active contract.
Thus the invariant must be satisfied in s',

e Case n = tick,(tag). For this action to be enabled
now s.T.bnd.lb = (len(Record[i][ T.tag])+ 1) - T.period. Thus,
when the extra entry is added to Record, now will still satisfy the invariant
bounds. Moreover, from the inductive hypothesis, the new values of
s'.T.bnd must also satisfy the invariant.

* Case it = v(t). Since t > 0, and from the preconditions to this action, it is
clear that now cannot advance beyond the invariant bounds. Thus the asser-
tion is satisfied in s'.
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- Case n = SetOk(tag). Since this action does not affect any relevant state
variables, the assertion is vacuously satisfied.

* Case 7c = StopOk;(tag). This acknowledgement does not affect the vari-
ables in this invariant. Therefore the invariant is satisfied.

Lemma 5.3.2: In every reachable state of timer, any active timer will generate a tick

message every t time units, subject to a maximum jitter.

Proof: We prove invariant 12, through induction on the states of timer. Initially, since

record is empty, the invariant is true. To proceed with the inductive step, we assume that

the invariant holds in state s and consider the transition (s, n, s') . Each possible action n,

must be considered.

" Case n = TimerSet;(tag, T). This action adds a timer to the set of active
timers. Since, the action deletes any previously existing timer matching i
and tag, the action guarantees that the active field of the TimerRec tuple
is set to false. Thus, the predicate for implication must be false for the new
timer, making the implication true. Since any preexisting timers already sat-
isfy the invariant, the assertion must also hold in s'.

" Case n = TimerStart;(tag). Whether or not we assume well-formed inter-
actions (i.e. can the user start a timer already started?), this action activates
the timer T and sets up the time-bounds for it to fire. Since the action clears
record[i] [tag], and resets the start time, the assertion is clearly satisfied in
s.

- Case 7E = tick;(tag). If this action is enabled in s, then now s.T.bnd.lb.
It follows from the invariant hypothesis that if j = len(Record[i][tag])
then s.T.bnd.lb = (s.j + 2) -s.T.period. Thus, it is clear that as we add
another element to record, the assertion will continue to hold.

e Case SetOk;(tag). This action vacuously satisfies the invariant.

e Case StopOk;(tag). This action vacuously satisfies the invariant.

Theorem 5.3.1: All active timers in the timer automaton will generate periodic tick

actions with uncertainty timing uncertainty, jitter.

Proof: Since time-passage is restricted by the active timers (Lemma 5.3.1), and historic

accuracy is guaranteed (Lemma 5.3.2), the timer automaton must provide a tick within a

narrow window of time width jitter. 0
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5.3.3 The publish Dispatcher

The dispatch automaton is the last element in the composition of publish. Presenting a

distributed interface to the external user processes dispatch is responsible for setting up

subscriptions and dispatching copies of the shared variable X at appropriate intervals. The

IOA code for the automaton is shown in Figure 5.28.

There are no invariants to prove for dispatch. It's operation is fairly straightforward, and

serves mainly to coordinate the other automata in the composition of publish. When a

user sends a subscribe request, the dispatch automaton creates a timer, and then starts it.

The periodic tick;(tag) messages, trigger dispatch to read the current atomic value of

X and send it on to process i.

5.3.4 The publish-on change Dispatcher

Finally, we turn our attention to the dispatch2 automaton. This automaton completes the

composition of the publish-onchange service. In many respects this automaton is sim-

pler than dispatch since its operation is reactive. It records, the beginning of a subscrip-

tion, but takes no action until a user writes to the atomic object. When dispatch2

receives a notify, message, it generates publish messages for all subscribed processes.

The IOA code for this automata is shown in Figure 5.29.

Like the previous example, dispatch2 has no invariants. It's job is to manipulate the

operations of the other components of publish-onchange. In the next section we show

that the composition implements the abstract service.

5.4 Composition of Publish-Subscribe Services

5.4.1 The publish Composition

In Section 5.2.2, we presented the abstract specification if the publish service. This

generic automaton presented a clear description of the performance of the GRRDE ser-

158



Composition of Publish-Subscribe Services 159

type cmd = enumeration of Sub, Cancel, Set, Stop, SubOk, Start, nil, Set0k, StopOk

automaton Dispatch(vO: Int)

signature
input

subscribe (i:I, T:Real),

cancel(i:I),

read-value(i:I, x:X),

tick(i:I, tag:Int),

set-ok(i:I, tag:Int),

stop-ok(i:I, tag:Int)

output

Publish(i:I, T:TxRec),

subok(i:I),

cancel-ok(i:I),

timer-set(i:I, tag:Int, period: Real),

timer-stop(i:I, tag:Int),
timerstart(i:I, tag:Int),
read(i:I)

time-passage
v(t:Real)

states

PendingCommand: Array [I, cmd] := constant(nil),
PendingDispatch:Array[I,Seq[X]] := constant({}),
ReadPending: Array[I,Int] := constant(O),
TimerTag: Array[I,Int] := constant(O),

Period: Array[I,Real] := constant(O),

now:Real := 0,
subscribed: Array[I,bool] := constant(false),

StepBound: Array [I,TimeBound] := constant ([0, Inf]),

DispatchBound: Array [I,TimeBound] := constant ([0, Inf]),
StartTime:Array[I,Real] := constant(0),

xmit:TimeBound := [lb,ub]
transitions

input subscribe(i:I, T:Real)
eff Period[i] := T;
PendingCommand[i] := Set;
Subscribed [i]:= true;

StepBound[i] := [now,now];
TimerTag[i] := 1

input cancel(i:I)
eff Period[i] := Inf;
PendingCommand := Stop;
subscribed[i] := false;
StepBound[i] := [now,now]

input read-value(i:I, x:X)
eff PendingDispatch[i] := PendingDispatch[i] I x;

PendingCommand[i] := nil;
DispatchBound~i] := [now,now]

input tick(i:I, tag:Int)

Figure 5.28 The dispatch automaton model.
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eff if subscribed [i] then
ReadPending[i] := ReadPending[i] + 1;
DispatchBound[i] := [now,now]

fi
input setok(i:I, tag:Int)

eff PendingCommand[i] := Start;

StepBound[i] := [now, now]

input stop-ok(i:I, tag:Int)

eff PendingCommand[i] := Cancel;
StepBound[i] := [now + xmit.lb, now + xmit.ub]

output Publish(i:I, T:TxRec)

pre (len(PendingDispatch[i]) : 0

A T = [head(PendingDispatch[i]),[now + xmit.lb, now + xmit.ub]])
A now > DispatchBound[i].lb

eff PendingDispatch [i] := tail (PendingDispatch[i]);
DispatchBound[i] := [0,Inf]

output sub-ok(i:I)

pre PendingCommand[i] = SubOk A now > StepBound[i].lb
eff PendingCommand[i] nil;

StepBound[i] := [0,Inf]

output cancelok(i:I)

pre PendingCommand[i] = Cancel A now > StepBound[i].lb
eff PendingCommand[i] nil;

StepBound[i] := [0,Inf]
output timer.set(i:I, tag:Int, period:Real)

pre TimerTag[i] = 0 A tag = 1 A period = Period[i]
A PendingCommand[i] = Set A now > StepBound[i]

eff TimerTag[i] := tag;
PendingCommand[i] := Set0k;
StepBound[i] := [0,Inf];

output timerstop(i:I, tag:Int)
pre tag = TimerTag[i] A PendingCommand[i] = stop A now > StepBound[i]
eff PendingCommand := StopOk;
StepBound[i] := [0,Inf]

output timer-start(i:I, tag:Int)
pre PendingCommand[i] = Start A tag = TimerTag[i] A now > StepBound[i]
eff StepBound[i] := [now + xmit.lb, now + xmit.ub];
PendingCommand[i] := Subak;
StepBound[i] := [0,Inf];

StartTime[i] := now
output read(i:I)

pre ReadPending[i] > 0 A now > DispatchBound[i].lb
eff ReadPending[i] := ReadPending[i] - 1;
DispatchBound[i] := [0, Inf]

time-passage v(t:Real)
pre (V i:I (((now + t) <; DispatchBound[i].ub) A (now + t) < StepBound[i].ub))
eff now := now + t

Figure 5.28 The dispatch automaton model.

vice, but said little about how those functions were achieved. We have subsequently

revealed that the implementation of publish is accomplished by the composition of an
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type cmd = enumeration of Sub, Cancel, Set, Stop, SubOk, Start, nil, Set0k, Stopak

type PCStep = enumeration of idle, read, wait, ack

automaton Dispatch(vO:V)
signature

input
subscribe (i:I),

cancel(i:I),

read-value(i:I, x:X),

notify(i:I)

output

Publish(i:I, T:TxRec),

sub-ok(i:I),

cancel-ok(i:I),

notify-ack(i:I),
read(i:I)

time-passage
v(t:Real)

states

dispatching:I := NULL,
dispatchPC : PCStep := idle,

PendingCommand: Array [I,cmd] constant (nil) ,
DispatchSeq:Array[I,Seq[TxRec]] := constant({ }),
now:Real := 0,
subscribed: Array[I,bool] := constant(false),

StepBound: Array [ITimeBound] := constant ([0, Inf]),

ReadBound: TimeBound := [0,Inf],

dispatch: TimeBound := [0,1],

StartTime:Array[I,Real] := constant(0),

xmit:TimeBound := [lb,ub]
transitions

input subscribe i: I)
eff Period[i] := T;
PendingCommand[i] := SubOk;
Subscribed[i]:= true;
StepBound[i] := [now + xmit.lb, now + xmit.ub]

input cancel(i:I)
eff PendingCommand := Cancel;
subscribed[i] := false;
StepBound[i] := [now + xmit.lb, now + xmit.ub]

input read-value(i:I, x:X)
eff for j:I so that subscribed[j] do

DispatchSeq[j] := DispatchSeq[j] |- [x,[now + dispatch.lb, now + dispatch.ub]]

od;

ReadBound := [now, now];

dispatchPC := ack;
dispatching := NULL;

output Publish(i:I, T:TxRec)
pre (len(DispatchSeq[i]) # 0

A T = [head(DispatchSeq[i]),[now + xmit.lb, now + xmit.ub]])

Figure 5.29 IOA model of dispatch2 automaton.



FORMAL VALIDATION OF GRRDE RUN-TIME SERVICES

A now > head(DispatchSeq[i]).lb
eff PendingDispatch[i]: tail(PendingDispatch[i]);

output subok(i:I)
pre PendingCommand[i] = SubOk A now > StepBound[i].lb
eff PendingCommand[i] nil;

StepBound[i] := [0,Inf]
output cancel-ok(i:I)

pre PendingCommand[i] = Cancel A now > StepBound[i].lb
eff PendingCommand[i] = nil;

StepBound[i] := [0,Inf]
input notify(i:I)

eff dispatching := i;
dispatchPC read;
ReadBound [now, now]

output read(i:I)
pre dispatching = i A dispatchPC = read A now > ReadB
eff dispatchPC wait;

ReadBound[i] [0, Inf]
output notifyack(i:I)

pre i = dispatching A dispatchPC = ack A now > ReadBo
eff dispatchPC := idle;
ReadBound := [0,inf]

time-passage v(t:Real)
pre ( (now + t) < ReadBound.ub A (V i:I ((now + t) < S
eff now := now + t

ound[i] .lb

und.lb

tepBound[i].ub)))

Figure 5.29 IOA model of dispatch2 automaton.

AbstractAtomicVar, a timer, and a dispatch automaton. Although, we have detailed

the construction of these components, we must also show that their combined operation

implements the abstract publish service. Consider the proposed simulation relation, F,

shown in Figure 5.30. This relation contends that the log variables of publish are dupli-

cated in a distributed fashion across the composed automaton. Note that the composition

has been named ComposedPub. To show that u e F(s), we must consider both the ini-

tial conditions, and the step correspondence. From inspection of the automata, we can con-

clude that F holds in the start state. Each action n of ComposedPub must be considered

individually.

e Case n = subscribe,r). The corresponding execution fragment $ is
given by 6 = {subscribe,r)}. This action makes corresponding changes
to the period;, subscribed; and PendingCommand, variables in both
automata. Thus, the state correspondence is preserved.

e Case it = canceli. p = {cancel;}. Equivalent changes are made to both
automata. Thus, the state correspondence is preserved.
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automaton ComposedPub:
components dispatch: dispatch,

atomic:AbstractAtomicVar,

timer:timer

hidden read, readvalue, TimerSet, TimerStop,
Set0k, StopOk, TimerStart, Tick

forward simulation from ComposedPub to publish:
(publish.now = ComposedPub.now

A publish. WriteLog = ComposedPub. atomic. WriteLog

A publish. pub-value = ComposedPub. atomic. value
A V i:I ((publish.Subscribed[i] = ComposedPub.dispatch.subscribed[i])

A (publish.Period[i] = ComposedPub.dispatch.Period[i])
A (publish.PendingCommand[i] = cancel

M (ComposedPub.dispatch.PendingCommand[i] = cancel

V ComposedPub. dispatch. PendingCommand [i] = Stop

V ComposedPub.dispatch.PendingCommand[i] = StopOk))

A (publish.PendingCommand[i] = sub

4 (ComposedPub.dispatch.PendingCommand[i] = set

V ComposedPub.dispatch.PendingCommand[i] = start
V ComposedPub. dispatch. PendingCommand [i] = SubOk))

A (publish.PendingCommand[i] = Commit

.* ComposedPub.atomic.pc[i] = write-wait)

A (publish. StartTime [i] = ComposedPub. dispatch. StartTime [i])))

Figure 5.30 Simulation relation from ComposedPub to Publish.

e Case n = readvalue,(x). $ = {0}. Since the action is not externally
observable, and does not modify any relevant state variables, the correspon-
dence must hold.

e Case 7t = tick;(tag). = {0 }. Since the action is not externally observ-
able, and does not modify any relevant state variables, the correspondence
must hold.

e Case n = SetOk;(tag). 0 = {0}. Even though the PendingCommand;
variable changes in ComposedPub, the corresponding value from F(s)
remains the same. Thus, the state correspondence is maintained.

e Case 7t = StopOk;(tag). p = {0}. Even though the
PendingCommand, variable changes in ComposedPub, the correspond-
ing value from F(s) remains the same. Thus, the state correspondence is
maintained.

* Case it = publish;(T). p = {publishi(T')}. Since dispatch does not
allow the progress of time between receiving a readvalue;(x) and generat-
ing the corresponding publish;(T) event, and from AbstractAtomicVar,
a non-zero amount of time must pass between a read-return and a subsequent
write, therefore it must be the case that the published value corresponds to
ComposedPub.atomic.value. Hence, T = T', the external traces match,
and the state correspondence is preserved.
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e Case it = sub oki. p = {sub-oki}. Both automata make appropriate
changes to their state variables, preserving the state correspondence.

e Case it = cancelok.. p = {cancel-ok;}. As in the above case, the
changes made to both automata are complementary and the state correspon-
dence is preserved.

- Case nT = TimerSet;(tag). 1 = {0}. Even though the
PendingCommand, variable changes in ComposedPub, the correspond-
ing value from F(s) remains the same. Thus, the state correspondence is
maintained.

e Case it = TimerStop1(tag). 1 = {0}. Even though the
PendingCommand, variable changes in ComposedPub, the correspond-
ing value from F(s) remains the same. Thus, the state correspondence is
maintained.

e Case 7t = TimerStart;(tag). 1 = {0}. This action alters the
PendingCommand, for the composed automata, but the corresponding
value in Publish unchanged and F holds.

e Case it = readi. B = 10 }. This action does not affect any state variables
mentioned in the simulation relation. Thus, the correspondence is trivially
satisfied.

e Case 7t = write,(v). p = {write;(v)}. This action changes
publish.pending; and ComposedPub.atomic.PendingValuei in the
same manner, thus preserving the state correspondence.

- Case n = doreadi. = 10 }. This action does not affect the state vari-
ables mentioned in F.

- Case it = dowriteg. = {WriteCommit;}. This action sets the stored
value of X from the pending write value. This pending value must be the
same for both abstract and implementation automata. Thus, the state corre-
spondence is preserved.

e Case it = write-okg. 1 = I write-oki }. Since this action makes compatible
changes to PendingCommand in both automata, the state correspondence
is preserved.

* Case it = v(t). p = {v(t)} . If the time-passage action in both
automata are enabled for a certain value of t, it is clear that the state corre-
spondence must be maintained. If we are to prove that both actions are
enabled, we must relate the upper bounds on time-passage between the
publish and ComposedPub automata. As long as the upper bounds for the
abstract automaton are at least as large as that for the concrete, the simula-
tion relation is valid. Rather, than prove state correspondence for these vari-
ables, we derive relations between them:
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SubOk.ub = 2 -AckBnd.ub + xmit.ub (5.25)

SubOk.lb = 2 -AckBnd.ul + xmit.lb

CancelOk.ub = AckBnd.ub + xmit.ub (5.26)

CancelOk.lb = AckBnd.lb + xmit.lb

pub-jitter = timer.jitter + readtime.ub + read-resp.ub (5.27)

Write Comm itTime.ub = writetime.ub (5.28)

Write CommitTime.lb = writetime.lb

.WriteOk.ub = writeok.ub (5.29)

WriteOk.lb = writeok.lb

Therefore F is a valid simulation from ComposedPub to publish and

traces(ComposedPub) c traces(publish).

The derived timing relations can be used to derive the worst case time bounds of the

GRRDE publish service. Since cancel; and subscribe, actions are primarily transient

activities, they are of minor importance in steady state operations. The most important

metrics in evaluating system performance are pub-jitter and Write Comm itTime.ub.

From Eqns 5.13, 5.15, 5.28, and 5.29:

Write Commit Time.ub = wdispbnd.ub + w_exec_bnd.ub (5.30)
+ (N - 1) - max(rexecbnd.ub, wexecbnd.ub)

and,

pub-jitter = timer.jitter + r-disp-bnd.ub + rexecbnd.ub + d + r_return_bnd.ub (5.31)
+ (N - 1) . max(rexecbnd.ub, w-execbnd.ub)

We expect that the bound on the process jitter will scale with the number of potential sub-

scribers. The full impact of these relations on the design of real-time systems with

GRRDE will be assessed in Chapter 7.
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5.4.2 The publishon change Composition

We conclude the formal derivations and proofs by showing the simulation G relation

expresses the state correspondence between the implementation of publish onchange

and its abstract specification. To form the composition, ComposedPub2, we combine

one dispatch2 automaton and one atomic2 automaton. As before, the relation, G,

relates the states, s, of ComposedPub2, to the states, u, of publishon-change. The

simulation relation is given in Figure 5.31.

automaton ComposedPub2
components dispatch: dispatch2

atomic: AbstractAtomicVar2

hidden notify, notifyack, read, read-value

forward simulation from ComposedPub2 to publish-onchange:
(publish-on-change.now = ComposedPub2.now

A publish-on- change.WriteLog = ComposedPub2. atomic. WriteLog
A publishon-change. pub-value = ComposedPub2. atomic. value
A publish-on- change. DispatchSeq = ComposedPub2. dispatch. DispatchSeq
A V i:I ((publishon-change. Subscribed [i] = ComposedPub2. dispatch. subscribed [i])

A (publish-onchange.Period Fi] = ComposedPub2. dispatch. Period [i])
A (publish-on- change.PendingCommand[i] = cancel

<* (ComposedPu2b.dispatch.PendingCommand[i] = cancel

V ComposedPub2.dispatch.PendingCommand[i] = Stop

V ComposedPub2.dispatch.PendingCommand[i] = StopOk))

A (publish-on-change.PendingCommand[i] = sub
M (ComposedPub2.dispatch.PendingCommand[i] = set

V ComposedPub2.dispatch.PendingCommand[i] = start

V ComposedPub2.dispatch.PendingCommand[i] = SubOk))

A (publish- on- change.PendingCommand[i] = Commit
, ComposedPub2.atomic.write-pc[i] = write-wait)

A (publish-on-change. StartTime [i] = ComposedPub. dispatch. StartTime [i])))

Figure 5.31 Simulation relation from ComposedPub2 to publish onchange.

In the start states of both automata, the relationship is clearly valid. The remaining task is

to examine each step of ComposedPub2 and provide a step correspondence in

publish onchange.

e Case 7n = subscribe. The corresponding execution fragment $ is given by
$ = {subscribei}. This step makes identical changes to the subscribedi
and StartTime, variables of both automata.
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" Case ir = canceli. 1P = {cancel;}. Equivalent changes to the
subscribed and PendingCommand variables are made in both autom-
ata. Thus, the state correspondence mandated by G is preserved.

" Case n = readvaluei(x). P = {GenerateMessagesi}. This step adds
the appropriate TxRec messages to the DispatchQueue variables in
ComposedPub2 and publish-on-change.

e Case 7c = publish(T). $ = {publishi(T')}. Since dispatch2 does not
allow the progress of time between receiving a readvaluei(x) and generat-
ing the corresponding publish(T) event, and AbstractAtomicVar2
requires a non-zero amount of time to pass between a read-return and a sub-
sequent write, therefore it must be the case that the published value corre-
sponds to ComposedPub2.atomic.value. Hence, T = T', the external
traces match, and the state correspondence is preserved.

- Case 7E = suboki. P = {subok}. Only the value of
PendingCommand; is altered. Since u e G(s) and u' E G(s'), the state
correspondence is maintained.

e Case n = cancelokg. $ = {cancel-ok;}. This action has identical
effects in both automata, thus preserving G.

- Case 7t = readi. P = {0 }. Since, read. has no external trace, and no state
variables referenced in G are altered, the state correspondence is preserved.

* Case 71 = write;(v). O = {write,(v)}. This action makes compatible
changes to both the PendingWrite Value and PendingCommand; vari-
ables. We observe that the state correspondence is maintained.

- Case n = do read.. $ = {0}. This action has no external trace and does
not affect any relevant variables. Thus, the state correspondence is trivially
satisfied.

e Case it = do writeg. $ = {WriteCommiti}. Since the pending write val-
ues in both automata are the same, the value written to X and to WriteLog
must also be the same. This preserves the state correspondence.

e Case n = notifyi. $ = {0 }. This step has no externally visible trace, and
does not alter the referenced state variables in ComposedPub2.

e Case 7t = notify-acki. $ = {0 }. This step also has no externally visible
trace, and does not alter the referenced state variables in ComposedPub2.

e Case n = writeok.. $ = { write oki}. The external traces and variable
changes made by this action clearly preserve the state correspondence.

e Case n = v(t). P = {v(t)}. As discussed in the simulation proof for
publish, the effect of this transition clearly satisfies state correspondence.
The remaining task is to show that both actions are enabled. Since the imple-
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mentation automaton frequently makes several internal steps for each step of
the abstract automaton, we again specify a least upper bound on the bound-
ing constraints of publish onchange.

SubOk.ub = DispStep.ub+xmit.ub (5.32)

SubOk.lb = DispStep.ul+xmit.lb

CancelOk.ub = DispBnd.ub+xmit.ub (533)

CancelOk.lb = DispBnd.lb+xmit.lb

Write CommitTime. ub = writetime.ub

Write CommitTime.lb = writetime.lb

generatebound.ub = notifygtime.ub+ readtime.ub

gene ratebound.lb = notifygtime.lb + readtime.lb

.WriteOk.ub = writeok.ub

WriteOk.lb = writeok.lb

publish-on-change.dispatch-bound = ComposedPub2.dispatch.dispatch-bound (5.37)

Since each step of the automaton ComposedPub2 preserves the state correspondence G,

the simulation relation is valid. Therefore we can say that ComposedPub2 implements

publish onchange and traces(ComposedPub2) _ traces(publish on-change).

The worst case timing bounds can be developed further. The critical operations are: the

maximum time between a write invocation and a commit, Write Comm itTime.ub, and

the maximum delay between a committed write and the corresponding Publish events,

Apub. From the above formulae and Eqns. 5.21, 5.22 and 5.23 we can show that:

WriteCommitTime.ub = w-dispjbnd.ub + (N- 1) - W+ (N 1) - (N -2)R + w_execbnd.ub (5.38)2

At first glance, that this bound will grow dangerously large due to the N2 dependency.

Further reflection on the real system operation suggests that this figure is rather conserva-

tive. Good GRRDE designs restrict the number of processes with write access to the pub-

lished variable to N,. Rarely would there be more than a few processes within a software
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module writing to a published value. If we separately account for the number of possible

subscribers, N, we get:

Write CommitTime.ub = w_dispbnd.ub+ (NW - 1) -(W + Ns -R) + wexecbnd.ub (5.39)

As the system grows, the maximum commit time will grow linearly with the number of

subscribers in the system. Since all processes within a destination module will likely share

a subscription, Ns refers to the number of functional blocks, rather than the number of

system processes.

The publish delay can also be examined more carefully.

Apub = generatebound.ub + dispatchjbound.ub (5.40)

which becomes

Apub = rjdisp-bnd.ub + (N, - 1) rexec_bnd.ub (5.41)

+ rexecbnd.ub + notifytime .ub + dispatchbound.ub

This quantity also grows linearly with the number of subscribers in the system. This

growth is to be expected since, the dispatch functions must be executed for each sub-

scriber.

5.5 Summary

In this chapter we have applied formal analysis techniques to the GRRDE publish-sub-

scribe services. Presentation of the abstract specification provides an unambiguous state-

ment of the properties of the middleware system. We subsequently provided detailed

general timed automata models of the actual algorithms employed in the run-time system.

Using simulation relations, we were able to prove that these software algorithms satisfac-

torily assert the same timing and correctness properties of the abstract specifications. In

the process of establishing these simulations, we derived detailed timing bounds for the

various publish-related operations.
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Although our formal verification examines the GRRDE algorithms and not the actual

GRRDE source code, this approach provides the most cost effective use of time and

resources. In the next chapter, we examine on-line testing of actual GRRDE applications.

This testing was used to derive estimates of the timing parameters derived above and to

improve our confidence that the our algorithms were correctly implemented.



Chapter 6

TESTING AND CHARACTERIZATION

Software engineers in the past have hoped that formal analysis alone would be enough to

assure system correctness [Tanenbaum, 1976]. Realistically, formal methods are just one

tool in the validation process. For real-time systems in particular, temporal characteriza-

tions of the host system are important. Formal analysis may provide parameterized bounds

on system behaviour, but before the relations can be useful, these quantities must be mea-

sured.

This chapter presents the testing and characterization of the GRRDE publish-subscribe

services. Our focus is not so much in the removal of errorsi, but in building greater under-

standing of how the system behaves. The formal derivations in the previous chapter gave

us an understanding of the qualitative nature of the temporal performance bounds. Here,

we seek to provide direct measurements that can be used to support systems design. It is

inevitable that generic middleware such as GRRDE will incur some performance over-

head. These results provide perspective on the 'cost' of GRRDE-based design.

GRRDE has been examined from both a static and dynamic standpoint. We begin with a

discussion of GRRDE memory requirements. This is followed by some basic timing mea-

surements for the PowerPC embedded computers and the OSE operating system. We then

present the more elaborate test-suites developed to measure performance of the publish-

1. We conducted separate debugging tests, but they are not relevant to this discussion.
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subscribe services. We conclude with comparisons to published tests for other middleware

systems.

6.1 Memory Requirements

Memory is often taken for granted these days. It is not unusual for PCs to have more sys-

tem memory than the hard drive space of seven years ago. Dynamic memory management

allows computers to respond to a user's widely varying usage patterns. In embedded sys-

tems, memory usage is much more circumspect. Many real-time operating systems do not

even support dynamic memory allocation. In contrast to the general purpose PC, embed-

ded devices are usually employed for a much narrower series of tasks. This permits the

developer to specify absolute, a priori bounds on the memory usage for all system func-

tions.

This section examines the memory overhead involved in using the GRRDE services. We

first present a quick overview of how memory is organized under OSE. With this under-

standing, we can analyze and predict the memory usage of an evolving simulation.

6.1.1 The OSE Memory Model

The OSE real-time operating system (RTOS) permits flexible and powerful memory man-

agement. Memory can be used for three primary purposes. The first use of memory is code

memory. These regions store the actual machine instructions that a process runs when it

executes. The machine instructions for all executable processes must be stored somewhere

in memory before the process can be created. The second variety is not truly memory, but

memory-mapped I/O. This useful abstraction makes the interface to all input and output

devices appear to be special places in memory. To control the device, the user writes to the

particular locations. Lastly, data memory complements the code memory and makes up

the bulk of the remaining space. This storage is used to hold all the variables in the system.
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The notion of data memory is rather ambiguous. This memory is actually used in many

different ways. Not only do OSE blocks group processes together, but they also define

protected segments of memory. Each block contains two areas of memory: static data and

the pool. The static data area contains allocations for all global and file-scope variables. It

is created implicitly when the system is compiled. The pool is dimensioned by the user in

the system configuration files.

Pool usage can be decomposed further. OSE permits a limited form of dynamic memory

allocation using stack buffers and signal buffers. Each process is allocated a stack buffer

upon creation. This buffer is used to allocate process- and function-scope variables. Stack

space is also used to store context information (e.g. registers, the program counter, etc.)

that must be maintained when the process is preempted. Signal buffers are used for inter-

process communication. Both types of buffers are allocated from the block's pool when

necessary and must be one of a number of fixed sizes. Buffers can be recycled (e.g. when

the message arrives, or the process is killed), but they cannot be returned to the pool or

resized.

The same basic memory allocation scheme is used, regardless of whether the user's appli-

cations are compiled into a monolithic kernel, or a loadable module. Users must be aware

that extensive use of loadable modules creates memory inefficiencies. Although the oper-

ating system provides hooks and 'stub' functions for system functions, the machine

instructions for most library calls (e.g. math functions, 1/0 routines, etc.) are duplicated in

each module. This includes duplication of the code for the GRRDE services. Monolithic

kernels avoid this inefficiency by including only one copy of the machine instructions.

6.1.2 OSE Memory Usage

The software that implement the publish-subscribe services in GRRDE are inherently dis-

tributed. Each simulation module contains several processes that implement certain

GRRDE related functions, and specialized access routines must be included when compil-

ing the user's applications. Consequently, each block in the system must include a little
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extra memory to support the use of GRRDE. Memory allocation for internal processes and

data-structures is statically allocated when a module is compiled. Memory use can be split

into three categories:

Code Memory

This memory contains the machine language instructions for each element of the GRRDE

package. Key components include: byte-order conversion routines (big-little), key pro-

cesses and contract classes (gflops-base), signal, contract, and process wrapper classes

(gflopswrap), time manipulation routines (simgtime), and process identification routines

(procilocate). This memory usage is duplicated for each loadable module but is only

included once in a monolithic system.

Static Data

The subscription handling routines maintain two internal tables in each simulation mod-

ule. These tables are statically sized but can be adjusted in the source code to optimize

memory usage for a particular system configuration. The default sizes of tables include

storage for fifty simultaneous subscriptions (184 bytes each), and fifty registered services

(48 bytes each). This storage is needed for each software block.

Pool Data

Each GRRDE process requires a stack buffer. Since most of the shared data exists at the

file scope, these processes need little stack space. This storage is needed in each simula-

tion block.

The memory utilization for each of the above categories was measured by examining the

configuration and object files. A summary of the results is shown in Table 6.1.

From these results we can estimate the total memory overhead Mtot (in KB), for a system

of N simulation modules.

For a CPU using only loadable modules we have:
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TABLE 6.1 GRRDE Memory Usage

Component Size (Bytes)

biglittle 124

gflops-wrap 5206

gflops-base 12396

simtime 2140

proc-locate 868

Code Memory 20636

Contract Table 9200

Dispatch Table 960

Static Data 10160

blockmanager 2000

input-arbiter 1000

message-negotiator 1000

message-dispatcher 1000

Pool Memory 5000

Total 35796

Mtotmod = 35-N (6.1)

and for a monolithic kernels this becomes:

Mtotmono = 25 -N+ 10 (6.2)

It should be noted that we did not perform any memory optimizations when compiling the

source-code for these measurements. It is reasonable to assume that these figures are con-

servative upper bounds on the requirements of mature simulations.

Spacecraft systems vary in the amount of memory available to them. Mars Pathfinder had

quite a large amount of memory (16 MB) [Chau, et al, 1995]. For missions such as this,

several hundred kilobytes could probably be allocated for a system like GRRDE without

significantly altering the memory budget. Smaller missions, such as the Stanford Univer-

sity OPAL [Twiggs, et al, 1999] mission have more modest memory capacities (1MB).
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These systems might be able to accommodate a moderately optimized version of GRRDE.

Satellites like PACSAT [Diersing, 1993] without much memory (256K), would require a

much smaller memory footprint. It is unlikely that GRRDE would be viable for these mis-

sions. These comparisons should not be taken as discouraging since GRRDE is aimed at

supporting complex, processing intensive missions. Missions attempting to make use of

advanced software capabilities are precisely those that are likely to have the memory bud-

get to support GRRDE.

6.2 General Timing Benchmarks

Before discussing the specific timing results of the publish subscribe services, it is insight-

ful to consider the general temporal behaviour of the GFLOPS embedded processors. We

present measured arithmetic benchmarks, and published OSE measurements.

6.2.1 PowerPC Arithmetic Benchmarks

Benchmarking is an essential part of embedded systems development [Stewart, 1999].

Fine-grain, hand optimization, should not be done prematurely, but a clear understanding

of processing inefficiencies helps the developer prioritize improvements. Table 6.2 shows

the results of a series of arithmetic tests made using OSE. Instruction and data caches were

disabled for these tests along with all compiler optimizations.

Floating point operations on this processor are very fast. Fixed point arithmetic may also

be more efficient than observed during testing since our test structure nullifies the benefits

of the processor cache and secondary arithmetic logic unit [Motorola, 2001]. Important

bottlenecks to note are the very high cost of floating-point division, and fixed-to-floating

point type promotion. The timing measurements for these tests were made using the hard-

ware clock built-in to the processor. No attempt was made to calibrate the timing accuracy

of this device, but the manufacturer's specifications claim accuracy to 1 gs.
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TABLE 6.2 Arithmetic Benchmark Results for PPC750

Operation Time (ns)

Double*Double 3

Double/Double 98

Float*Float 2

Float/Float 51

Int*Int 3

Short*Short 9

Double+Double 2

Float+Float 2

Int+Int 6

Short+Short 6

Double*Float 24

Double*Int 61

Float*Int 56

Double+Int 60

Double+Short 60

6.2.2 OSE Benchmarks

It is important to separate the timing overhead caused by GRRDE from the timing over-

head added by the operating system itself. Table 6.3 summarizes OSE performance mea-

surements published by ENEA [Liljedahl & Lillieskold, 1999]. These tests were

performed on a slightly slower PowerPC750 processor than those used in GFLOPS.

6.3 Characterization of Time-Triggered Services

This section examines the run-time testing of the time-triggered subscription services. We

wish to gain an understanding of the temporal behaviour of the system under different

loading conditions. One of the primary applications of time-triggered subscriptions is that

of digital control systems. Performance and stability of these controllers is highly depen-

dent on the temporal accuracy of sensor and actuator handling [Marti, et al, 2001]. Thus, it
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TABLE 6.3 OSE Performance Measurements

Operation Time (gs)

Context Switch 1.6

System Call Overhead .38

Semaphore: Wait .52

Semaphore: Signal .52

1-Byte Signal, Intra-Segment 2.2

1KB Signal, Intra-Segment 2.2

100 KB Signal, 2.2
Intra-Segment

1-Byte Signal, Inter-Segment 3.1

1 KB Signal, Inter-Segment 5.3

100 KB Signal, Inter-Segment 570

1-Byte Signal, Network (TX)a 3

1-Byte Signal, Network (RX) 7

1 KB Signal, Network (TX) 9

1 KB Signal, Network (RX) 45

a. Network tests based on 10Base-T network.

is important to measure both the accuracy of the periodic message delivery and its vari-

ability.

6.3.1 Test Methodology

The test application for this experiment consisted of two GRRDE modules (Figure 6.1).

The service module provides sample time-triggered subscription services. The test module

created client processes for the server and logged timing information about the dispatch

performance. Tests were conducted on a single processor, and across the network using

multiple processors.

The service module is quite simple. It consists of only the GRRDE shell and a single dis-

patch function. The dispatch function is parameterized to allow the specification of an

arbitrarily large dispatch signal. Upon triggering, the function allocates a signal buffer of
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Benchmark Module

Figure 6.1 Test Setup

Echo Service Module

for Time-Triggered Services.

the requested size and then send it to the destination process. No data was added to the

buffer since the objective of the test was to measure the behaviour of the dispatching and

delivery mechanisms. User-created processes were not needed in this module.

The test module was a little more sophisticated. A master process oversees the test

progress. Each cycle, the master processes creates a number of client processes C1. The

master then informs the clients of the test parameters. Once initialized, the clients contact

the echo server and request contract delivery. Tests were conducted to assess the effects of:

subscription period (p), number of clients (N), synchronization of clients, message size

(s), and differential prioritization of the clients.

The quantities measured are shown in Figure 6.2. Each test was of fixed length and

included 1000 measurement intervals (M = 1000). Measurements were conducted inde-

pendently by each client. The primary measurement was the dispatch arrival time, t. If the

k -th message arrives at time tk then the k -th inter-arrival time, t kI is:

k = k + I ~ tk (6.3)

and the mean period is:
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Server Client
Publis

Amax

Figure 6.2 Timing diagram for time-triggered testing.

T = T (6.4)
k =0

The variance of the inter-arrival time was estimated from

G2  T2 _ (-)2 (6.5)

Finally, we also keep track of the maximum deviation Amax from the mean period and the

interval during which this deviation occurred.

6.3.2 Test Results

The test space for these results is summarized in Table 6.4. The primary dependent vari-

ables were the number of clients, and the contract period. Timing tests were repeated to

measure the timing between modules on the same processor, and between modules on dif-

ferent processors. Bandwidth limitations limited the test space for the large signal sizes. In

the single processor tests, this limitation is due to memory bandwidth effects. Since the
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two test modules reside in different memory segments, signal transmission requires a

memory copy, thus limiting the maximum attainable rate. Network bandwidth has a much

more pronounced effect. The theoretical bandwidth of 10OBase-T ethernet is about

12.5MB/s. At that rate, the transfer of a 64KB signal buffer will take a minimum of

5.25ms.

TABLE 6.4 Summary of Test Space

Parameter Range

Period I ms - 105 ms

# of clients 1 - 35

Signal Size 32 Byte, 64KB

Client Priorities homogeneous, heterogeneous a

a. one high priority client

Single Processor Test Results

Across the entire spectrum of tests, the average inter-arrival time matches the requested

period very precisely. Aggregating the percentage deviation, 8, over all tests and all

reporting clients gives the data shown in Figure 6.3. This quantity is calculated from the

reported value of r, and the requested period:

6 = (6.6)
P

The data are tightly clustered. That the results reflect a wide variety of test conditions,

suggests that the OSE and GRRDE timing characteristics are very good. Consideration of

the shape of this histogram suggests a small tendency to undershoot the requested time

interval. The cause of this bias is unclear, but may be attributed to the OSE timing rou-

tines. In any case, the deviations are small, even for the fastest periods, where the devia-

tion of the average is less than 1 ps. Since the mean accuracy of the subscription intervals

seems very good, it is unlikely to create any problems when predicting system behaviour.
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Figure 6.3 Fractional period deviation (Aggregate results from all tests).

Net results for the single processor tests are shown in Figure 6.4. This graph shows the

results from the synchronized tests. During the synchronized tests, all the client processes

attempted to initiate their contracts at the same time. During the un-synchronized tests the

contract requests were distributed in time throughout a contract period. We expected the

un-synchronized results to show less timing variation than the synchronized tests due to

the effects of contention for the processor. Qualitatively, the effects observed were smaller

than expected. Since the differences are difficult to distinguish on three-dimensional plots,

the two types of testing are only shown together in selected two-dimensional slices.

Although processor synchronization did not have a great effect on the observed timing jit-

ter, the prioritization of the processes was important. This effect is clearly apparent in

Figure 6.5. This figure shows detailed results for the fastest (1 ms) subscriptions. Variabil-

ity in arrival time is governed by three factors. First, the user must contend with inconsis-

tencies in the OSE timing services. We cannot do anything to improve these results, but

evidence suggests that the initial publish stimuli (tick, message) are generated very accu-

rately. The second source of variability is within the GRRDE components. This is the
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Figure 6.4 Standard Deviation (a) of message delivery time. Low priority processes
are marked with circles (red). High priority results are marked with stars
(blue).

quantity that we wish to measure. Ideally, it will be as low as possible. The last source of

variability is due to processor contention. We would like to be able to adjust system

responsiveness so that critical processes experience less jitter than less important ones. In

an RTOS, the fastest processes are usually the most time critical, and will usually have the

highest priorities'. At present, GRRDE does not recognize any subscription prioritization.

Therefore, if two subscriptions receive their stimuli at the same time, GRRDE will dis-

patch them in arbitrary order. Once the signals are generated, however, high priority pro-

cesses will take precedence in their reception. Thus, high priority processes will preempt

low priority ones, if they receive their publish messages at the same time. Figure 6.5 dem-

onstrates that CPU contention accounts for over one third of the system timing variability

for small signal sizes. This amount of timing jitter can be controlled through process prior-

itization. The remaining jitter is inherent to GRRDE and OSE. Examining the jitter

1. For a rate-monotonic system. See [Liu & Layland, 1973] for details.
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Figure 6.5 Standard Deviation of Publish Delivery (ims period). Graph shows both
high/low priority results, as well as those for large/small signal sizes.

observed with only a single client suggests that the operating system contributes a jitter of

about 1 gs. Therefore, the internal contribution from thirty-five mutual interacting con-

tracts between GRRDE contracts is about 1.8 ps (i.e. difference between the curves). Con-

sidering that the fastest timing loop that OSE can support with its built-in timing services

is 1000Hz., such a small amount of jitter is unlikely to affect performance.

Memory bandwidth limitations can be seen in the curves for the large signal contracts.

When the number of clients in the system is low, the observed jitter is higher than that for

the smaller signals, but the slope is roughly the same. With fifteen clients, the high priority

process is still fairly normal but the low priority performance is showing effects of back-

log. With twenty clients the increased jitter is apparent in both curves. Beyond this point,

the necessary throughput exceeds the computer's capacity.

The small signal tests experienced an anomalous spike in jitter for the three client test.

This result is repeatable for a given ordered set of tests. Oddly, changing the testing order
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will cause the reported values to change. The results for the three client test will lie more

in line with the other values, but a similar anomaly will occur in another location.

Although a definitive explanation for this behaviour was not found, we suspect that it is a

consequence of the stack buffer recycling and allocation mechanisms in the OSE kernel.

These routines are triggered by process creation or termination, such as might occur

between tests. We suspect that a similar phenomenon is to blame for the drop in observed

contract jitter between subscription periods of 3-5 ms.

Global test results for large signal sizes are shown in Figure 6.6. All tests save for some of

the 1 ms subscriptions were completed satisfactorily. It is evident that the high traffic,

short-period testing introduces a moderate amount of jitter, but once the periods become

slower, the jitter is fairly insensitive to both the number of clients and the contract period.

At high speeds, the observed jitter is higher than the small signal case, but not exceedingly

so. This suggests a fairly robust and deterministic memory copying capability.

T

35

0.1

Period (s)
Number of Clients

Figure 6.6 Standard deviation for large signal contracts. Low priority processes are
marked with circles (maroon). High priority results are marked with stars
(black).
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As mentioned earlier, the effect of synchronization was less pronounced than expected.

Characteristic results are shown in Figure 6.7. For the high priority contracts, the effects

are minimal. The low priority clients exhibit some synchronization dependence over the

range of subscription periods, but the effects are relatively minor.

x 10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Contract Period (s)

Figure 6.7 Effect of Synchronization (35 Clients).

Figure 6.8 shows the effect of subscription period on contract jitter. Beyond the initial

range of relatively fast contracts, the jitter contribution is fairly insensitive to the period of

the contracts. This agrees with the formal modelling from the previous chapter, which pre-

sented a dependence on the number of clients, but not on the period'. The test results seem

somewhat erratic from one point to the next, but the gross shape of the curve agrees with

our modelling and intuition.

1. Since IOA actions execute atomically, process interactions are difficult to model explicitly.
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Figure 6.8 Period dependence (35 Clients).

Most of the discussion of jitter up until this point has addressed the jitter variance (actually

the square-root of the variance, or standard deviation). If we assume that the jitter distribu-

tion is normally distributed, roughly 67% of the samples lie within ±G of the mean. Also

important in the study of GRRDE performance is the maximum observed jitter. Typical

results are shown in Figure 6.9. The plots showing synchronized results and large signal

sizes are very similar and have been omitted for the sake of brevity. Most areas of the fig-

ure show that the maximum jitter lies in the range of 10-25 ps. Elsewhere, particularly for

short period contracts, much higher values are sometimes observed, reaching almost

100s.

From an embedded software engineering perspective, these seemingly anomalous jumps

in timing are disturbing. Real-time software, above all else, must be predictable. These

timing glitches may be enough to cause concern over control system stability. We can be

somewhat reassured, however, if we consider the locations of the maximum deviations.

Figure 6.10 shows a histogram of aggregate results over all the tests that were run. If these
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with stars (blue).
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spikes in timing uncertainty were truly random, we would expect to see a fairly flat distri-

bution. The observed bias in the data indicates that startup effects are responsible for many

of the reported maximum values. Unfortunately, many of the large glitches are not found

at the start of a test. We suspect that they may be caused by preemption by OSE kernel

processes.

Networked Tests

Once the single processor timed contract test was completed, the same test modules were

loaded onto separate machines and the clients were forced to remotely access the service

module. In this test we examine how the GRRDE time-triggered subscription services

x10
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0.08

0.1 5
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35

Number of Clients

Period (s)

Figure 6.11 Network performance for small, synchronized subscriptions. Low prior-
ity processes are marked with circles (red). High priority results are
marked with stars (blue).
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behave in a networked environment. Of principal interest is any additional jitter, rather

than absolute delay and throughput.

Networked signal transfer using OSE takes three steps. First, the transmitted signal must

be copied from the source memory pool to the kernel pool. Second, the source Link-Han-

dler process transmits the signal data to the destination link-handler over the network. This

step may involve the 'packetization' of the signal, and many internal operations. The sig-

nal is reconstructed in the kernel pool of the destination CPU. The third step is to copy the

signal from the kernel pool to its destination module. When network traffic is high, the

temporal and memory performance of the system is governed by the relative process pri-

orities of the destination link-handler and destination processes.

If the destination process priority is higher than the Link-Handler's, the destination pro-

cesses can process the signals as soon as they arrive over the network. Unfortunately, this

configuration preempts the link-handler and degrades the total throughput and network jit-

ter. Alternately, if the prioritization of the processes is reversed, the link-handler can oper-

ate efficiently, but messages will become backlogged in the kernel and destination pools,

since the client processes cannot process them while the link handler is active. This sub-

stantially increases the demand for memory since duplicate storage must be allocated.

Test results for synchronized and un-synchronized clients are shown in Figure 6.11 and

Figure 6.12. Nominal values are typically less than 20s for fast contracts and 10ps for

slower values. Very fast contracts show the worst behaviour with some jitter results near

200gs. It is unclear why high priority contracts experience worse jitter than low priority

subscriptions. This trend is particularly evident in synchronized tests. We suspect that it is

due in part to context switching and CPU contention between the link-handler and client

processes. Tuning the OSE network performance is a possible solution to this problem, but

extensive evaluation of this possibility has not been evaluated.

Maximum jitter observed in these timing tests remained quite modest. Figure 6.13 shows

the dependence on number of clients for 1 ms contracts using small signals. Three of the

190



Characterization of Time-Triggered Services
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Figure 6.12 Network performance for small signal, un-synchronized subscriptions.
The truncated values are about 2e-4 s. Low priority processes are marked
with circles (red). High priority results are marked with stars (blue).

curves show values growing to about 500ms, or almost half of a subscription period. The

large jump observed by the low-priority un-synchronized clients is almost certainly related

to network backlog.

The large signal tests were severely restricted by the bandwidth of the network. Flooding

the network with large packets overwhelms the link-handler. Systems transferring large

quantities of data over the network should either implement end-to-end flow control or

include enough memory in the system pool to handle the potentially large backlog of

packets.

Figure 6.14 shows the dependence of jitter on contract period. Even with only four clients,

many of the faster tests exceeded network bandwidth. The curves in the above graph show

no clear trend, but seem comfortably bounded by a standard deviation of 10 ps.

191



TESTING AND CHARACTERIZATION

15 20
Number of Subscribers

Figure 6.13 Maximum network jitter, small signal test, 1 gs subscriptions.
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Figure 6.14 Effect of period on network jitter (4 clients).
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A fundamental characteristic of middleware is its network performance. Since GRRDE is

a form of middleware, characterizing this performance is important. For most of the tests

described above, the observed jitter was below 20 ps. The expected performance degrada-

tion from this level of jitter is minimal. Since the GRRDE dispatch mechanism operates

on a single processor, regardless of the client location, we expect that most of the observed

performance degradations can be attributed to the OSE networking components rather

than GRRDE.

Several factors make network performance estimates difficult. First, there is the question

of our network protocols and architecture. Both the physical network (10OBase-T) and the

network protocol used by the OSE link-handler (user datagram protocol, or UDP) are not

designed to provide real-time performance guarantees. Although both are engineered to

provide good average-case performance, they make no guarantees about worst-case

behaviour. Use of a synchronous network such as MilStd-1553 would make performance

more predictable. The second difficulty lies with tuning the performance of the link-han-

dler itself. If the present level of jitter exceeds the requirement of the user's system, adjust-

ments to the OSE link handler components may solve the problem.

6.3.3 Parameter Estimation

In the previous chapter we derived equations describing bounds on system jitter. We

would like to correlate those results with the measurements we have made of actual per-

formance testing. Let us take Eqn. 5.31, for example:

pub-jitter = timer.jitter + rdispbnd.ub + r_exec_bnd. ub + d + rreturnbnd. ub (6.7)
+ (N - 1) -max(r_execbnd.ub, wexec_bnd.ub)

Each of these parameters represents the upper bound on a particular step in the dispatch

algorithm. Unfortunately, the equation is a little too precise to be useful. The problem

arises when we consider that the General Timed Automata model cannot explicitly model

processor contention. Instead, we must separately determine the maximum blocking and

execution time and use the resulting value as an execution time-bound. Thus, determining
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the total blocking time requires knowledge about how the whole simulation is composed.

Also, most of the important parameters in the above formulation (e.g. rexecbnd,

w_execjbnd) are specific to the data service.

A more intuitive approach, is to simplify the above equation. The important dependency

we wish to preserve is the scaling with the number of subscribers. This yields the simple

linear relation:

pub-jitter = x -N +x, (6.8)

Now we are left with the matter of fitting data to this curve. Instead of using the Amax data

that we gathered, we fit the curve to the standard deviation measurements. We justify this

decision based on two reasons. First, the quantity that we are trying to determine is the

upper bound on jitter. In any given test there is no guarantee that we will observe this max-

imum value. Second, the Amax data has a number of spurious values that we suspect were

caused, not by GRRDE, but by other system activities. Consider Figure 6.15. The figure

shows the subscriber dependence for standard deviation, a. Individually, the data are

rather noisy, but averaging the curves gives the heavy black line. This curve is fairly lin-

ear. A straight line fit to this curve gives x0 = 1 x 10-6 and x, 1 x 10-7. If we assume

that the jitter is normally distributed, a suitable multiplier can be applied to the coefficients

to give an adequate margin of safety (e.g. four-sigma, five-sigma, etc.).

Similar curves can be derived for large signals and un-synchronized subscriptions. How-

ever, the usefulness of actual numbers is rather limited. For the single processor test, we

contend that the primary contributors to delivery jitter are the dispatch function jitter

(r-exec-bnd), and the mutual process interactions which cause the linear scaling. Measur-

ing the dispatch function jitter in isolation gives a standard deviation of 1.05 gs. This value

is consistent with the observed jitter in the full test when N = 1 . Thus, publication jitter

is dominated by the user's code and not the internal mechanisms of GRRDE. Conse-

quently, the above derivation should not be interpreted as a prediction of absolute jitter,

but rather a method that developers may use to analyze their own simulations.
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Figure 6.15 Small signal standard deviation (low-priority, synchronized). The heavy
line is the average of the five component curves.

The network tests are very noisy and do not lend themselves well to similar analysis. As

mentioned earlier, we suspect that the variability has more to do with an ill-tuned link-

handler and a non-deterministic network, than any limitations of GRRDE itself.

6.4 Change Triggered Subscription Testing

Measuring timing behaviour is an important part of characterizing GRRDE's perfor-

mance. These services are less likely to be used directly in control loops, so latency is not

as much of a concern. However, like any embedded component, efficiency and determin-

ism are both virtues.

6.4.1 Test Description

To complement the temporal characterization of the GRRDE time-triggered subscription

services, similar tests were performed on the change-triggered mechanism. The test for-

mulation (Figure 6.16) was very similar to the previous example. Two test modules are
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Figure 6.16 Test formulation for change triggered services.

necessary for this test. The master test process, M, creates and initializes a number of cli-

ent test processes, C;. Each of these client processes subscribes to the change triggered

service provided by the echo module. This module is more sophisticated than the module

used for time-triggered testing. Within the module is a writing process, W, and a

atomic2 -type atomic object. Once the client processes have started, the master test pro-

cess signals W to begin the test. This stimulus causes W to begin periodically writing to

the atomic variable. For each cycle, the writing process will get the current time from

OSE, and write this value to the atomic object. The signal dispatched from the echo mod-

ule contains this time record, and an additional 'dummy' payload of arbitrary length.

When the clients receive the message they record the current time and compare it to the

time of writing. The timing diagram for these measurements is shown in Figure 6.17.

Several important features distinguish the change triggered testing from the time-triggered

tests. First, tests were only conducted on a single computer. Since the interface to network

transport is external to the GRRDE dispatch mechanism, the added jitter should be similar

to that encountered in the previous tests'. Second, the quantity that we are measuring is
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Figure 6.17 Timing measurements for change-triggered contracts.

qualitatively different. This test measures the time elapsed from the write invocation, to

the delivery of the message to the client. In each trial, we calculate the propagation inter-

val tk. The variance of this quantity is calculated identically to Eqn. 6.5. Once again we

record the position and value of the maximum deviation from the mean.

6.4.2 Test Results

This test suite is more compact than the one employed in the preceding section. Contract

period variations would be meaningless in a change triggered system, as would the effect

of synchronization. Both of these considerations are ignored. The tests vary the number of

clients in the system as well as the process prioritization and signal size.

Each time W writes a new time value to the atomic object, a dispatch is initiated. A pub-

lish message is then generated for each active subscription. Although this generation pro-

cess has been modelled as a simultaneous operation, the operations are performed

1. Additionally, distributed time measurement is difficult at the accuracies that we wish to measure without
using additional instrumentation and clock synchronization protocols. Using a single computer to make
the timing measurements ensures a consistent view of elapsed time.
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Figure 6.18 Dispatch delay as a function of subscription index.

sequentially. This yields the delivery time curves shown in Figure 6.18.This graph shows

the average arrival time for each client process. The GRRDE dispatcher generates the pub-

lish message in the order in which the subscriptions were requested. Thus, for a fixed set

of subscribers, the order in which the dispatch messages are generated is deterministic.

The delivery time shows a fairly linear increase as a function of subscriber number. The

knee in the large signal (65kB) curve suggests memory bandwidth effects coming into

play. A linear data fit to the small signal (8B) curve gives the delay relation for process i

(in ps):

= 275 +Ili (6.9)

and for the initial portion of the large signal subscriptions:

, = 275 + 20i (6.10)

This delay is quite substantial, even for relatively low numbers of subscribers. The extent

to which this would affect system performance requires additional investigation. The rea-
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sons for this delay are unclear, but warrant further study. It should be possible to determine

whether such delays are unavoidable consequences of the dispatch mechanism or whether

they are caused by inefficiencies in implementation.
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Figure 6.19 Standard deviation of change-triggered jitter.

The one-sigma and maximum jitter results are shown in Figure 6.19 and Figure 6.20. The

standard deviation of the delivery time appears to scale non-linearly with the number of

subscribers. This might be ascribed to unmodelled CPU contention between client pro-

cesses. High-priority process jitter seems quite reasonable; with thirty-five subscribers the

jitter is less than 30ps. The low-priority clients fare somewhat worse, with values of 70gs

or 130ps, depending on the signal size. Maximum jitter appears to scale linearly with the

number of subscribers. This agrees with our model derived from the formal analysis

(Chapter 5). The maximum observed jitter for both large and small, high-priority signals is

approximately 250 s. Low-priority results are substantially higher. The small signals still

appear to be linear, but the large signals are beginning to show non-linear effects.
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Figure 6.20 Maximum jitter, change triggered subscriptions.

Although not reflected in the figures, examination of the raw data suggests that most of the

time the maximum deviation from the mean occurs in the negative direction; i.e. the dis-

patch takes less time than the mean. In fact, the observed maximum positive deviation is

rarely much more than the standard deviation. Examining the location of the maximum

deviation (Figure 6.21), suggests that transient behaviour is to blame for these effects. At

the start of a test, GRRDE is still processing contract requests. At the end of the tests,

some processes may finish before their peers. Presented with a sudden drop in the number

of active contracts, GRRDE can process the remaining dispatches much more quickly.

6.4.3 Parameter Estimation

The test regime for change triggered contracts was somewhat more benign than encoun-

tered in the time-triggered case. Timing results for very fast contracts showed signs of

backlog. Although it is important for the designer to consider the net system load in differ-

ent operating conditions, it is good design practice to keep cyclic utilization to levels that

the processor can handle without being overloaded. Since the invocation rate of the
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change triggered contracts was fairly slow (100Hz), measurements taken were of nominal,

rather than overload, jitter.

The publish jitter Apub is given by Eqn. 5.41:

(6.11)Apub = r dispbnd.ub + (N, - 1) - r execbnd.ub

+ rexecbnd.ub + notify_time.ub + dispatchbound.ub

and the write commit time is given by Eqn. 5.39:

WriteCommitTime.ub = w-disp-bnd.ub + (NW - 1) - (W + Ns -R) + wexec_bnd.ub (6.12)

The sum of these two equations describes the expected scaling of the upper bound on dis-

patch jitter. Combining the scalar parameters, gives a simple linear equation in N,:

Atotal = 0 +y N (I 
-N

ALM I

~
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Since these tests did not overload the processor, the observed maximum values can be fit

fairly well to such an expression.

6.5 Comparison to Published CORBA Tests

A paper by Schmidt, et al [Schmidt, et al, 1997] discusses temporal performance compar-

isons of several middleware systems. The authors examine several implementations of the

Common Object Request Broker Architecture (see Section 2.2.2) and discuss how the

implementation architecture affects their temporal performance. Differences in testing

architectures preclude direct comparison to our GRRDE results but the general trends and

findings provide useful perspective.

Schmidt examined four CORBA implementations: IONA's MT-Orbix, Exersoft's COR-

BAplus, Sun's miniCOOL, and their own implementation, TAO. It is worth noting that the

miniCOOL implementation is specially adapted for embedded applications and TAO was

specifically designed for real-time performance. The study compared timing measured by

client applications, in contact with a remote (networked) server. The server application

performed a very simple calculation and returned the result. Test results measured two-

way latency and jitter for high and low priority clients.

The testing revealed the best performing ORBs to be the miniCool and TAO implementa-

tions. Between these two finalists, TAO, fared substantially better than miniCOOL. The

authors contend that the performance increase was due to a design specifically addressing

real-time considerations. In contrast, miniCOOL was reengineered for embedded applica-

tions, rather than being designed so from the start. The reported latency for the TAO

implementation was about 1.2-2 ms for both high and low priority clients. Jitter was

reported as less than 1ms for high priority clients and 5-11ms for low priority clients.

Significant discrepancies exist between the testing environment reported in the study and

GRRDE. Network technology, test computers, and operating systems were sufficiently

different that a direct comparison of results cannot be made. Even so, we feel that on a
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qualitative basis, GRRDE compares favourably. The time-triggered network tests, even if

doubled to account for two-way effects, lie in the same range as the TAO results. Change-

triggered subscriptions also exhibit latency and jitter comparable to TAO.

TAO has been cited by a number of sources [Bates, 1998] [Emmerich, 2000] as a promis-

ing example of middleware for real-time applications. At first glance, the temporal perfor-

mance of GRRDE is similarly stable. While direct comparison would require hands-on

testing of both products, and a more elaborate test regimen, GRRDE seems to be a solid

competitor.

6.6 Summary

Correct operation of an embedded system relies on the predictable nature of its compo-

nents. Therefore, before embedded software can be trusted, developers must satisfy them-

selves that it will remain deterministic within the anticipated range of system states.

Designers choosing to adopt GRRDE for simulation or flight software development can

be reassured by the verification of GRRDE's performance demonstrated in the last two

chapters. The linear bounds on system jitter derived in the previous chapter appear in the

results of the run-time testing. Although unmodelled non-idealities such as memory band-

width and CPU contention have some effect on the results, the most common sources of

maximum jitter are transient events, such as the start or end of the tests. This effect is to be

expected in any preemptive multi-processing environment where aperiodic events can eas-

ily disturb the rhythm of the periodic processes. The effect of these situations can be eval-

uated through further testing and conventional real-time analysis. Conservative upper

bounds on GRRDE performance exhibit both wide applicability and sub-millisecond jitter.
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Chapter 7

SOFTWARE DESIGN USING GRRDE

Earlier chapters have explored the issues involved in designing individual modules for

GRRDE. This modular approach is suitable for developing both theflight software and the

simulator components that together form a GFLOPS simulation (Figure 7.1). Although

module-level design is a vital part of the GRRDE approach, the larger considerations of

simulation architecture are no less fundamental. In this chapter, we examine a number of

issues that designers must address when defining the structure of large simulations.

We begin the discussion with a look at some of the ways in which functional blocks can be

joined together as architectural elements. A simple control system example illustrates

some of these concepts. Inter-connections between GRRDE modules require precise doc-

umentation of system interfaces. We have developed a structured approach to writing

specifications for these interfaces that complements the GRRDE publish-subscribe ser-

vices. In Section 7.2, we discuss several embedded considerations and ways in which tra-

ditional real-time analysis can be applied to GFLOPS simulations. Finally we propose

ways to migrate a GRRDE-based software simulation to a hardware testbed or deployed

system.

7.1 Architectural Considerations

Formulation of high-level system architecture is an essential part of software engineering.

It is important to realize that this process is recognized as a separate mental exercise than
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I Simulation (System Boundary)

I Flight Software

Con poniMdue

Figure 7.1 Typical simulation architecture. Flight software modules and simula-
tor modules together form a simulation.

low-level algorithm development [DeRemer & Kron, 1976]. Having discussed in

Chapter 4 the construction of individual GRRDE models, we now consider how these

modules may be connected together to form complete simulations. This process supple-

ments those stages of design involving functional decomposition and offers a variety of

solutions to common embedded scenarios. It is not our intention to offer a categorical

approach to simulation design. Instead, we offer a number of suggestions as to how some

typical problems can be viewed from the GRRDE perspective.

We first discuss some ways in which modules can communicate. We may know from a

superficial design that modules A and B share data x. We must still consider other

aspects of the connection such as: "Who is responsible for the link?", or, "What drives the

exchange of information?" These abstractions represent common elements from which the

overall architecture can be assembled. GRRDE's information flexibility provides architec-

tural capabilities that can be exploited as design and implementation matures.

206



Architectural Considerations 207

7.1.1 Architectural Communication Elements

In Chapter 4, we discussed the state-mobility principles of the publish-subscribe services.

The job remains of specifying how these services can be used to create effective simula-

tions. Contracts are not the only acceptable way to pass messages between modules. It is

frequently desirable to communicate in other ways; dispatch functions can be invoked

without reference to a contract, and messages can be sent directly to or from individual

processes. This section explores some of the variations commonly encountered with corre-

sponding discussions of their appropriateness to different situations. A proposed notation

scheme helps in communicating these ideas.

The classifications of inputs and outputs are based around several criteria. It is important

to consider where the information comes from, which actors create the data pathways, and

how messages are handled at the block interface. The principal communication types and

their notations are shown in Figure 7.2.

Z) Po9
a) Push Contract

b) Pull Contract

c) Relayed Output

d) Direct Output

|I| Module/Block

e) Direct Input

f) Relayed Input

g) State Input

CD Process /\ State Var.

Figure 7.2 Input and output types.
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Contract based output is the easiest to describe. With the GRRDE emphasis on state cen-

tric design, a large fraction of the IPC should be handled this way. The GSCA supports

two primary types: push and pull. 'Push' contracts are initiated by a source that knows of a

destination for its data. 'Pull' contracts in contrast are initiated at the destination. The

information sink must know the name of the source service. Functionally, both types of

contract operate identically. The only difference is the conceptual 'responsibility' for the

information pathway'. The push-type contracts are often used in conjunction with a subse-

quent relay.

Some modules may act as simple filters or relays for incoming signals. An output module

that performs pulse-width modulation is a possible example. A specific abstract command

(e.g. a force) is thus converted into one or more reactive operations. In the above notation,

the 'relay output' designation indicates an output that is in direct response to the receipt of

an input. This special-purpose type of communication is usually found at the interface

between simulator and flight software.

Module outputs can also come directly from a process. It is not uncommon to encounter

situations where this manner of communication is the most intuitive. Delivering aperiodic

commands to other modules is most easily envisioned through direct signalling. Also,

some operating system services are accessed through a signal interface. Care must be

taken however when designing simulations using direct messaging. Non-standard commu-

nication requires explicit interface specification, especially if handshaking or other proto-

cols are involved.

Outputs from one module become inputs to another. As there are many forms of outputs so

there are various forms of input. The simplest input is a signal that is addressed directly to

a particular process within a module. To maintain encapsulation, it is strongly recom-

mended that direct signal reception be applied circumspectly. Most incoming block traffic

1. This introduces the possibility of a third-party contract, initiated by neither the source nor the sink
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should be relayed through the address process. The only time an active process should

directly receive an outside signal is in direct response to a query that it has previously sent.

Inputs that are relayed through a block's address process (the phantom process mentioned

earlier) can be treated in one of two ways. If the incoming signal represents the update of

an input state variable, it is called a state input. Signals that are relayed directly to internal

processes are denoted relayed inputs. Inputs of both types must be articulated in the

block's input specification. When inputs are used to update a local copy of a continuous

state variable, any old data is typically overwritten and there is no guarantee that two

closely-spaced inputs will be processed individually by the internal logic. Relayed-inputs,

in contrast, typically represent commands or queries that must be handled individually.

Modules designed in this manner can take advantage of the built-in signal queueing func-

tions of the operating system. The difference between these two techniques lies in the

effect of inputs on block operation. State inputs do not directly affect the processor utiliza-

tion of the destination module. The requirement that relayed inputs be processed individu-

ally means that the processing needs may be bursty.

Simulations are constructed by combining functional modules with communication ele-

ments. GRRDE provides developers with some flexibility in establishing these links. Con-

tracts can even be specified at runtime. This flexibility is examined in the next section.

7.1.2 Information Flexibility

The combination of named service registration and the publish-subscribe communication

services provides significant flexibility in simulation construction. Such flexibility aids

the development process by promoting quick prototyping and allowing engineers to

explore different information architectures. The extent to which a part of a simulation can

be replaced by a different implementation of that segment defines the architecture flexibil-

ity. This freedom must be tempered by the requirements of embedded systems. Flexibility

can be introduced to the extent that it does not create significant processing or memory

overhead.
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Interface definitions leverage the use of the registry service provided by the operating sys-

tem. Both input services (e.g. an actuator interface) or output services (e.g. a sensor read-

ing) can be registered. It is expected that registered outputs will be far more common than

inputs. Since there is no arbitration mechanism to resolve duplicate names in the service

registry, all registered interfaces should be unique. Similar labeling of related services (i.e.

"Sat_1_Position" and "Sat_2_Position") is permitted (even encouraged), but must be

managed by the user and does not carry special semantic meanings for GRRDE. These

decisions enforce the need for alternate data sources or sinks to be handled explicitly by

the functional modules.

Once started, a module should seek to establish the communications links for which it is

responsible. This may consist of initiating contracts or simply looking up remote blocks.

Most contracts will be started by source or destination blocks, but contracts may be initi-

ated by a third party.

Information flexibility in GRRDE allows a data pathway to be replaced by another, if the

external interfaces are maintained. This process is depicted in Figure 7.3. Starting from an

Original

Block Substitution:

Simple Composition:

Complex Composition:

A BC

A 0 :DC

A F C

H

A G J C

U

Figure 7.3 Simulation Flexibility. Original system shown (top) with
some permissible substitutes.
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initial three-module simulation, increasingly complex variations are presented. The sim-

plest substitution is achieved by replacing a module directly with another. For instance,

one controller may be replaced by a more sophisticated one. Slightly more complex is the

substitution of a composed segment. Several modules now replace a single block, but the

same input and output interfaces are maintained'. This process can be expanded to include

more complicated substitutions as well as multiple information paths.

It is important to note exactly what is meant by flexibility. Each process is charged with

maintaining certain communications links. GRRDE flexibility implies that certain module

substitutions can be made without having to alter the logic within the remaining blocks.

The communications services are abstract and the interfaces are transparent This only

applies to the principles of information delivery. Reconfigured systems will be able to

establish all specified communications paths but it is impossible for the GRRDE system

alone to guarantee that the function of a composed segment will be as effective as the orig-

inal. In fact, the whole reason to make substitutions is to change the behaviour of the

entire simulation. It is the responsibility of the designer to account for processor usage,

synchronization, and other impacts of the changes.

7.1.3 An Architecture Example

Architecture discussions without concrete examples are sometimes difficult to absorb.

This section presents the information architecture of a simple controller simulation. It is

crafted to highlight some of the commonly encountered design issues. A control example

was judged to be the most intuitive illustration for these concepts, but the principles can be

extended to other situations.

Consider a simple digital control loop. The controller receives an external set-point. Based

on the commanded output and the current sensor reading, it must calculate an actuator

command. The actuator block converts the abstract action into appropriate outputs based

1. It is permissible for the composed system to present a super-set of the original interfaces
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Figure 7.4 Conceptual design of a control simulation.

on the hardware represented in the simulation. This output is then fed into the actuator

simulator which can add noise, bias or other non-idealities. The net actuation is then cou-

pled to the dynamics simulator. This must add the effects of any external disturbances as

well as propagate the dynamics forward in time. To complete the loop, the propagated

state is filtered through the sensor simulation. After injecting appropriate non-idealities

and synthesizing bit-level representations, the flight-software sensor block receives the

data. This block may perform some filtering or pre-processing before passing the reading

to the controller.

To understand the information architecture of this example, the figure can be redrawn

(Figure 7.5) using GRRDE symbols. Command inputs are relayed to an internal process.

Actuators- -'

Cmd tr - Simu-LI

Se Se -or

Figure 7.5 Communication elements displayed in control design.

This decision may reflect the intention that the controller will achieve each set point

sequentially, or employ some manner of output shaping. Controller outputs are pushed to

the actuator module. The relay function passes the commands to the simulator and makes

the appropriate conversions to reflect the command structure of the hardware (e.g. torque

scaled to voltage). The actuator simulator receives the input and records the value, while
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the module logic adds noise to the desired command and calculates the net actuation. The

dynamics simulator establishes a contract to obtain the actuator output (typically a force or

torque) and uses the value in propagating the dynamics forward in time. This gives the

'true' value of system states such as speed or position. These values are then pushed to the

sensor simulator at regular intervals. The pull contract from the sensor module is analo-

gous to polling a hardware device.

An alternate architecture for the actuator simulator might involve a second relay from the

actuator simulator to the dynamics simulator. The best choice of architecture may depend

on the nature of the simulation. If control actions are sporadic (e.g occasional thruster fir-

ings) the relay response might be most efficient. For controllers that employ a continuous

command application, the state input to the actuator simulator is preferred. If the sensor

response is meant to be interrupt driven, this aperiodic behaviour can be mimicked

through corresponding changes to the sensor branch.

The controller and the simulator are the key modules in the simulation. They are responsi-

ble for maintaining the bulk of the message pathways. These modules correspond to the

primary functions of the simulation. The remaining modules maintain the connections

across the simulator/FSW boundary. Particular system blocks may be replaced as the con-

troller design matures (controller), the actuators change (actuator/actuator-simulator),

more dynamics are modelled (simulator) or different sensors are employed (sensor/sensor-

simulator).

The above discussion suggest common idioms for applying GRRDE services to embedded

control systems and GFLOPS simulations. Our examples are not intended to be restrictive,

they merely illustrate systems design concepts that we have found useful in our own

development.
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7.2 Real-Time Considerations

Software developed for hard real-time applications must typically be subject to rigorous

analysis and a variety of tests to characterize its behaviour under a variety of operational

conditions. Determinism, as always, is the primary concern and a number of issues con-

tribute to this topic. First, designers must be satisfied that all tasks in the system will meet

their individual deadlines. Second, asynchronous interactions between system processes

can sometimes create a variety of undesirable conditions such as deadlock or priority

inversion. Steps must be taken to address these risks. Third, although the execution of

each GRRDE module is largely independent, efforts must be made to ensure that certain

operations are synchronized or ordered.

7.2.1 Scheduling Analysis

One of the defining characteristics of a hard real-time system is the importance of task

deadlines. Deadlines can be applied both to periodic and aperiodic tasks and specify the

latest time at which the task may complete. When developing software for embedded sys-

tems, we must be able to guarantee that all tasks will meet their deadlines. This analysis

should be performed during system integration and scheduling tests.

Priority Assignments

Modern real-time operating systems use dynamic, on-line process scheduling to avoid the

inflexible nature of static scheduling. Generally, solving the scheduling (or bin-packing)

problems is NP-hard [Burns & Wellings, 1996]. Thus, to reduce the complexity of on-line

scheduling, sub-optimal algorithms are usually employed. A computationally simple

approach is to issue each process a fixed, numerical priority and give control of the CPU

to the enabled process with highest priority. OSE uses this type of on-line scheduling.

Rate Monotonic Priority Assignments (RMPA) [Liu & Layland, 1973] are ideal for peri-

odic processes in the GFLOPS environment. Assigning priorities is necessarily a global
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activity. All processes on the CPU must be considered together. This requires that we

break the encapsulation of the individual modules and look at the processes inside.

Assessing Scheduability

Merely making priority assignments is not enough to completely assess whether process

deadlines can be met. Designers must consider how the dispatch activities and overhead

affect the system performance. We propose the following analysis framework.

Consider all periodic processes P;, with period Ti, and execution time C;. In the absence

of GRRDE we use the Critical Zone Theorem (CZT) [Liu & Layland, 1973] to check for

scheduability. This test involves the hypothetical execution where all tasks are started at

once. If every process meets its deadline in this execution, then any other set of start con-

ditions will satisfy all deadlines. To assess the impact of GRRDE subscriptions we must

take dispatch time into account.

To capture the effect of periodic subscriptions we propose augmenting the set of user pro-

cesses with the hypothetical tasks Qj. Since subscription periods are discrete the period of

the task Qj is just the subscription period tj. The execution time C. will be found by the

summation over all active subscriptions s with period T1 :

Cj:-IITS = j (7.1)

The quantity, r,, is the bound on the execution time of the dispatch function associated

with subscription s. The CZT can then be applied directly to this new set of processes to

determine scheduability.

Change-triggered subscriptions can also be accounted for in a straightforward manner.

Sha, et al [Sha, et al, 1994], suggest augmenting the execution time of a process by its

maximum blocking time B;. Thus,

C1' = C(+Bi (7.2)
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The blocking time of a process can be found by considering the sum of the bounds to write

to an atomic2 object and read from any input object.

Unfortunately, most of these analysis techniques are most effective for periodic tasks.

Accounting for the behaviour of aperiodic tasks involves one of the following:

- Assign aperiodic tasks priorities lower than all periodic tasks. This insures
that periodic deadlines are met, but generally cannot guarantee much about
the response to aperiodic tasks [Buttazzo, 1997]

e Model aperiodic task as periodic. If there is a minimum interarrival time, an
aperiodic task could be considered periodic for the purposes of computing
utilization. This can provide guaranteed deadlines, but may result in under-
utilization of the processor [Kolcio, et al, 1999].

e Modify or augment the process scheduler. Many schemes have been pro-
posed to provide better responsiveness to aperiodic tasks. Typically, they
involve setting aside a portion of the execution cycle for aperiodic tasks.
Some examples include: slack-stealing [Lehoczky & Ramos-Thule, 1992],
aperiodic servers [Strosnider, et al, 1995], and reservations [Shin & Chang,
1995]. This is still an open field of research and there does not appear to be
general consensus on the best approach.

Aperiodic task scheduling is still an active area of research. Users are encouraged to adopt

a scheme that best matches their system characteristics.

Two issue are worth noting about this approach to accounting for GRRDE overhead. First,

it requires a fairly mature system design. GRRDE allows flexible contract creation, but the

ad hoc use of the publish-subscribe services may affect scheduability. Second, the analysis

is most tractable when dealing with periodic processes. We have not investigated the

application of this technique to aperiodic tasks, but the general approach should be com-

patible with some of the aperiodic analysis techniques described above. Furthermore, we

conclude (and emphasize) that most of GRRDE's overhead comes from calling dispatch

functions. The more efficiently they are written, the smaller the performance penalty.
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7.2.2 Process Interactions

Distributed computing and preemptive multi-tasking create opportunities for unforeseen

interactions between processes. When these interactions have a negative effect on system

performance, their effects must be eliminated or managed. This section examines two

common phenomena and the considerations built into GRRDE to help avoid them.

Priority Inversion

In the normal execution of a preemptive environment, if two processes are both enabled,

the higher priority process should have control of the CPU. One potential hazard of mutual

exclusion protocols (and semaphores), is the risk of the lower priority process preventing

the execution of the high priority process for an arbitrary amount of time. This scenario is

called unbounded priority inversion and is a common, harmful problem.

Unbounded blocking of high P process

T2

3

m
I I Lock I I Unlock| (nominal execution)

Figure 7.6 An illustration
ority.

of unbounded priority inversion. Ti has highest pri-

Figure 7.6 shows a typical priority inversion scenario. We have a set of tasks 'r, ordered

in decreasing priority. Some system resource must be shared exclusively by processes 'rI

and tM. A process needing access to the resources atomically 'locks' a semaphore when
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starting and 'unlocks' it when done. Processes attempting to lock an already secured

semaphore will be blocked. In this scenario, Tm becomes enabled and secures the sema-

phore. Before it finishes executing, process ri becomes enabled, but blocks when it sees

that the semaphore is not free. In the normal course of execution, Tm would normally fin-

ish its calculations and release the semaphore allowing T, to run. Trouble arises, however,

when intermediate priority processes such as T2 and r3 become enabled and preempt pro-

cess rm. As a result the high priority process T1 is prevented from executing for an

unbounded amount of time by the execution of lower priority processes.

The main risk of priority inversion in GRRDE modules occurs when user processes inter-

act with atomic objects that are used in published services. The high priority dispatcher or

input arbiter could be blocked by a low priority user process during a read or write opera-

tion. To mitigate the effect of priority inversion, GRRDE atomic objects employ the emu-

lated priority ceiling protocol [Sha, et al, 1994]. When a process attempts to lock a

semaphore, it will temporarily raise its priority to that of the highest priority process shar-

ing the atomic object. After unlocking the semaphore, the process restores its original pri-

ority. This prevents preemption by mid-priority processes and guarantees a maximum

blocking time equal to Nsem -TME, where Nsem is the number of processes sharing the

resource, and TME is the maximum amount of time a process will need exclusive access.

In general, the use of protected memory spaces and modular design, reduces the reliance

on mutual exclusion and restricts consideration to processes within a module.

Deadlock

When execution progress is halted due to unsatisfiable mutual dependencies, the system is

said to be deadlocked. A simple example with two processes and two semaphores is

shown in Figure 7.7. The processes must secure both semaphores at the same time in order

to proceed with their calculations. Since they lock the semaphores in opposite orders, they

have prevented each other from progressing. This cycle of dependencies is a common

theme in identifying deadlock situations. Real world examples are often much more subtle
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and may involve longer dependency cycles or race conditions [Bums & Wellings, 1996].

Other causes of deadlock include:

e Waiting for a stimulus from a deadlocked process.

e Message loss in a network environment.

deadlock!

Begin Lock-A Lock-B I

preemption

| iLock-B Lock-A
1 2

Figure 7.7 Deadlock between tasks accessing two semaphores. Since the
tasks are waiting for each other, progress is impossible.

A number of algorithms exist that allow a distributed system to detect general deadlock

situations. These strategies are useful, but require some insight into a class of interactions

that may lead to deadlock. Qualitatively, certain design choices can lessen the threat of

deadlock. For example, many blocking system calls like receive, have alternative forms

that allow the user to specify a time-out period. Avoiding potential deadlock is an impor-

tant part of embedded systems engineering.

GRRDE does not directly affect a system's risk of deadlock, but a number of design ele-

ments offer indirect benefit. First, localized dispatch mechanisms, help make GRRDE

insensitive to network failures. Second, running a module's logic asynchronously with

that module's inputs, allows the module to continue to execute, even in the absence of

incoming data. This property must only be used after careful consideration since contin-

ued execution with stale data may be just as harmful as deadlock.
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7.2.3 Synchronization and Consistency

Modem operating systems like OSE support flexible computational models. We have dis-

cussed earlier that simple cyclic executives are essentially one large loop with no true

notion of processes concurrency (Section 2.1.2). More sophisticated systems may employ

time-slicing to regulate a process's access to the CPU. Unfortunately, both of these sys-

tems are not very extensible, and provide mediocre response to aperiodic tasks [Locke,

1992]. OSE's event-driven, priority-based preemption scheme allows greater leeway in

task execution, but is not without cost.

An OSE process can be enabled either by temporal or external stimuli. Message delivery

can be used to explicitly direct the flow of execution, but we would like to preserve, where

possible, the independent execution of each GRRDE module. Software system design will

sometimes show that certain global ordering and data consistency properties must be

maintained in order to ensure adequate simulation performance. This section examines

some of these issues and ways of addressing them within the context of a GRRDE simula-

tion. Each of these sub-sections describes common problems and outlines possible solu-

tions.

Subscription Synchronization

Typically, cyclic tasks executing within a module will read data from a shared module

variable, perform some processing on the contents, and then write the results to another

variable. We have implemented a generalized type of atomic object that guarantees exclu-

sive access to the variable during writing and reading. The contents of input variables are

usually furnished by subscriptions, while output variables usually form the basis for the

module's published services.

Consider Figure 7.8. The figure depicts two possible time traces of a module that performs

calculations based on the values delivered in two separate subscriptions. In Figure 7.8a,

the arrival times of the two subscriptions are widely spaced. Consequently, the values used

in the module's calculations may be temporally inconsistent. Using quantities with poor
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Figure 7.8 The importance of contract synchronization. In the top example (a), the timing of incoming
messages (arrows) are poorly synchronized with the module's read-calculate-write cycle. In
the lower figure (b), synchronization assures temporally consistent calculations.

temporal correspondence may result in degraded or faulty performance. In contrast, the

message arrivals in Figure 7.8b, both occur before the calculation begins. Ensuring this

behaviour requires two steps.

The first requirement is that incoming publish messages all arrive within a short time of

one another. Designers can ensure that incoming subscriptions are aligned by specifying

appropriate first.fire values when setting up contracts. This guarantees that the source val-

ues will arrive within a time window of width pub jitter. Incidentally, 1 ms contracts will

always be aligned under OSE since the operating system has a global time granularity of

1mis. This feature is implementation specific and should not be relied upon.

The second synchronization consideration we must address is the execution of the mod-

ule's calculation. Not only must incoming subscription messages arrive close together, but

the module shouldn't start its calculations until the data are received. Several approaches

can be used to address this problem:
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- Trigger the logic process each cycle from the Input Arbiter. Once a new copy
of each incoming publish message is received, the input arbiter generates a
stimulus message and sends it to the logic process. This solution ensures
good ordering every cycle but dealing with subscription failures or different
arrival rates could be difficult. Care must be taken to ensure that the right
"cluster" of sensor readings is used.

- Trigger the logic process once from the Input Arbiter. The logic process gen-
erates its own stimuli in steady state, but begins operations after being trig-
gered from the input arbiter. If the cycle time for the process is sufficiently
long (i.e. several ms or more), then we will have enough time-granularity to
request a delay as large as pub-jitter. Thus, we will always maintain good
temporal correspondence. During very short period cycles, we may not have
the timing facilities to explicitly delay the execution of the Logic process
until all inputs are received. In this case we must either adopt the previous
triggering mechanism or tolerate the occasional delivery jitter.

Subscription synchronization can also be applied globally to ensure that sensor inputs are

performed synchronously with actuator outputs.

Data Consistency

A similar problem that we may run into in a distributed, asynchronous setting is that of

getting a 'snapshot' of the values of a set of atomic variables. This might occur when read-

ing the input or output variables in a GRRDE module. Figure 7.9 shows a process P

atomically reading the set of N, atomic variables X.. Each variable is being written no

faster than once every T, time units. To obtain a snapshot we must read each value during

an interval in which no writes occur. When we do not have control over the timing of these

write messages we must resort to other means to obtain a consistent set of readings.

One possible solution is to implement a global mutual exclusion algorithm. This is a rea-

sonable approach, but care must be taken to avoid unwanted blocking of other processes

or potential dead-lock situations. If we can afford to tolerate some inefficiency, other solu-

tions are possible.

Consider for example, the case where process P simply tries to read the values sequen-

tially. If a new value is written before P reads XN, then P must read each of the preceding
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Figure 7.9 The Snapshot Problem. Process P must read the vari-
ables X; during which no new values may arrive.

values once again. We assume for simplicity that read and write times both take time R.

Table 7.1 shows worst case execution sequences for N = 1, 2, 3. We assume that the total

time to read the values is less than the shortest period. Thus, the worst case will corre-

spond to receiving a new write just before reading a new variable

TABLE 7.1 Worst-Case Executions for Snapshot Algorithm

N Execution Total Time

1 2RI
2 wr w r r rr r 3RI+2R2

3 w, rw2 r2 Jrw r' r2 rI 4RI +3R2+2R3

This pattern can be generalized yielding the time bound:

N

Tmax = (N+ 2 - i) -R, (7.3)

i= 1

which is maximized if the R, values are sorted in decreasing order. Thus, as long as

Tmax < min(T;), we are guaranteed to need no more than Tmax time to complete. For a

modest number of variables this approach may be a simple, self-contained way of obtain-

ing a consistent snapshot. This algorithm is a variation of the bounded snapshot algorithm

[Lynch, 1996].
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Flight-Software/Simulator Synchronization

Successful GFLOPS simulations must synchronize the activities of both the flight soft-

ware components and the simulators. Design of synchronization mechanisms between the

two halves of a simulation is tricky. Not only must the actions of the various components

be coordinated, but this must be done without skewing the flight-software to the demands

of the simulation. This requirement suggests that the simulator be synchronized to the con-

troller and not the other way around. Individual requirements may vary depending on the

application, but the following general approach should be useful.

Consider the simple controller and simulator shown in Figure 7.10. The controller calcu-

lates actuator commands in response to the simulated inputs. A segment of the simulation

execution is shown in Figure 7.11. We assume that the simulator period is 'rsim, and the

controller period is rc. At the start of a simulation cycle to, the simulator begins propagat-

ing the system dynamics up to the start of the next cycle. This is the simulation horizon.

This simulation process takes time tsim to complete. Assuming that tsim < Tsim, new data

is available for publishing at time t = to+ tsim * For the moment, we assume that

c =sim

Simulator

Figure 7.10 A very simple simulation.

We allow a timing offset of 8 between the controller and the simulator. If

Tsim - tsim < 8
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simulator horizon execution time

Simulator Simulator new data available

contro ler I/O

Figure 7.11 Timing diagram of simulation execution.

then the simulator and controller are essentially synchronized, and the sensor readings and

actuator commands exhibit good temporal correspondence. In a more general case, we

relax our initial assumption about the equivalence of tc and rsim. In Figure 7.12 we see a

simulation in which the simulator operates at twice the rate of the controller'. In general,

let us assume that:

Ic = R - Tsim (7.5)

for some integer rate multiplier, R. If we leave the definitions of rsim and tsim

unchanged, it is apparent that the condition specified in Eqn. 7.4 still holds. If tsim is pro-

portional to simI then the maximum allowable time mis-alignment, 8, will decrease.

Therefore, increasing the simulation rate requires more accurate synchronization between

simulator and flight software.

If we do violate this alignment bound, then the temporal consistency of our simulation will

suffer. Essentially, we will have the situation shown in Figure 7.13. Because of the time

1. The (external) simulation horizon should not be confused with any (internal) simulation step size. The
horizon is the granularity at which the user correlates simulation results with the actual passage of time.
Internally, a simulation may use any necessary discrete or continuous propagation technique.
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simulator horizon execution time

i Si Si

r

Si

contro ler M/O

Figure 7.12 Timing diagram with mixed-rate simulation.

offset, the controller output at t, , will only affect the simulator at t2 . When the controller

next reads its sensors at t4 , it will only observe the propagation of the actuator commands

up to t3 . Although the actuator commands from t1 will be effective from t2 to t5 , the

simulator horizon execution time

Figure 7.13 Timing diagram with time misalignment.

time misalignment introduces a source of unmodelled lag between sensing and actuation.

The size of this lag is clearly:
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A = (7.6)
R

Such delays may significantly degrade the usefulness of the simulation results.

The above analysis suggests two approaches to simulation design. First, it may be possible

to run the simulator fast enough (i.e. large R) so that the lag introduced in Eqn. 7.5 causes

an imperceptible change in performance. In this case we will synchronize the controller

and simulator whenever possible, but performance will be adequate even if precise tempo-

ral alignment cannot be maintained. If the flight software filters the incoming data the deg-

radation from alignment lag may be reduced. This approach is simple but somewhat

unpalatable since it introduces implicit assumptions into the overall simulation design.

Alternately, if the simulation is run at the same rate as the controller (i.e. R = 1), we are

afforded the largest margin of timing misalignment 6, but must endure the worst conse-

quences if we violate the time-bounds. Deciding between the two options requires weigh-

ing the relative risks involved.

7.3 Deploying GRRDE Flight Software

The guiding architectural principle behind GRRDE is to provide an environment in which

the transition from software development to software deployment is as painless and sim-

ple as possible. It is unlikely that any such activity will be completely effortless, and no

amount of software simulation can eliminate the need for thorough testing. However, fore-

sight and careful simulation may avoid most pitfalls.

To adhere to the principle of "fly as you test, test as you fly," GRRDE simulations can be

constructed with an arbitrary level of flexibility. Simulators can reproduce, to bit-level

accuracy, the input and output characteristics of sensors and actuators. Inevitably, there

will always be the need for minor reconfiguration of these interfaces as a system moves to

real hardware.
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Our suggested migration changes are shown in Figure 7.14. The left side of the figure

shows possible architectures for sensors. During simulation, the input values are obtained

through a pull contract which puts the bit-level representation of the sensor readings into

local storage. Any local processing will operate on this state, converting it to output vari-

ables. For deployment, the contract can be replaced by a periodic process which will poll

the appropriate 1/0 device and copy the result into the same input state buffer. Actuators

typically operate in a slightly different fashion. A relayed input is first processed to match

the abstract input to the corresponding bit values. These are passed to a second process

which sends the values in a signal to the actuator simulator. A deployed system must

replace the second process with one that will write to the 1/0 device. In both cases the

amount of code that must be altered remains small. Actual implementation may differ

based on the application, but this example illustrates the general principles involved.

Ou t Ou Inputs Inputs

A A

l P o ll .
To Simulator i/o write

From Simulator i/o read

Figure 7.14 Migration of interface software. Sensors (left) and Actuators (right) require
slightly different strategies.Features above the fine dotted line remain intact
through transition.

7.4 Summary

We have attempted, in this chapter, to give an overview of large-scale, real-time, simula-

tion design using GRRDE and GFLOPS. We first examined some of the architectural

issues involved in structuring the module connections. We also examined the documenta-

tion required at the module interfaces, especially when specifying available subscriptions.
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Next, we examined the way in which GRRDE would fit into a conventional real-time

analysis and testing program. Scheduling and synchronization were of particular concern.

Finally, we sketched out an approach to migrating simulations and flight software to hard-

ware testbeds and deployed systems.

This chapter concludes our documentation of the GRRDE middleware. The preceding

four chapters present a thorough discussion of design and application of the publish-sub-

scribe services. To further emphasize the usefulness of our software development frame-

work, the next sequence of chapters presents several case-studies showing the usefulness

of GRRDE for integrating advanced software concepts into conventional flight software.
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Chapter 8

AUTOMATIC CODE GENERATION
AND REAL-TIME WORKSHOP

Abstraction is a principal feature of good systems design. Separating the details of imple-

mentation from its functional representation allows domain experts to concentrate their

design effort where it is most productive. We have presented the GRRDE system as a

communications abstraction tool that reduces the complexity of coordinating software

module connectivity in distributed systems. Other abstraction methods are also common

in systems design.

One common innovation in the development of embedded control systems is the use of

automatic code generation. These techniques and tools allow direct generation of real-time

software from block-diagram models of monitor and control systems. This chapter exam-

ines the integration of GRRDE middleware with a common code generation package. We

use the Real-Time Workshop (RTW) and Target Language Compiler (TLC) components

of Mathworks's Simulink software to directly generate GRRDE-compatible software

modules from their Simulink representations. This method is extremely effective and can

be used to rapidly build libraries of interoperable flight software modules or simulations.

8.1 Background

This section provides the motivation and background information for this application

study. We first provide a brief introduction to the practise of automatic code generation
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(ACG), and then explain the role of our study with respect to the evolution of GRRDE

middleware.

8.1.1 Why Code Generation?

Automatic code generation may seem like a strange and revolutionary approach, but it is

really just a logical extension of the evolution of modern computer languages. These tools

essentially constitute a high level, domain-specific computer language. Often graphical in

nature, they allow control engineers to program embedded devices in an intuitive manner.

This provides an array of benefits to product development. Already popular in the automo-

tive industry, ACG has also been used in aeronautical and space applications and is

steadily gaining acceptance.

Software engineering differentiates between low-level languages like assembly language,

and high-level languages like C, Ada, or Java. The terms 'high' and 'low', essentially

refer to how abstract the language features are. Languages with vocabulary and structure

closely tied to simple machine operations are considered lower-level than those languages

with more general features. If the primitives of the language match the task you are trying

to accomplish, development will be much easier. For example, developing 1/0 device

drivers is more easily done in C than in LISP; expert systems are just the opposite. ACG

tools allow control system designers to model controllers and simulations out of conven-

tional elements such as filters and integrators. Construction is performed graphically

(Figure 8.1) and involves connecting data pathways as if they were wires. The completed

design is compiled by the tool into a standard language such as C or Ada, and from there,

into assembly language.

Gain

Figure 8.1 A very simple control system model in Simulink.
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The benefits of ACG for product development are manifold.

First, code generation reduces the cost of development [Smith & Elbs, 1999] and the

design iteration time [Orehek & Robl, 2001]. Using traditional, hand-coding techniques,

control engineers design the control algorithms and derive specifications. These specifica-

tions are given to the software engineers, who implement and debug the code. The design

is tested against simulations or hardware and the results returned to the control engineers.

Revising the design is a time-consuming process. Using ACG tools, the control engineer

can create prototype code directly for testing. Although the final production code may be

translated or optimized by hand [Maclay, 2000], the development phase is substantially

accelerated.

The second benefit is increased safety and reliability. Since the design is formulated by

control engineers, but implemented by software engineers, errors may be introduced at the

interface between these two groups. Without well managed communication, misunder-

standings are frequent. Changes that appear unimportant to the software engineer may be

critical to the controller's performance. Moreover, several secondary safety benefits

accrue. When design iterations take significant effort, designers will frequently tweak the

code by hand between revisions. This leads to divergence between the specification and

implementation. Shorter iteration time significantly reduces this temptation. Furthermore,

when projects require lower volumes of hand-crafted code, software engineers are more

likely to start from scratch and not reuse inappropriate old code.

These benefits of code generation tools have led to growing popularity in many areas of

embedded systems development. Automotive applications abound [Orehek & Robl,

2001][Maclay, 2000], since cars are increasingly reliant on software. Engine and emis-

sions control, braking, steering, and cruise control are all coordinated by microcontrollers.

Many aircraft flight control systems have been reliant on software for a while, but are

adopting ACG to reduce costs and improve reliability [Bryant & Key, 1999]. Space appli-

cations are also becoming popular. ACG was used to create flight software for the Delta
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Clipper experimental rocket [Nordwall, 1993], and to prototype flight instruments [Ptak &

Foundy, 1998]. Many more examples can be found in scientific literature, and interna-

tional conferences have been devoted to this specific topic.

8.1.2 Study Goals

Popularity aside, we are left to explain how ACG ties into our middleware development.

Our central goal is to integrate code generation tools with GRRDE. This study extends the

Simulink/Real-Time Workshop utilities so that designers may directly translate their sim-

ulink modules into GRRDE-aware modules. Specifically, these modules will publish their

own outputs and set up their own subscriptions. This suggests the following benefits:

- Accelerates iteration cycle. This aids the control system developer by reduc-
ing the effort required to integrate ACG modules with other system compo-
nents.

- Permits library-based development. Since the interconnection mechanism
between modules is abstract, simulator and controller modules can be
quickly assembled or reconfigured.

- Promotes reliability. Communications abstraction reduces reliance on hand-
coding module interconnections.

Providing these benefits to the control engineer demonstrates that GRRDE helps to sup-

port control system development. This utility is of value to flight software in general.

8.2 Code Generation and GRRDE

Having decided to integrate GRRDE with automatic code generation tools, we now exam-

ine how this was accomplished. The ACG tool chosen for this study was the Real-Time

Workshop (RTW) module of Simulink. Simulink is a popular block-diagram, control-sys-

tems design tool. It is part of MathWorks's MatLab. RTW was selected for this study pri-

marily for its ready availability, and familiar simulink interface. Other tools, such as

Matrixx are quite popular and could also be adapted in this manner. Let us examine how

the typical RTW build process operates, and how it can be adopted to work with the

GRRDE middleware framework.
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8.2.1 Real-Time Workshop

To understand how we adapted RTW to interface with GRRDE, we must first examine the

nominal build process. Compiling executable software with RTW takes several steps

(Figure 8.2). First, the developer creates a standard simulink model using the graphical

development tools. Global parameters such as time-step or integration method can be

specified in this stage. When the RTW engine is invoked, the users's model is converted

from a conventional '. mdl' file into an '. rtw' file. This file is a pre-compiled version of

the users's model. It contains all the required information to replicate the function of the

simulink model, without extraneous information such as graphics settings. The rtw-file is

passed to the Target Language Compiler, which translates the model into functional code.

Users have the option of targeting different languages, architectures and operating sys-

tems. The final stage is performed by a conventional compiler (or cross-compiler). The

RTW libraries

Figure 8.2 Real-Time Workshop Compilation Sequence.
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compiler takes the model source files and combines them with libraries of specialized

math routines and a model engine. The math routines include support for operations such

as filtering, FFTs, integration, etc. The model engine is an application skeleton that is

designed specifically for the targeted operating system or embedded processor. It is

responsible for interfacing with the native timing routines and periodically executing the

model.

RTW is able to support a wide array of embedded targets by adopting a common applica-

tion framework. Model execution is divided into a number of stages. The key stages are

shown in Table 8.1. Each stage is implemented as a predefined function with a standard-

ized parameter list. These functions are called at appropriate times during the periodic

operation of the model engine, but the contents of the functions are generated from the

model source files (generated by the TLC). Every block in the simulink model contributes

to one or more of these functions. Thus, a single version of the executable engine can be

used for any user model.

TABLE 8.1 RTW Model Phases

Execution Phase Purpose

mdlInitialize Sets up initial values in components and vari-
ables

mdlOutputs Compute and propagate outputs at each timestep

mdlUpdate Update discrete states in model

mdlDerivatives Compute derivatives of continuous functions

mdlTerminate Clean up after completion

mdlStart Run once at beginning of execution

8.2.2 Developing GRRDE-Aware Modules

The code generating facilities of Real-Time Workshop allow extensive user customiza-

tion. Users may select from a number of destination languages such as C or ADA. They

may also select different target processing architectures and operating systems. Most

importantly, users also have the ability to completely change the build process. New oper-
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ating systems can be defined, and custom blocks can be created. This extensibility is what

enabled GRRDE integration.

The modified development sequence is shown in Figure 8.3. We first create our simulation

in Simulink. The parts of the model destined for code generation are placed in a sub-sys-

tem and connected to the rest of the simulation with input and output ports. Once we are

satisfied that the controller is ready for compilation, we replace the default I/O blocks with

special GRRDE-enabled versions. When we invoke the RTW component to generate the

real-time code, special template files translate these modules into source-code.

GRRDE Interface Blocks

E -_

Cmd c 1.a outt

.EJ GRRDE Enginegrdtc

8MM

Code Generation Templates

Model Source Files

RTW libraries

Figure 8.3 GRRDE custom code generation process.

Template '. tlc' files tell the TLC how to generate source code for our customized com-

ponents. Input blocks correspond to subscriptions that must be requested. A custom input

arbiter is created from the templates and entries are added for each type of input signal.

The specifications for the subscriptions are set by changing the block parameters. A

screen-shot of the input parameter dialog-box is shown in Figure 8.4. Output blocks corre-
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Figure 8.4 Example of grrdejinput parameter-setup dialog box.

spond to published data. TLC will generate and register dispatch functions for each data

product specified in the simulink model. A system-level block identifies the name of the

module and the data services to be registered with the OSE-NameServer (Section 3.2.2).

During final compilation, a special version of the execution engine interacts with OSE and

creates the processes necessary to run the model.

This approach can be used to rapidly create both controller (flight-software) and simulator

modules for use with GFLOPS and GRRDE. Modules can interact with other ACG soft-

ware or conventional hand-coded GRRDE software. If necessary, the module source code

produced by TLC can be easily edited by hand. This process is best understood by an

example.
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8.3 An Control System Example

In this section we present a very simple control system and compare the output generated

through internal simulink simulation with the module outputs from generated GRRDE

modules. The example we have chosen is an idealized attitude control system for a free-

floating spacecraft. A simple pictorial representation of the system is shown in Figure 8.5.

The control system can measure sun-angle with the sun-sensor and wheel-speed with a

tachometer on the reaction wheel. The reaction wheel is the only actuator, and is com-

manded with torque.

e

Sun Sensor

Solar Array

Bus

Figure 8.5 Single axis spacecraft attitude control. Sun sensor measures angle to sun (in
spacecraft reference frame), wheel tachometer measures wheel-speed.

The dynamics of this system are fairly easy to describe. The satellite bus is modelled as a

rigid body with moment of inertia I.,. The reaction wheel has zero bias momentum and

moment of inertia, I,. The controller can command a torque, Tc, to be applied to the

wheel. The sun angle, 0, is measured in the frame of the spacecraft. Assuming right-

handed sign conventions, a positive (counter-clockwise) rotation of the spacecraft yields a
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negative sun angle. The angular velocity of the bus and wheel are wO, and w,, respec-

tively. Thus:

WoC = sco - IscfTedt (8.1)

and,

0 = 0o - fOsdt (8.2)

For our controller, we assume a very simple proportional-derivative (PD) control. Thus,

our control law is:

Tc = -K,(0 - 0c) + Kd(msc - w,) (8.3)

Since,

1Osc =- ' 0w (8.4)
SC

we can write:

I
Tc = -KP(0 - 0c) - K - - (sc -wsc) (8.5)

SC

Using a spring-mass-damper model for our controller, critical damping occurs when:

Kd = 4IsK (8.6)

The simulink block diagrams for the controller and simulator are shown in Figure 8.6 and

Figure 8.7. The simulator adds Gaussian noise to both the actuator command and the sen-

sor readings. Prior to generating the real-time GRRDE code, we replace each of the 1/0

ports in these diagrams with a GRRDE-interface block.

Once the conversion is complete we generate the GRRDE modules. Figure 8.8 shows

comparative results from a simple simulation (0 = 1, Isc = 100, Iw = 1, K, = 1). At
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imung Kd

Figure 8.6 Controller Block Diagram.

Figure 8.7 Simulator Block Diagram.

t = 2s, the controller is commanded to slew to 0 = 0. The two curves match very

closely. The small deviations observed are caused by synchronization offset between the

simulator and the controller.

Several similar examples were developed during our development of the RTW extensions

and template files necessary to convert Simulink models to GRRDE modules. Since our

goal was to establish the practicality of this technique, rather than perform a particular

control system design we did not perform a comprehensive evaluation of the generated

modules. Further testing and refinement of our RTW extensions would be necessary

before using them in a demanding application.
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30
Time (s)

Figure 8.8 Step command response (Internal and GRRDE simulations).

8.4 Summary

We have demonstrated successful integration of the automatic code generation capabilities

of Real-Time Workshop with the middleware functions of GRRDE. The following general

observations were made during this study:

- Although RTW and the TLC perform most of the code generation tasks, the
designer must still plan the module interconnections. They must provide
specifications for signal identifiers, data structures, etc.

o The TLC templates are useful for creating skeleton modules, even if the
logic will be implemented by hand. The automated generation of input con-
tracts, the input arbiter, and the dispatch functions and module setup is very
useful.

e The graphical design significantly improved the speed of our internal simu-
lator development. Although we were unable to quantitatively measure this
improvement in productivity, it was qualitatively significant.

Our RTW study was fairly short. Time did not permit the full range of testing and develop-

ment. To extend the usefulness of our tool customization, we would make the following

enhancements:

- RTW modules make no attempt to synchronize contracts or block execution.
Presently, this must be added to the source-code by hand. It should be feasi-
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ble to create custom simulink blocks that give the designer access to syn-
chronization primitives.

- Periodic contracts are the primary means of module 1/0. Command inputs
were implemented by creating a GRRDE-Input module as if it were a sub-
scription input, and then disabling the contract initialization in the source
code. The block would recognize and use the input, but would not subscribe
to it. It would be a straightforward manner to add direct support for this
behaviour.

e Implementation of change-triggered publication services would also be use-
ful. This would allow us to integrate GRRDE with the StateFlow toolbox
(StateFlow adds state-chart control supervision to Simulink models).

- Simulation of spacecraft clusters entails running several parallel simulations.
It would be useful to permit automatic replication of the simulators. Pres-
ently, the designer must either build a large model with all logic duplicated
for each spacecraft, or load several copies of the simulator module at the
same time.

- We have not extended the formal analysis or temporal characterization to
include automatically generated modules.

e Most of the simulink models used for this study are quite simple. An
expanded study with more challenging examples may provide further evi-
dence of the usefulness of this approach.

In general, the results from this study are quite promising and suggest that middleware and

code generation are complementary techniques. Both provide domain-specific abstrac-

tions and streamline development by keeping the designer's focus on relevant tasks.
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Chapter 9

AUTONOMOUS FAULT DIAGNOSIS
WITH GRRDE AND MARPLE

Spacecraft autonomy is currently one of the hottest topics in space software research. Suc-

cessful, high-profile missions such as Mars Pathfinder have provided the public with

visions of intelligent robotic explorers. Although somewhat less glamorous, but techno-

logically more momentous, the Deep Space-1 technology demonstrator mission actually

tested autonomous navigation, planning, fault diagnosis and execution in space [Rayman,

et al, 1999]. Some designers have even gone so far as to propose building space probes

without any radio receiver so that the on-board intelligence will conduct the entire mis-

sion. Few would suggest that current technologies are ready for this challenge, but it is an

intriguing prospect nonetheless.

This chapter expands the role of GRRDE as a technology enabler. In this study we use

GRRDE to integrate an autonomous fault diagnosis engine into a simple simulation. The

flexible communications abstractions allow the new functions of the diagnostic engine to

be layered on top of conventional flight software. GRRDE assists this integration in two

ways. First, the abstract services allow us to tap directly into the telemetry stream. Second,

real-time data delivery guarantees, reduce the potential for state confusion due to temporal

inconsistency.
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9.1 Motivation

The general aim of this study is to demonstrate how the GRRDE middleware can be used

to support the integration of autonomy with conventional flight software. Autonomy is a

rather loosely defined term and has been used to describe a wide range of behaviours.

High level feedback control, navigation, maneuver planning, and self-repair are examples

of the types of functions commonly found under the label of autonomy. This study focuses

on fault diagnosis. In this section we provide a brief overview of autonomous diagnosis

and an outline of our study goals

9.1.1 Fault Diagnosis

The primary purpose of a diagnostic tool is to estimate a system's state of health. We

might be studying a person, a car's engine, or a spacecraft half-way across the solar sys-

tem. Based on behavioural observations we must determine if the device is operating nor-

mally, and if not, what is wrong with it. Autonomous diagnosis is distinct from interactive

diagnosis due to the limited observability of system state. A doctor can order blood tests,

an electronics technician can wield a multi-meter but a satellite operator only has access to

whatever self-instrumentation is built into the spacecraft. This section considers the bene-

fits of autonomous diagnosis systems and some typical techniques.

Spacecraft, even cheap spacecraft, cost millions of dollars. When failures disable a satel-

lite, fast, effective recovery reduces the potential for lost revenue or science. Trouble-

shooting anomalous behaviours in a remote spacecraft can be difficult, especially if

communications have been disrupted. Fault diagnosis allows the spacecraft to identify its

own failed components. This process is independent of the distance to Earth and can use

any local information, not just the quantities that fit into the telemetry downlink. Some

systems even have automated fault-recovery capabilities. Using these techniques allows

the satellite to inform ground operators of faulty components or automatically activate

redundant sub-systems during time-critical operations.
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Most modem techniques for fault diagnosis are termed 'model-based'. Each component in

the monitored system is associated with an operational model. These models provide sim-

ple sets of predictive rules that capture essential device properties. These relations can

either be qualitative [Davis, 1984] (e.g. if the valve is open, and the tank pressure is high,

then we should observe forward thrust), or quantitative [de Kleer & Brown, 1992] (e.g.

the electrical power consumed by the reaction wheel is given by P = (T - o)/T1). Both

approaches compare predicted and observed behaviours for deviations. Model-based

approaches can usually tolerate more behavioural uncertainty than other methods such as

rule-based systems [Sary & Werking 1997]. The method selected for our study is a quanti-

tative diagnosis package called Marple [Fesq, 1993].

9.1.2 Study Goals

We have selected model-based fault diagnosis as our sample autonomy technique. This

was judged to be a good example for a number of reasons. First, fault diagnosis has appli-

cations to practically any space missions from planetary probes to geostationary satellites.

Second, since diagnosis tools can essentially run passively (i.e. look but don't touch), the

risks associated with adopting them into a mission are more easily managed. This may

improve their rate of adoption. Third, fault diagnosis is quite easily compartmentalized

and can be employed on a fairly small scale. This permits us to define a small, well-

bounded study.

Implementing autonomous capabilities in a GRRDE-based simulation helps to demon-

strate the utility of the middleware. Our services make it possible to layer (Section 7.1.2)

advanced functionality, like diagnosis, atop existing software. Expanded functional addi-

tions can represent the migration of capabilities from ground to space, or simply capability

upgrades. GRRDE avoids software integration complexity and streamlines the develop-

ment process.
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9.2 The MARPLE Model-Based Fault Protection System

Marple is a quantitative diagnostic engine capable of handling significant noise and ambi-

guity in the modelled behaviour. Marple application begins during development, with the

derivation of subsystem models. During operation of the system, observed sensor and

actuator data are propagated through these models and the results are examined. If signifi-

cant discrepancies are observed between observed and predicted values, Marple concludes

that a fault has occurred and attempts to identify the faulty component. Once the diagnos-

tic phase has begun, Marple generates a list of suspected components and sensors that may

be responsible for the fault. If component reliability data are available, these results can be

ranked in order of likelihood.

Developing component models first requires identifying input and output nodes for each

component. Figure 9.1 shows a very simple model of an adder. There are two inputs (X

and Y) and one output (Z). Nodes can be connected to sensors, to other component nodes,

or to both. From a modelling perspective, Marple considers any observable input or output

(1/0) value to be a sensor. Thus, a voltage reading is a sensor, but so is a torque command.

Once the nodes, sensors and components have been identified, numerical constraints must

be derived to relate node values. Logically, the forward constraint in the adder example is

the Z = X + Y. We can also permute this equation to provide relations for the other nodes,

i.e. X = Z = Y and Y = Z-X..

Diagnosing faults consists of two steps. The first step is identifying that a fault has

occurred. During operation of the modelled device, Marple obtains periodic readings from

the sensors. Once a set of sensor readings has been received, Marple checks the observed

values against those predicted by model constraints (Figure 9.2).The engine starts at each

sensor and propagates the value through the models. Components with multiple nodes and

constraints can create several propagated values. A value's propagation stops when there

are no constraints to propagate or the value reaches another sensor. Once all sensor values

have been propagated, the values at each node are compared to one another. Since we are
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Figure 9.1 A simple Marple model. The modelling process consists of identifying com-
ponents and writing constraints between each node.
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Figure 9.2 Constraint propagation for the adder. In the upper figure, the model is operat-
ing correctly, in the lower example the propagated values do not match the
observed values indicating a fault in the system.

dealing with mixed analog and digital systems, the values are not compared for exact

equality. Instead, node values within the absolute or relative tolerances specified at a node

are considered consistent.

X=Z-Y

Z=X+Y

Y=Z-X
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If these values do not match, the Marple engine registers that there is a fault in the system.

In this, the second stage of the diagnostic process, Marple attempts to isolate the faulty

component or sensor. Using a technique called constraint suspension [Davis, 1984], the

engine will choose one component or sensor at a time and remove (suspend) its predic-

tions from the system. The engine then checks the consistency of the modified model. If

the removal of this component eliminates all the conflicts in the propagated values, then it

may be at fault. These components are placed in the list of candidate diagnoses. The

engine will suspend both components and sensors in its attempt to explain the faults in the

system.

For complex systems, effective isolation of single faulty components, relies on having suf-

ficient redundancy in the sensor array. In our simple example, the conflicts observed could

be explained by a fault in any of the three sensors, or the adder itself. Although we know

there is a fault the system is unable to isolate it. Thus, the overall system design can affect

the usefulness of the diagnosis.

9.3 Integrating Marple with GRRDE Middleware

The developments in this study were aided by other research conducted at the Jet Propul-

sion Laboratory by current MIT personnel. Previous work included the implementation of

the Marple engine in C++ and the development of a tool which allows users to create com-

ponent modules using MathWorks's Simulink'. In this study we reengineered the shell-

based Marple engine for the embedded GRRDE environment, modelled a simple scenario

and tested the resulting system in real-time simulation.

9.3.1 Scenario Modelling

We have based our simulation on the simple attitude control system developed in

Section 8.3. The basic flight-software is just the simple controller we developed previ-

1. Marple model creation uses a customized blockset; it does not automatically generate models from on a
functional Simulink model.
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ously. The simulator consists of two software modules. In addition to the basic dynamics

simulator we also developed a secondary simulation module to represent the electrical

subsystem. This module added inputs from two sensors. The first, is a voltage sensor to

measure the output of the photo-voltaic array (PVA). It is sensitive to the degree of solar

illumination. The second sensor is a binary battery discharge indicator. If the true value of

the PVA voltage drops below a certain threshold VT, the indicator will register the value

true.

A block diagram of the electrical simulator is shown in Figure 9.3. The dynamics simula-

tor was essentially unchanged from Figure 8.7 and includes a power-draw indicator for the

reaction wheel. The simulators were created in Simulink and translated into GRRDE mod-

Figure 9.3 Block-diagram of the electrical simulator.

ules using the tools described in Chapter 8. The dynamic simulator consists of a basic

propagator plus an extra set of components to add noise and quantization effects to the
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sensor readings. The electrical simulator reads truth values from the dynamics simulator

and calculates noisy values for the two extra sensors. Additional inputs to the electrical

simulator allow testers to selectively adjust the sensor noise or to force the sensor readings

to one of its extremes.

The Marple model for our simple spacecraft is shown in Figure 9.4. It consists of five

components and six sensors. We note that the SCDynamics component is not a physical

device. Marple models frequently employ pseudo-components such as this to model sys-

tem dynamics. In this case it relates the effect of wheel-torque to spacecraft rotation. We

can consider the constraints in each component separately.

PVA VoltageMonitor

omadoqeModelDefn V Dischar v

o PowerDraw wheerrorqu DischargeMeter BatteryDischarge

PowerMeter om w whelorque Thet------The

RWMotor Tach Omega_0 AngRate

TachSCDynamics SunSensor
Tach

Figure 9.4 Marple Model of the Simple-Spacecraft.

RWMotor

This component represents the reaction wheel and motor assembly. We monitor the com-

manded torque rc, the power draw P,, and the wheel speed from the tachometer (ow. The

output node contains the torque applied to the wheel tw. The following constraint equa-

tions are used:

Under nominal conditions, the output torque should equal the input torque:

'c = Tw (9.1)

We can relate the average power draw to the average wheel speed between this timestep

and the lasti, and the applied torque (this is an ideal, mechanical power):
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P( = - + 2 * (9.2)2

If 'T # 0, then we can provide two constraint equations for o,, one from the above equa-

tion, and another:

0)W =WO4 (9.3)

We recall that I, represents the moment of inertia of the reaction wheel.

Eqns. 9.2 and 9.3 can be rearranged to provide forward constraints on the value of Tw. We

omit them for the sake of brevity.

SCDynamics

This pseudo-component model represents the dynamics of the spacecraft system. It relates

the wheel speed (o, the satellite speed oS,, the sun angle 0, and the wheel torque t,.

We do not allow this component to fail.

The constraints are:

0 = 0 1 Tw. t0= 0 - ,- At+ - t (9.4)

The satellite speed can be estimated from the torque:

o 0 = At (9.5)SC SC0 JS
SC

and from the change in 0:

= 2(000) 
sC At (9.6)

1. Marple models can keep a history of previous sensor values. In our example, quantities from the previous
time-step are subscripted with a zero.
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The wheel reverse constraint for the wheel torque is found by inverting Eqn. 9.5. Also,

assuming zero bias momentum:

'Sc (9.7)

PVA

We assume a very simple model for the solar array. We estimate the array voltage as:

V = cos(0) (9.8)

We do not provide a reverse constraint in this model, since this would introduce a sign

ambiguity. The current version of the Marple shell cannot handle values with ambiguous

sign.

DischargeMeter

This component has a very simple model. The boolean (i.e. true orfalse) discharge indica-

tor variable D is given by:

D += V> VT (9.9)

for a fixed threshold value VT.

Sun-Sensor

This component measures the angle between the satellite and the sun. It is modelled as a

component and not just a sensor, so that we can estimate the rotation of the spacecraft

from difference in angles. The actual theta sensor reading is modelled as infallible. The

spacecraft rotation rate is estimated from:

2. (00-0)
Asc = At SCO (9.10)
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9.3.2 Software Architecture

During development the Marple engine was converted into a form suitable for execution

on GFLOPS's embedded processors. Our prototype architecture for this model is shown in

Figure 9.5. Incoming sensor readings were provided by periodic contracts operating at

1 Hz. The system model is compiled into a C++ object.

fault-detected

---- Model

------------------------- --------------------------- I

Figure 9.5 The Marple module architecture. GRRDE contracts provide sensor readings for
model checking processes.

Two processes share a copy of the system model. The first process is the model checker.

Once per cycle, it will update the model with the incoming sensor values and check for

consistency. If conflicts are discovered, it will suspend its own update functions and trig-

ger the diagnostic process. The diagnose process only executes when it receives this fault

notification. It attempts to isolate the fault and will then report back its findings to the

checker process. When the fault report is returned, the checker restarts its monitoring.

This separated execution is not required for our simple model. In a more complex system,

however, the checking consistency is substantially faster and more deterministic than

diagnosis. Therefore, the consistency check can execute at a medium priority. Since the

fault isolation process takes longer and is not deterministic [Kolcio, et al, 1999], it is

placed in its own low-priority process and runs in an aperiodic fashion. Furthermore, a

larger system may require that the checker continue to perform various functions, such as

sensor filtering, while the diagnosis is proceeding. Determining the appropriate system

response after a fault isolation report is a question of overall mission operations policy.
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Several options exist ranging from putting the spacecraft into a 'safe' mode, to suspending

the contribution of the failed component and continuing nominal diagnostic activities. For

our purposes, it is sufficient that we log the report and reset the model'.

9.3.3 Observations

A number of tests were conducted with the simulation. Test descriptions and diagnostic

results are summarized in Table 9.1. Although the static diagnoses in the event of failure

were fairly accurate, false alarms were observed when highly dynamic behaviours were

present in the system. Careful revision of the models reduced, but did not eliminate, the

false-alarms. Modelling accuracy and subscription synchronization were key influences

on performance.

TABLE 9.1 Autonomy Test Results

Control
Activity Injected Fault Diagnostic Result

Idle None No faults reported

Active (hold None No faults reported
position)

Active (sun Voltage sensor fails Correctly identifies failed sensor
pointing) (V = 0, D = false)

Active (sun PVA Correctly identifies failed component
pointing) fails(V = 0, D = true)

Active (slew) None Transient false alarm occasionally reported during
high acceleration

Active (sun- Noisy Tachometer Marple consistently suspected the tachometer, but
pointing) would also often suspect RW and Sun-Sensor

Active (sun- Noisy Marple model very insensitive to torque noise.
pointing) Torque actuation Caused by large tolerances due to sensitivity to Sun-

Sensor sensitivity.

Active (slew) Sun-sensor fails (very noisy) Occasional false alarms at start of slew, but accurate
diagnoses after fault in sun-sensor.

1. In a more sophisticated system we would likely reset suspended models periodically to see whether fail-
ures were transient. If the same diagnosis repeats itself, the component might be suspended permanently.
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Our Marple model was revised several times during development. We had to relax several

of the tolerance functions so that nominal sensor noise did not inadvertently cause a false

alarm. This behaviour was attributed to the amplifying effect of some of the constraint

equations (e.g. small 0 errors translate into large predicted torque errors). When the toler-

ance functions were relaxed, the model would still identify gross errors in the sensor read-

ings (e.g. saturated, zeroed) but small biases and noise were ambiguous.

Noise also played a role during dynamic operations. During testing, we experimented with

time-averaging the sensor inputs to reduce the effects of noise. This was done before

updating the model. Results were varied: if too many samples were included, Marple

models would not track dynamic effects; too few, and noise would trigger failure-alarms.

This points to a coupling between the control system design and diagnostic efficiency.

Close temporal alignment (see Section 7.2.3) between software components was essential

to accomplish correct Marple operation during dynamic activity. If the torque commands

and sensor data are not reconciled with the values used by the controller, the model predic-

tions will be erroneous. These effects can be minimized by careful synchronization and

good software design. A better simulation design would use sensor filter modules in the

flight software. Both Marple, and the controller, would use the same noise-filtered data.

Since this would reduce the need for synchronization between flight software and the sim-

ulator, fewer artificial constraints are placed on the flight software. Without real-time ser-

vice guarantees, ensuring data consistency would be much more difficult.

One of the primary goals of this study was to demonstrate the layering of functional capa-

bility. Capitalizing on the information mobility offered by GRRDE, we were able to inte-

grate a fault diagnosis module into a simulation without disturbing the low-level flight

software. Ideally, we would like to perform this type of integration with any existing sys-

tem. The problems that we encountered suggest that this integration may require signifi-

cant effort for arbitrary, underlying designs. However, if developers foresee this functional

layering during the design of the low-level software, they can, with minimal effort, make
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provision for its later inclusion. Thus, GRRDE is best used to preserve the option of using

a software technology whose maturity is in question at the beginning of a mission.

9.4 Future Work

Integrating Marple with GRRDE was generally effective. The autonomous capabilities

offered by this system supplemented the existing flight software, and the middleware

allowed access to the system's state information with minimal disturbance. We suspect

that the observed testing effectiveness was more indicative of the simplicity of the mod-

elled system, rather than a clear measure of real-world performance. Although this study

shows the promise of GRRDE to support autonomy, there is room for additional study. We

divide these recommendations into general expansion of the Marple diagnostic engine,

and a discussion of using GRRDE for other autonomy related applications.

9.4.1 Expanding the MARPLE Study

The feasibility of integrating autonomy applications with GRRDE has been established,

but a more detailed study would provide better insight into using Marple in a diagnostic

setting. We recommend an expanded study to assess the issues involved in performing

diagnosis with a non-trivial system model. Selecting a complex system to model would

allow more concrete conclusions. We foresee the following benefits. First, greater famil-

iarity with the modelling technique would produce higher-quality models. Second, the

Marple executable would benefit from thorough reengineering for embedded applications;

time did not permit more than a cursory conversion during this study. Third, a more elabo-

rate system model suggests more elaborate flight software. Thus, an expanded study could

be used to develop guidelines for efficient integration with GRRDE.

9.4.2 Other Autonomy Opportunities

Opportunities exist to explore the integration of other autonomous capabilities into

GRRDE-based simulations. This research might progress in one of several directions. The
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simplest concept is to explore how other types of autonomy technology can operate in the

GRRDE environment. A less obvious direction is to incorporate autonomy techniques

directly into GRRDE, enhancing the services of the middleware.

We have limited the scope of our study to one particular model-based technique. Other

diagnostic systems have been developed for spacecraft systems. The Livingstone [Will-

iams & Nayak, 1996] package is a qualitative diagnostic and repair tool that was flown on

the Deep Space-1 spacecraft. Since its previous flight experience, Livingstone has been

updated and revised. Titan [Williams, et al, 2002] combines diagnosis with other autono-

mous technologies such as execution. An interesting feature of this system is its close inte-

gration with other autonomous tools.

Health monitoring is a primarily passive task. Many active roles for autonomy have also

been envisioned. Observation and maneuver planning, as well as sequencing and execu-

tion have all been investigated by various studies. Implementation of these tools in a series

of GFLOPS simulations would expand our knowledge of how autonomy and middleware

can interact. Substantial effort would be involved, since evaluating these interactions with

GRRDE would require the parallel development of more complex simulations.

Instead of simply using autonomy with GRRDE, in direct support of a mission, we might

also consider adding autonomy to GRRDE. We might envision a low-overhead diagnostic

utility which we could add to each software module so that each component and sub-

system intelligently reports its own health. Alternatively, a specialized distributed diag-

nostic utility could be used to automatically monitor and maintain subscription

connections in the system. In the event of a temporary communications interruption, this

tool would attempt to restore software connections. These possibilities are intriguing, but

we must take care to select services that are widely useful and efficient to implement.
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9.5 Summary

This chapter has explored the use of GRRDE to support the integration of autonomous

fault diagnostics with pre-existing flight software. Although the results from our initial

study are promising, a more elaborate example is needed to gauge the full impact of this

technique. These results suggest that while GRRDE can be used to layer functionality atop

of arbitrary low-level software, maximum benefits are attained when provisions are made

in the underlying software to make useful data readily available.

This is the second of our two technology limited technology demonstrations. In

Chapter 10, we explore the use of GRRDE in the development of larger more complex

applications.
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Chapter 10

THE TECHSAT 21 GFLOPS
SIMULATION

The examples presented so far have been simple in design. Each study was chosen to illus-

trate a particular application of GRRDE and show how middleware can interact with other

software engineering technology. In this chapter we examine the application of GRRDE to

a larger, more complex simulation. We must manage interconnections between many soft-

ware modules, developed by different people, serving very different functions.

The mission chosen for this study is the TechSat 21 technology demonstrator mission.

TechSat 21 is a distributed aperture radar concept. Our simulation scenario begins with

the precision formation flight of a small cluster of satellites. As the target area of Earth

comes into view, the satellites must activate their radar transmitters, coordinate reception,

exchange the returned signals and synthesize the ground scene. Flight software for this

simulation must be capable of this wide array of tasks.

10.1 Overview

The simulation undertaken in this study was our largest application of GRRDE. The

TechSat 21 mission concept is quite complex, and many operational questions are still

unanswered. We hoped that the use of GRRDE will help develop a robust simulation,

capable of examining some of these operational issues. This study was also a chance for

self-reflection. Smaller simulations, although insightful, do not possess the complexity
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necessary to truly require middleware communications. It is our intention to use this large

simulation to evaluate our proposed design methods and identify any areas of deficiency.

The main contribution to system complexity is simply the size of the development effort.

Simulating TechSat 21 required many simulator modules, many flight software modules,

and many interconnections. Each of these components requires a substantial amount of

software engineering. To ease the burden of creating these modules, this simulation was

developed concurrently by several people. Each of the three team members was responsi-

ble for several software components. A larger engineering team accelerates the software

development, but makes interface management more important.

We begin with a summary of the TechSat 21 mission. This helps establish the background

for our study. This is followed by a discussion of the preliminary simulation design. We

examine both module design and interface specification. Where appropriate we also con-

sider implementation issues and component-level testing. We conclude with an examina-

tion of the complete simulation, and our observations concerning software engineering

with GRRDE. Several important issues are raised that highlight directions for future

development of the GRRDE middleware.

10.2 The TechSat 21 Flight Experiment

Perhaps one of the more ambitious distributed satellite systems proposed is the radar sys-

tem known as the Technology Satellite for the 21st Century (TechSat 21). TechSat 21

seeks to validate the feasibility of a number of technologies aimed at making space sys-

tems smaller, cheaper and more reliable. Even the chosen mission is a demonstration of

technology. Using a cluster of four to twenty satellites in Low Earth Orbit (800 km.),

TechSat21 will use advanced techniques for ground moving target indication (GMTI).

While traditional approaches to space-based radar have required huge antennas,

TechSat2l seeks to exploit the science of sparse aperture arrays, using antennas of only a

couple of metres across. The coherent processing and the use of transmitter and receiver

diversity allows signal gains of 100-1000 or even more [Das & Cobb, 1998]. While this
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figure is encouraging, it levies stringent requirements on atmospheric propagation model-

ling and on-board processing.

The demanding processing requirements arise from the sheer volume of data that are col-

lected. The aggregate rate of data collection is on the order of 1010 bits per second

[Enright, et al, 1999]. If we wish to avoid on-board processing, this information must be

conveyed to the ground. This suggests two possible implementations, both of which have

undesirable features (Figure 10.1).

TechSat 21 Cluster * TechSat 21 Cluster

Processed Data

Processed Data

MoieProcessing Station Units i Tear
Remote Processing Station Units in Theatre C onc nt i

Concept A NConcept B

Figure 10.1 Alternatives to on-board processing. Remote processing station (A) or Local downlink (B).

A remote processing station offers security and processing power, but requires a data relay

network both from the satellites, and back to the battlefield. On the other hand, local

downlink to mobile stations requires deploying advanced and bulky hardware in poten-

tially hostile situations. Neither of these approaches seems particularly attractive. The dif-

ficulty stems from supporting high bandwidth communications channels in adverse

conditions. Performing radar processing within the cluster of satellites has the potential to

drastically reduce the required downlink requirements. For this strategy to be effective, the

satellites require unprecedented processing capabilities and coordination.

10.3 Design and Implementation

Several variations of the TechSat 21 concept are being reviewed. The preliminary mission

involves a separated aperture radar experiment involving one cluster of three satellites.
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Processing in the experimental mission will be performed on the ground. This mission will

validate the sparse-aperture space-based radar concept for application to a full constella-

tion of satellites. A follow-on mission would involve approximately forty clusters of 4-12

satellites and provide simultaneous, global coverage. The ideal processing architecture for

the full system has not yet been determined. Our simulation implements a hybrid concept.

We consider a cluster of four satellites and assume that the processing is performed on-

board. Unlike the full system, we consider only a single cluster in isolation. Coordination

and communication with other clusters are ignored.

This section details the engineering of the TechSat 21 simulation. We begin with a discus-

sion of the system scope and the primary communication pathways. From this we examine

the interface specification process. The last part of this section describes each of the func-

tional modules individually. We have tried to tailor the simulation to the general sense of

the hardware design, however, some inconsistencies may be found.

10.3.1 Simulation Scope

At the start of simulation development, our first task was to determine the scope of the

study. Without the full personnel of a flight software development team, prudence

demanded that we select only the most relevant subsystems to model. The TechSat2l mis-

sion is centered around its radar experiment; system functions only loosely coupled to the

payload were culled from the simulation plan. The list of candidate components is shown

in Table 10.1.

After careful consideration we arrived at the software design shown in Figure 10.2. All

essential subsystems were included. Additionally, attitude control was also integrated

since preliminary development had already begun. This diagram shows the distinctions

between simulator code and flight software. To facilitate the prototyping of the system, the

simulator modules were installed on the idle embedded processors rather than on the PCs.

The user interface modules remained on the PCs. Our initial design called for a specialized

user-interface for constellation operators. This effort was de-scoped from the final design
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TABLE 10.1 Relative Importance of TechSat21 Subsystems

Subsystem Rank Remarks
Propulsion/Orbit Control 1 Necessary for formation flight

Radar 1 Central to mission

Attitude Determination 1 Required for radar processing

Inter-satellite Communica- 1 Functionality needed (not necessar-
tion ily hardware representations)

Down-link I Functionality needed (i.e. get pro-
cessed data out of satellites)

Attitude Control 2 TechSat is primarily gravity gradi-
ent stabilized. Tight control unnec-
essary

Power 2 Necessary, but behaviour is uninter-
esting

Structural 3 Passive system

Thermal 3 Secondary system

Ground Station 3 Distracts from focus on spaceborne
processing

Computational Architecture 3 Can't effectively represent special-
ized hardware architectures.

due to time constraints and because it duplicated many functions of the other clients. Some

of the interfaces to the command sequencer and fault management modules were defined

but these functions have not been implemented.

The baseline simulation design relied on three central capabilities: radar, orbit control, and

attitude control. Each of these three divisions contains elements of simulation, flight soft-

ware and user interface. Detailed design began once the simulation scope was established.

10.3.2 Interface Specification

Simulation design with GRRDE relies on identifying published state information in each

module and identifying the data-flow architecture. Initial design iterations considered

these communications fairly generally. Of primary concern was simply identifying where
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Environment Simulator

Ground Station

luster & Rada
Monitor

Figure 10.2 Software Functional Decomposition for TechSat 21 simulation. Dark boxes show
baseline modules, while light boxes represent possible future improvements.

the connections were. Once the functional allocation to the modules was clarified, we

were able to provide more detailed specifications of the module interfaces.

We can identify data flow for each of the three chief software tasks. Sketches of this data

flow are shown in Figure 10.3. We observe that most of the connectivity remains within

each spacecraft. This structure is an intentional part of our modular design. Limiting the

number of interconnections between spacecraft conserves bandwidth and makes the inter-

actions easier to analyze. We make the following observations about the general patterns

of data flow:

- Attitude control is almost entirely a local activity. Some coordination with
other spacecraft or the ground might be present, but current hardware
designs rely mainly on passive gravity gradient stabilization. The space-
craft's microthrusters can be used for attitude control, but the attitude control
is not a high-performance system.

- Orbit-control's reliance on satellite collaboration is a systems-level issue.
The spacecraft can attempt to maintain absolute orbital elements supplied by
the ground, or alternately, they may work together to manage their relative

Payload Simulator

266



Design and Implementation 267

Figure 10.3 TechSat 21 Information flow. Major data flow for orbit-control (top), attitude control
(middle), radar processing (bottom).
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spacing. Some interfaces for collaboration are in place, but only the absolute
control was implemented.

- Radar data flow is quite complex. The radar module must communicate both
locally and remotely in order to process its data.

Once the data pathways had been charted and functional allocations had been made, the

structure of the interfaces was determined. This involved: determining the types of state

information each module required, where the data would be found, and the temporal char-

acteristics of the exchanged data.

Two methods of documentation were evaluated in our development. The first method

evaluated was a structured, manual template. An example of this technique is given in

Appendix B. This method involved the enumeration of each type of published data pro-

duced by the module as well as any command-type inputs. Entries were organized by ser-

vice name and data product (Section 4.4), and included signal tags, message structure and

a description of their contents. Documents produced according to this technique were

excellent references when developers needed to review specific interface elements, and

were easily augmented with tables and figures. Unfortunately, the documents themselves

provide little semantic structure. Cross referencing inputs and outputs is difficult and the

big-picture of the whole simulation can be lost.

To address these issues we developed a database application to track module interface def-

initions. A diagram of the table structure appears in Figure 10.4. Each interface element is

defined by its usage and the structure of its signal (or signals). Module records are defined

separately and can be associated with both input and output interface elements. Module

evolution is traced by creating records for each revision. To make simulation composition

easier, collections of modules are defined for a particular processor, or the simulation as a

whole. The relational nature of the database possessed a much stronger semantic structure

and allowed us to:

" Manage signal tags to protect against duplication

e Check for consistency in a simulation configuration (i.e. are all inputs and
outputs accounted for?)
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Figure 10.4 Interface Database Structure.

* Generate module documentation. Useful module-level interface references
are automatically compiled from the signal-level documentation

e Generate C header files. This facility was only partly explored, but was use-
ful when creating lists of signal tag definitions for header files.

One minor drawback in applying this approach was the difficult of adding free-form docu-

mentation like reference tables or diagrams. We suspect that this was primarily due to our

inexperience with database design, rather than a limitation of the technique. Overall we

found the database aided our efforts, both during initial design and later, during implemen-

tation, when slight changes were made to the interfaces.

10.3.3 Simulation Modules

This section briefly describes each of the modules in the simulation. Where appropriate,

we remark on the testing of the module.
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Navigation Sensors

This module represents an interface to hardware. It accesses the navigation hardware and

provides spacecraft position and velocity in the Earth-Centered Inertial (ECI) reference

frame. Presently, there is very little intelligence in this module, since our initial testing

assumed a benign noise environment and a simple simulator interface. Sensor data is

available from the simulator directly in ECI values. This is not completely unreasonable

since GPS can supply this type of data. In a more mature system the module might include

a Kalman filter or a similar algorithm to remove data noise or perform sensor fusion for a

less direct set of sensors.

Sensor Simulator

This is the other side of the interface for the navigation sensors. It receives true position

data for the satellites and adds appropriate sensor noise or quantization to the values. In

the current incarnation of the simulation both input and outputs are in ECI coordinates.

The magnitude of the noise can be set by an external command and is customizable by sat-

ellite and quantity (e.g. position or velocity). By default simulations assume zero noise.

The sensor simulator also processes the truth data destined for the attitude sensors. The

propagated quaternion attitude and angular velocity can be transformed as desired into

appropriate sensor readings. The current simulation configuration does not transform the

attitude data, it simply adds a selectable amount of noise to the readings.

Orbit Estimator

This module provides navigation interpolation and extrapolation. The spacecraft's naviga-

tion sensors operate at 10Hz., but in the interval between readings, they can move about

750m. Correct operation of the radar processing algorithms require position knowledge of

much greater accuracy. The system monitors incoming navigation data and maintains a

linearized model of orbital dynamics, including J2 effect [Schweighart & Sedwick, 2002].

Upon request, the module will calculate the spacecraft's exact position at a specified time.
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Orbit Control

Satellites in orbit are perturbed by various external forces such as drag, asymmetric grav-

ity field (e.g. J2 and J4 effects), and the gravity of the sun and moon. Since the imaging

effectiveness of the satellite array depends on maintenance of the cluster formation, pro-

pellant must be expended to counteract some of these effects. The orbit control module

gathers navigation data from the sensors and calculates the appropriate thruster firings.

Presently, the orbit control algorithm is purely localized. The ground provides a reference

orbit for each satellite and the controller tries to maintain that orbit. A potential improve-

ment would consider a more fuel efficient approach that emphasizes maintaining relative

cluster orientation, but allows drift in the cluster as a whole. A sample of the controller

performance is shown in Figure 10.5. The figure charts relative displacement, in the rotat-

ing orbital frame. The origin is the cluster centre and the blue curve represents the refer-

ence path of the satellite.
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Figure 10.5 Demonstration of Orbit Control from Real-Time Simulation.
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Actuator Module

The orbit controller calculates the requested thrust actuation in the orbit frame. Likewise

the attitude controller calculates requested torques in the body frame. Since TechSat 21 is

designed to use pulsed micro-thrusters, two operations must be performed on the thruster

commands. First, the thrust and torque vectors must be reconciled and mapped to the

geometry of the body mounted thrusters. Second, the thrusters must be pulse modulated to

provide the required net impulse over the control time-step. Our initial design called for

two distinct actuator modules, but the functions were combined when we realized that the

same thrusters would be used for both purposes. The impulse outputs from this module are

sent to the actuator simulator.

Actuator Simulator

This is the counterpart to the previous module. It receives thrust commands and converts

them into inertial forces and body-referenced torques. The resulting updates are sent to the

propagator module. Non-idealities may also be added in the form of thruster variability,

mean impulse, failure, or misalignment. In most of our simulations, we assumed perfect

thrusters.

Attitude Sensors

The role of this module is to interface with the sensor simulator. Presently, the sensors

deliver quaternion attitude and body-reference angular velocity, but future versions may

require sensor fusion and more elaborate state estimation.

Attitude Control

Our current state propagator does not model many attitude disturbances and the

TechSat 21 spacecraft have fairly loose pointing requirements. Thus, our attitude control

requirements are fairly modest. The implemented method is based on the quaternion feed-

back described in [Wie & Barba, 1984]. Some large-angle test maneuvers are shown in
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Figure 10.6, but most of the time, the ACS is only used to supplement the gravity gradient

effects and keep the satellites pointed at the ground.
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Figure 10.6 Time traces of quatemion attitude during maneuvering.

Orbit and Attitude Propagator

This is the workhorse of the dynamics simulation. It propagates the non-linear state equa-

tions and adds the effects of disturbances. Spacecraft maneuvers are accounted for by con-

sidering impulsive changes to the state. The propagator combines a sixth-order Runge-

Kutta integrator with a high-accuracy interpolation function to provide very accurate state

evaluation at only modest computational cost.

Dynamics User Interface

This module allows the user to monitor and configure the simulation dynamics. This

application runs on the PCs and has a range of capabilities: ground tracks and satellite atti-

tude can be displayed, results can be logged to files, and simulation parameters can be set

manually or from user-defined scripts. Sample screen-shots are shown in Figure 10.7 and

Figure 10.8.
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Figure 10.7 Main user-interface to simulation operation.

Figure 10.8 Three-Dimensional Satellite Visualization.

Radar Interface

Like the previous example, this PC application is used to configure and monitor the radar

operations of the simulation. Typical scenarios involve a number of targets moving in a

specified area. The user defines the ground scene using this interface, which will automat-

ically send the appropriate initialization to the radar simulator. During operation, the sim-

ulator monitors the processing results of the satellites and overlays their target predictions
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with the true locations. A sample screen-shot is shown in Figure 10.9. Supplemental tools

were also included to automatically generate overflight scenarios for the dynamics simula-

tor.

Figure 10.9 TechSat 21 Radar GUI.

Initially, we had planned to include a separate GUI to represent an operator's (rather than

omniscient) view of the running simulation. The importance of this application was con-

sidered low since, much of the desired functionality (e.g. comparing truth with estimates),

was already present in the other applications.

Radar Simulator

This module provided the bulk of the payload-related simulation. The basic operating con-

cept of the TechSat 21 system is to use one satellite to transmit a radar pulse. When the

pulse returns, it is received simultaneously by all of the satellites in that cluster. Slight dif-

ferences between each return signal allow target locations to be pin-pointed.

When prompted by a radar pulse from the satellite, the simulator would synthesize return

values. Each spacecraft in the cluster would receive a response corresponding to its own
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signal return. These are calculated precisely from the viewing geometry. The signal con-

tains reflected contributions from the targets and the ground (clutter).

A number of idealizations were made about the operation of this module. Since simulating

the front-end of the radar system would be difficult, both the emitted pulse and the return

signals have abstract representations. The transmission is represented with a structure that

describes the essential qualities (e.g. shape, duration, frequency). When the simulator gen-

erates the returns, it creates a base-band version of the signal return, rather than the full

modulated carrier. Generating the full waveforms in software for either case is a waste of

simulation bandwidth and is unrealistic. These steps would be performed in specialized

devices.

Array Management

This module served a fairly simple purpose. It performed rudimentary array coordination

and ensured synchronized observations. Upon initialization, the satellites would choose a

'leader' that would be in charge of the managing the radar observation. The operator on

the ground must designate a desired imaging location. The lead satellite consults the orbit

propagator, and calculates when the target area will come into view. As the viewing time

approaches the array manager will tell the transmitting spacecraft when to activate its

radar, and tell the other spacecraft to prepare for incoming data.

Radar Processing Module

The radar module is responsible for the collection, exchange, processing and reporting of

the radar returns. The processing approach chosen for this module is known as the

Scanned Pattern Interferometric Radar (SPIR) algorithm [Marais, 2001]. During the col-

lection stage, each satellite accepts data from the radar simulator. In order to synthesize

the ground scene, all of the satellite signals must be combined. The radar returns are

divided into time segments or snapshots. A snapshot represents the period of time over

which changes in viewing geometry are small enough that we can coherently combine the

signals. Each snapshot required several megabytes of storage on each satellite. We initially
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considered breaking each snapshot up into several pieces (i.e. one for each satellite), but

instead adopted the simpler approach of processing a whole snapshot on a single satellite.

Thus, during the exchange phase, all satellites would send their snapshot data to a desig-

nated recipient. Processing duties alternated with each snapshot. Finally, when the signals

were combined, the results processed and the targets identified, the processing satellite

would make the data available to the ground.

Difficulties were encountered in the implementation of the radar processing. The mechan-

ics of the system operation (reception, exchange, reporting) were all implemented suc-

cessfully. Unfortunately, the radar processing was ineffective. Reliable target

discrimination was not achieved and the few correct identifications observed were too

inconsistent to be trusted. We suspect that these difficulties were due to the immaturity of

the SPIR algorithm. Previously, the algorithm had been evaluated for one-dimensional

observations, but the two-dimensional case had not been validated. The departure of the

team's radar expert made further progress impossible and development was soon halted.

Although these setbacks had a negative impact of the functional effectiveness of the

TechSat 21 simulation, the GRRDE-related goals had already been achieved.

10.4 Discussion

Difficulties encountered in radar processing prevented a full, functional evaluation of our

TechSat 21 simulation, but our observations of the development process and of the state

of the final software allow us to draw several conclusions about the use of GRRDE in

complex systems. During many phases of development the GRRDE-based approach facil-

itated design and implementation. Other efforts were neither helped nor hindered by

GRRDE. Finally, in a few isolated situations, we found that the framework actually

impaired the development process. This section reflects on the overall success of the

TechSat 21 study and closely examines the utility of the GRRDE services in different sit-

uations.
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Structurally, the flight software is complete. Simulations containing all the implemented

modules can be composed and scenarios can be loaded. Every component in the

TechSat 21 simulation can communicate effectively with its peers, and the structure and

timing of each message agrees with design. That the contents of some of these messages

(i.e. the identified targets) were incorrect does not diminish this success. Thus, taking a

global view, GRRDE is clearly effective in binding software modules together. These

observations also extend to many of the details of development.

Modular GRRDE design, together with explicit state representation, greatly assisted the

shared development process. The time spent cataloguing the interface definitions and

GRRDE communications services made integration of separately developed components

relatively straightforward. Most problems that we encountered during integration were

due to deviations from the interface standards, rather than any fundamental incompatibil-

ity. Elaborate control systems and simulation monitors were significantly aided by peri-

odic contracts. The orbit and attitude control systems made extensive use of these

services. Similarly, aperiodic contracts were very effective for command feedback,

sequencing and status indication. The flexibility of the architecture allowed software sub-

tasks (e.g. orbit control) to be tested in isolation from the other components. This agrees

with our intuition about GRRDE service design.

Our simulation development uncovered several forms of interaction that did not map well

onto the current GRRDE services. Asynchronous, parameterized query operations such as

the state interpolation performed by the orbit estimator, did not behave like either a peri-

odic or aperiodic subscription. Although we were able to define the interface with our

methods, the user was required to explicitly manage each request. Likewise, asynchronous

commands did not benefit substantially from the GRRDE services. Configuration mes-

sages or control set-points are typically implemented as command inputs and outputs.

The second group of awkward interactions involved the transfer of large amounts of data.

This effect was seen during radar reception, and during data exchange. OSE signal sizes
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are limited to 64KB. To send bulk data, especially to a remote CPU, the communicating

processes must be closely coordinated. Flow control must also be considered to prevent

overloading the OSE Link-Handlers. These tasks were assigned to subroutines, but the

developer was still required to manage many details of the exchange.

These two examples show that where module interactions matched the publish-subscribe

metaphor, the run-time features of GRRDE were very useful; where they did not, many

communications tasks still had to be performed by hand. Although our middleware still

provided secondary benefits, the clear advantages of the GRRDE services were lost.

On a cautionary note, we observed that simulation development was slowed when

GRRDE was used at inappropriate times. GRRDE is not a preliminary prototyping tool.

During the development of the radar processing module, substantial time was spent

attempting to resolve errors originally thought to be superficial. After some time, we

transferred the processing code into an off-line application only to discover that the algo-

rithm itself was flawed. Migration to the GFLOPS testbed should only be done once algo-

rithms have been tested directly in off-line environments. This is not a disadvantage of

GRRDE, merely a reminder of the importance of good systems engineering.

Since the GFLOPS environment closely mimics flight conditions, several considerations

must be kept in mind. First, this is a real-time simulation testbed. We use the actual timing

facilities of the operating system and computer hardware to allow developers to assess

process interaction and temporal performance. Consequently, a ninety minute orbit takes

ninety minutes to simulate. Fine tuning the orbit controller should really be done in a sep-

arate environment. Second, there is some overhead in developing for an embedded setting.

It takes time to set up processes, to plan for concurrency, to define message handling, etc.

Even starting a simulation takes a few minutes. Thus, it is important to formalize inter-

faces and address embedded concerns during preliminary design, functional validation

must be done in a suitable, efficient testing environment.
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10.5 Summary

The experiences gained from applying the GRRDE middleware to a complex space simu-

lation are invaluable. Previous application examples have illustrated potential uses of the

system, but the experience of actually using the tool permits critical analysis. Our observa-

tions from this study highlight clear directions for improving GRRDE. When communica-

tions tasks match the publish-subscribe metaphor, the developers' tasks are less complex.

Other types of module interaction did not map well to this model and suggest services that

could be added to GRRDE. Lastly, some development difficulties underline the impor-

tance of judgement in choosing a simulation environment. GFLOPS aids architecture def-

inition and software integration, but the present form is not ideally suited for preliminary

software prototypes.
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CONCLUSIONS

The age of distributed satellite systems is close approaching. Some missions have already

been built, others are in the planning stages. NASA alone has thirty-five different [Leitner,

2001] distributed satellite missions in the works. And this figure is from a single agency.

Commercial, military, and other bodies such as the European Space Agency are all consid-

ering various distributed satellite missions. Complexity, an almost inevitable consequence

of distributed missions, must be managed if these missions are to succeed.

Flight software complexity is anticipated to be a major challenge in these ambitious mis-

sions. Taking inspiration from terrestrial distributed systems, we have developed the

GRRDE flight-software middleware as an approach to make distributed flight software

development less troublesome, and inherently more reliable.

In this chapter we review the contributions and services of the GRRDE and GFLOPS sys-

tems. These contributions are compared to those of other prominent software tools. This

reflection, together with the lessons learned in the previous chapters helps to map out the

future of the GRRDE system. We consider possible revisions to the middleware itself, as

well as opportunities for using GRRDE outside of space systems. A few final remarks

then conclude the discussion.
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11.1 Summary of Contributions

In this thesis, we have approached the problem of flight software complexity by develop-

ing appropriate real-time middleware. Using a high-fidelity, real-time simulation environ-

ment, we present three groups of contributions. The capstone of this research is the

collection of GRRDE real-time publish-subscribe services. This software product is sup-

ported by two secondary efforts. To attract interest in this flight software engineering

approach, we have applied GRRDE to both focused and general applications. To encour-

age adoption, we provide engineering guidelines that offer insight into topics ranging from

architectural approaches to real-time analysis. Taken together, these contributions repre-

sent a cogent argument for the use of middleware in spacecraft.

11.1.1 Validated Run-Time Services

Safety-critical, real-time systems such as spacecraft rely on strong guarantees of determin-

ism to ensure correct operation. Operating within this context, and aware of the need for

high dependability, the GRRDE middleware services were designed and implemented to

reduce an engineer's non-productive workload. GRRDE's abstract publish-subscribe ser-

vices come in two varieties. Periodic subscriptions deliver data at regular intervals and can

operate independently from the publisher. This type of software connection is frequently

found in control systems. Aperiodic subscriptions function like a multi-cast group com-

munication and are well suited for reporting module status or the like.

Embedded applications demand more from software than just working demonstrations.

The GRRDE services were validated with both off-line formal methods and extensive

temporal testing and characterization. The algorithms implemented in GRRDE were ana-

lyzed using General Timed Automata models. This analysis provided an unambiguous

specification of the services provided and demonstrated how the algorithms achieved

those goals. Abstract correctness proofs were supplemented with more concrete run-time

characterization. The temporal behaviour measured in these tests agreed with the automata
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models. Combining these methods illustrates how empirical and abstract techniques can

be used to create confidence in software integrity.

11.1.2 Design and Architecture Guidelines

Effective software development with GRRDE depends on the user's understanding of how

communications metaphors manifest themselves in the overall process of software engi-

neering. From program start to finish, we provide suggestions designed to maximize the

effectiveness of the GRRDE services. Early attention to architectural design and data flow

allows the user to identify where GRRDE will be most useful. Explicit state-centric design

helps clarify where information is coming from, and where it is going. When moving from

prototyping platforms to embedded processors, we provide prosaic instructions on how to

physically integrate with GRRDE and predict scheduability. As the design matures fur-

ther, we suggest ways of handling configuration changes and migration to hardware.

Throughout this process, we articulate how common engineering challenges can be

viewed from a GRRDE-centric perspective. Having the right mind-set cannot help but

improve productivity.

11.1.3 Applications

Our application studies provide concrete illustrations of GRRDE's potential to reduce

software interface complexity. Although presented last, our examples are apt to be the first

step in convincing a program manager to consider using GRRDE in a mission setting.

From the short studies, we see specific benefits; from the large simulation, we effectively

demonstrate the benefits of communications abstraction. This process helps to answer the

question: "What can this technology do for my mission?"

GRRDE carves a niche for itself, not from adding revolutionary new capabilities to flight

software, but by creating a software environment suitable for nurturing emerging technol-

ogies. Two popular techniques, automatic code generation and fault diagnosis, integrate

well into the publish subscribe framework and benefit from the transparent inter-connec-



284 CONCLUSIONS

tivity. Our larger study shows the value of communications abstraction in managing the

integration of complex software.

11.2 Comparative Reflections

In Chapter 2, we introduced several related research and development programs. These

programs demonstrate ongoing approaches to distributed embedded software and space-

craft. Having explored the composition of GRRDE in detail, we can now reflect on the

relation between these competing programs and our work. Considering the role that

GRRDE serves in software development, some tools are potentially complementary, some

serve substantially different needs, and others are quite similar. Examining each of these

systems helps to define future opportunities for GRRDE middleware.

11.2.1 Object Agent and SuperMOCA

GRRDE has a similar relationship to both Object Agent [Surka, et al, 2001], and Super-

MOCA [Jones, et al, 1998]. These systems provide middleware functions including

abstract communications services. Although Object Agent and SuperMOCA acknowledge

the importance of real-time flight software components, both assume that all real-time

activities can be encapsulated within the middleware modules. Consequently, their ser-

vices are not designed to carry real-time traffic. In contrast, GRRDE explicitly addresses

the problem of hard real-time, distributed communications.

11.2.2 Autonomy Test-Bed Environment

The focus of the ATBE [Biesiadecki, et al, 1997] is to facilitate real-time simulator cre-

ation. Extensive facilities exist to build highly accurate models and allow them to interact.

ATBE has been used to support many missions for both software-only and hardware-in-

the-loop testing [Leang, et al, 1997]. The system also supports dynamic reconfiguration of

the simulator between simulated components and real hardware. A lot of effort has been

expended to support mission testing and validation.
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GRRDE, in contrast, is more concerned with improving flight software design. Our pri-

mary contributions are the abstract communications services that connect flight software

components. That these services allow us to connect to simulators is almost a secondary

benefit. We contend that flight software developed with the GRRDE framework would

complement the testing capabilities of ATBE. Two issues would have to be resolved

before integrating these systems. First, we must decide how the simulator will appear to

the flight software (e.g. one big module or many smaller ones). Second, some timing

related issues must be clarified. GRRDE employs minimally-invasive timing services

using native operating system calls. ATBE supports artificial but flexible check-pointing

and 'time-warping' features. Although described in the literature as being "hard real-

time", it is unclear how 'hard', the ATBE performance really is. Neither of these issues

appear to be show-stoppers, and such integration would be beneficial to all. Flight soft-

ware development would still exploit communications abstractions, and ATBE's excellent

simulation tools would help debugging and testing.

11.2.3 Mission Data Systems

The Jet Propulsion Laboratory's MDS program is attempting to completely revise the pro-

cess of writing spacecraft flight software. From their architectural principles (or themes)

[Dvorak, et al, 2000] they are devising a comprehensive approach to flight software devel-

opment, in an attempt to enable more autonomous spacecraft. GRRDE's emphasis on

explicit state specification is directly inspired by the early MDS concepts. Individually,

each of their themes would likely be beneficial.

We contend, however, that MDS attempts to change too much, too fast. The change in

flight software paradigms seems both technologically premature and politically ill-

advised. Software engineering is not yet so advanced that creating complex reliable soft-

ware is effortless [Leveson, 1992]. Autonomy itself is an even younger discipline. More-

over, when presented as an "all-or-nothing" proposition, MDS risks alienating those

program managers who might be willing to accept more moderate innovation at less risk.
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Whereas MDS identified their architectural principles and endeavoured to provide a

design framework from the top, down, GRRDE acknowledges architectural goals, but pro-

ceeds to reach them from the bottom, up. We begin with the state of conventional embed-

ded and flight software, and slowly work upwards.

11.2.4 Real-Time CORBA

CORBA continues to be one of the de facto standards for distributed computing applica-

tions [Bates, 1998]. It is flexible, it operates seamlessly between many hardware plat-

forms, and its object oriented approach matches popular methods of software

development. Real-Time CORBA attempts to define a flavour of the system suitable for

real-time applications [OMG, 2000]. Researchers [Schmidt, et al, 1997] have made serious

efforts to address real-time performance issues and interest in aerospace applications is

growing [Harrison, et al, 1997].

Following the standard practices of the conventional software industry does not necessar-

ily make for good embedded systems. General observations about embedded systems

engineering [Wright & Williams, 1993] and specific experience with spacecraft [Stolper,

1999] have suggested that object-oriented approaches may not be ideal.

Although Real-Time CORBA together with the CORBA event service replicates publish-

subscribe communications, the system still carries significant overhead which may ulti-

mately be unsuitable for demanding applications. In contrast, GRRDE offers a less com-

prehensive but less cumbersome tool for highly demanding tasks. For high performance,

distributed, hard real-time projects, avoiding unwieldy specification may provide the right

combination of embedded performance and service flexibility.

In the long-term opportunities exist to supplement GRRDE's capabilities with extra com-

munications services provided by CORBA. We discuss these prospects in Section 11.3.



Future GRRDE Development 287

11.2.5 Simplex

Simplex and its underlying publish-subscribe middleware is the closest system to GRRDE

in intended application and capabilities. Both seek to support embedded software develop-

ment and both provide deterministic time guarantees. Three factors set GRRDE apart.

First, GRRDE supports periodic subscriptions in addition to the more conventional aperi-

odic broadcast. Thus, GRRDE has provides greater service flexibility. Second, the ability

to parameterize dispatch functions allows greater flexibility in message delivery. Third,

our algorithms have been formally verified, using automata techniques, to ensure correct-

ness and guarantee temporal properties.

11.3 Future GRRDE Development

The inherent flexibility of software systems, especially software systems that support

other software, ensures an unending supply of potential development directions. We have

identified three (Figure 11.1) directions for future research. We define refinements to be

the additional development necessary to turn GRRDE from its present prototype form into

a viable system for serious applications. Enhancements refer to research into extra capa-

bilities and services not presently included in the GRRDE specification, but judged useful

in its role as a middleware systems. Lastly, we consider further application studies that

would help to garner interest and confidence in the technique.

Enhancement

Refinement G

Figure 11.1 Three directions of future work. Refinements define requirements for a commercially viable
release, enhancements expand GRRDE services, and applications demonstrate further uses.
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11.3.1 Refinements

Although all key technologies are currently implemented in the GRRDE middleware,

compromises are always made in research systems. Several matters must be addressed

before a general release of the system would be viable. These issues are questions of pol-

ishing rather than innovation. Our chief concerns are:

e Optimize change-triggered dispatch mechanism. Current dispatch times of
-20gs seem unnecessarily high. Revisiting these algorithms may permit
some performance improvement.

e Tune network performance. Although this is primarily an OSE-related short-
coming, the observed network behaviour was erratic.

- Fault-tolerance. Currently, GRRDE will cancel a subscription if the destina-
tion process or link fails. Further consideration is necessary to determine
design guidelines for dealing with failure.

* Compartmentalize OS dependent features. GRRDE currently exploits the
native commands of the OSE RTOS. In order to promote future portability,
these OS dependencies should be isolated, and a clear plan for cross-plat-
form development formulated.

11.3.2 Enhancements

Certain capabilities not currently provided by GRRDE could be added with further

research. In contrast to refinements, enhancements would require substantial but reason-

able modifications to the middleware. Examples include:

e Quality of Service. Subscription dispatching is not currently differentiated
by the priority of the recipient. Lower latency and jitter for high-priority pro-
cesses could be achieved if subscriptions were prioritized.

- Synchronization Primitives. Synchronization between modules is now
largely done by hand. Built-in support would simplify the developer's tasks.

e Additional Services. Expand the GRRDE services to include other commu-
nications abstractions such as synchronous communication. RPC-like invo-
cations could be added without extensive modifications to the current
framework. Alternately, we might integrate a system like RT-CORBA to
handle queries and other non-subscription exchanges. Other researchers
have performed similar tasks and integrated CORBA with the SIMPLEX
architecture [Polze, et al, 2000].
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Marshalling. One advantage of CORBA-type interactions is the automatic
conversion of data types. Byte ordering and message structuring is all han-
dled automatically at the interface between the user's code and the ORB.
This is another source of developer workload, that could be reduced in a
fairly structured manner.

11.3.3 Applications

Finally, we examine other places to use GRRDE. Specific suggestions for directly improv-

ing our application studies can be found in the preceding chapters. The following sugges-

tions can guide the selection of new projects.

e Large development. Although the TechSat 21 simulation in Chapter 10 was
quite large, it was not as complex nor as comprehensive as true flight soft-
ware. An expanded development example, especially if it involves geo-
graphically separated contributors, can provide valuable feedback.

- Quantitative Studies. Attempts to quantify the improvement in productivity
of using middleware for software development are difficult but not impossi-
ble. Such figures could be used to prioritize future improvements and devel-
opment.

e Hardware-in-the-loop simulation. Although we have proposed strategies for
migrating GRRDE simulations into deployed GRRDE flight software, the
recommendations were hypothetical. Directly performing this task helps
assess what further changes are necessary to the GRRDE framework, and
strengthens the evidence for the utility of our middleware.

11.4 Wider GRRDE Applications

The bulk of this thesis has considered using GRRDE for distributed spacecraft software

development. This focus should not be exclusive. Other applications can benefit from this

tool as well. In this section we reflect on the particular system characteristics that we have

addressed in the GRRDE middleware and examine other software engineering domains

that possess these qualities.

Four properties are common to the space systems that we have considered: distribution,

real-time criticality, control complexity, and system complexity. Distribution implies that

we must provide communication between several processing devices. Criticality concerns
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underscore the need for hard, deterministic, real-time guarantees. Additionally the soft-

ware for these spacecraft also contains sophisticated, computationally-expensive feedback

loops. These controllers must manage rapidly changing physical dynamics. Lastly, the

subsystems are frequently tightly coupled, making the whole system complex. We

designed GRRDE to aid the developer in dealing with these issues. The extent to which

other domains display these same characteristics determines the benefit they can derive

from the GRRDE services.

TABLE 11.1 Comparison of Real-Time Software Engineering Domains

Real-Time Control System Benefit from

Application Distribution Criticalrl c xity p lly Complexity GRRDE

Traditional Low Varies Varies Medium/Low

Spacecraft

Advanced

Spacecrafta

Aircraft

Train Meium Medium Medium

Automobiles Low Low Medium Medium Low

Mars Rover High/Lowb Medium Low Low

Rail Switching Low Medium

Factory Auto- Medium Low Low Medium Low
mationc

Factory Medium Medium Medium Medium
Robotics

Factory Pro- Medium
cess Control

Nuclear Power Low Medium
Plants

a. Such as those addressed in this study.
b. Depends on whether mission consists of single or multiple vehicles

c. e.g. a bottling plant

Table 11.1 is a qualitative assessment of the applicability of GRRDE to other real-time

domains. Distribution and control complexity are particularly important in the determina-

tion of suitability. Their influence is both positive and negative. Domains with these char-

acteristics are helped by GRRDE, but those without, may be better off not using our
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middleware, since GRRDE may add development or run-time overhead. In contrast,

addressing safety-criticality and system complexity when these features are not present, is

not an inconvenience. Thus, software similar in character to that of advanced space sys-

tems will reap many of the same benefits from the GRRDE middleware. Several transpor-

tation and industrial applications are especially promising. Other applications may still

benefit from the use of middleware, but should consider whether the particular services

offered by GRRDE are best matched to the software responsibilities.

11.5 Final Word

Conventional flight software methods may be effective for near-term missions, but the

tendency to rely on software to implement increasingly complex functions suggests limits

to these techniques. As system complexity grows, the costs of software development and

the likelihood of software failures will increase as well. Unless measures are taken to man-

age complexity and promote reliability, extensibility and scalability, flight software may

limit mission capabilities rather than enable them. Middleware systems have been

employed to good effect in terrestrial settings, and are now being adopted into embedded,

real-time applications. Approaches such as those used in developing GRRDE, can be used

to bring some terrestrial innovations into the spacecraft forum.
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Appendix A

SECONDARY TOOLS

The subscription services offered by the GRRDE Publish Subscribe System represent the

primary implementation aids in GRRDE. The framework also provides a number of other

tools and services that automate common or tedious tasks.

Simulation Aids. One of most commonly used simulation tools is a generic numerical

propagator class. For integration, it uses the sixth-order Runge-Kutta method with vari-

able step size and defect correction. An advanced interpolator ensures that interpolated

values have tolerances comparable to the endpoints. This can save processor time. Other

tools include linear time-independent (LTI) filters and advanced random number genera-

tion.

Mathematical Tools. To aid GRRDE development the SIGLIB mathematical package

has been purchased. It is a set of linear algebra and signal processing routines optimized

for embedded applications.

Synchronization Tools. Real-time systems frequently require control over the synchroni-

zation of periodic processes. GRRDE provides several convenient mechanisms for enforc-

ing timing and starting constraints between different blocks and processes.

Atomic Objects. In systems where an object or variable may be accessed concurrently by

multiple processes, it is important that behaviour remain consistent or atomic. Any invo-
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cation on an object, such as a read or write, takes a finite amount of time. Since there are

no restrictions on when an external invocation may come, it is possible that these periods

may overlap. Atomicity is defined to be a property that ensures that a total ordering of

momentary operations can be found that reflects the observed extended behaviours. For

example consider an object A consisting of two integers. The initial value is A = {1, 21.

Two extended operations, a readA( ) and a writeA(3, 4) arrive together. The object is

atomic if it can be guaranteed that the final state is A = {3, 41 and the readA operation

returns either {1, 21 or {3, 41. GRRDE provides a general class of atomic object data

types that implement the Emulated Priority Ceiling Protocol [Sha, et al, 1994] to avoid

priority inversion effects.

Interface Tools. While automated testing requires little interaction, full operational simu-

lations need convenient means of user interaction. GRRDE provides interface tools that

allow communication between the OSE-based simulation environment and standard Win-

dows-based graphic user interfaces. This interface can be used to represent both ground

operator activities as well as simulation steering. Simple visualization utilizing the

OpenGL three-dimensional graphics libraries are included.

Configuration Management. One of the benefits that GRRDE offers is the capability to

rapidly configure a simulation. A simulation configuration consists of lists of modules to

load, where to load them and any required initialization parameters. These setup files are

parsed automatically upon system start. A simple relational database was assembled using

Microsoft Access to manage interface definitions, module revisions and system configura-

tions.



Appendix B

INTERFACE DEFINITION
CONVENTIONS

This appendix presents an example of the interface documentation standards used for

GRRDE module design. The structure of the specifications is described in Section 4.4.

Our chosen example corresponds to the orbit and attitude propagator module of the Tech-

Sat 21 simulation of Chapter 10. Not only do they provide concrete illustrations of the

specification convention, they represent a convenient reference document for the included

tools. The visual representation of the module specification has not been standardized.

Recommended guidelines for presentation may be developed in the future; until that time,

users are encouraged to adopt any convenient and easily understood formatting.

B.1 Orbit/Attitude Propagator

This module is a dynamics simulator for the spacecraft in the TechSat 21 simulation. It is

responsible for integrating the non-linear state equations for both spacecraft orbit and atti-

tude.

SN-5 Service Name: gflops-obt-propUID#. Provides orbit propagation information for

each satellite in system

Interface Definition Filename. gflops-orbit.sig

DPN-5.1 Data Product Name: obtPosVel. Return satellite state in terms of Earth-Cen-

tred Inertial Cartesian position and velocity vectors
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Type. Time-Triggered Output

Signal Number. 60703 (ORBITSTATESIG)

Structure. This structure is shared by a number of DPNs

struct OrbitStateSig{

SIGSELECT sigNo;

int iStateType;
intiSCId; // S/C id #

double dX[6]; // State vector

double dTimeStamp; //J2000 date (in days)

Since the data structure is shared by a number of state representations, the value of iState-

Type determines how the data should be interpreted. The allowable values are detailed in

Table B.1.

TABLE B.1 State Vector Types

iStateType Meaning

1 Position (m)a

2 Position (m), Velocity (m/s)

3 Geodetic: Latb, Long, Altitude (m)

4 Equinoctial Elements: a (m), P1, P2, Q1, Q2, M

5 Classic Elements: a (m), e, i, w0, Q , M

a. Uses only first three elements of X

b. All angular measures are in radians

Position and velocity are the in Earth-Centred inertial reference frame. The x-axis is

defined by the direction of the vernal equinox, the z -axis by the Earth's spin axis, and the

y -axis results from the requirements that the three principal axes form a dextral (right-

handed) reference frame.

Period. 1 ms
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ARGC. in the current design, all spacecraft elements are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.

ARGV. This parameter is ignored

DPN-5.2 Data Product Name: obtEquin. Equinoctial elements of a satellite.

Type. Time-Triggered Output

Signal Number. 60703 (ORBITSTATESIG)

Structure. See DPN-5. 1. This data product uses the same data structure with a corre-

sponding change in the state type. Although not as intuitive as the classic Keplerian orbital

elements, the so-called equinoctial elements are better behaved mathematically. With the

exception of completely retrograde orbits, this representation is singularity free.

Period. 1 ms

ARGC. in the current design, all spacecraft elements are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.

ARGV. This parameter is ignored

DPN-5.3 Data Product Name: obtGeodetic. Satellite position in geodetic coordinates.

Type. Time-Triggered Output

Signal Number. 60703 (ORBITSTATESIG)

Structure. See DPN-5.1. This data product uses the same data structure with a corre-
7T Isponding change in the state type. Latitude Range is -- [South] ... - [North], Longitude
2 2

range is -ir[West] ... ni[East]. Altitude is measured in mn and is corrected for oblateness.



308

Note that geodetic latitude is measured from the equatorial plane to the surface normal

(Figure B.1). The Greenwich Apparent Siderial Time (GAST) is estimated with a simple

model of nutation and precession.

S/C
h

Earth
Centre

Equatorial Plane

Figure B.1 Definition of Geodetic Latitude (F) and altitude (h).

Period. 1 ms

ARGC. in the current design, all spacecraft elements are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.

ARGV. This parameter is ignored

DPN-5.4 Data Product Name: OrbitSetElements. Initializes orbital elements

Type. Command Input

Signal Number. 60704 (ORBITSETELEMENTS)

Structure. Elements are set using the following structure:

struct OrbitSetElements{

SIGSELECT sigNo;

int iStateType;
intiSCId;

bool bIdeal;

double dX[6];

};
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The state type is specified using the same constants defined in DPN-5.1. Only types 4

(Equinoctial) and 5 (Classic) are supported. The bldeal field specifies the disturbance

model. If this field is set to true, no disturbances will be included in the propagator. If set

to false the full fidelity simulation will be used. The full simulator includes oblateness

effects (J2 through J4) as well as Sun and Moon influence. Settings apply to the spacecraft

specified in the iSCId field. Each spacecraft may select a propagator model independently.

If this signal is received before the propagator is started (see DPN-5.5), the setting applies

to the start of the simulation. If the signal is received after the simulation has begun, it will

apply instantly.

Period. N/A

ARGC. N/A

ARGV. N/A

DPN-5.5 Data Product Name: OrbitStartProp. Starts the orbital propagator.

Type. Command Input

Signal Number. 60705 (ORBITSTARTPROP)

Structure. There is no payload to this command, it is just a message tag. After receiving

this signal the, propagator will begin simulating spacecraft orbits.

Period. N/A

ARGC. N/A.

ARGV. N/A

DPN-5.6 Data Product Name: ForceImpulse. Applies impulsive velocity change to

specified spacecraft.
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Type. Command Input

Signal Number. 60718 (FORCEIMPULSESIG)

Structure. The following structure describes the impulse:

struct ForceImpulseSig

SIGSELECT sigNo;

int iSCId;

double dImpulse [3];

}1;

The impulse is actually an instantaneous velocity change (m/s). It is applied in the orbit

frame. The x -axis is defined by the radius vector, the z -axis is aligned with the angular

velocity vector, and the y -axis is given by the appropriate cross-product. (9, = ^ x ^)

Period. N/A

ARGC. N/A

ARGV. N/A

SN-6 Service Number: gflops att-propUID#. This service is concerned with providing

the propagated spacecraft attitude.

Interface Definition Filename. gflops-orbit.sig

DPN-6.1 Data Product Name: obtAttQuat. Provides quaternion representation of

spacecraft attitude.

Type. Time-Triggered Output

Signal Number. 60708 (ATTSTATESIG)

Structure. The following structure describes the spacecraft attitude:

struct AttStateSig

SIGSELECT sigNo;

int iStateType;
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int iSCId;
double dQ[4];
double dTimeStamp; // J2000 time (in days).
};

This structure is shared with DPN-6.3. The iStateType determines the meaning to the

quaternion. A value of ATTSTATEINERTIAL is used to provide the rotation from iner-

tial coordinates. The UID for the spacecraft is given in the iSCId field. The current valid

range is 0-7. The first element of the quaternion is the ti quantity while the last three ele-

ments form the E vector. The quaternion represents the transform from the Earth-Centred

Inertial coordinate frame to the spacecraft principal axes.

Period. 1 ms.

ARGC. In the current design, all spacecraft attitudes are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.

ARGV. N/A

DPN-6.2 Data Product Name: orbAttFull. Returns the full attitude state consisting of a

quaternion representation of attitude as well as angular velocity.

Type. Time-Triggered Output

Signal Number. 60709 (ATTFULLSTATE)

Structure. The following structure defines full attitude state signal.

struct AttFullState
SIGSELECT sigNo;
int iSCId;
double dX[7];
double dTimeStamp; //J2000 time (in days)

The first four elements of the dX field contain the quaternion attitude representation

described in DPN-6.1.The last three elements make up the angular velocity vector wo. It
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has units or rad/s and describes the angular velocity of the spacecraft in the body frame.

The spacecraft UID is provided in the iSCId.

Period. 1 ms.

ARGC. In the current design, all spacecraft attitudes are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.

ARGV. N/A

DPN-6.3 Data Product Name: orbAttOrbitFrame. Returns the quaternion representa-

tion of the spacecraft attitude in the orbital frame.

Type. Time-Triggered Output

Signal Number. 60708 (ATTSTATESIG)

Structure. This signal shares its message structure with DPN-6. 1. The UID for the space-

craft is given in the iSCId field. The current valid range is 0-7. The first element of the

quaternion is the 'q quantity while the last three elements form the E vector. The field

iStateType is assigned a value of ATTSTATEORBIT for quaternions referenced to the

orbit reference frame. The quaternion represents a rotation from the spacecraft orbit frame

of reference. The x-axis is defined by the radius vector, the z-axis is aligned with the

angular velocity vector, and the y -axis is given by the appropriate cross-product.

(9 = z x

Period. 1 ms.

ARGC. In the current design, all spacecraft attitudes are propagated by the same module.

The value of argc must be set to the UID of the desired spacecraft. The standard range is

from 0-7.
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ARGV. N/A

DPN-6.4 Data Product Name: ImpulseTorque. Apply an impulsive torque to the space-

craft.

Type. Command Input

Signal Number. 60719 (TORQUEIMPULSESIG)

Structure. The impulsive torque signal structure is define as:

struct TorqueImpulseSig
SIGSELECT sigNo;

int iSCId;

double dImpulse [3];

}1;

In contrast to the translational impulse (DPN-5.6), which is actually an impulsive velocity

change (independent of mass), the impulsive torque represents a change in angular

momentum. It has units of kg -m2 /s.

Period. N/A

ARGC. N/A

ARGV. N/A

DPN-6.5 Data Product Name: SetAttitude. Initialize a spacecraft's attitude state

Type. Command Input

Signal Number. 60707 (ATTSETSTATE)

Structure. The spacecraft initialization uses the following structure.

struct AttSetState

SIGSELECT sigNo;

int iSCId;

double dX[7];
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This command sets the initial spacecraft attitude. The iSCId field selects the desired

spacecraft and the dX entry contains the desired state (quaternion and angular velocity).

Users should also set the spacecraft moments of inertia before starting the simulation. As

with the orbit related functions, a set attitude command specifies the attitude when the

simulation begins. In a running simulation, setting the attitude will cause an instantaneous

change. Subsequent signals sent for the same spacecraft will override and previous set-

tings.

Period. N/A

ARGC. N/A

ARGV. N/A

//


