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ABSTRACT

Multiprocessors become more and more important, both for technical as for other environments.
The UnixR operating system has also gained importance in recent years and gains still (Now
entering the Consumer market!). This report describes an investigation into tightly coupled
multiprocessors based on Unix and based on VME. An overview of Multiprocessor aspects is
given. Restrictions to the field of investigation, such as only considering Unix and VME, are stated.
The system architectures Master-Slaves, Uni-Kernel, MUlti-Kernel with shared but without private
memory and MUlti-Kernel with shared plus private memory are discussed. Aspects that are
discussed, although not always for every architecture mentioned, include: System Startup,
Interrupts, Inter Processor Communication, Mutual Exclusion and Scheduling.

SAMENVATI"I NG

Multiprocessoren worden steeds belangrijker, zowel voortechnische als voor andere omgevingen.
Het UnixR besturingssysteem heeft de laatste jaren ook aan belangrijkheid gewonnen en doet dat
nog steeds. Dit rapport beschrijft een onderzoek naar sterk gekoppelde multiprocessoren die Unix
als besturingssysteem hebben en die op de VMEbus ge'implementeerd zijn. Er wordt een overzicht
gegeven van de verschillende aspecten die bij multiprocessoren van belang zijn. Tevens wordt
het onderzoeksterrein ingeperkt. Bijvoorbeeld omvat het onderzoeksterrein geen andere
besturingssystemen dan Unix en Is er ook niet near andere processor-geheugen netwerken dan
de VMEbus gekeken.
De volgende systeem architecturen zijn nader onderzocht: Master-Slaves, Uni-Kernel, Multi-Kernel
met gemeenschappelijk maar zonder privaat geheugen en Multi-Kernel met gemeenschappelijk
en privaat geheugen. De volgende aspeeten zijn bekeken, hoewel niet altijd voor aile genoemde
architecturen: Opstart van het systeem, Interrupts, Inter Processor Communicatie, Wederzijdse
Uitsluiting and Proces Scheduling.

Key words: Multiprocessor, Unix, VME, parallel processing, scheduling, simulation, load
balancing, process migration, common bus.
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1. Introduction

Progress in technology, computer architecture, design tools (e.g. CAE) etcetera have led to an
enormous increase in speed and capabilities of Computers. However despite this steep growth,
the speed and capabilities of computers continuously run short in fUlfilling the user's demands.
These demands always seem to be one step ahead of temporary capabilities.
One way to meet the user's demands has been to combine processors and/or computers into
a working-force, better capable of distributing the workload and thus better servicing each and
every user. A multiprocessor Is one such working-force, special in the sense that its processors
share a common memory.
To investigate into the multiprocessor phenomenon a project was started by the Digital Systems
Division ofthe Department of Electrical Engineering from the Eindhoven University ofTechnology.
It is in this project that I was granted to fulfil the final assignment, a requirement to earn the dutch
'ir' (M.Sc) degree. The purpose of my assignment ("investigate Multiprocessors based on Unix

Roo
)

was two-fold. First the wish existed to arrive quickly at an actually working multiprocessor, which
could then serve as the basis for subsequent design and experiments, second one also wanted
to dispute performance issues. As a result of this dual nature the reader will notice that parts of
this thesis are near the implementation level while others are at the system analysis level. .

The contents of this report is as follows. In chapter 2 our definition of a Multiprocessor is given
and several of its aspects are discussed in a general way. The reader will appreciate that due to
the strong relation between these aspects some overlap occurs in their treatment. Chapter 3 is
meant to restrict the vast area of mUltiprocessor issues to an area comprising only what is of
immediate relevance to our group. This chapter also presents four Multiprocessor architectures
which are subject of the subsequent four chapters.
The Master-Slaves architecture is highlighted in chapter 4. The Master processor in this
configuration is allowed to run both supervisor as user code whereas the slaves run only user
code. A derivative of the Master-Slaves architecture, the Uni-Kernel architecture, poses us for a
new range of problems in chapter 5, but, once these are solved, breaks the way for the Multi­
Kernel architectures featuring in chapters 6 and 7. Chapter 6 was meant to discuss the simplest
of the two Multi-Kernel configurations, the one in which all main memory is shared, in its entirety.
However we only managed to look at scheduling in detail. A simulation model has been built to
assess the performance and the effects of changes in the proposed scheduling subsystem.
The Multi-Kernel architecture also employing private memory is the subject of chapter 7.
Unfortunately time was too short to uncover the details of this configuration. The main benefit to
be expected Is the diminished bus load. As the bus is the first encountered bottleneck in the
performance-raising process the performance of this last architecture may be expected to be
highest.

As a final result of the Investigation we present some routes towards a mUltiprocessor of the
'Multi-Kernel with private memory' architecture In chapter 8. One of these routes will Implement
the architectures mentioned one at a time, letting the more complex architectures evolve from the
simpler ones. Which route will be followed depends on group policy.

Finally, a number of conclusions are given In chapter 9. Some of these conclusion have a wider
significance then just for the case discussed In this thesis.
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2. Muhiprocessoring Systems

Since the advent of the computer, engineers and scientists continuously improved its
performance. Now we are meeting the limits of nature's laws in trying to achieve further
Improvements especially with respect to speed. Speed Improvement, as the main way to boost
performance, can be achieved In a number of ways.
The first way Is to use better technologies for realiZing the components that make up the
computer. Here two aspects can be distinguished namely miniaturization and the technology
Itself. There may still be room for improvement in the latter aspect (e.g. optical technologies), the
former however is now approaching the limits set by molecule size and speed of light.
Another way of improving performance is to use better architectures. Improving the architecture
of the processor by applying pipelining and other such techniques is one way of doing it, putting
more processors at work to satisfy the user community is another. The latter solution not only
Improves bare speed but is also more Intelligent in distributing the resources (processors) over
the users thus achieVing a higher per processor utilization rate.
In the last decade we have seen methods to put more processors to work in a combined fashion.
These methods receive considerable attention and are the subject of many industrial and scientific
research projects. This field of work can be divided in two area's, the area of Distributed
Computers and the area of Shared Memory computers called Multiprocessors In this report. Note
that other authors use different classifications. Tanenbaum [TANE81] for example classifies these
systems from a communications point of view. Distributed Computers are, in his classification,
systems that manifest themselves at the Application Layer of the ISO-OSI model while Shared
Memory systems do so at the Network Layer. Flynn [FLYN72] presents the well-known
classification where the number of instruction streams and the number of data streams are the
distinguishing characteristics. In his classification Distributed Computers as well as Shared
Memory computers are of the Multiple Instruction Multiple Data (MIMD) type. The other three
classes are SISD, SIMD and MISD. The latter is an empty class, the SISD is the well-known
uniprocessor and the SIMD class contains the so called array (or vector) processors. Array
processors perform the same operation on pieces of the total data and they do so simultaneously.
This is achieved by having more than one identical processing unit under control of one control
unit.

We are concerned with mUltiprocessors in this report and rely on the definitions given in the next
two paragraphs.

Distributed Computer Systems form the class of computers that we wish to exclude from our field
of attention. The term Distributed Computer System perhaps is very confusing since most people
working In this area define Its meaning In their own way. Beside the vagueness of its meaning the
term Distributed Computer System also has a number of full or near synonyms like distributed
computing system or network computing system etcetera. .

Definhlon 2.1
We will understand a distributed computer system to be a set of computers or processors
that communicate with each other In order to jointly service user demands. However these
computers will not possess a shared memory through which that communication takes place.
Instead they use LANs or long haul networks to that purpose.
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Though this class of multicomputers is a very interesting one, it is not the subject of this report
and therefore not further pursued here.

The other area of research is concerned with the so called shared memory mUlticomputers. Here
also various terms are used to describe this field. The majority of these have no rigid definition.
Again we will therefore define our term and its interpretation here. In doing so we rely heavily on
the terminology and definition thereof as given by Satyanarayanan [SATY80].

Definition 2.2
A multiprocessor is a system that contains 2 or more processors which share all or part of
their main memory, and that employs its processors dynamically with user (sub)tasks
(Hence, processors will interact). The processors are capable of performing a set of general
tasks and thus are not dedicated to one (for example 10) task.

Again one is easily confused since the term multiprocessing exists also. Multiprocessing however
is used to describe the situation where processes or tasks are logically (and in some cases
physically) executed in parallel. This includes the parallel execution of processes occurring in a
multiprocessor but also the 'parallel' execution achieved through timesharing on a uniprocessor
(multiprogramming). If we wish to specifically speak of parallel execution by more than one
processor we will use the term multiprocessoring to indicate so.

The remainder of this report will mainly deal with an aspect of multiprocessors namely its
operating system. For this reason multiprocessors are discussed in this chapter in much greater
detail.

Let us first mention the advantages we hope to obtain from multiprocessoring. A few have already
been mentioned but more exist:

Per job run time is shorter
In general this will be true as soon as one is able to exploit the job's inherent
parallelism. When run times are shorter system response time is shorter which is to the
immediate advantage of the user. There are three different ways for a shared memory
multiprocessor to exploit the parallelism in a job. The first way is to write the programs
using a library of functions which are geared toward parallel execution. The second way
Is to present a sequential program to the compiler and have it 'parallelize' as much as
possible. The third way is to have the user recognize the parallelism which he or she
should then code Into the program.

Enlarges throughput
When compared to a uniprocessor system with a processor having equal capabilities
as those applied In the multiprocessor, this is evident. More computing power renders
a larger throughput for a typical job mix.
Another reason that throughput Increases is caused by what is generally called load
balancing. Load balancing Is the technique used to have each processor do an equal
share of the total workload. This enlarges the already mentioned per processor
utilization rate thus preventing some processors to be over1oaded while others leisure.
Other resources than processors and processor time are also put to use in a more
efficient manner since more processors can utilize them.
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Fault tolerant
Due to the multiple occurrence of some components the multiprocessor may, when it
Is arranged that way, overcome or alleviate negative effects caused by hardware faults
or software errors. A multiprocessor that has this capability will show high availability
and high reliability ratings.

More Economic
This does not refer to higher throughput or faster response. For these a comparison
should be made between an N-processor multiprocessor and N uniprocessors. This
comparison would greatly depend on the type of jobs to be run, the organizational
environment in which the machines would function etcetera.
Instead we are referring to the mUltiprocessors potential capability to grow in small
relatively cheap increments thus providing user communities with a gradually
'upgradeable' machine both in quantity as in quality. Economic risks may therefore be
much lower as opposed to buying one machine that one may outgrow earlier than
expected. The latter situation forces one to buy a larger machine, will disrupt continuous
development or affairs and, even worse, may force one to adapt to a new computing
environment.

Human like

Human systems usually are parallel processing systems. Adapt tools such as computers
to this notion.
Although this is a remark typical of a very high level view of multiprocessors and as
such merely serves as a general guideline for most systems It is true in essence.
Therefore It must be advantageous, at least in the long run, to build systems that
resemble human systems. An attempt In this direction Is the connection machine
[HILL86].
Though most present mUltiprocessors do not as closely resemble a human system as
the connection machine does, they do resemble to such an extent that It may be
profitable.

What types of multiprocessors exist to date? When one Investigates Into the existing types one
Is surprised with the variety encountered. Therefore we do not discuss different types as a whole.
We will first enumerate possibilities per a specific aspect of a multiprocessor. From these different
possibilities one may assemble a (imaginative) multiprocessor restricted of course by the mutual
compatibility of these possibilities. Then we will review some possible (global) configurations of
multiprocessors.
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In the next paragraph the different aspects that are discussed are:
Memory map
Interconnections
Symmetry
Input/Output Structure
Interrupts
Inter Process(or) Communication or IP(r)C
Reserved Storage Areas
Operating System and its Structure
User facilities for Parallel Processing
Error Recovery
Performance

In chapter 3 we will choose from and/or restrict the possibilities.

2.1 Memory Map

There are different levels on which one can define a memory map. We have a virtual memory
level, a functional level and a physical level. The virtual level provides the memory as it is 'seen'
by the processes in a system. Virtual memory is projected onto main and secondary memory by
a Memory Management System. The Memory Management System may take several forms, from
an empty module (where the virtual level does not really exist) to one containing an address
translator and a paging subsystem. The structure of the Memory Map at the virtual level has an
Influence on the efficiency of uniprocessors and multiprocessors alike (See for example
[OUST88]). There are little or no differences between a uniprocessor and a mUltiprocessor at this
level, they have been hidden by the memory management system.

At the functional level we do have a clear difference between uni- and multiprocessors. We
consider only main memory and find that we may distinguish private and shared main memory.
The adjectives private and shared can refer to physical access of memory but also to the way it
Is used. When memory is accessible only by one processor, this memory is physically private to
that processor. Otherwise the memory is physically shareable. Parts of physically shareable
memory can be used privately by one processor or can be shared by several. We then speak of
logically private and logically shared memory. Note that logically private memory can be
physically private or physically shared. Normally physically private memory should be used for
logically private memory because of efficiency reasons. Nowadays products are marketed that
are able to switch parts of memory between the prblate and shareable address space. Otten these
products employ dual ported memory. Because of the flexibility with which a design engineer
&mploying such products can manipulate the address spaces it is not wortll-while to discuss the
physical access. Instead we will assume reference to the Oogical) use of memory when we speak
of private or shared memory below.
In a uniprocessor only private memory exists since there are no other processors to share It with.
In a multiprocessor we have shared memory as Implied by definition 2.2. However this does not
preclude the use of private memory with each processor. Private memory can be used for several
purposes. First of all we could load the operating system code into it. This would eliminate
accesses to shared memory for this code and hence would reduce shared memory access
contention In highly populated multiprocessors. Also we could explicitly load process contexts
Into private memory for those processes that are or will be in execution on the associated



7

processor. This too would reduce contention for shared memory access. Private memory can also
be used as a cache for data residing in shared memory. There are two reasons to cache shared
data. Once again contention for shared memory is reduced. Furthermore It may speed up the
memory access.
On the basis of their use of main memory, multiprocessors can be divided into two classes. The
fist class uses shared memory only, the second class also uses private memory. Let us name
multiprocessors that do not have private memory per processor Shared Memory Only(SMO)
multiprocessors and those that do have such private memory Private plus Shared Memory(PSM)
multiprocessors.
The different uses of private memory discussed above give the PSM an edge on the SMO
machine. Other properties however Imply the contrary. There Is for example the possible need to
relocate a process context from one private memory to another in the PSM when trying to
balance the load. Also context sharing Is more difficult In the PSM.
Besides the use of main memory to provide the processes with their virtual memory other uses
of this memory exist. It Is possible to reserve a separate address space for each of these
purposes. Thus we could have an address space for the operating system, one for the processes
and one for inter processor communications.

At the physical level memory may be inhomogeneous. This may be caused by different access
times to different modules but also by the geographical location of modules. The latter aspect has
two sides to It, the access time and the decoupling of processor-memory communication
networks. Placing a subset of the memory modules and a subset of the processors In the system
together and connecting them by a local communication network (a cluster) allows for the
simultaneous use of all these local networks in the system. The only time that this is not the case
is when the local networks are Involved in an inter cluster communication. Generally intra cluster
communications will be faster than Inter cluster communications. Several policies can be applied
to take advantage of this speed difference. Such policies usually concern themselves with the
optimal placement of either processes with processors (in 'possession' of process contexts) or
with process contexts with processors (in 'possession' of processes). We will therefore refer to
these policies as Context Placement Policies.

2.2 Interconnections

Three sets of interconnections are of Importance in a multiprocessor. These sets are the set of
Interconnections between processors and memory modules, the set of connections between
processors and, when full caches are present, cache-cache connections.

The processors-memory modules communications are very frequent both In SMO as In PSM
multiprocessors. This urges to Implement the Interconnections In a very efficient way. Traditionally
the time-shared bus has been used for this purpose but lately new techniques have been applied.
These new techniques are usually based on communications theory and can, as Is custom In that
theory, be split up In circuit-switching, message-switching and packet-switching techniques. The
time-shared bus technique can be seen as one of the circuit-switching techniques as will be
explained shortly.
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The circuit switching techniques can be subdivided into the crossbar connection scheme and
multiport connection scheme. In the first scheme a matrix of switches is used that allows every
processor to communicate with every memory module. The crossbar switch is often implemented
as a set of parallel time-shared busses In a one-bus-per-memory-module fashion. If only one
memory module exists In such an implementation this configuration degenerates into the single
time-shared bus situation. A time-shared bus can be looked upon in two different ways depending
on the way one defines a processor memory logical connection. When one defines every memory
access from each processor as a complete conversation (compare to a human phone call), the
one available circuit (= the bus) is essentially switched between users. When one, on the other
hand, defines processor-memory communication as one long conversation from system power
up till system power down, then the operation must be characterized as Time Division Multiplex
(TOM). This last view gave rise to the time-shared attribute.

In the multiport connection scheme every processor has its own input port on every memory
module. In essence the switching function has been integrated in the memory modules.

In both schemes there may exist multiple requesters for a bus. so some kind of arbitration
mechanism is needed.

Packet Switching is the other technique often used for communication between computers. It can
also be used for processor-memory communications. A packet is a piece of a message
encapsulated in headers and trailers in such a way that it can be routed through a network.
During its journey through the network it is regenerated and packed again at every exchange it
meets. This packet switching technique has several advantages over circuit switching, the main
one being the higher utilization of circuits due to the (logical. not physical) multiplexing of circuits
between many connections.

This logical switching is achieved by routing each packet independently through the network. The
packet thereby uses only 1 network segment (f.e. an inter-exchange connection) at a time, leaving
all segments It already passed and all segments still to pass tree for other packets to be
transferred. Furthermore a connection only 'consumes' circuits when there indeed are messages
to be sent. When both ends are 'quiet' the available circuits are used In other connections. For
further detail refer to [TANE81].

While packet switching obViously is a nice technique for communications networks of various
topologies and composed of a large number of segments, It Is not Immediately evident that It is
suitable as the communications mechanism between processors and their main memory in a
multiprocessor. Especially the delays caused by the packing and unpacking would seem to render
the method unfit for this purpose. The first mUltiprocessor to prove usefulness of packet switching
In this respect was Carnegie-Mellon's eM". For an Introductory description of this computer see
[SATY80].
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The dominating factor in processor-memory communications is the achievable bandwidth. This
bandwidth is limited and will therefore limit the number of processors in a multiprocessor. An
interesting possibility to Implement processor-memory communication is to make use of optical
data paths such as fibers. Fibers have a very high bandwidth and can be used over large
distances. The larger distance opens the possibility to design multiprocessors that are not
confined to one cabinet. As soon as high speed transducers and associated IC's are commonly
available one could replace conventional methods, like the time-shared bus, with fibers.

The processor-processor communications may use point-to-point processor links with the
drawback of a quadratic Increase in the number of links when the number of processors
increases. At the cost of arbitration delay and congestion one could eliminate the quadratic
Increase by using a time-shared bus again. Other topologies such as the hypercube strike a good
balance between number of physical links and bandwidth.
Last but not least the processors could make use of the existent processor-memory connections
to communicate. In that case the time-shared bus and crossbar switch situations still allow for
direct Inter processor communications, in the multiport situation it necessarily is a two-step
processor-memory-processor operation that would do the job. (This last method would need an
Interrupt to be effected or polling to be done).

2.3 Symmetry

A symmetrical system will show more universal software and hardware than an asymmetrical
system, It will also have a higher degree of fault-tolerance. a higher up-time etcetera. Further
process switching and Inter processor communication are likely to be much smaller in a fully
symmetric situation. This can be explained by the fact that when a need for some service occurs
In a main processor that same processor Is capable of handling It, avoiding the need for inter
processor communication to request the service or the need to relocate the requesting process
to a processor that Is capable of handling the request.

Of course the benefits mentioned are gained to a degree that is related to the machine level
where symmetry starts. Benefits will be few when only the user interface makes the machine
appear to be symmetrical while all lower levels are asymmetric.

The symmetry can be present across the boundal)'...between main processors and 10 processors
but may be restricted to main processors only. In the former case the operating systems running
on both types of processor can be the same to a high degree.

For a number of reasons. for example hardware restrictions. one may be forced to asymmetry in
one area whUe achieving full symmetry In others.

Although symmetry Is a praiseworthy characteristic of a system in many respects. an asymmetric
system has Its special advantages too. One could for example have one or more vector- and/or
floating point processors next to the normal main processors to speed up such operations
[TEST86].
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2.4 Input/Output Structure

In every computer the way input and output is performed has large effects on system
performance and response time. In the eariiest computers 10 was performed by the one and only
processor present in the system. Gradually more and more specialized hardware was developed
to perform 10 tasks leading to disk controllers, network controllers etcetera. At first these
controllers were running under the regime of the main processor. With the advent of
multiprocessors 10 controllers often serve more masters.
This trend of shifting Intelligence from main processor(s) to 10 processors has even led to the
migration of parts of the operating system to the 10 processors. Moreover, systems have been
developed where 10 is performed on separate dedicated boards running (almost) the same
operating system as the main processors do [ANN085]. Pushing this one step further, that is
employing the 10 processor with main processor tasks, returns us to the starting point where
main processor and 10 processor are one and the same though this time in cooperation with
other such processors.
An important factor here is that communication network 10 can, and in some cases does, replace
traditional In- and output. Think for example of terminals connected via Ethernet or using a
network to access a shared printer. In this sense mUltiprocessors may exhibit 'distributed
computer'-like properties.

The structure of the 10 subsystem may have a high degree of symmetry or just the opposite. An
example of the latter case is the situation where every 10 processor communicates with one
main processor, the master. Every 10 request must then be directed to, and results are coming
from, the master processor. Usually this architecture, with the master representing a (potential)
10 bottleneck, Is chosen to easily solve the problems induced by the synchronization needs. The
complete synchronization including the handling of interrupts is taken care of by the master
processor. With respect to synchronization the master-slaves configuration is equal to the single
processor system .The communication between master and non-master main processors stays
undiscussed here. (Communication may even be made obsolete through process switching).
The other extreme is to allow every main processor to either perform 10 itself or to communicate
with any 10 processor. Naturally this is a much more desirable situation. First of all this will be
a two-party instead of a three-party communication (Switching a process from one processor to
another is seen as a form of communication) thus reducing the overhead for context switching
and inter processor communication. Second, If a main processor breaks down, no devices
become unreachable which adds to the fault tolerance of the system. Third, when interrupts are
used for 10, the latency times can be less. (can be, because this strongly depends on the
Implementation.)

2.5 Interrupts

An Interrupt Is a logical control signal. Making the signal active is called an interrupt request. A
request can be accepted, delayed or Ignored. When an Interrupt request Is ignored nothing
happens to the current flow of Instructions In execution on the addressed processor. When an
Interrupt request is delayed It is said to be pending. At some point in future it will be accepted.
When a processor accepts an interrupt request it stops execution of the current flow of
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Instructions, usually saves some of its registers, and will start executing another flow. The new
flow of instructions is said to 'handle' the cause of the interrupt. The sequence of instructions that
make up this flow form the Interrupt Handler (IH) for that interrupt. The last instruction in the IH
flow ('return') will cause the processor to resume the previous flow of instructions. On most
systems Interrupts can be nested so that the resumed flow may be from an interrupt handler too.
Interrupt requests can be made by activating hardware lines but also by the execution of special
software Instructions (extra code, supervisor call). Some conditions In the processor may also
give rise to an Interrupt request.
Several events occurring In a computer system are traditionally signalled by means of interrupts.
Some of these events are presented below:

a. Supervisor Calls
b. Divide by Zero, Overflow, Illegal Instruction
c. Page Faults, Protection Violation
d. Inter Processor Communication
e. 10 completion/errors
f. Clock
g. Hardware Faults

In a multiprocessor it is not always trivial which processor a request should be addressed to. For
the cases a,b and c it is obvious that the processor where the event occurs must accept the
resulting request. Inter processor communication interrupt requests are purposely fielded to the
receiving processor(s) and must therefore be accepted by them. For the cases e and f the
situation Is more complex in that more ways exist to handle these events.
In these cases we may often choose a processor to accept the request. The question therefore
arises which processor such an interrupt request should be directed to and/or which interrupt
request a processor should accept. The policies used can be static or dynamic. In the first case
It is decided on beforehand which processor receives and accepts what type of interrupt requests.
In the latter this decision Is taken the moment the request is generated. As an example of a
dynamic policy a request caused by an 10 completion could be directed to the processor that
currently runs the requesting process.
For 10 events the situation is somewhat different in the presence of lOP's than without these.
When no lOP's are present it Is common that the peripheral devices directly interrupt the main
processor that controls them. This processor consequently has to accept and service the request.
When lOP's are present they deal with these low level Interrupts and may themselves interact with
the main processors In a more sophisticated way.
For the case of the clock event a possible Implementation Is to have a single timer Interrupt one
main processor which communicates the clockevent through IPrC messages to all other
processors as part of Its Interrupt handling.
The occurrence of Hardware Faults should generally be made known to the entire processor
community. Unfortunately some faults place one or more processors out of working order so that
normal IPrC cannot be used to alert the sane processors. Because of this hardware faults are
generally detected and signalled at the hardware level. The signalling usually Involves a system
wide Interrupt line that Interrupts all processors.
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2.6 Inter Processor Communication

When one distributes processes that mutually communicate across processor borders, an
underlying Inter Processor Communication mechanism (IPrC) must exist that will be used to
support this Inter Process Communication (IPC). Inter process communication is a necessity
when more processes combine to accomplish one task. Processes will have to synchronize their
execution and they will have to exchange data. For this reason most uniprocessor multitasking
operating systems have some forms of IPC like pipes, mailboxes. sockets, message passing and
signals. All of these forms have to be supported by the Inter Processor Communication
subsystem.
IPC is not the only area where IPrC is needed. It Is needed in all of the following areas:

System Startup
10 Communication ( when 10 processors are present)
IPC
Performance Tuning (e.g. Load Balancing)
System Monitoring (e.g. Tracing)
Error Recovery

Many mechanisms to perform IPrC exist. Some general characteristics can be distinguished that
are useful in discussing the merits of certain implementations:

Data
By Reference
Polling
Hardware

versus
versus
versus
versus

Events
By Value
Interrupts
Software

The first characteristic gives the impression that events and data are entirely different things that
can be transported. In essence they are not that different, an event is a communication through
which no data is transferred apart from a possible identification of the event. The main part of an
event transfer Is the synchronization of the two (or more) processors that take part in the
communication. Data communication also needs this synchronization but above that, a
mechanism to either move the data or to pass a pointer. In view of the above we could conclude
that one universal IPrC mechanism can be developed that supports both types of transfer.
However due to the differences that exist between the two types, different methods of transfer
may be profitable and In cases are necessary. An example of a situation In which a dedicated
method is needed to convey events lies In the field of error recovery. A processor that has broken
down will probably not react to the norrnallPrC. To either reset It or disconnect it from the bus
special hardware Is needed. This too is a form of IPrC.

Data transport can be done by reference or by value. Transporting a message by value means
that the message Is copied In Its entirety from a location at the sender site to a location at the
receiver site. When a message is transferred by reference, the sender prepares the message in
shared memory and then copies a pointer to the receiver. Transport by reference is not always
supported by the architecture at hand, the latter usually is. The multiprocessor as we defined it
In definition 2.2 always has shared memory and will therefore allow transport by reference. In
general, transport by reference is more efficient. This Is because the message is not copied and
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therefore no time is lost performing the copying action. Also the communication event is short.
The communication event is defined as the actual transfer of the message and its duration is
defined as the time the communication channel between sender and receiver is occupied. When
passing the message by value this duration will equal the amount of time necessary to copy the
message. When passing it by reference the duration equals the amount of time to transfer the
pointer. A short duration of the communication event will cause less contention for the channel
when more messages need to be transferred simultaneously. However there are a number of
Implementation characteristics that may cause transport by value to perform better than transport
by reference. A very important factor is where messages are placed in a memory space when that
space is inhomogeneous. Also the way a message Is used may be of importance. Suppose for
example that In a system employing the time-shared bus a message Is placed In shared global
memory reachable only via this bus. If the receiver then heavily references the message, the bus
load, a crucial factor in bus'ed multiprocessors. could become greater than when a straight copy
of the message had occurred.

Apart from error recovery most Inter processor communication can be entirely done by software.
Through the application of the polling technique one could do entirely without special hardware
support. Normally at least Interrupts are used to draw the attention of the communication
partner(s). Since the Interrupt subsystem Is usually available and of universal nature, here too one
can hardly speak of special hardware support.
The last few years more and more special hardware is designed to perform IPrC [FORC87].
[RAMA87], [RAP86], [VERS87]. Besides the growth of the number of mUltiprocessors and
distributed computers another phenomenon causes this extra interest. This phenomenon is the
tendency to more and more extract the communication from a system and treat and design it
explicitly as a separate function. Having the major part of the communication done in specialized
hardware relieves the processor from the communication overhead and increases the speed.
Reduced costs for communication in tum leads to an increased use of communication Intensive
systems.

A different view on IPrC Is Its location within the operating system. Starting from the layered
model used by A.M. Lister [IJSTIS] and shown In figure 2.1 IPrC appears to represent an extra
segment in the bottom layer. It needs services from the First Level Interrupt Handler (FLlH) and
it may need mutual exclusion primitives.

User

Other Layers

Figure 2.1 Location of IPrC in Kernel
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2.7 Reserved Storage Areas

In a mUltiprocessor different address spaces may exist. In fact each processor may have an
entirely different address space of which only a part is shared with others. Even addresses in the
shared region need not have the same absolute value seen from the processor side. Address
translation mechanisms may be used to project the processor address region onto the same
physical addresses for all processors. However certain parts of memory are reserved for special
use by hardware. Think for example of interrupt vector tables. When using more than one
processor In a system more than one such area exists usually occupying the same physical
processor addresses. When only one global memory Is available or when it is desired to keep
address translation from processor space to system space simple these area's may be relocated
or hidden from the system map to avoid a possible clash. There are a number of methods to do
so. The first and easiest possibility is to make the area's physically equal. The purpose of such
an area must naturally allow for this. When such an area contains code, it has to be re-entrant.
If the area contains dynamic data, mutual eXclusion must be taken care of. The operating system
code and data structures could for example be placed in such an area.
A second method is to hide the areas from the shared memory map. In this case they are only
accessible to the owning processor. Thus there could for example be N private area's at the lower
end of the total address range and 1 common area above that.
Thirdly when the reserved areas are not tied to specific processor addresses it is possible to
simply place them at convenient and distinct address ranges. The fourth and already a little more
elaborate possibility is to map each processor owned area onto different sets of addresses in
shared memory.

In the early days of multiprocessors the reserved areas could pose quite some practical problems.
At present memory management support is widely and cheaply available either as separate IC's
or even integrated into one chip with the processor. For this reason present systems combine the
private area's mentioned in method 2 with the mapping of method 4 to prOVide a very
sophisticated and user configurable address map. Some systems even offer dynamic
configurability where the map can be changed under program control. Parts of memory may then
be switched from private to shared space and back.

2.8 The Operating System

Imagine a group of people that work together to accomplish a large task. The task is composed
of subtasks that can be partially done In parallel. Sometimes a subtask cannot be started until
another one (or more) has been finished. In some way or another these people have to find an
organization In which they can do the Job. We all know several of these organizations, starting
with the familiar boss-employees one. In this situation the boss has all relevant information about
when which subtasks should be done In order to perform the overall task. Sometimes he even
knows he has to put (say) 3 people on a subtask, no more and no less, In order to have it done
efficiently. This boss will tell his employees what to do and at what time, he will arrange the order
In which his employees are allowed the use of shared equipment and when the equipment is very
expensive, he will sometimes operate it himself.
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At the other extreme we find an organization form where all people are alike
and take counsel together to finally finish the assignment.
Between these two forms of organizations many others are possible.

Uke the people above the processors In a multiprocessor are in need of an organization too. It
Is the operating system that has to provide for this. The multiprocessor operating system
organization often resembles the human organizations described above. With operating systems
too there are a lot of possible forms. The three main forms are:

• Master-Slaves
• Central Operating System used by All Processors
• An Operating System per Processor

A Master-Slaves operating system can be compared to the Boss-Employees organization. In this
operating system one processor, the Master, plays approximately the role of Boss. The Slaves in
such a system can only execute application processes and must request the Master to perform
the operating system actions necessary for their progress. Scheduling of jobs is also done by the
Master. Since the Master is the only one that runs operating system code, this code need not be
re-entrant. Also operating system data structures need not be locked for there is only one
processor that is allowed access. Interrupts that need handling which Involves manipulation of
operating system data structures can conveniently be sent to the Master.
Converting a uniprocessor operating system to a Master-Slaves type often concentrates on the
Interaction between a slave and the master. Although a slave can be placed into the supervisor
mode by a system call It does not have any supervisor rights. It therefore requests the required
service from the master and continues processing another process or idles. The master on the
other hand services the requests from the slaves until the process returns to user mode. If the
master Is not dedicated purely to operating system tasks it could execute a process in user mode
when no operating system requests are pending. The efficiency of an N processor system rapidly
decreases with N when compared to N uniprocessors due to the operating system bottleneck.
This type of operating system has been mainly applied In the early days of multiprocessors as a
fast route from existing uniprocessors to multiprocessors.

A Central Operating System In use by all processors makes larger multiprocessors possible.
However this is at the cost of mutual exclusion measures that have to protect the operating
system tables. Also It necessitates the OS code to be re-entrant. Each processor in the system

executes operating system code as soon as this---js necessary for the progress of the current
process. (synchronous system calls). Other operating systems functions, though related to a
process can be performed by any processor In the system. An example is the handling of
Interrupts for 10 operations. (asynchronous system calls). A system under regime of such an
operating system may provide graceful degradation.

Having an executive per processor with private data structures brings us in the twilight zone
between true multiprocessors and distributed computers. The access conflicts that could arise in
the previous operating system do not occur here. However other, performance degrading,
phenomena occur as we have seen before Ooad unbalance, process context relocation). This type
of system will show a profit mainly there where communications with shared memory and other
processors are slow or where a high average processing load exists.
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Besides the organization with respect to the processor community other aspects of the operating
system playa role. Many of these aspects are also found in uniprocessor systems. For example
an OS could be made to hide possible hardware asymmetries which makes the system easier to
use. On the other hand in some applications the user needs to exploit the existing asymmetry to
fully exploit the systems capabilities (e.g. Real Time environment).
Operating systems for multiprocessors or any system that supports parallel processing must
prOVide operating system primitives that enable the user to manage the parallelism available in
the system. Among these are primitives such as synchronization primitives, shared memory
primitives, requests for dedicated processor(s), user invoked process suspension and resumption,
user controlled scheduling etcetera.

2.9 User Facilities for Parallel Processing

Users of multiprocessor systems have different attitudes. We distinguish between users that rely
on the system's built in 'parallelizing' capabilities and those that wish to explicitly indicate
parallelism in their programs. For both types of user the multiprocessor system should provide
the means they desire.
For the first type of user a number of tools have been developed that recognize and exploit
parallelism in a user's sequential code. Among these tools we first of all find compilers. For
example, the Alliant FXjFortran compiler detects loops that can be executed in parallel and
automatically generates code containing concurrency control instructions [TEST86]. Of course
this compiler is targeted towards the specific Alliant hardware. In general multiprocessors the
basic building block for parallel computation is the process. With most present multiprocessors
these processes are too large and too Inflexible, due to expensive context switching and inter
process communication, to be used for fine-grain parallelism as achieved by compilers. Much
effort is invested today in achieving an operating system that supports inexpensive (or fine-grain)
processes. One route taken Is to prOVide multiple so called threads within one single traditional
process. These threads Oight-weight processes) use the resources possessed by the process
(such as address space, file descriptors etc.) and have a minimal context which makes switching
fast. When light weight processes are available parallelizing compilers can be of use in general
multiprocessors too. A less complex approach could be to provide libraries that contain as much
parallelism as possible.

The second type of user will need a language In which they can easily express parallelism. This
means that explicit language constructs must exist to delimit code that can be executed in
parallel. to synchronize such parallel code, and to provide communication between these pieces
of code. Such a user will also need very powerful tools to design and debug parallel programs.
As a matter of course these language constructs must be supported by operating system
primitives as discussed in the previous section.
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2.10 Error Recovery

We already mentioned at the start of this chapter that recovering from an error can be done much
more sophisticated on a multiprocessor than on a uniprocessor. It is possible to hide many errors
from the user apart from a possibly noticeable performance degradation. Having the potential to
recover from errors does not mean It Is easy to design recoverability into a system. When an error
occurs some part of the system does not function as specified meaning that one has to deal with
In part unpredictable behavior. An Illustration of the complexity one has to deal with when
attempting to fUlly protect users from suffering, Is the following example.
A processor breaks down while running a process that holds several locks. The recovery system
will first have to signal every other processor In the system that a colleague Is malfunctioning.
This will prevent processors from Interacting with the malfunctioning one. Then the process needs
to be recovered. The most elegant way Is to restart it from where it was forced to stop. This will
also avoid any problems with the locks. In general this will not be possible for there is no way to
question the faulty processor as to the progress of the process. It is also difficult to obtain the
current point of execution from the process context when it is at all reachable (= not in private
memory). Usually some backtracking procedure must be used to find a point from which a restart
Is possible or alternatively the process could be restarted from scratch. Since the process held
locks It may have left user data structures and kernel data structures in an inconsistent state.
These structures will have to be salvaged before any process is allowed to further manipulate
them. (An error must therefore be detected as soon as possible!).

The above example clearly shows the complexity involved in recovering from some errors. It also
shows that a need for a hardware signalling system exists in order to warn all sane processors
as soon as possible (See 2.6 IPrC).
Functions and mechanisms of error recovery therefore Include:

• Hardware generated messages (on error) to every processor
• Watchdog timers to detect software crashes
• Capability to Inhibit requests from faulty requestors.
• Isolation of faulty processors
• Resetting/restarting of faulty processors
• Salvaging of corrupt data structures
• Removal of deadlocks caused by the error
• The error recovery system must not propagate fault effects through the system.
• Restart the system from a fresh Instance of the operating system

• etcetera.

It wUl take a lot of effort to reach the sophistication of recovery as In the example above. However
much less effort Is needed to have a recovery that outperforms that of a uniprocessor.
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2.11 Performance

There are several ways to judge the performance of computer systems. Often the performance
of mUltiprocessors with N processors Is compared to N independent uniprocessors. There are
two dimensions to this comparison. First. some mUltiprocessors are designed to enlarge the
throughput. Second, some are meant to decrease response times. MUltiprocessors optimized for
one of these dimensions commonly achieve profits in the other dimension too. It is evident that
running a program on a set of N Independent uniprocessors will not show decreased response
times when compared to a single uniprocessor. A mUltiprocessor however may show this effect.
When comparing the pure CPU-capacity that can be used for user processing between an N
processor multiprocessor and N uniprocessors. a processor always looses. This is because the
marginal benefit of each added processor decreases as a consequence of. amongst others, the
following phenomena:

• Memory Contention
• Processors-Memory Network contention
• Cache validity delays
• More complex Scheduling
• More complex locking
• More OS overhead in 10
• More multiprogramming

- longer queues
- fuller hash tables
- etc.

A lot of research is going on to diminish the effects of these phenomena.
So It seems that a multiprocessor has less throughput than a corresponding set of uniprocessors.
This would be true when the workload would be always evenly spread over the processors in both
cases. In practice this is not the case. The multiprocessor is capable of balancing the load
automatically which is not the case for N independent uniprocessors. In practice (dependent also
on organizational aspects) a multiprocessor will perform better.



19

3 Target Multiprocessor

In this chapter we will do two things. Whenever possible (or unavoidable) we will determine the
properties we would like our multiprocessor to have. Otherwise we will restrict the range of
possibilities for a system property. Note that this chapter gives trivial or a priori arguments most
of the time and that detailed discussions of certain topics can be found in chapter 4.
With every choice the arguments that led to It are mentioned. The reader is stressed to note that
some of the arguments are not pure technical but are also based on organizational aspects. Most
of the choices made are captured in "Conditions". This gives clarity and makes referencing easy.
Although the word condition Is usually used to mark strict limits we will at times withdraw or alter
one on our route to our ultimate multiprocessor. Next to conditions we also define "Design Strives"
as guidelines to arrive at certain favorable characteristics of the system.

We will stick to the outline also used in chapter 2 and first deal with the aspects (though not all)
of the multiprocessor and then look Into the question of what configuration to choose.

3.1 Aspects

Let us first recall from chapter 2 the aspects of a multiprocessor that we should look into:

Memory Map
Interconnections
Symmetry
Input/Output Structure
Interrupts
Inter Process(or) Communication
Reserved Storage Area's
Operating System
User facilities for Parallel Processing
Error Recovery
Performance

Since the work presented In this report is at the very beginning of the project we will not discuss
the Items

User facilities for Parallel Processing
Performance

and Error Recovery

but leave these for discussion until they are due. Error Recovery
however will occasionally be touched upon in treating the other aspects.
Symmetry of the system Is a property we highly appreciate. We will not devote a special
paragraph to this aspect but use It as an argument in making choices about the system
configuration.
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Design Strive 3.1
The system must be as symmetric as possible.

Since the group Digital Systems had already put considerable effort into the development of a
uniprocessor minicomputer based on the UNIX version 7 operating system and the VMEbus from
1982 until 1986 [BOKH82], it was natural to try to put that experience to use. For this reason the
target mUltiprocessor should be built around the VMEbus and should use the Unix operating
system:

Condition 3.1
The implementation must be based on the VMEbus.

Condition 3.2
The Operating System to be used is UnixR System V.

This restricts the number of choices in some of the aspects mentioned.
Let us now discuss the aspects one by one:

3.1.1 Target Interconnections (VME)

Because of the forementioned starting point this paragraph really comes down to a discussion
of the VMEbus though placed in the light of multiprocessor systems where appropriate.

The VMEbus dates back to the late 1970's when Motorola developed the 68000 microprocessor.
To support this processor a development system was built that had the predecessor of the
VMEbus as its backplane. This predecessor was called the VERSAbus. During the evolution of the
VERSAbus a european division of Motorola's In Munich, Germany developed some eurocard-­
sized boards using a backplane for those boards derived from the VERSAbus. They called it
VERSAbus-E. Shortly after this, Motorola licensed a number of companies to second source the
68000. These companies were also Invited tosupport a standard bus for 68000-based
deVelopments. One agreed upon supporting the VERSAbus-E which was renamed VMEbus. Since
then several specifications were made for this VMEbus. The latest revision is from the IEEE P1 014
Standard Committee and is known as Draft 2.0.
Apart from the specifications themselves numerous descriptions have been written ([KAPL81],
[rIMM87]) so that we will restrict ourselves here to what Is necessary to understand the rest of
this report.
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The VMEbus specification describes mechanical, electrical and functional aspects of the VMEbus.
The specification also includes descriptions of 2 other busses: the VSB (VME Subsystem Bus)
and VMS (VME Serial Bus) bus.

Figure 3.1 VMEbus based System

The VSBbus Is a bus private to a VME board processor. Its purpose is to give that processor
direct access to additional memory, 10 , and other functions. This bus will not be further described
here.

The VMSbus Is a self-arbitrating high-speed serial bus that occupies two signal lines on the
backplane. It also shares the reset line and ground with the VMEbus. The VMSbus Is as such an
Integral part of the VMEbus as opposed to the VSBbus which Is better characterized as an add­
on bus. The VMSbus supports such functions as Intelligent semaphores, broadcasting,
simultaneous polling and fault tolerant schemes. We will describe the VMSbus In paragraph
3.1.1.5.

The VMEbus bears an important feature namely that it is not only specified as a group of signal
lines and their electrical interfacing details but that functional modules are specified that define
and therefore standardize a number of operations on the bus. The bus thus consists of the signal
lines, the Interface logic and the functional modules.

The signal lines are grouped Into 4 buses, each of which having its own associated functional
modules. The 4 buses are the Data Transfer Bus (DTB), the Priority Interrupt Bus. the DTB
Arbitration Bus and the Utility Bus.
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3.1.1.1 Data Transfer Bus

The Data Transfer Bus holds three groups of signal lines that, in traditional microprocessor terms.
would be called data bus, address bus and control bus. To this Data Transfer Bus 4 functional
modules are defined known as:

master
slave
location monitor
bus timer

The master initiates data transfer bus cycles in order to transfer data between itself and a slave.
There are 7 basic types of data transfer bus cycles: read, write, unaligned data transfer, read­
modify-write, block transfer, address only and interrupt acknowledge cycles. The read-modify­
write cycle will prove to be of particular importance to us.

The slave detects data transfer bus cycles initiated by a master and, when those cycles specify
Its participation, transfers data between itself and the master.

A location monitor holds an address or a number of addresses set by the user. It continuously
monitors the data transfer bus to see whether such an address is used in a data transfer cycle
and if so It interrupts Its processor.
Some companies now provide value passing location monitors. Associated with the location
monitor is a register. When writing the register from the VMEbus a local Interrupt is generated and
the data is stored in the register, available for the interrupt handler to investigate. This mechanism
can be used for inter processor communication. For example, a message is placed in shared
memory by processor A which subsequently notifies processor B by writing a pointer, identifying
the message, to a location monitored by B. B's interrupt handler will now be able to locate the
message.
Other forms of the location monitor occur, bearing features such as message broadcast, message
buffers etc. [FORC87]. With this broadcasting method an 8 bit message can be transferred to a
maximum of 20 boards In one standard VMEbus write cycle (about 330 ns). Unfortunately this
type of broadcasting is not standardized In the VME specifications.
(Note: The type of broadcasting mentioned here should not be confused with the Broadcast Bus
signals as defined by the VME specification. The-'atter signals are each sent over a dedicated
signal line on the backplane (See Utility Bus below).)

The bus timer terminates the data transfer cycle If It takes too long. It is useful in fault tolerant
environments to hide hard- and software failures. Accessing a malfunctioning or non-existent slave
will not hang the system when such a bus timer is used.

An Important Issue not treated yet is the phenomenon of Address Modifier lines. (For short: AM
lines). These 6 lines form part of the group of DTB address lines and essentially define 28 (= 64)
logical address spaces. The AM code of each data transfer cycle thus determines to or from
which address space the transfer takes place.
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There are numerous ways of using the AM lines.
Let us name a few:

System Partitioning

Complete microcomputer systems may coexist In one VME rack. Mutual independence with
respect to address space Is achieved through the use of disjunct sets of address modifier
codes.

Memory Map Selection

Slaves may be designed to respond at different addresses, depending upon the address
modifier required. This allows the master using the bus to place the system resources in
selected map locations (or eliminate them from the map) by providing different address
modifier codes.

Privileged Access

The AM code could be interpreted as a privilege level. Masters not having the correct
privilege level should be denied access.

Distributed Memory Management

Memory Management logic is often used in systems to allocate and translate segments
dynamically. A collection of these segments is assigned to each active task. Each time the
operating system switches from one task to the next, It must either change the contents of
the segment registers or select another set of segment registers (the latter approach being
much faster).
Address Modifier codes may be used as segment register selectors. In this case, the Master
places the AM codes on the bus which Indicate to memory management logic on the slave
boards which set of segment registers to use.

Addressing Range

The VMEbus provides 31 address lines to allow direct addressing to over 4 billion bytes. For
most slaves however the extra logic required to decode all 31 address lines Is a needless
expense. For this reason. the VMEbus defines 3 addressing ranges:

Short addressing 64 kbytes
Standard addressing 16 Mbytes
Extended addresslng4 Gbytes

A group of Address Modifier codes Is set aside for each type of addressing. Slaves receiving
a short address AM code Ignore the upper 16 address Iines(A16-A31). Slaves receiving a
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standard address AM code ignore the upper eight lines (A24- A31). When receiving an
extended address AM code, the slave decodes all 31 address lines.

Slave boards which do not decode address lines A24-A31 should not respond to extended
address AM codes. Slave boards which do not decode address lines A16-A31 should not
respond to either extended or standard AM codes.

From the above one may observe that the VME specification uses up most of the 2
6

(64) AM
codes available. For arbitrary use by the user 24 (16) codes are set aside.
In appendix B the AM codes are listed along with their intended purposes.

The VMEbus does not have a standard mechanism for message passing or broadcasting. Since
the need for such services is high implementers were required to develop their own method of
inter processor communication. But for lack of a standard, each implementer's IPrC differs.
For broadcasting the situation is even more complex. The VMEbus specification (IEEE 1014 Rev
C.) does not specify a 'broadcast cycle') but it also does not forbid one. To provide broadcasting
on the VMEbus an Implementer would first have to define a 'broadcast cycle' and then the
broadcast protocol. This Is what FORCE computers have done. Their patented implementation
is called FORCE Message Broadcast (FMB) [FORC87]. The reason of discussing it here is to
show the possibility of broadcasts on the VMEbus.
FORCE Computers have defined a broadcast cycle as a normal write cycle with two additional
criteria. The first Is that all slaves, responding to the address written to, must synchronize on the
falling edges of the Data and Address Strobe signals In order to correctly time their respective
Data Acknowledge and Bus Error signals. The second criterium is that when one (or more) of the
participating slaves detects an error, It asserts its Bus Error signal within 150 ns after the Data
Strobe signal has gone active. The other slaves must not drive their Data Acknowledge signal valid
before 200 ns after the Data Strobe has been asserted.
The Broadcast Protocol Is as follows (If we interpret the scarce information correctly). The
broadcast message is a byte. The CPU that wishes to broadcast this message byte to a number
of other boards sends a 32 bit word to the Broadcast Reception address. The 32 bit word is
composed of 3 fields. The first field is the 8 bit message. The second field is a 21 bit field, for
each possible slot in a VME system a bit. For those boards that must receive the message the
'slot-bit' Is set. The third field Is 5 bit wide and seems to be unused. The receiver inspects the data
word upon arrival and discards It when Its 'slot-bit' was not set. Otherwise it places the message
byte Into an 8 byte deep FIFO and optionally Interrupts the local processor.
The above message broadcasting can easily be extended to broadcast longer messages by
Incrementing the VMEbus address In between woFd-broadcasts. The first word could still hold the
21 bit field to address the receivers, while the successor words could hold pure data. One aspect
tnat needs to be considered is the signalling of the end of the message and the number of bytes
It contains. This could be done through a dedicated broadcast location separate from the one the
first broadcast word was sent to. The message byte to this location would have to contain the
byte count of the message and the local CPU would have to be interrupted. To complete the
extension the unused 5 bit field may be used for message identification.
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3.1.1.2 Priority Interrupt Bus

The Priority Interrupt Bus consists of 7 interrupt request lines. one interrupt acknowledge line, and
an Interrupt acknowledge daisy-chain. To this bus the following 3 functional modules are specified:

Interrupter
Interrupt Handler
lack Daisy-Chaln driver

The Interrupter Is the module that Initiates Interrupt cycles on the VMEbus. It does so by driving
one of the 7 request lines. When It receives an Interrupt acknowledge signal It will send extra
information about itself or the cause of the interrupt. It uses the Data Transfer Bus to that purpose.

The Interrupt Handler receives the interrupt requests from one or more interrupt request lines.
Upon reception It will ask the highest priority interrupter for additional information using an
Interrupt acknowledge type of DTB cycle. During the Interrupt acknowledge cycle the interrupter
Is addressed by placing its level on the three least significant bits of the address bus. As said. the
Interrupter will send an interrupt vector to the handler which will subsequently invoke the
appropriate Interrupt server.

The lack Daisy-Chain Driver activates the daisy-chain whenever an interrupt handler
acknowledges an Interrupt request. The acknowledgement of the Interrupt handler is done by
driving the interrupt acknowledge line IACK* (A * denotes a low level active signal) low. This
IACK* line runs the full length of the backplane and is therefore accessible to every board. Hence
it Is not Important where the interrupt handler is located. The IACK* line is the input to the daisy
chain. It is therefore connected to the IACKIN* pin of slot A1. When the board at slot one did not
generate an interrupt it will pass on the low level on its IACKIN* pin to Its IACKOUT* pin otherwise
it will make IACKOUT* high. The backplane connects all IACKOUT* pins of a slot to the IACKIN*
pin of the successor slot (except for the last). Thus boards down stream will only receive an
acknowledge when no boards upstream the daisy chain intercept It. The daisy-chain thus assures
that only one Interrupter sends the additional Information asked for by the handler when more
than one has generated an Interrupt request.

3.1.1.3 DTB Arbitration Bus

When more than one master or interrupt handler need the Data Transfer Bus some mechanism
must allocate the bus. The functional module that performs this task Is the DTB Arbiter or just
Arbiter. The Arbiter uses the arbitration bus to do Its job. This arbitration bus consists of 4 bus
request lines, 4 dalsy-chained bus grant lines and 2 other lines called bus clear and bus busy.
The complementary module to the Arbiter Is called a Requester. The Requester resides on a
board where there exists at least one master or one Interrupt handler module. On demand of such
a master or Interrupt handler the Requester requests the Data Transfer Bus using one of the 4
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request lines. It then waits for a bus grant acknowledge to arrive via the daisy-chain associated
to the request line used.
When the acknowledge comes in from the Arbiter the Requester seizes the bus by making the
bus busy line active. It then signals the local module in need of the DTB that it is available.

The Arbiter grants control of the Data Transfer Bus to only one requester. It considers requests
on Bus Request Lines to have a priority. This priority depends upon the request line itself and on
the priority scheme used. When for example a fixed priority scheme is used the bus request line
BR3* has highest priority. A round-robin scheme is also specified.
Some arbiters drive the bus clear line when they detect a request for the bus from a requester
whose priority is higher than the one currently using the bus.

3.1.1.4 Utility Bus

This bus is not of particular concern to multiprocessor issues with exception perhaps of the
SYSFAIL* line in this bus. This broadcast line plays a role in the startup sequence of the system
after power up. This sequence is somewhat different for mUltiprocessor systems then for
uniprocessor systems as we will see later on. However the more primitive start up is the same for
both and it is good to be familiar with that sequence so that subsequent discussions of the higher
level start up sequence have a sound basis.
The VMEbus specification recommends all boards in a VME system to keep the SYSFAIL* line
active (= low) until they are fully initialized. This insures that when SYSFAIL* becomes inactive
all boards are ready to run and may perform start up sequences inVolving VME communications.
The latter typically lie in the operating system domain and will be discussed in chapter 4.

3.1.1.5 VMSbus

The VMSbus is a serial bus that includes three lines: Serial Clock (SERCLK). Serial Data
(SERDAT*), and System Reset (SYSRESET*). SYSRESET* is used to initialize all modules on the
serial bus. SERCLK is driven by a high_current totem-pole driver from the SERIAL CLOCK module.
of which there is one per system. The SERCLK has a cycle time of 312.5 nanoseconds. One data
bit Is transferred per SERCLK cycle. SERDAT* is a wired-QR line which can be driven with an
open-collector driver by any module. A ·one· on-SERDAT* results when one or more modules
drive It low. A ·zero· results when no module Is driving SERDAT*. so that the backplane
terminating resistors pull the signal high.
The only object that can be sent over the serial bus is called a frame. The following frame types
exist:

Data Transfer Frame
Semaphore Set Frame
Flip-Flop Set Frame
Flip-Flop Reset Frame
Token Passing Frame
Canceled Frame
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All frames but the first and last convey one bit of information. Usually this bit is used to set or
reset a flip-flop or register bit. The flip-flop (register bit) can be interrogated by the local processor
or may Interrupt the processor. Semaphore Set and Token Passing frames are special in that they
are turned into cancel frame when illegally used (e.g. set operation on already set semaphore).
A frame Is composed of subframes and optionally a data part as depicted in figure 3.2.

Header
Frame

[Data]
[Frame Jam

Type Status] Bit

nr of bits: 26 3 (max 32x8) 3 1

Figure 3.2 VMS Frame Structure

Every frame contains all subframes depicted except for the canceled frame. This frame lacks the
Frame Status subframe. The cancelled frame does not convey any information and is therefore
not further discussed.

The exact contents of the several subframes is not important in this context. Their accumulated
length however is. The total length of all subframes. excluding the Data subframe. Is 33 bits.

The attractions of the VMSbus are multiple. we mention:

Intelligent Semaphores

The VMSbus makes it possible to have "Intelligent Semaphores". Intelligent Semaphores as
defined In the VMSbus specification are distributed semaphores of the binary type. Every
board that Is concerned with the semaphore has Its own local copy of it (In fact there is no
'original'). As usual two operations are possible on the semaphore, the set and reset
operation. The VMSbus guarantees that a (re)set operation (re)sets all copies In an Indivisible
action. Simultaneous attempts to set a semaphore are serialized by the arbitration of the bus.
A requester of Insufficient priority retires from the bus upon detection of a higher priority
requester. An attempt to set an already set semaphore wUl be canceled by the receiver(s).
(The recelver(s) tum the setting frame Into a canceled frame by forcing the SERDAT* line low
dUring the Frame Type field transmission: a Frame Type with value '111' Identifies a canceled
frame).
When a processor on a board needs to set the semaphore It first inspects the local copy. If
the semaphore is set It refrains from trying to set It via the VMSbus. This eliminates useless
loading of this bus. If the semaphore Is not set the processor performs the (VMSbus)set
operation to set it.
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In case the local copy is set the processor has two options. It can loop until the local
semaphore gets free. This is a busy form of waiting typically used on "short-term"
semaphores normally used to protect data structures in main memory. Alternatively the local
semaphore can be made to Interrupt the processor as soon as It gets reset. This is more
efficient for "long-term" semaphores typically used for controlling access to a physical device
like a printer. For this last case the hardware could even contend for the semaphore
Independently and Interrupt the processor the moment it has acquired the semaphore.

Quoting from the specification [VMS83]:

"For "long-term" semaphores the VMSbus offers a great improvement. A processor can
tum the entire operation of setting the semaphore overto on-board serial bus hardware,
and be Interrupted only when the semaphore has been set and the associated resource
Is actually available."

Still we need to be critical about the speed with which a semaphore (and any flipflop by the
way) can be set through the VMSbus. The frame to set a semaphore consists of 33 bits (that
is: a frame without data). These take 33 times the clock time (312.5 nano seconds), equalling
about 10 microseconds. In 10 microseconds a modem RiSe processor at 25 MHz executes
250 of its instructions! This means that we indeed should apply this type of semaphore with
slow devices only. Multitasking processors working with these semaphores will very likely be
made to switch processes when setting such a semaphore. even if it is free!

Token Passing

Whenever in a system a group of interchangeable resources exist it may make more sense
to have a token in the system for each of these resources than to use semaphores that have
to be polled until one is found to be available. Users of the semaphore pass tokens that are
sent to them on to their successor user when they do not need the resource at that particular
time. Otherwise they retain the semaphore, preventing other users to use the semaphore. The
VMSbus provides up to 1024 tokens to be created and passed from board to board with very
little software overhead. The VMSbus also guards against duplication or loss of a token.

Low Priority Data Transfer

Though not particularly well suited for fast poffifto point communication of data, the VMSbus
Is capable of transferring data between two processors. It can thus be used for inter
processor communications of a low priority. This priority should then be a parameter to IPrC
calls or should be deduced from the type of messages sent. Sending low priority data over
the serial bus takes some of the burden from the parallel bus. The bus could even be used
for transport of (non-graphlcal) terminal data. The data rates Involved there are rather low as
are the amounts of data.
To mitigate the low bit rates, the bus can be tailored to broadcast messages in a very
efficient way. Multiple receivers can simultaneously pick up a message from the bus. In fact
this feature also underlies the Intelligent semaphores already mentioned. There a special
event (set or reset semaphore) was broadcasted. here other events or data may be
broadcasted.
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Fault Tolerance

Events communicated over the VMSbus may set or reset plain f1ipflops at every receiver end.
In this way local interrupts can be generated or processors may be halted or reset. This adds
significantly to the system ability to recover from errors.
The fact that the serial bus provides a secondary path for IPrC also adds to that property.
Suppose for example that a processor breaks down in such a way that it blocks any transfers
on the main bus. To reset this processor might help but cannot be performed without the use
of the serial bus. (One might even make the hardware such that the parallel bus drivers are
disconnected on remote command.).

The VMSbus is specified as an integral part of the VMEbus precisely for support of multiprocessor
systems. The reason that it stays undiscussed in many other works dealing with both VME and
multiprocessors probably is its speed. This speed is rather low, 3.2 Mbit per second is the
maximum bit rate. (Remember: It is a serial bus). The effective bit rate however isn't by far that
high. A lot of overhead Is Incurred by the mandatory signalling frames that must be used on the
bus. For example to transmit N bytes over the bus an overhead of 33 bits is present. N may range
from 1 to 32. At best the overhead will be as low as about 13 percent for N equalling 32. At worst
the overhead is 413 percent, that is, over four times as many signalling than data bits are sent.
In this picture we did not consider collision of frames, cancelled frames or loss of synchronization
by which even more overhead is incurred. In the case of a loss of synchronization (probably very
rare!) the bus is "jammed" for at least 512 cycles which amounts to 160 microseconds.
Hence the VMSbus Is not the most suitable bus for pure point to point data transfer at high rates.
Its attractions must lie elsewhere.
For the Event Frames the situation must be judged differently. Indeed. the overhead is 3300
percent here but we have the possibility of broadcasting and we have the security aspects
mentioned that ease the pain. Providing the security aspects, like prevention of token-duplication
etc., would bring extra costs with methods like semaphores. So, Event Frames are not as
Inefficient as they seem to be.

Recalling paragraph 2.2 we see that, when using the VMEbus, the processors-memory modules
communications either use the VMEbus or are local to a board. A third alternative is to use a
VSBbus to bypass the VMEbus. For our purposes this last alternative Is equal to local memory.
For memory connected via the VMEbus we thushave the time-shared bus situation with Its
Inherent bandwidth limit. For the VMEbus the bandwidth Is 40 Mbytes/sec which Is not large
enough for a multiprocessor to be efficient. Since processor-processor communications will also
use the VMEbus, the urge to reduce VMEbus traffic Is even greater.
Because the use of the VMEbus was an a-priori choice we will have to find solutions within Its
possibilities.
The process of finding solutions for the traffic problem Is strongly Influenced by the way the
memory map Is structured. Solutions for the processors-memory communications are therefore
discussed in the next paragraph.
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3.1.2 Memory Map

The virtual level of memory as discussed in paragraph 2.1 is entirely determined by the operating
system. Since we have chosen Unix System V we know how the memory map for each process
will look like:

Figure 3.3 Memory Map Unix Process

A map as used by a process consists of a
region of code in the lowest portion of
virtual memory. The code region can be
shared with other processes. The code
region Is fixed in size. The data region,
containing static and dynamic data, is
therefore placed directly on top of the
code region. At the upper end of virtual
memory the stack segment is placed.
When the stack grows it does so towards
lower addresses, when the amount of
dynamic data rises the data region grows
towards higher addresses. Note that when
data must be shared between two
processes shared memory must be
explicitly requested via the System V IPC
package.

~

Shared Memory

t
Dynamic Data
-----------
Static Data

Stack (private)

Data (sharable)

Data (private)

Code (sharable)

At the physical level we may study a number of memory architectures in order to compare them
and subsequently choose a suitable one from them. In a multiprocessor that has a global bus,
usually other. local, buses exist too. Memory modules can be connected to the local bus, to the
global bus or to both. We will refer to memory that is connected to a local bus as Local Memory
since It will normally reside on the same board as the other components connected to that bus.
Consequently memory that is connected to the global bus only is referred to as Global Memory.
Using these terms we can set up a number ~architectures differing In the location and
accesslbnity of the memory modules. In the figure below 4 of these architectures are presented
in one single figure. The figure uses the MSBI (Master. Slave, Bus, bus Interface) notation defined
In [CONT85J.



31

Archileclure I
I
I
I
I
I
I

Gil CPU:
I
1
I
I
I
I

Leaeod

0 Master

D Slave

~ Bus

t Bus interface

issues access requests

receives access requests honors lesel requests

supports communications belween modules
connected to it

lransfers access requests between buses.
Incorporales adress translation. Is unidirectional
lor access requests. bidirectional for data

Figure 3.4 Location of Memory Modules

The LM1 module represents Local Memory that can only be used as private memory since no
access path from the global bus exists (It is physically private). The LM2 and LM3 modules
represent Local Memory too, they can serve as private memory and/or as shared memory. To
access the Shared Memory in LM2 from the global bus ownership of the local bus is needed,
preventing the local processor to access any memory. Access to shared memory In LM3 causes
much less contention, the local processor is no longer denied access to Its private memory.
Global Memory is represented by the GM module. This memory too can be used as (logically)
private and/or shared memory.
In [CONT85] an extensive comparison has been made between architectures 2,3 and 4 and a
variation on architecture 4 not presented here. The conclusion from [CONT85] is that architecture
4 gives best performance in all cases, where system load and number of processors were varied.
We will therefore adopt architecture 4, replicated in full below. This choice has the fortunate side­
effect that all other architectures presented above can be emulated by the chosen one so that
diverse experiments can be done.

Figure 3.5 Chosen Location of Memory Modules

We added a global memory module to allow for a processor independent shared memory to store
the operating code and data structures In. First of all this Is where they will be in the early days
of the project and second It Is where they will be during several discussions in this report.
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Eventually this Global Memory module may be eliminated. The Local Memory modules can be
used as private memory, as a cache, as shared memory or as a combination of these.

3.1.3 Interrupts

The target system will, since based on the VMEbus, provide us with VME interrupts and Location
Monitors as discussed in 3.1.1. Both mechanisms can be used to implement a subset of the
traditional single processor interrupts. The VME Interrupt mechanism is not symmetric while the
location Monitor mechanism Is (or at least can be made to be).
To comply with Design Strive 3.1 (the symmetry strive) we will not use the VME interrupts to
handle events that may occur while the system operates normally. Instead, we will use the VME
interrupts to handle abnormal events such as hardware faults:

Condition 3.3.1
VME interrupts shall only be used for the signalling of hardware faults.

How the remaining events (e.g. 10 events) are dealt with is discussed in paragraph 4.3.

3.1.4 Inter Processor Communication

As eXplained earlier IPrC must support various type of communication. One of these types is inter
process communication (IPC). Unix System V contains an IPC package that provides for message
passing, shared memory and user level semaphores. The IPC package uses data structures in
main memory. By placing these structures In shared memory and protecting them against
corruption In a multiprocessor environment the existing IPC mechanism can be used in the
multiprocessor too. For this reason we will not discuss IPrC to support IPC. The main remaining
function of IPrC then is the MP-IOP communication. We will discuss some methods to support
this communication. The mechanisms will be made as universal as possible in order to keep the
possibility to perform IPC with them. In this way we may eventually discard the System V IPC
package and replace It with our own thus unifying the message system.

Apart from the restrictions already present due to earlier choices (VME for example) no further
limits are Imposed on the IPrC mechanisms on beforehand.
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3.1.5 Operating System (UnixA System V)

Due to the existing knowledge about Unix In our group and its availability to the academic world,
Unix has been selected as the operating system for our multiprocessor system. Unix is not the
most suitable operating system to be Implemented on multiprocessor hardware. This is due to the
fact that Unix has been specifically written for a single processor system thereby using the
simplest techniques possible to protect shared resources from corruption. Exactly these
techniques pose some problems since they do not protect these data structures on a
multiprocessor system as will be explained in this paragraph and the section 4.2. Nevertheless
the choice for Unix is justified since it also has a number of advantages. Among these are the
availability of lots of utility and application programs, the relative ease of migration over processor
types and the trend for standardization of Unix-based operating systems as apparent from the
existence of standardization groups like POSIX, X/OPEN and the OSF (Open Software
Foundation).

Since the construction of a multiprocessor system under Unix starts from single processor Unix,
a compact description of single processor Unix is given in the next paragraph. The adaptations
to be made in order to arrive at the target multiprocessor system are discussed in chapters 4,5,6
and 7.

As for the VMEbus we do not intend to fully describe the Unix operating system for uniprocessors
here. Numerous descriptions of Unix have been made ([BACH86], [L10N77] for version 6, etc)
and some are readily available to consult (e.g. [BACH86]). We will only describe those parts of
single processor Unix that are discussed for a multiprocessor in subsequent chapters of this
report and that are not sufficiently treated there.

We will present the system startup, system Call interface and mutual exclusion, however all in a
very brief manner.

3.1.5.1 System Startup

We assume an Intact file system called "root" to exist on the "system disk". In "root" a file called
·unlx" Is present that contains the object code for1he operating system. If we then power up the
system, a bootstrap program will start running from ROM'. The bootstrap loader loads the
contents of block 0 of the "system disk" In main memory. The block 0 contents Is the object code
of a second loader program that Is given control by the bootstrap program and that will load the
operating system code from file ·unlx" in main memory from address 0 upwards. Control is then
transferred to address 0 and Initialization of the system starts.
After Initializing the peripheral devices, MMU and as data areas, the MMU Is 'switched on'. A
number of variables and data structures are then Initialized, for example: 'maxmem', 'swapmap',
character buffers for serial 10 devices, block buffers for block devices (e.g. disk), Inode table,
etcetera.

We present the most common procedure.
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Following this the first process is manufactured artificially. (That is. It is the only process that is
not created using fork, the system call meant to create processes). This process 0 spawns a
second process with Process IDentifier (PID) 1 and puts Itself to sleep to allow this new process
to run. (It has by then become the swapper process, the process that is responsible for moving
processes to the swap space on disk when main memory Is full (and vice versa)). Process 1
begins with copying an array of code from the kernel space into Its own code region and transfers
control to It. The code now running overlays the address space of process 1 with the program
stored in "/etc/init" and control is transferred to this program. (The reason for this indirect way
of doing Is eXplained in [BACH86]). The program now running as process 1 is responsible for the
Initialization of new processes. Therefore process 1 is known as init. Init reads the file "/etc/inittab"
to find out which processes It should spawn. Typically it spawns getty processes for each terminal
in the system. The getty process allows an (authorized) user to log in and starts a login shell.
When the user stops working (properly) the getty process exits and init will re-spawn one. The
moment the getty process exits it may still have child processes. These are assigned init as their
parent. If the user did not indicate otherwise init will terminate the child processes. As an aside,
both process 0 (swapper) and process 1 (init) may spawn daemon processes. The daemons
created by process 0 always run in kernel mode while those created by process 1 are user-level
processes. Daemon processes provide services that are necessary throughout the lifetime of the
system. For example the page-reclaiming process vhand Is spawn by process 0 while printer­
spoolers and such are spawn by process 1.
This concludes the system startup sequence. We will return to this subject in section 4.5. then for
the multiprocessor case.

3.1.5.2 System Call Interface

User
mode

Kernel
mode

Traps

System
calls

lnlerrup13

(nceplions)

(priviliged
instr)

Figure 3.6 Enter Kernel-Mode

A process that requires a specific service from the operating system does a socalled system call
(or supervisor call).To the process and the programmer it appears as if a system call is just
another function call. However this is
not so, as In the execution of a system
call the processor mode has to
change from user to supervisor (or
kernel) mode. This change of mode
happens only on certain events as
indicated in the figure below:

One of the processor's Instructions Is
a socaIled trap or extra code which
causes an Internal Interrupt to occur
and In this way switches the processor
Into the supervisor mode. The Unix
system calls are Implemented using a
library of functions. the e-Iibrary. The
functions In this library pass the Trap-
Handler (TH) a number that Identifies the system primitive that must be Invoked. The TH then
copies the appropriate amount of parameters from the users stack to the u_area and calls the
system routine requested. When the system routine returns the TH inspects by looking at an error
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field in the u area (u.u error) whether errors have occurred. It then manipulates registers in the- -
user context, that was saved when the trap occurred, in such a way that they either present the
return value(s) of the system call or an error indication. The TH then returns to user mode where
the C-Iibrary routine continues. The library function in its tum inspects the return values and
returns a value to the user process.

3.1.5.3 Mutual Exclusion

Mutual exclusion is achieved through two techniques. The first technique Is a very simple one
and covers the entire spectrum of possible situations, but one, where critical regions of code
must be protected. The only case where the first technique is inadequate is when Interrupts
occur. Then the second technique must be applied.

The first technique is to split up the operating system code in two parts, the kernel part and the
non-kernel part. The kernel contains, among other things, all code that deals with resources
shared by processes. The non-kernel part Is formed by all other code. Processes will in general
execute mixed code, that Is parts of their code is kernel code the rest Isn't. When a process
executes kernel code it is said to execute In kernel mode (sometimes called supervisor mode)
otherwise It executes In user mode. Situations will arise where 2 or more processes wish to
modify the same shared data structure. We say that these processes execute or wish to execute
a critical section of code. We denote this type of critical section Process - Process critical
section or for short P-P critical section. All critical sections are kernel code. The obvious way
of protecting the data structures now Is to let processes that enter the kernel code never give up
the processor until they leave this kernel code again. This guarantees that only 1 process is
modifying the kernel data structures at a time and, equally Important, that once the modification
started it is fully completed by that process. This Is why the kernel Is said to be non-preemptable.
The reader will understand from the above that preempting the processor from a process
executing in user mode Is perfectly legal. In fact the Unix's process scheduler does so all the time.

One problem will arise when using the above technique and that Is when an Interrupt occurs while
a process is in kernel mode. Such an interrupt could invoke an interrupt handler that also modifies
the kernel data structures. A section of code critical In this sense Is called a Process - Interrupt
Handler critical section or P-IH critical section. This Is where the second mutual exclusion
technique Is applied: When running kernel code interrupts are disabled just before entering a
critical region and they are re-enabled immediatelY-after leaving the critical region. In this way
mutual exclusion Is guaranteed.

Oear1y these techniques are Insufficient In a true multiprocessor system where more processors
are allowed to run kernel code at a time and where more than one processor may be Interrupted
at the same time. The consequences of this will be explored In the next 4 chapters. One
observation can already be made at this time. In the multiprocessor case there will also exist
Interrupt Handler - Interrupt Handler critical sections (lH-IH critical section) when Indeed
more than one processor experiences Interrupts. When the level of interrupt becomes Important
we will denote such a critical section as follows: IH(I)-IH(m) critical section.
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3.2 Configurations

As said In the opening of this chapter, this chapter only serves to restrict in a coarse manner the
range of possibilities we allow for the several aspects of our target multiprocessor. This is also
true for its architecture. At this point we only pose the restriction that we will always use separate
10 processors to do the 10. When a board contains an MP and global 10 devices it should behave
as an MP and an lOP to the rest of the system.

A number of architectures, all of which have separate 10 processors, will be discussed in the next
chapters. Finding architectures for a multiprocessor running the Unix operating system is strongly
Influenced by the way Unix protects its critical regions. We discussed the details in 3.1.5. One
either stays close to single processor Unix's mutual exclusion methods or one uses completely
different methods. The first road leads to the following two architectures:

Master-Slaves Architecture
Uni-Kernel Architecture

In these two architectures only one processor is able to run in kernel mode at a time.
The second road leads to the following two architectures:

Multi-Kernel Shared Memory Only (SMa) Architecture
Multi-Kernel Private and Shared Memory (PSM) Architecture

In these two architectures mutual exclusion Is achieved through the use of semaphores. The
difference of having or not having private and/or local memory is used to discuss which parts of
the operating system could be conveniently and/or profitably transferred from shared to private
memory and which parts better stay in shared memory.
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4 Master-Slaves Architecture

4.1 Introduction

When converting the single processor Unix operating system to a multiprocessor version
problems arise In different areas and at different levels.
C.H.Russell and P.J.Waterman [RUSS87] have identified a number of areas for the UNIX operating
system where modifications must and/or may take place. These areas are:

a. Low-level mutual exclusion
b. Higher-level mutual exclusion
c. Multiprocessor task scheduling
d. Efficient inter process communications
e. Flexible memory management/cache coherency
f. Easy reconfigurability and expandability.

The areas a and d are discussed In detail In the sequel. In their discussion of area b Russell and
Waterman already refer to the sleep/wakeup mechanism as a tool to achieve the Higher-Level
mutual exclusion. We will rely on this method and will not detail area b. The task scheduling is
detailed for the Multi-Kernel configuration In chapter 6. For the Master-Slaves configuration
discussed in this chapter we only briefly look at it In paragraph 4.6. The area's e and f are left for
further study: For the memory management we will, for the time being, use the single processor
version as is. No caches will be applied In our system until decided otherwise (Caches must
eventually be used to avoid the VMEbus of becoming a bottleneck):

Condition 4.1.1
No Caches are used (yet).

Reconfigurabllity and expandability will not be discussed as separate items In this thesis.
The considerations above leave us to discuss the problems encountered In area's a,c and d. For
the case of the Master-Slaves architecture we do so In paragraphs 4.2, 4.6 and 4.3. We further
discuss Inter Processor Communication in 4.4 and the System Startup in 4.5.

4.2 Mutual Exclusion.

The solitary reason for the existence of the Master-Slaves architecture Is the large resemblance
It has to a single processor system. The resemblance makes that a Master-Slaves system can
often do with single processor constructs with hardly any modification. The modifications that
have to be made tend to be less complicated than with 'Multi-Kernel' architectures. This
partlcularfy Is true for the Unix-type mutual exclusion problem. By shifting all actions that suppose
a single processor Into the master processor (MMP) mutual exclusion gained through single
processor methods Is also sufficient for the Multiprocessor.
In the case of a Master-Slaves system running Unix, this means that all system calls must be
handled by the MMP. The MMP is the only processor in the system that may run kernel code.
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Since only the kernel will deal with 10, only the MMP will deal with the lOP's. The master
processor therefore is the only one that needs to handle 10 interrupts. This does not mean that
a slave processor (SMP) is never interrupted or trapped. An example of an interrupt to a slave is
the clock interrupt. An obvious trap to occur in a slave is the system call trap. Also exceptions like
a divide overflow may occur In a slave. An SMP may also execute portions of kernel code that
do not need special protection.

Before discussing the implications of the above let us first define a number of terms to ease the
discussion. First of all let us make a distinction between the actions performed by the kernel on
one hand and the kernel mode on the other. In single processor Unix these two terms are often
used to denote the same namely that the 'kernel' is running. We will use the term supervisor
mode to indicate the processor mode and kernel mode to indicate that the kernel is running.
Considering the above the situation experienced by the master processor hardly deViates from
that experienced by a uniprocessor. When executing in kernel mode it is sure it is the only one
and it is sure it will not be preempted. Also it knows that increasing the processor execution
priority to block out interrupts does work since it is the only one receiving critical interrupts.
The slave processors never execute within critical regions so no mutual exclusion problem arises
there at first sight.
Looking in greater detail a few problems become apparent. First of all slaves do run in supervisor
mode in spite of the (first) impression one gets from a Master-Slaves architecture that they don't.
Furthermore the master and the slaves interact via the process table. The slaves must request
kernel mode services from the master. It does so by marking a process as requiring such service
In the process table (placing it on the 'Master Queue'). The master will subsequently select it at
some time for execution. The process table must therefore be protected via a special mutual
exclusion mechanism (e.g. a semaphore). [Note that the processes can be kept on more than one
queue so that the exclusion can be done per queue for efficiency].
On the other hand the master will have to 'dispose' of processes that return from kernel mode to
user mode if other processes wish to run in kernel mode (placing it on the 'Slave queue'). The
master will mark its process as runnable in user mode in the process table and select a new
process from the Master Queue. Again it will manipulate the process table in parallel to other
processors.
Possible race conditions are avoided through an intermediate null process on the slaves and
process 0 on the master as explained In 4.5.

Slaves sometimes run In supervisor mode. Supervisor mode Is entered as the result of a number
of events. The main events are:

Interrupts
Oock
Page Faults

Traps
System Calls
1IIega/lnstructlon etc.

Most of these events will need kemel mode execution. A number will not. The code that will be
executed by the slave when In supervisor mode must handle all events that do not need kernel
mode processing and It must furnish a slave-master interface mechanism for those events that
do need kernel mode processing.
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The Master-Slaves architecture has been extensively treated by Annot and Janssens [ANN085].
We refer to their work for further details about the topics just discussed.

Having achieved mutual exclusion easily one could rest In content. However the next paragraph
will show that In some cases it Is possible to do more. The Process-lnterruptHandler (P-I H) critical
regions can In part be eliminated.

4.3 Interrupts

Many engineers that have to find new ways of applying existing methods (or mechanisms) or that
have to find new methods to solve old problems have difficulty in posing the fundamental
questions. An excellent example is the interrupt mechanism. This mechanism has traditionally
been applied for all kinds of (a)synchronous events on a uniprocessor. One may think of clock
Interrupts, 10 interrupts, OMA interrupts, error interrupts, trap Interrupts, exception interrupts
etcetera. Let us define a new term to reference the events underlying the traditional Interrupts: i­
events. Given the existing Interrupt mechanism and Its traditional use tempts one to use it on a
mUltiprocessor for exactly the same purposes. However at this point one should ask the
fundamental question: 'Do I use interrupts justly for all these l-events T. This question should be
asked to explore the extra possibilities a mUltiprocessor has in dealing with the events. These
extra possibilities might be easily overlooked. We will find that in a uniprocessor with separate
lOP's some of these extra possibilities exist too.

An event traditionally handled via an Interrupt is the \0 ready event. We would wish to deal with
this event without the use of Interrupts for two reasons. The first reason is that if we can do
without the Interrupt we don't have P-IH critical regions for this particular case anymore. As
discussed in paragraph 3.1.5 this kind of critical region Is somewhat awkward to protect. The
second reason Is that interrupt handlers nearly always run In the context of an unrelated process
thereby obstructing a fair accounting. Further the method that we propose will prove to be more
efficient than the traditional method using interrupts.

Knowing that elimination of interrupts could bring profit in mutual exclusion effort, accounting and
efficiency, one could seek to eliminate all interrupts. This Is not possible. For those interrupt types
for which It is, It is not always wise. For those types of Interrupts for which it is possible and wise,
the elimination must be complete. A mere reduction of the rate of Interrupts of that particular type
will not be enough.

let us now look at the way the multiprocessor may handle 10 ready events In the case of
canonical (= what you type Is formatted before sent to process) terminal 10. Suppose a process
on MP1 wishes to read a line of Input from terminal tty4 controlled by IOP2. When no data Is
available the process will sleep. As soon as the user types a line at the terminal the process must
wake up. Waking the process up can be done In a number of ways. When using Interrupts, the
Interrupt handler may wake up the process. Or, the Interrupt handler starts up a 'kernel mode
only' process that In Its tum wakes up the reading process. These are the two traditional ways of
doing It. The next method can be applied in processors (uni- and multi- alike) that employ lOP's.
This method lets the lOP wake up the reading process. Hence, interrupts are avoided and
overhead reduced. This way of doing can also be applied for other forms of 10 like for example
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disk 10. Along the advantages there also exists a major drawback. The MP-IOP interface is not
clear-cut anymore. An engineer who is adding an extra lOP must dig quite deeply into the
operating system, reading and writing data structures that are critical. He or she must make the
software running on the lOP specific for this type of operating system and is not, or less, able
to use standard lOP software.
The last method is in essence a form of inter processor communication. For this reason we term
this method Implicit IPrC. Explicit IPrC then Is the communication between processors using an
explicit universal communication mechanism in which there is no interference between the
transport of the messages and their contents (Message Passing). In the next paragraph these
forms of IPrC are discussed in greater detail.

It is hard to estimate the profit gained from the elimination of interrupts. We therefore consider a
number of events, traditionally handled through interrupts, and look for ways to handle them on
our multiprocessor possibly without the use of interrupts at the MP level.

The i-events can be classified as follows:

Hardware faults:

Exceptions:

10:

Clock:

System Calls:

Miscellaneous:

Bus Error
Defective Components
RAM ECC Errors

Illegal Instruction
Memory Protection
Page fault
System Call trap
Divide by Zero
Trace trap
Breakpoint

la-ready
10-error

Clock

System Call trap

Break-Switch

From the above we take a detailed look at the clock Interrupt and the 10 interrupts. The system
call Interface Is studied in detail elsewhere (3.1.5.3).
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4.3.1 10 Interrupts

There are two main types of 10 in Unix. These are block type 10 and character type 10.
The typical Interrupt handler of the block 10 type does the following essential actions:

In case of error: Mark error In process table entry.
Write error message to console.

Mark 10 done on buffer.
Release buffer If 10 Is asynchronous.
Wakeup (in process table) anyone waiting for this 10 operation.

Inspecting these actions we see that there are no problems In having them performed by the lOP.
The only consideration is the familiar mutual exclusion theme for the lOP will have to access the
process table, console and buffer queue.
Typically there are two interrupt handlers for character 10. One interrupt handler is the transmitter
Interrupt handler (klxint, pcpint, Ipint or dlxint etc.). This handler wakes up processes that desire
to write to the character device as soon as the number of characters in the output queue is less
than a low water mark. Other actions are also Initiated by the interrupt handler by calling a
{device}start (e.g. dlstart) routine. In an MP-IOP configuration the actions performed by this start
routine will be performed locally by the lOP. (That Is, when the MP-IOP Interface is formed by the
clists as proposed by Bregman [BREG83] and Annot and Janssens [ANN085]).
The above means that the only action crossing the MP-IOP border is, apart from reading and
writing the clist queues, waking up processes. This can easily be done directly by the lOP as
observed before.
The second Interrupt handler for character 10 is the receiver interrupt handler (not present for line
printers and such.) This Interrupt handler (klrint, pcrint etcetera) accepts a character from the
hardware and puts It on the appropriate clist queue. It then wakes up all processes waiting for
data to arrive on this queue. In certain cases, e.g. terminal 10, signals need to be sent to
processes on receipt of special characters ("quit";delete" etc.).
Again all of these actions can be performed by the lOP directly.

Summarizing we may say that

It Is possible to avoid 10 Interrupts at the MP level by having the lOP's perform all 10
concluding actions
the main actions are to wake up processes and/or to send them signals. All data
transfer Is done through buffers In shared memory.

4.3.2 Clock Interrupt

The Clock Interrupt Is extensively discussed In paragraph 5.2.2. The actions that are done by the
SPUX Clock Interrupt Handler are divided there In a global and a local set. The global actions are
pertinent to the entire system, the local actions are related to the current process on the local
processor. In 5.2.2 the processor that performs the global actions is an arbitrary one from the set
of processors. With the Master-Slaves architecture It is obvious that the Master will perform the
global set of actions. For the actions contained In the sets see 5.2.2.
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4.3.3 Summary

The major part of events handled through interrupts on a uniprocessor will be handled likewise
on a multiprocessor. For some events (e.g. clock) actions must be taken that in part are related
to the entire system and In part to a running process. One processor must be entrusted to
perform the global actions. We propose this task to float, being assigned to a processor
dynamically.
When lOP's exist in the system, it is possible to eliminate 10 Interrupts at the MP level. lOP's must
then be allowed to manipulate kernel data structures. The advantages are a fairer accounting, less
overhead and, even more Important, the elimination of P·(IO)IH critical regions. A main
disadvantage is the obscure MP-IOP interface, making it hard to maintain the software and to add
lOP's.

4.4 Inter Processor Communication

As outlined In paragraph 2.6 Inter Processor Communication is an Important item. Both speed and
amount of traffic are key factors here.
Inter Processor Communication takes place among Main Processors on one hand and between
Main Processors and 10 Processors on the other. (Communication among 10 Processors is rare.
An example could be a bridge between two LAN lOP's. We will not look into this type of IPrC).
These two types of IPrC have their own purposes.
For MP-MP IPrC we have the Inter Process Communication that must be supported. This includes
pipes, signals, messages, shared memory regions and semaphores. (The Unix System V IPC
package will be used. See 3.1.4). Other uses of MP-MP IPrC are In starting up the system (Who
is in the system and what can he do for me?), and in Error Recovery where every MP must be
made aware of any malfunctioning MP and where restarts or resets and the like should be
possible.
MP-IOP Inter Processor Communication is used to initiate and conclude 10 tasks. Above that it
Is also used during system startup to complete the configuration (See 4.5). Finally when hardware
faults occur on an lOP the MP community has to be informed about it and vice versa.
Since more and more distributed computers are developed we should have an IPrC mechanism
that can be used to that purpose also.

The requirements for IPrC are:

One universal interface to rest of kernel.
Fully Transparent to the user at the IPC level.
Prioritized Communication (for support of communication channels with different
speeds)
Different SubMechanisms for local and remote traffic (efficiency)
Global Name Spaces
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Figure 4.1 clarifies the notion of submechanisms.
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Figure 4.1 IPre Submechanisms

The blocks II, III and IV are used for message passing. Blocks III contain the submechanisms for
local traffic (internal to the multiprocessor), blocks IV contain the submechanisms for remote
traffic (e.g. distributed computing) and blocks II contain the universal kernel interface as well as
the necessary means to distinguish between local and remote addresses and to Invoke the
appropriate submechanism. To highlight the fact that two or more processors are involved, blocks
II and IV have been drawn twice. In fact they are instances of one mechanism.
Finally block I. This block is somewhat special in that it provides IPrC through the shared use of
(usually existing) kernel data structures. Since IPrC is only a secondary use of these data
structures this form of IPre is called Implicit IPrC as before.
We will not discuss the mechanisms used for remote IPrC (blocks IV) because they do not fall
within the scope of this report. However since local communications in a mUltiprocessor can also
be done through block IV mechanisms they can be important for a multiprocessor too. The
interested reader may find more on this topic in [BERK83] which treats the BSD sockets from the
University of California at Berkeley or In [RITC84] which treats system V streams.
In the next paragraph we take a look at the mechanisms used in blocks III which we termed
Explicit IPrC. Finally we look at Implicit IPrC In paragraph 4.4.2.
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4.4.1 Explicit IPrC

Explicit IPrC as we define it is more commonly known as Message Passing. This mechanism is
characterized by a strict separation of the message transport function and the message contents
as mentioned earlier. The message contents nor size (within system limits) are restricted. The
beauty of this method Is that it provides one universal framework for every communication need
(Excluding shared memory and, for efficiency, semaphores and file transfer). The method is
suitable for every hardware configuration.

Before discussing a number of Implementations let us define a mailbox. A mailbox is a data
structure and an associated set of operations, that has a built in synchronization mechanism to
synchronize message writing and reading processes or processors. Optionally It can hold queues
for writing and reading processes, a number of message slots, a priority field per message, a type
field per message and more. As said the semantics of the contents of a message slot in the
mailbox are the user's choice. It may be the message itself but it may also be a pointer to the
actual message.
A mailbox that merely contains the synchronization and possibly the queues is no more than a
semaphore. (This occurs for example when only 1 message slot exists with a fixed address).

We will consider two by reference implementations and three by value methods.
The first by reference method will be a 'Unix System V IPC'-like implementation. (In Unix data
transfer between user and kernel is by value for protection reasons: Data is copied from user
space to kernel space or vice versa. We do not consider this copying to be part of the IPrC
mechanism. Once the data is in kernel space it is passed by reference.). Paragraph 4.4.1.1 gives
a detailed description.
The discussion of by value implementations starts with the description of IPrC as it is used in our
THE-KUNix system [BOKH83]. We named it Private Mailboxes because every processor has its
own mailbox In which It receives messages. The method is discussed in paragraph 4.4.1.2. In
paragraph 4.4.1.3 we briefly touch upon the VMSbus as transport mechanism. Finally paragraph
4.4.1.4 brings us to the IEEE P1296 specification, a newly evolving bus definition. This bus, the
Parallel System Bus (PSB) has special standard hardware to perform IPrC. We will investigate if
we may employ techniques from this standard in our environment too.

4.4.1.1 Unix System V IPC-Iike Implementation

When we stick to the Unix System V type of implementation the IPrC could be as described
below. Before that we first quote the X/OPEN group commentary on Unix System V IPC (so not
IPrC!):

-rhe kernel extension Interfaces relating to shared memory, semaphores and message
passing are Included In "XVS INTER-PROCESS COMMUNICATION" as a short-term
mechanism to satisfy the immediate requirements for Inter-Process Communication facilities.
However, they are machine specific and cannot be supported on all hardware architectures.
The Group believes that a more generalized approach to the whole subject of Inter-Process
Communication Is required." [XOPE87a]
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And from the mentioned ·XVS INTER-PROCESS COMMUNICATION":

·X/OPEN are considering the problem of generali IPC, which Is not fUlly addressed by the
System V IPC. For example, the shared memory functionality is hard to Implement efficiently
on multiprocessor architectures or across networks."[XOPE87b]

From these remarks we learn that groups like X/OPEN (and POSIX ?) are not fully satisfied with
the System V IPC and that they will come up at some time In the near future with newly defined
IPC services. We will have to keep an eye on that.

Before we proceed to discuss Unix-like IPrC let us Introduce some new data structures. First there
is the configuration table data structure. This structure and those related are given for a system
supporting dynamic configuration. No attention is paid to the efficiency of operations on these
structures.

struct
{
ushort
(or: char
struet sem
struct entity
struct entity
} conUbI;

sys_id;
*sys_id[8];
configsem;
*console;
*entities;

/* The system identification * /
/* system identification */ )
/* Mutual exclusion semaphore * /
/* Pointer to system console * /
/* Pointer to entities queue * /

The sys_id could be Implemented as a character string which is more in line with the higher level
in the hierarchy and thus closer to the 'human level'. Of course one has to consider the naming
domain in which the system Is used.

The semaphore configsem is used to mutually exclude processors from the entity queue.
An entity is a resource of some kind that can be associated to a processor in the system either
because It resides on the same board or because it is controlled by it. Examples of entities are
disks. terminals. network ports. operating systems etcetera. (Normally one would have used the
word device Instead of entity. However the word device is already In use In Unix for more limited
purposes). The console entity is the terminal that Is used by the system administrator. The system
administrator uses It first of all to boot the system. It Is further used to print all operating system
error messages to.
The entities identifier Is used to denote a pointer to the first entity in the so called entity-queue.
This first entity usually Is the boot processor. Entities are kept on a linked list to allow for easy
system reconflgurations.
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The entity structure is as follows:

struct entity
{
struct lentity_Id e_Id; /* local entity Id. * /
char e_status; /* entity status * /
struct kmsg_qhdr *kmsg_q; /* kmsg queue for this entity * /
long kmsg_type; /* kmsg type for this entity * /
struct entity *next; /* pointer to next queue memb * /

/* */
/* Other information may be contained In this structure: */
/* e.g. The capabilities of the entities such as: * /
/* Terminal 10; Hard Disk 10; Network 10; * /
/* Graphics 10; etc * /
/* */
}

where lentity_id Oocal entity id) is a unique Identifier for the entity within the system. To address
from outside the system, the sys_id must be included. The e_status field provides information
about the present condition of the entity. Some possible values are operational (E_OP), out-of­
order (E_OOO), busy (E_BUSY) etcetera. Pointer kmsg_q points to a kernel message queue
header. Kernel messages to this entity can be linked to this headers queue. A kernel message
queue may be shared by several entities. To easily distinguish between messages for different
entities on a shared queue a kmsg_type is added. Messages for this entity must have this type.
Finally pointer next points to the next entity on the entity queue.
The lentity_id structure is defined as:

board_ld;
proc_ld;
unit_ld;

struct lentity_1d
{
ushort
ushort
ushort
};

/* board identification * /
/* processor Identification * /
/* unit Identification * /

When a board is In the system with one main processor and several 10 devices, it is evident that
we need the number of devices plus 1 unit numbers (when counting from 0 the highest number
will thus be equal to the number of devices present). Note that operating systems (global or local)
may aJso figure as entities.

Remark:When we would conform to Unix 'standards' the sys_'d and the entities pointer would
become global variables while the entities queue would become an array.
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Back to our description of Unix-like IPre. The idea is to have a kernel message (kmsg) queue (=
mailbox) either for each entity, for each processor, for each board or for the entire system. Let
us assume queues per entity. Every queue is headed by a queue header set up at initialization
time. This queue header holds values concerning the queue as a whole. Figure 4.2 shows the
entity queue table and attached message queues.

data
area

Figure 4.2 Kernel Message Queues

Below you see the possible declaration of the kernel message queue header. From it you may
observe the structure of the queue headers (KMSG_QHDR). The queue headers are pointed to
from the configuration table.

struct kmsg_qhdr
{
struct kmsg_heir *kmsg_first; /* pointer to first kernelmsg * /
struet kmsg_heir *kmsg_last; /* pointer to last kernel msg * /
ushort kmsg_qnum; /* nr of requests on queue * /
ushort kmsg qbytes; /* nr of bytes on queue * /
ushort kmsg maxbytes; /* max nr of bytes allowed * /
ushort kmsg_lspld; /* process id of last process * /

/* that sent a kmsg */
ushort kmsg_lrpid; /* process lei of last process * /

/* that received a kmsg * /
time t kmsg_stlme; /* time of last kmsgsnd * /
time t kmsg_rtlme; /* time of last kmsgrcv * /
time t kmsg_etlme; /* time of last kmsgctl * /
long kmsg_LM; /* kmsg Location Monitor addr * /
}
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In the kmsg_qhdr time stamps are kept for three out of the four associated kernel functions. The
four functions are kmsgget, kmsgsnd, kmsgrcv, kmsgctl. They will be explained shortly. The
stamps are kept for system monitoring purposes.

A kernel message header has the following structure:

struct kmsg *kmessage;
ushort kmsg_size;
struct kmsg_hdr *next;
}

struct kmsg_hdr
{
struct entity_id
ushort
time t
ushort
ushort

kmsg_sentid;
kmsg_pid;
kmsg_time;
kmsg_prio;
kmsg_state;

j* sending entity id
/* sending process id
/* time of sending
/* kmessage priority
/* status: busy,new,scheduled
/* done,waiting
/* pointer to message
/* size of kmessage
/* pointer to next message

*j
*j
*j
*j
*j
*j
*j
*j
*j

The kernel message Itself looks like:

struct kmsg
{
long
char
}

kmsg_type;
kmsg_text[];

/* kernel message type
j* kernel message text

*j
*j

The kmsg type can be used to multiplex different types of messages onto one queue. This is for
example necessary when only one system wide kernel message queue is implemented in order
to address the correct entity. The actual message is kmsg_text.

The kernel will use a so called map to administer memory space for use by the kernel messages.
A map Is an array in shared memory. Each entry in the map registers a contiguous block of free
space. An entry consists of two parts. The first part Is the address of a block of memory, the
second part gives the size of that block. When the map is created it holds only one valid entry of
which the first part gives the starting address of the memory space while the second part gives
the total amount of memory space available. Note that the size of memory can be measured in
several units ranging from bytes to so called core clicks (256 to ... byte blocks dependent on the
Implementation). Allocation and de-allocation must also (de)allocate memory space in these units.
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An example map is depicted in figure 4.3.

Suppose the available space Is located at address
oand consists of 100 units. Then we see from the
map that the space from 0 to 5, 12 to 13 and 17
to 20 is in use somewhere. The entries in the map
give the remaining free space.

Four kernel functions are defined that operate on
the kernel message data structures. The kmsgget
function returns the kernel message queue
identification of the kmsg queue used by a given
entity. If such a queue does not yet exist, it
creates one. When creating a queue it generates
a new queue header using memory from the Figure 4.3 Example Map

kmsg-map. The kmsgget routine is called at
initialization time, in our setup once for every entity, to create queues. The memory used for the
queue headers is thus drawn from the beginning of the map.
The syntax of the kmsgget function is

kmsg_qid = kmsgget(parms);

where parms represents the set of parameters needed to
set up the queue, like kmsg_maxbytes etc.
The kmsgget function is typically called at system initiali time and in the future possibly during
dynamic reconfigurations. If we opt for a fixed configuration, as is usual in Unix systems, we may
hard code the creation Into the kernel Initiali routines. In this case the kmsgget function is
obsolete.

The kmsgsnd function syntax is

kmsgsnd(kmsg_qid,message,count,flag);

where kmsg qid Is as before. message Is a pointer to the actual kernel message, count is the
length of the message In bytes and flag specifies the action the kernel should take if it runs out
of Internal buffer space.
The kernel checks that the message length does not exceed the system limit and that there are
not too many bytes on the queue. When neither limit Is exceeded the kernel allocates space from
the kmsg map and copies the data from user space. Then a kmsg header is allocated and linked
to the end of the headers queue. The kmsg header is updated to point to the message data and
to contain the message size. Also a number of fields in the queue header are updated. The arrival
of the message Is signalled to the receMng processor through a Location Monitor. If one of the
above mentioned limits are exceeded the process sleeps until other messages are removed.
However If the flag parameter equals IPC_NOWAIT the function returns Immediately with an error
indication.
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To receive requests kmsgrcv is called as follows:

count = kmsgrcY(kmsg_qid,message,maxcount,type,flag);

where kmsg_qid is the queue Identification again, message is a pointer to a data array in the
address space of the receiver (may be shared or private), maxcount gives the size of this data
array and type Indicates whether FIFO or prioritized fetching must be performed. The return value,
count, will contain the number of bytes returned to the lOP's private memory and will be -1 in
case of an error. If the lOP finds processes waiting to write requests onto the queue it will wake
them up. If the request is bigger than maxcount the lOP removes the request from the queue,
signals an error In the process table and makes the requesting process runnable.

Finally the kmsgctl function can be used to inquire after the status of a request queue. The syntax
is

kmsgctl (kmsg_id,buf);

where kmsg id is as usual and but is the data array where the status should be copied to. This
function may be called from system monitoring modules or could be made available to user
programs as a system call. When the system is dynamically reconfigurable we must be able to
delete kmsg queues from the table. This deletion possibility can be added to kmsgctl which
should then accept a third parameter cmd which specifies the required action. Of course when
deletion is possible through kmsgctl, It should not be 'callable' by ordinary users. Even the
superuser should not be allowed to call it directly. An entity installation and de-installation utility
should be incorporated into the kernel. This utility may check the legality of removal of the kmsg
queue before calling kmsgctl.

In case the Unix System V IPC-like Implementation is selected for Implementation we will at least
use it for MP-IOP traffic. Then a mapping from entity Id's to device numbers must exist. The
simplest way Is to make these the same. In that case the character device and block device
switches become character and block entity switches. The Inodes will have their device field
changed Into an entity field. An alternative way Is to provide a device-entity mapping table that
can be questioned by the device drivers to locateThe entity the request Is meant for. This latter
possibility has two advantages. First of all the kernel hardly deviates from the SPUX kernel, most
alterations are done In drivers. Second, because of the extra level of IndireCtion, It Is possible to
move units geographically (e.g. a disk from one board to another) without affecting Its logical
device name. Because of these advantages the last method Is favored over the first one.
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Private mailboxes are defined here as mailboxes belonging to 1 receiving processor or board. The
mailboxes may be written Into by any other processor. In the particular case treated here the
mailboxes have only 1 message slot. The reason for discussing this method is that it is used in
our THE-KUNix uniprocessor. We must therefore decide whether we keep using It and if so
whether alterations are pertinent.

The Implementation as used In THE-KUNix, Is discussed in [BOKH83]. We will first coarsely
describe his implementation and then use It as a foundation for subsequent discussions.

In the THE-KUNix implementation a mailbox logically consists of the following three items:

- a semaphore register
- a communication memory
- a Location Monitor

The semaphore register Is a register with such associated circuitry that It behaves as a
semaphore. It is therefore often termed hardware semaphore. Two operations are possible on this
semaphore. a read and a write operation. The read operation returns the register value (0 or 1)
while the associated circuitry loads the register with zero upon recognition of the read operation.
(Compare with test and set (lAS) operation which reads and sets the location). The write
operation sets the semaphore register to 1. Both operations require one single access and are
therefore Indivisible. This type of semaphore can even be used by processors that do not provide
a TAS or LOCK Instruction. The semaphore Is used to control the access to the communication
memory.
The communication memory is a piece of shared memory preferably located on the receivers
board. It is the one and only message slot of the mailbox.
The Location Monitor Is used to signal the receiving processor when a message has been placed
in the communication memory. The Location Monitor is used without a value, e.g. a dummy value
Is sent.

The message passing protocol Is as follows:

Sender
request(communlcation memory)
fill (communication memory)
Interrupt Receiver through LM

Receiver

save(communication memory)
release(communlcation memory)
slgnal(message handler)

This protocol can be used for asynchronous message passing as well as for synchronous
message passing. In the latter case the message arrival can be acknowledged by the receiver
using an acknowledge message. This Is not done in THE-KUNix, instead response messages are
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used. Response messages are sent after interpretation of the message and carrying out the
requested actions. (To enlarge the flexibility the THE-KUNix implementation also supports the use
of polling and the use of VME Interrupts as alternatives to the Location Monitor for response
messages.)

A number of disadvantages exist with this method. First of all there is the possibility of contention
when multiple senders need to post a message with one receiver. The bottleneck is formed by
the single slot that must be freed by copying its contents to private memory before it can accept
a new message. A second problem Is that the protocol is, In general, not deadlock free. For
example suppose the VMEbus access is prioritized, several processors wish to send a message
to receiver R, the communication area Is assigned to sender X and a number of the waiting
senders has higher priority than X. If In this case the waiting senders keep trying to acquire the
communication memory, they could keep the VMEbus occupied to the extent that X is never
allowed use of the bus. Then X cannot release the communication area and hence we have
deadlock. In [BOKH83] several solutions are suggested of which one is in use in THE-KUNix.
More solutions are given in [ANN085] chapter 10. From these solutions we pick the one in which
the 'round-robin' priority scheme is used to exclude bus starvation and which therefore excludes
deadlocks of the above type. We choose this particular solution partly because of its conceptual
simplicity and partly because it helps out in other cases too. Other solutions are left for further
study.

Naturally there are also some advantages to the method. One of these advantages is the relative
simplicity of the method. There is no need to find free space in shared memory to put the
message in. There is no queue handling in shared memory, this is done locally at the receivers
end. (By the way: this reduced overhead reduces the VME load). All routines used at the receiver
to copy the message from the communication memory to private memory and to handle the
private queue are completely independent. These routines need not be 'Unix-like' and can be
different on every lOP. The only commonality is the format of the message and the use of the
semaphore. The above mentioned independence eases the addition and replacement of lOP's.

4.4.1.3 VMSbus

The VMSbus has already been discussed in paragraph 3.1.1.5. Because this bus has been
specifically designed to support mUltiprocessor systems it is 'by nature' suited to support inter
processor communications.
For the sake of completeness we will give a short overview of Its IPrC capabilities here.

The communicated Information can be of the data or event type, where an event can be the
transfer of a token, the setting or resetting of a semaphore or flip-flop.
The communication can be of the point-to point or the broadcast type. The latter type may be
Implemented to address a chosen set of receivers.
As we have seen In paragraph 3.1.1.5 all Information Is sent via frames. Every frame Is headed by
a Header Frame. This Header Frame contains among other fields a Message Priority field of 3
bits. Hence, when used for IPrC. IPrC messages can be prioritized. Above the priority mentioned
here there should also be a priority difference between messages sent via the parallel bus and
those sent via the serial bus as discussed before.
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4.4.1.4 P1296 specification-like Implementation

In [RAP86] Rap and Tetrick describe the P1296 specification, the specification of a 32-bit,
synchronous standard bus that is Inspecific to vendor or processor. This bus is called the Parallel
System Bus (PSB). So far nothing much differs from the VMEbus specification. The specification
of the PSB however also tackles Inter processor communication. The Inter processor
communication In the PSB is a separate, hardware supported, subsystem that uses Message
Passing as mechanism and that employs an entirely independent address space called message
space. The message space Is only accessible to specially specified modules on each board
called Message Passing Coprocessor (MPC). Each MPC has Its own piece of the message
space In the form of send and receive FIFO buffers. Hence the message transfer is of the pass­
by-value type.
The messages in the PSB have a standardized format. Each message has a field that carries the
source's address in the message space and one that contains the destination's address. Further
two fields contain the type and subtype of the message. To move an unsolicited message a
processor writes the message into the transmit FIFO of the MPC and triggers transfer. The MPC
transfers the message by copying it over the bus (in burst mode) into the receive FIFO of the
destination. The MPC thereby decouples the local bus from the system bus, allowing the
processor to continue work locally. The PMC may also retry the transfer a number of times when
It did not succeed before alerting the processor. At the destination the MPC may interrupt the
processor to signal the reception of the message. Unsolicited messages may carry a small
amount of data. For large amounts of data special unsolicited messages are specified to request
and grant (or reject) buffer space to hold the data. Buffer space is allocated by the local
processor and transmission is straight from the buffer holding the data at the sender to the buffer
to receive the data at the destination. This involves the local buses at both ends. To keep the
advantage of decoupled buses the buffers within the MPC serve as pipeline buffers. For example
the sending processor may fill one buffer via the local bus while at the same time the MPC
transfers the contents of a second buffer over the system bus.

Rap and Tetrick highlight the decoupling of the buses as a main advantage of the PSB. It is, but
It should be noted that similar decoupling has been achieved using the VMEbus (e.g. [FORC87]).

It seems very well possible to use the P1296 specification as the basis for an IPrC subsystem in
the VMEbus environment too. The separate message space can be emulated by using one of the
VME address spaces Identified by a user definable address modifier code. (Eventually It could
even be Incorporated Into the specification by using one of the reserved AM codes). The transfer
of the messages could be done by value as In P1296i>ut also by reference using shared memory.
The mechanism of the AM cocIes provides almost the same protection against corruption as the
message space In P1296 especially when here too an MPC is used. The greatest advantage that
would result from basing IPrC on P1296ls the standardization that would result. Message formats
can be chosen equal, message semantics could be chosen equal etcetera. Also since
specifications of this kind are reviewed many times the chances of It being short of functionality
are minimal.

We already have a project in the group that will give us the P1296 benefits too [VERS87].
However It has much wider scope and is therefore rather complex. I therefore suggest to start a
study Into a Message Passing Coprocessor for the VMEbus Incorporating essentially the same
features as the P1296 Parallel System Bus.
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4.4.2 Implicit IPrC

Implicit IPrC uses the existing kernel data structures to communicate messages among
processors. When implementing the operating system as a central resource with Its data
structures In shared memory, one could argue that processors that manipulate these data
structures communicate.
Communicating in this way is what we call Implicit IPrC. An example may illustrate these MP-MP
communications. Imagine a process A running on MP2 and a process B running on MP3.
Suppose further that A and B have agreed on talking to each other via two unnamed pipes, one
from A to B and one vice versa. On creation of the pipes two inodes have been allocated in
shared memory to Interface to the file system. In each Inode a read and a write pointer point at
the output and Input side respectively. Through correct manipulation of the read and write pointers
a circular data buffer, made up from the 'direct' disk blocks, is simulated. [A number of disk block
pointers are present in every Inode. Some of these point to disk blocks that contain data (direct
blocks), others point to disk blocks that contain further pointers (indirect blocks). Pipes only use
the direct blocks.] Synchronization (= IPrC In this case!) between A and B is achieved by putting
their current process to sleep when they attempt to read from an empty pipe and when they try
to write more into the pipe than It can hold. As you will know putting processes to sleep and
waking them up Is done through the process table, a kernel data structure in shared memory and
hence Is Implicit IPrC.

MP-IOP communication can also be done implicitly. The two directions of this communication
(MP -> lOP; lOP -> MP) are treated separately In the sequel. Communication in both directions
Is usually Implemented as a message passing scheme for control while data Is passed by
reference. It Is possible to use Implicit IPrC for each direction independently. This is best
discussed using an example.

Suppose a process has requested a file that Is accessible through a long haul network. The
request to get the file is submitted to the appropriate lOP (using IPrC of course) and the process
goes to sleep until the file has arrived. Let us look at the lOP -> MP direction first. In Single
Processor Unix the lOP would have interrupted the processor after receiving the last part of the
file whereupon the Interrupt Handler would have updated some buffer cache fields and would
have woken up the (or more than one) process by modifying Its entry in the process table (a.o:
p_stat = SRUN). With Implicit IPrC the lOP will not Interrupt an MP but modify the process table
direct/yo It performs the same actions the SPUX Interrupt Handler would have.
Next consider the MP -> lOP direction. We saw that the 10 ready event was communicated using
the existing process table. The 10 request however cannot use such an existing structure. We may
!!se explicit IPrC to convey the requests or we may Implement extra kernel data structures that
are used by the lOP as an job queue. In the latter case these extra structures have their primary
purpose In lOP algorithms. They may Include scheduling parameter fields and such. Thus IPrC
using these structures would be Implicit too. The lOP job queue Is the counterpart of the process
table with respect to Implicit IPrC.

It wlll be clear that there are some pro's and con's using this Implicit IPrC method. An advantage
already discussed In 4.3 is the removal of Interrupts. No MP interrupts are used at all in the above
example. A second advantage Is an Increase In efficiency. Since, In the MP-IOP example, the lOP
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directly uses the job queue and directly uses the process table and buffer cache, no processing
time is lost in handling a message protocol. A disadvantage of Implicit IPre is that when the job
queue holds no requests the lOP must poll or it must be signalled through an interrupt at the next
arrival of a request. The latter method is more efficient since it allows the lOP to turn fUlly to the
handling of requests for other devices it controls. A second drawback of Implicit IPrC is the
dedicated nature of the data structures to be used. This means that for every purpose the need
for a new data structure may arise. We should think of purposes like Error Recovery and System
Startup here. A last remark that can be made is that a small difference will exist when this method
is applied between SPUX and MPUX with respect to scheduling. As explained before SPUX
schedules a process of higher priority immediately after leaving the Interrupt Handler that made
it runnable when the process that was running at the time of the interrupt was in user mode. In
MPUX this will not be so, since no processor and so no process will be interrupted at all. Also
signals will, in average, be noticed later In time.

4.4.3 Conclusions

The distinction between implicit IPrC and explicit IPrc may be a bit artificial, it does however stress
that communication between processors also takes place via kernel data structures. It opened our
eyes for the possibility to have MP-IOP communication take place via data structures that have
there main purpose elsewhere. We saw that this is much more efficient and frees us from some
annoying P-IH critical sections. On the other hand it essentially means that we have operating
system functionality in the lOP's, obliging them to use MMU's, and that we do not have a sharp
MP-IOP interface. A clear MP-IOP interface is necessary in an environment where students work
on a subject for a short period and are followed by others that have no prior knowledgeof the
system. A clear-cut interface prevents them to study both sides of the line, how interesting that
may be, but to restrict to the side their assignment lies too.

As systems become more and more communication intensive it is worthwile to see it as a
separate subsystem. In such a subsystem all communication mechanisms are concentrated
allowing combining of functionality, more efficient implementations, and broader functionality.
Such a subsystem would also have to be operating system Independent and the interface to the
operating system should be Independent of underlying hardware. [rhe 150-051 objective).
The Independence of the underlying hardware allows it to be used in distributed as well as tightly­
coupled environments. This does not mean that one should accept systems that do not fully utilize
hardware capacity because they also have to run on hardware of less capacity. (So when shared
memory exists, use it.)

We propose that such an IPrC subsystem must be developed. We also propose to first look at
the P1296 specification In detail to see If conforming to it is useful. If it is not we still hink it is
necessary to come to a specification of IPrC that Is accepted by the entire VME community. In
the meanwhile our ·Unix-IPC"-Uke Implementation can be used to serve immediate needs.



57

4.5 System Startup

'How do I get from scratch to a running system?' is an interesting question In the case of a
uniprocessor. In the case of a multiprocessor it is even more so. The answer to the question has
been given In 3.1.5.1 for the uniprocessor running Unix. For the Unix multiprocessor an answer
will be given here.

As stressed several times we heavily weigh the symmetry of the system in all respects. However,
we consider It sufficient to have a symmetric system when this system Is operating in Its normal
environment. We do not regard the system startup environment as part of the normal environment.
Therefore we do not try to make startup symmetrical but we will assign one particular processor
with the startup sequence. This does not signify that we tolerate an 'after-startup' situation in
which this particular processor has some special status. So the system startup has to be such that
the processor that happens to perform the startup actions looses every affinity to the startup but
will become identical to all other main processors in the system. We suppose In the following that
the processor that will perform the startup (referred to as the 'boot processor') is made aware of
Its special role through the setting of a switch or jumper on the board where It resides. Naturally,
in a Master-Slaves system the Master will boot. In the other three architectures any processor
could be the 'boot processor'.

The actual startup and several data structures are influenced by the choice for a fixed or a
dynamic configuration. Since we are in favor of the latter we try to Implement new data structures
and corresponding operations in such a way that this reconfigurability Is supported. Unfortunately
Unix Itself uses a fixed configuration. This will lead to a dualistic nature In some parts of MPUX.
However, It Is not hard to return to the fIXed configuration If one so chooses and on the other
hand, If one desires a true dynamic configuration, part of the work Is already done.

The startup sequence is as follows. After power up all processors in the system make the SYSFAIL
line on the VME backplane active. They then perform there local Initialization as required for the
local hardware. After that the processors inactivate the SYSFAIL line. Since the SYSFAIL line is
driven by open collector outputs, it will not return inactive until the last driver gets inactive. After
local initialization all processors but the 'boot processor' will await a broadcast from the boot
processor that the system is ready for them to use.

The boot processor's first actions are quite the same as In SPUX. The ROM resident bootstrap
program loads a short boot program from block 0 of the system disk and transfers control to it.
The boot program then loads the Unix operating system (kernel) Into memory (usually from file
•/unlx"). Having done so It transfers control to the kernel startup code fdstart' entry).
The kernel Initializes all kernel data structures Including those that contain configuration data. It
then attaches the root fde system.
Now the time has come to create the first process to live In the system. This process will have
process identification number (PID) O. Process 0 Is manufactured by the kernel directly without
the use of a fork call. This Is necessary because process 0 Is the first process and has no parent
process. The kernel, now running as process 0, spawns a new process called the Inn process by
calling the newproc function. (The function of the Init process is discussed soon.) Process 0 may
then spawn more processes. These are typically daemon processes operating In kernel mode only
and providing system-wide services. An example of such a process Is the vhand daemon that
reclaims pages from main memory. Finally process 0 will tum to the task it will perform the rest
of Its life: the swapper task.
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When process 0 forked it spawned process 1, the Init process. This init process 'exec's the
"jetcjinit" program as explained for SPUX. Now two things must be done. First, a special process
(we call It a null process) must be spawned for every processor in the system. The necessity
thereof will be explained shortly. Second, the processes mentioned in the file" jetcjinittab" must
also be spawned. For a fixed configuration these two actions will pose little problems since the
configuration Is known on beforehand. When applying dynamic configuring the necessary
information must yet be built up. A solution Is to have the init process send a broadcast message
that includes the address of the initialization text for 'non-boot' main processors as a parameter.
This broadcast message Is the
one the other processors were
waiting for In order to report
themselves in the configuration
table. Every 'non boot' processor
initializes its MMU and creates the
IPrC queues through which the
rest of the system may
communicate with every entity
added to the configuration. Next
It includes itself and its devices in
the configuration table where it
also sets pointers to the IPrC
queues.
It then signals the init process to take appropriate action and after that awaits a 'start through'
message from init. Init has placed Itself in a state in which it awaited the configuration after
sending the broadcast message. When signalled that the configuration has changed it runs
through the configuration table and spawns a null process for every new processor and getty
processes for every terminal (if so indicated in "jetcjinittab"). The null processes are marked in
such a way that they can only execute on 'their' processor. As a matter of course init also signals
Its child processes to exit when the processor or terminal they were related to has disappeared
from the system. In case new processors entered the system init sends them the 'start through'
message (via IPrC) they expect after it spawned the related null processes. This 'start-through'
message contains a pointer to the null process context.

The Init process stays in this configuration monitoring state for the rest of its life. It still has the
responsibility to take appropriate action (re-spawn 1.e) when one of Its child processes exits.
Another of Its responsibilities was to serve as a stepparent to processes whose parent process
has exited. Probably It Is best when It stays this way since Init Is a global and always present
process. A problem that arises using the above reconfiguration method Is that init has to wake
up on two different events. Namely the event of a reconfiguration and the event of a death of

child. This needs to be solved In some way. A way Is to send It a death of child signal and to
design the signal-handier In the init process to determine the source of the signal and to take
appropriate action.

Processors that received the 'start through' message now start executing in the context of their
null process and call the swtch routine to see If real processes are eligible to run. As soon as the
swtch routine is called the initialization has ended.
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What is left for us to explain Is why null processes are necessary on each processor. Bach
[Bach86] explains the reason for this:

• In a mUltiprocessor system, the kernel cannot idle in the context of the process executed
most recently on the processor (As is normal in system VPWE). For if a process goes to sleep
on processor A, consider what happens when the process wakes up: It is ready to run, but it
does not execute immediately even though its context is already available on processor A. If
processor B now chooses the process for execution, It would do a context switch and resume
execution. When processor A emerges from Its Idle loop as the result of another Interrupt, it
executes in the context of process A again until it switches context. Thus, for a short period
of time, the two processors could be writing the identical address space, particular1y, the kernel
stack."

The null processes need not be globally known to the rest of the system. In a system with only
shared memory making them globally known seems the easiest way: they'll be normal processes
with init as their parent. The only difference is that they are fixed to run on one partiCUlar
processor. On a system with private memory they could be completely hidden from the rest of
the system. However this will raise some obstructions in monitoring the performance of the
system. Therefore we favor the first possibility.

The above discussion leads us to the following process tree for our multiprocessor.

0: sched

1: init

r=------

---=1
kernel mode
deamons

null processes
on query processor

adopted terminal bound
child processes processes

user mode
deamons

Figure 4.6 Multiprocessor Process Tree
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5 Unl-Kernel Architecture

This architecture is a generalization of the Master-Slaves configuration. With this architecture it is
possible for every MP to execute In kernel mode. However to keep it simple to mutually exclude
processors from critical regions only one processor may execute in kernel mode at a time.
The advantage of this method is that no forced process switch need take place when a process
does a system call (and usually one when the call is finished). Considering the high percentage
of execution done In kernel mode by a typical process, it is very likely that another processor is
In kernel mode at the time of the system call. In such a case a process switch needs to be done
after all. The advantage may therefore be marginal. Nevertheless this architecture is advantageous.
Looking at pure speed, a marginal decrease of VMEbus load may give rise to a relatively larger
profit in system throughput. Especially when the VMEbus is near saturation this effect may occur.
Furthermore there are some secondary advantages gained from this architecture. One of these
is the Increase in symmetry which gives (or at least can give) rise to a better fault tolerance.
Another secondary advantage (which may prove important for practical reasons) is that this
architecture provides a step-up to the next architecture that may be investigated. This next
architecture Is the Multi-Kernel architecture, where 'Multi' is used to denote the entire range from
2 to the highest number achievable. Starting from the Uni-Kernel configuration one could start
chopping up the kernel In pieces and allow only one instance of such a piece to be executed at
a time. This provides a very smooth development path towards the final mUltiprocessor.

An obvious problem to be dealt with when using this architecture is the handling of interrupts. The
convenient master processor to send all Interrupts to has now disappeared. In the next two
paragraphs methods are discussed to tackle this problem.

5.1 Mutual Exclusion

This paragraph reduces to finding ways of telling every processor that a colleague has entered
kernel mode and when it should hold off interrupts of a partiCUlar level. The rest of the mechanism
Is the same as for the Master-Slaves architecture.
Assume that there Is an efficient way to Inform all processors in the system that a processor owns
the kernel resource. We will name It the 'kernel-processor'. Two situations will occur when a
processor wishes to enter the kernel. The kernel is free or it is occupied. When It is free there are
no problems: the processor enters the kernel and its process proceeds. However when the kernel
Is occupied the processor must put Its process to-sfeep and put It on a 'kemel-queue' (Compare
Master-queue from chapter 4). (Spln-locklng would be very Inefficient!). Then It should dispatch
a process from the 'user-queue' (Compare Siave-queue from chapter 4), that Is, It should start
running a process that does not Immediately request kernel mode processing. (It must behave
as a slave). The moment the 'kernel-processor' releases the kernel It may find the 'kemel-queue'
empty or not empty. In the first case It reschedules to start running the highest priority user mode
process avaAable. In the second case, the most efficient thing for It to do Is to take the highest­
priority process from the 'kemel-queue' and run It. The 'kernel-processor' behaves exactly as the
master from the Master-Slaves configuration. We see that the 'kernel-processor' hogs the kernel
resource when 'kernel-mode' processes are runnable. The chance of having such processes is
high even for light system loads since processes spend approximately 50% of their lifetime in
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kernel-mode. For high loads the Uni-kernel configuration behaves exactly as the Master-Slaves
configuration (except for the Interrupts). For low loads It behaves a little more efficient.
Above we assumed an efficient method for distribution of the 'kernel is occupied' information. Let
us consider some methods in the next section.

5.1.1 Mode Broadcasting

One very familiar way of letting every processor know when some processor is in kernel mode
is by considering the kemel mode as one big critical region and protecting It with a semaphore.
Since about half of the processes wish to run in kernel mode a queue of processes that wish to
run in kernel mode will build up. This means that we need to consider the way in which the next
process is allowed access. There are several ways to determine the access order. Two obvious
ways are to use FIFO ordering or prioritiZed ordering where the priority is derived from the
process priority. Both cases are starvation free. Employing a semaphore is not the fastest method
but it is a very flexible one. It also forms an ideal starting point for the 'chopping process'
suggested above.

Another way of broadcasting that the 'kernel mode' resource is occupied is by using an intelligent
semaphore as defined by the VMSbus specification. Using these, a process(or) that wishes to
enter the 'kernel mode' resource Inspects Its local copy of it and, when free, sets it and continues.
When already set the process is put to sleep and a 'user mode' process Is dispatched. The
functional characteristics of an intelligent semaphore are Ideally suited for the broadcasting
desired. Copies of the semaphore all over the system will be updated simultaneously, hence no
inconsistency will arise. Unfortunately these Intelligent semaphores are very slow since the
underlying VMSbus is very slow. Especially for a resource as critical as the 'kernel mode' resource
In a Uni-Kernel system this slowness can not be tolerated. We therefore renounce this
Implementation.

A third implementation makes use of the broadcasting capabilities of the VMEbus. (For an
Implementation of the broadcasting mechanism Itself see 3.1.1 or [FORC87] ). This broadcasting
causes a local interrupt at every processor in the system thereby transferring a message of 8 bits.
The 'kernel-processor' broadcasts a 'kernel-available' message when it finds the 'kernel-queue'
empty. The 'kernel-processor' keeps ownership of the kernel. All other processors note the 'kernel­
available' status and broadcast a 'kernel-wanted' message as soon as they wish to enter the
kernel. The first request received by the 'kernel-processor' is honored. The 'kernel-processor'
will broadcast the processor Identification of tha_requesting processor In a 'kernel-granted'
message, thereby seizing to be the 'kernel-processor'. Both 'kernel-wanted' as the 'kernel-granted' .
messages must contain a processor Identification field. The handshake. that takes place is
necessary to avoid simultaneous access to the kernel by two or more processors. A total cycle,
from the 'kemel-available' broadcast to the 'kemel-granted' broadcast Inclusive, takes
approximately 3 Ms on a 20 MHz 68030 based system. By Incorporating the 'kernel-processor'
Id Into the 'kernel available' message, the 'kernel wanted' broadcast can be replaced by a 'kernel­
wanted' private message. It Is not sure whether this Is more efficient. A 'kernel-wanted' broadcast
may cause other processors to refrain from sending such a message too. When a private
message was used they would keep trying Ooading the VMEbus and Interrupting the 'kernel­
processor') until a 'kemel-granted' broadcast was received.
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An alternative way to inform a processor whether It may use the 'kernel mode' resource is to pass
an access token round. When a processor has possession of the token it is allowed to perform
kernel actions. There are three ways to pass the token, via the VMSbus, via Location Monitors or
by broadcasting over the VMEbus. Because of the Inherent delays incurred by passing the token
by processors that do not need It this method is judged to be unfit on beforehand. Token passing
Is more suited for cases where a group of Interchangeable resources exist.

5.1.2 Kernel Border

Once having a mechanism to lock, it is Important to know where to lock. From figure 3.6 it
appears that there are only a few ways to enter the kernel. These ways are, invoking a system call
and the occurance of an interrupt/exception. Initially all of these ways can best be modified for
locking of the kernel by placing the locks In the respective interrupt (trap) handlers. Later on
performance can be imprOVed by placing the locks further inwards. However since we aim at the
Multi-Kernel architecture It would be better to directly start dividing the kernel in separately and
simultaneously executable parts as discussed before.

5.2 Interrupts

5.2.1 General

In the Uni-Kernel configuration Interrupts that cause manipulation of kernel data structures may
occur on any processor. When they occur on the 'kernel-processor' there is no problem, the
traditional solution of blocking them temporarily by increasing the processor priority may be used.
When they occur on a 'non-kernel-processor' the situation is much more complex. When the
'kernel-processor' Is In a P-IH(I) critical region Q= Interrupt level of Interrupt Handler), interrupts
of level I must also be held off in all 'non-kernel-processors'. Conversely, when a 'non-kernel­
processor' Is handling a critical Interrupt 811 other processors are not allowed to service an
Interrupt of the same level. Therefore these critical regions must be protected In the same way for
all processors alike. The only Irregularity Is that when the 'kernel-processor' wants to enter the
critical region It must be granted access Immediately after It becomes free while the others must
compete on an equal basis for It. To avoid unnecessary busy-waiting a processor that occupies
the critical region must notify all others to hold off Interrupts of the appropriate level. Such an
Interrupt would cause busy-waiting. Holding It off lets processors perform useful work instead. A
complicating factor Is the leveling of the Interrupts. To be effICient we want those Interrupt
requests that can be safely handled to be handled. Interrupts of a level n are allowed to Interrupt
Interrupt Handlers of level n-1 and lower. This means that Interrupt handlers of level n have no
critical regions with respect to those of lower levels. (No IH(n)-IH(<n) critical regions). Hence
Interrupt handlers of a lower level than n may continue to be executed on other processors when
a processor notes an interrupt request of level n. However we do not (yet) know whether the Unix
kernel combines P-IH critical regions for different levels of Interrupt as follows:
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Note: I<h

spl(h);
P-IH(I) critical region

P-IH(h) critical region

spl(x);

/* disable interrupts of level h and lower
/* critical region for which spl(l)
/* would have been sufficient
/* critical region for which spl(h)
/* Is necessary
/* restore previous processor level

*/
*/
*/
*/
*/
*/

If the above is done we do have to consider the lower levels too.
A solution to the problem Is as follows:

Assume a range of interrupt levels of 0 to r.
Define an array A[r,1 ]with length r+ 1(0 - r)

and height 2 (0 - 1)
Initially A contains all zeroes.

Any P-IH critical region in kernel code or any Interrupt Handler code must be surrounded by
extra code as follows (i = interrupt level):

BroadCast( spl(i) ); /* disable interrupts of level i and lower on all*/
/* CPU's not engaged in interrupt handling. * /

If (ProclD= KernelProcld)
{
forO =O,j = j + 1;j= = i) AU,O] = 1; /* Announce Intention of kernel processor * /
forO=0,j=j+1;j= =i) while(T&S(AU,1])); /* and seize resources */
critical region;
forO=0;j=j+1;j= =1) {AU,0]=0;AU,1]=0};
}

else /* non-kernel-processor * /
{
while(s! =0)

{
s=O;
forO =O;j=j+ 1;J= =1) s=s+AU,O];
" (s! =0) continue;
8=0;
forO=O;]=J+ 1;]= =1)

{
BU] = T&S(AU.1]);
s = s + BU];

};
" (s!=O) forO=0;]=)+1;]==I) " (BUl==O) AU,1]=0;

}
critical region;
forO=0;)=)+1;)==I) AU,1]=0;

/* restore flags * /

}
BroadCast( spl(x) ); /* restore previous processor priority levels * /
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If the kernel does not combine critical regions of different levels as shown above, the protection
would be much simpler:

BroadCast( spl(i) );

If (ProciO = KernelProcld)
{
A[i,O] = 1;
while(T&S(A[i,1 ]));
critical region;
A[i,O] =0;
A[i,1] =0;
}

else /* non-kernel-processor */
{
while(A[i,O]) ;
while(T&S(A[i,1]));
critical region;
A[i,1]=0;

}
BroadCast( spl(x) );

5.2.2 Clock Interrupt

/* disable Interrupts of level i and lower on all· /
/* CPU's not engaged in interrupt handling. * /

/* Announce Intention of kernel processor */
/* and seize resources • /

/* restore previous processor priority levels */

The functions of the clock interrupt In SPUX System V are the following:

a. Restart clock
b. Invoke Internal kernel functions from a callout table
c. Provide execution profiling for kernel and user processes
d. Gather system and process accounting statistics
e. Keep track of time
f. Send alarm signals to processes on request
g. Periodically wake up the swapper process
h. Control process scheduling

On a multiprocessor each processor wDl have Its own clock Interrupt or the clock event is
broadcasted to them. When this clock event occurs all of the above actions must be performed.
However some of these are global to the system while others have to take place locally and for
every running process Independently. Let us divide the above actions into a global and a local set.

First there is the action of restarting the clock. In a multiprocessor several possibilities exist as to
the number of clock interrupt sources with respect to the number of processors. We distinguish
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two possibilities. It is possible to have one central clock. The event of timing out is then
broadcasted to the processors as mentioned and restarting the clock is a global action. The
second possibility Is that every processor has its own private clock timer. Then the action of
restarting the clock is a local action.

Some kernel operations, particularly device drivers and network protocols. require invocation of
kernel functions on a real-time basis. For example, a process may put a terminal into raw mode.
The kernel then satisfies user read requests at fIXed intervals instead of waiting for the user to type
a carriage return. The function to be called after the fixed interval expires is placed in the callo
table. At every clock Interrupt the clock Interrupt handler checks the callout table and invokes
those functions that are due. Calling out functions from a callout table Is an action that is global
to the system for as long as this callout table stays global. At least for the time being we do not
consider local callout tables so for now the related actions are Indeed included Into the global set.
In SPUX the clock interrupt handler issues a software interrupt to start an interrupt handler which
in its turn calls out the functions from the table. To eliminate the P-IH critical regions that occur
when accessing the callo table one could have a kernel mode only process performing the task
of this interrupt handler. The P-IH critical regions then turn into pop critical regions. Synchronizing
the process to the clock interrupt can be done through a semaphore.

Profiling is In essence not much more than updating some locations dependent on the current
value of the program counter. Since every processor has its own program counter this profiling
clearly is a local action.

Under d. system statistics are gathered. The word system already indicates that this is a global
action. Also under d. process statistics are accumulated that are used for accounting later on.
These statistics are only accumulated for running processes. The actions involved thus belong in
the set of local actions.

Keeping track of time means incrementing time and calendar values. Depending on the overhead
allowed one can place these actions either in the global set or in the local set. In the first case the
kernel maintains time and calendar values in shared memory locations, in the latter every
processor could have local memory locations to that end. As usual in cases where multiple copies
of the same data exist at physically distributed places one must take measures to keep all copies
consistent. Here this means that at initialization time all local values must be initialized.

The sending of alarm signals is global as long as the process table is global. Implementing private
process tables next to a global one is a very interesting topic left for chapter 7. For now we
suppose one global process table only.

The swapper process needs to be woken up periodically. There is only one swapper process in
the system classifying the wake up as a global action.

The SPUX clock interrupt handler controls process scheduling by manipulating the CPU_usage
fields of every process. The CPU_usage is used in calculating the priority of a process: the higher
the CPU_usage value the lower the priority. The Interrupt handler increments the CPU_usage
value for the running process on every invocation and halves the CPU_usage value for the other
processes every second. Adjusting the CPU_usage fields for running processes will be done
locally, for the other processes It will be done globally on a multiprocessor (again as long as the
process table stays global).
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Having divided the actions into the global and local set leaves us with the question who will
perform the actions from the global set. It is evident that actions in the local set are performed
by each processor experiencing the clock interrupt. Only one of these processors needs to do
the global actions. A possible Implementation resembles the scheme of token passing. It is a
round robin scheme implemented by maintaining a value (in shared memory) that holds the
processor Identity of the processor that has to do the global actions. This processor will, after
finishing the global actions, adjust the value to contain the processor Identity of its successor. The
Interrupt handler algorithm may now look as follows:

algorithm clock
Input: none
output: none
{

/* local actions */
restart clock;
If (kernel profiling on) /* Note */

note program counter at time of interrupt;
If (user profiling on)

note program counter at time of Interrupt;
adjust measure of CPU utilization for the current process;
gather statistics per process;

/* global actions */
if token == my proc_id;
{

If (callout table not empty)
{

}

adjust callout times;
schedule callout function If time elapsed;

}
gather system statistics;
If (1 second or more since last here and

Interrupt not in critical region of code)
{

for (all processes In the system)
{

adjust alarm time If active;
adjust measure of CPU utilization;
11 (process to execute In user mode)

adjust process priority;
}
wakeup swapper process If necessary;

}
}

/* Note */

Note: In SPUX these events are dealt with by separate interrupt handlers invoked through
a software Interrupt. In MPUX the latter case could also be handled by a 'kernel
mode only' process thereby replacing P-IH critical regions for p.p ones.
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The solution with a token location takes some extra execution time at every clock interrupt in
order to access the token and proc_id locations in shared memory. (Extra time may be lost in
gaining access to these values). Furthermore a protection must be built in to detect a faulty
processor. This is fairly easy since a faulty processor will not update the toke anymore. A simple
time-out mechanism on every processor will do. The first processor to detect a faulty collegue
automatically gains the responsibility of performing the global actions. More elegant than having
a 'token-location' In shared memory Is to make token passing a basic feature of the IPre
mechanism and to use that feature for the purpose at hand. An alternative is to assign a processor
at Initialization time to perform the global actions. This processor would be the only one
performing these global actions until it either breaks down or the system is shut down. If it breaks
down the recovery handler must select another processor to do this job. The selected processor
could keep a private value to note its special status with respect to the clock interrupt.
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6 Multi-Kernel SMO Architecture

The Multi-Kernel Shared Memory Only architecture as we propose It consists of a number of
Identical Main Processors and a number of heterogeneous Input-Qutput Processors all resident
In a VMEbus based system. The Main Processors are allowed to execute the kernel code
simultaneously. This feature can only be made possible when extensive modifications to the
existing uniprocessor kernel are made. These extensions are, for the greater part, making the
kernel preemptable and protecting shared resources. Because In the present kernel mutual
exclusion methods are used that are sufficient in a uniprocessor but Insufficient in a
multiprocessor it is not immediately apparent In most cases where protection must take place. In
order to learn what we deal with the critical sections as occurring In Unix are inspected in section
6.1.
Our exploration of this architecture then continues with the topic of scheduling. What methods
of scheduling for multiple processors exist? What benefits can be gained from optimal scheduling?
What hazards exist? These questions will be answered in section 6.2.

6.1 Unix Critical Regions

We already discussed the problems that occur when mUltiple processors run kernel code. It
showed that In the uniprocessor kernel Process-Process (P-P) and Process-Interrupt Handler (P­
IH) critical regions exist. Later we somewhat detailed the P-IH critical regions by discriminating
them according to the level of Interrupt: P-IH(I) critical regions. In treating the Uni-Kernel
architecture, where Interrupts may be fielded to any processor, we observed a third type, the IH­
IH critical region.
In both Master-Slaves as the Uni-Kernel architecture the Pop critical regions were protected by
allowing only one Instance of the kernel at a time. The P-IH critical regions were easily protected
In the Master-Slaves architecture. The Master is the only processor that experiences interrupt
requests so It may temporarily disable them by raising Its processor level as In a uniprocessor.
More problems were encountered in the Uni-Kernel architecture where both P-IH and IH-IH critical
regions are hard to protect because the process instruction stream and the IH Instruction streams
may be executed on different processors. This Invalidates the 'processor-level raising' method as
a complete protection. Solutions were discussed In the previous chapter.

In this chapter we not only allow IH instruction streams to be In execution on different processors,
we also allow this to kernel mode process Instruction streams. Furthermore we do not merely
wish to protect critical regions, we wish to do so as efficient as possible. This means that we will
have to find an optimal value to the granularity of our protection methods. That Is, we will have
to carefully balance the protection overhead against the benefit of less serialization by having
more, smaller critical regions. We will also have to be apprehensive of possibnities to totally avoid
critical regions.

To protect the critical regions two things must be done. A selection must be made from the
possible synchronization mechanisms possibly on a per-critical-reglon basis. Second, because
we deal with existing code, these critical regions must be detected and delimited In the present
code. Paragraph 6.1.1 summarizes possible synchronization mechanisms and paragraph 6.1.2
deals with the detectability of critical sections in Unix code.
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6.1.1 Synchronization Mechanisms

In this section we will discuss a number of synchronization primitives (SP's) that we may use to
adapt the kernel to a true multiprocessor kernel. With the exception of the Fetch&Add (F&A)
primitive we will be brief since literature seems to be an Inexhaustible source of tutorials,
descriptions etc. on this topic [DUB088], [MUEH80] etcetera. The synchronization primitives are
usually categorized In hardware and software primitives. Although more and more hardware is
used to provide primitives that used to be prOVided by software, we will stick to the traditional
Hardware-Software classification.

6.1.1.1 Hardware Synchronization Primitives

The hardware SP's are usually very simple and therefore often used as building blocks for
complex Software SP's. In this light we may even jUdge atomic Load and Store actions as
synchronization primitives as they have been used in many synchronization algorithms (e.g.
[DIJK65]). Also inter processor interrupts may be considered as such primitives.
One outstanding case is formed by the Test&Set (T&S) primitive, used on its own as well as in
more complex primitives. The semantics of Test&Set are:

Test&Set(f1ag)
{
temp = flag; flag = 1;
return(temp);

}

The software that uses the Test&Set will typically repeat it until a zero value is returned. A zero
value Indicates that no other processor is using the protected resource. The processor that
performed the T&S primitive may then use the resource. The action of repeating the T&S
operation until a zero is obtained is called spin-locking. When finished using the resource the flag
can be reset using a normal Store(O) which translates to "flag = O· in C.
Spinning on a flag causes a lot of bus load. ThisObstructs other processors, inclUding the one
that must reset the flag. To avoid spinning suspend-locking may be used. Suspend-locking
functions as follows. A processor that finds a flag to be set (by doing a T&Son it) can note this
In a data structure related to the flag, disable all Interrupts to Its processor except for the IPrC
Interrupts and then retire from the bus, effectively Idling the processor. The processor that
eventually resets the flag, signals this to all processors noted In the flag related data structure.
These then retry to set the flag.
To Implement the T&S primitive. processors perform a Read-Modify-Write (RMW) cycle. This cycle
Is composed of a Read and a Write cycle in such a way that It is guaranteed that no other
processor will use the bus In between the Read and the Write. Hence a RMW cycle (and so a T&S
primitive) Is atomic.
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A related primitive is the Compare&Swap (C&S) primitive also implemented as a RMW cycle. The
semantics are:

Compare&Swap(r1,r2,w)
{
temp = w;

if (temp == r1)
{w = r2; z = 1;}

else
{r1 = temp; z = a;}

}

A variation, used for manipulating doubly linked queues, is:

Compare&Swap2(r1,r2,s1,S2,W,V)
{
temp 1 = w; temp2 = v;
if «temp1 == r1) and (temp2 == s1))

{w = r2; v = 82; z = 1;}
else

{r1 = temp1; s1 = temp2; z = a;}
}

There exist two problems with the Test&Set and the Compare&Swap primitives. The first is that
they form small critical sections causing processors to serialize accesses to the flag. This effect
is only noticeable in large mUltiprocessors. The second problem is that the aggregate Information
returned when N processors access a free flag is very low. For the case of the T&S It means that
one processor obtains the zero value causing It to proceed while all others obtain the same value,
1, causing them not to proceed (at least not in the Intended direction).
Through a suitable Implementation It Is possible to solve the first problem and provide critical
section free T&S and cas operations. We will show this for the next primitive the
Fetch&Operation (F&O) which also solves the second problem (at least in the case that
Operation = Add).
The F&O primitive is used in the IBM RP3 [EDLE85] and a special version, the Fetch&Add (F&A),
In the NYU Ultracomputer [GOTI83a]. The semantics of the F&O primitive are:

Fetch&Operation(V,e)
{
temp = V; V = Operation(temp,e);
retum(temp);
}

The parameters V and e are of type integer and the Operation must be associative and
commutative. The F&O primitive must satisfy the serialization principle that when many F&O
operations simultaneously update shared variable V, the effect is the same as if they occurred in
some (unspecified) order. The F&O primitive contains the T&S, C&S and F&A primitives as special
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cases. Simply substitute AND(V,e), PROJ(V,e)2 and ADD(V,e) for Operation(V,e) respectively. The
AND operation may be defined for integers or boolean parameters may be used. In the rest of this
discussion we will only consider the F&A primitive.
This F&A primitive can be profitably used in a large number of cases, even to the extent that Edler
et al [EDLE85] claim that an operating system "can be built that perform[s] the traditional
functions of resource management, scheduling, and coordination using critical-section-free
algorithms".
Let us consider two examples to illustrate the possibilities of F&A. The first example, due to
[PADU80]. Is well-suited for fine-grain machines, the second, due to [GOTI83a and b]. for
course-grain machines.
In the first example the following high-level parallel FORTRAN statement can be executed in
parallel by N processors if there Is no dependency between Iterations of the loop:

DOALL V = 1 to 100
{ cooe using V}

ENDDO

Each processor executes an F&A(V,e) with e set to 1, hence obtaining a unique value to be used
in the booy:

(initially V = = 1)
n = F&A(V,1);
while (n ~ 100) do

{
{ cooe using n}
n = F&A(V,1);

}

Observe that N may be smaller, equal or larger than 100.

The second example shows the possibility to manipulate a shared queue without any critical
sections (assuming the F&A does not itself represent a critical section). The queue in the example
Implements a circular buffer.
Gottlieb et aI write: "The procedures to be shown maintain the basic first-in-first-out property of
a queue, whose proper formulation In the assumed environment of large numbers of simultaneous
Insertions and deletions is as follows: if Insertion of a data Item p Is completed before insertion
of another data Item q Is started, then It must not be possible for a deletion yielding q to complete
before a deletion yielding p has started."

:2 The PROJ(V,e) operator returns e as the outcome.
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In the procedures presented below the following variables and routines occur:

I
o
Size
#QI

#Qu

QueueUnderfiow

QueueOverfiow
TIR

TOR

Put

Get
P

V
InsertSem and

DeleteSem

The procedures are:

Points to the location In the queue for the next insertion (initially O)
Points to the location In the queue for the next deletion (initially O)
Holds number of queue locations
Holds the lower bound for the number of items in the queue. (Queue
Is empty when #QI s 0)
Holds the upper bound for the number of items in the queue. (Queue
Is full when #QI ~ Size)
True when a processor tries to delete from an empty queue, otherwise
False
True when a processor tries to insert Into a full queue, otherwise False
Test-Increment-Retest procedure. Checks if space for insertion exists
and if so increments #Qu and returns True. If no space returns False.
Test-Decrement-Retest procedure. Checks if items are present and if
so decrements #QI and returns True. If no items present returns False.
Put does the actual insertion of an item into the acquired Q cell.
Howeverother insert and/ ordelete operations may have been assigned
this cell id. Therefore a mutual exclusion must be used to prevent
corruption. This is done through semaphores3

•

Get deletes an item from the queue. (See also Put).
P is the well known operation on a semaphore (See 6.1.1.2) that does
not allow a process(or) to proceed when the associated resource is
occupied. This P implementation (with F&A's of course) causes the
processor to spin-lock until the resource becomes free.
V is the other well known semaphore operation.
These are arrays to hold the semaphores to each queue cell. The
array size is equal to Size.

Procedure Insert (Data,Q,QueueOverflow)
{
If TIR(#Qu,1 ,Size)

{
Myl = Mod(F&A(1,1),Size);.
Put(Q,Myl,Data);
F&A(#QI,1)
QueueOverfiow =False;

}
else QueueOverfiow =True;

}

Procedure Delete (Data,Q.QueueUnderflow)
{
If TDR(#QI,1)

{
MyD = Mod(F&A(D,1),Size)
Get(Q,MyD,Data);
F&A(#Qu.-1);
QueueUnderfiow = False

}
else QueueUnderfiow = True;

}

3
When resources are scarce and mutual exclusive a critical section arises for the use of such a
resource. Note that when we make the queue length n = N * M, with N is the number of
processors and M the amount of multiprogramming, no multiple use of a queue cell occurs.
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Boolean Procedure T1R(S,Delta,Bound)
If (S + Delta ~ Bound)

If (F&A(S,Delta) ~ Bound)
TIA = True;

else
{

F&A(S,-Delta);
TIA = False;

}
else TIR = False;

Procedure Put(Queue,lndex,ltem);
{

P(InsertSem[Index));

Queue[lndex) = Item;
V(DeleteSem[lndex));

}

Procedure P(S)
{
OK = False;
do

{
If (-S ~ 0)

If (F&A(S,-1) > 0) OK = True;
else F&A(S.1);

} while (OK);

}

Boolean Procedure TDR(S,Delta)

If (S - Delta ~ 0)
If (F&A(S,-Delta) ~ 0)

TOR = True;

else
{

F&A(S,Delta);
TOR = False;

}
else TOR = False;

Procedure Get(Queue.lndex,ltem);

{
P(DeleteSem[lndex));

Item = Queue[lndex);
V(DeleteSem [Index));

}

Procedure V(S)

{
F&A(S.1);

}

When the queue Is neither full nor empty the above procedures allow many deletions and many
Insertions to be done simultaneously. More F&A based software primitives are presented in

[GOTI83b].

The above examples show the F&A to be very powerful for building software primitives that do
not contain serial bott\enecks. In the case that the F&A constitutes a small critical region Itself,
very large mutticomputers wUI suffer from It. The Implementation of the NYU Ultracomputer is such

that even this small critical section has been eliminated.
To not leave you wondering how true simultaneous execution of F&A primitives is made possible
In the Ultracomputer Its Implementation is briefly discussed.
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The secret lies in the Processors-Memory Network and the Memory-Network-Interface (MNI). The
Network is an Omega Network. An example of a 4-input-4-output omega network and its
environment is depicted below.

. W-Network,---r--------------l
p '00 001 M
N Nf-------1 MM O
I I

M
Nf--------i MM 1
I

M
Nf-------1 MM 2
1

P M
NIl 1 1 NI--------1 MM 3
I I I I

L J

Figure 6.1 The Omega Network

Suppose V denotes location 10 in the above network. Suppose further that F&A(V,e) primitives
are issued simultaneously at inputs 00 and 11. The two primitives will meet at switch 3. Switch 3
will combine the two requests as shown in figure 6.2 (suppose [V] = Y):

The switch will retain one of the operands
to be added and will forward a single F&A
primitive with the sum of e and f as its
second parameter. This primitive will reach
the MNI which will read value Y from
location V, write Y+ e+f to Vand return Y
to the Network. When this value Y reaches
switch 3 (in our case Immediately) the F&A
requester for which the second parameter
was retained is returned value Y, the other ~

value Y+e.

Much more can be said about this
network, for example how pipelining is Figure 6.2 Combining Fetch&Add's

done and how switches deal with the
situation where it must combine multiple request pairs. However this is not within the scope of this
thesis. The interested reader is referred to [GOTI83a].
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6.1.1.2 Software Synchronization Primitives

An outstanding software synchronization primitive is the semaphore. Its impact on computer
based systems has been enormous. Semaphores were first introduced by Dijkstra [DIJK68]. Two
operations are defined on a semaphore, the pes) operation to request use of the associated
resource and Yes) to free the resource. (P and V are the first letters of the Dutch words passeren
= to pass by and vrijgeven = to free). The pes) procedure puts the invoking process to sleep
when the resource is already occupied. This process is then enqueued on the semaphore sand
the processor is forced to switch to another process. This avoids busy~waiting for the associated
resource at the cost of a larger overhead. The Yes) operation releases the first process enqueued
If any. If no process Is queued on the semaphore the free state of the associated resource is
noted in the semaphores count field. Since processes may be put to sleep in the P operation a
Unix implementation of P will have to deal with signals that may prematurely wakeup the process
[Bach86 page 401]. (See also [BACH84]).
Several types of semaphores exist, for example binary, counting, additive and mUltiple
semaphores. Other primitives exist such as the UP/DOWN [WOD072] and the INC/DEC set
[SCHR76]. Detailed descriptions of these synchronization primitives can be found in [MUEH80].
All of these primitives rely on the simpler hardware SP's to become indivisible (a necessary
property for correctness).
Yet another synchronization primitive is the Barrier, used to join a number of parallel processes
belonging to a task force. The semantics are:

Barrier(N)
{
count = count + 1; /* initially count = 0 */
If (count ~ N)

{
wake up all processes on barrier queue;
count = 0;

}
else block process and place it in the barrier queue;

}

Providing the Barrier as a separately implemented primitive may lower the overhead involved
when compared to emulating It with. for example, semaphores. This is profitable in environments
where many parallel. Iterative algorithms are executed.

•
Finally It is possible to use message passing mechanisms for pure synchronization. This has been
discussed in chapter 4.
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6.1.1.3 Summary

Having the objective to eventually obtain a Unix kernel that is fit to be executed by more
processors simultaneously, it is important to choose a set of synchronization primitives that allows
to do this efficiently. From the primitives discussed the F&A seems to be very promising as it
enables the Implementation of a kernel that is free of (processor) critical sections 4. Hence the
efficiency of the processor community will be higher. The disadvantage is that the kernel needs
to be largely rewritten which Is a large task. On the other hand. using the traditional
synchronization primitives such as semaphores for cases where F&A could be used, will also
prove to be an enormous task. This tips the balance In favor of the F&A primitive. This conclusion
does not mean that we can do without semaphores or the like. these still are necessary for
protecting process critical regions.

6.1.2 Detectability of Critical Regions

In order to detect critical regions in existing code one has to have detailed knowledge of the
forms In which such regions occur in the code. Fortunately. Janssens, Annot and v.d. Goor have
already investigated the matter and presented their results in [JANS86]. We will summarize these
results below.
Janssens et al recognize the following 5 types of critical region:

1. User Process
2. Kernel Process
3. Kernel Process
4. Kernel Process
5. Kernel Process

• User Process
• Kernel Process (without embedded context switch)
• Interrupt Handler
• Kernel Process (with embedded context switch)
• Kernel Process (without switch but accessing same shared variables

as type 4).

For completeness we add:

6. Interrupt Handler· Interrupt Handler.

Since Interrupt Handlers never allow a context switch and do not access shared variables also
accessed In type 4 critical regions. they are treated as type 2 in the sequel.

As opposed to processors, processes cannot, in general, be freed from critical regions. Think
for example of Disk 10, printers etc.
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Type 1

With the advent of the IPC package in Unix System V, which furnishes user-level semaphores,
protecting User Process- User Process critical regions is principally done as follows:

aemop(semid,P};
critical section

aemop(semid,V};

where semid is the system call that performs operations on the semaphore semid. (To allow
for several extra functions the system V implementation of semaphores is more elaborate.
To present the full code would only derogate the clarity achieved above. For an example, see
[BACH86] pages 374-375.)

Type 2

As discussed before Kernel Process-Kernel Process critical regions occur in the kernel code
with no explicit protection at all:

critical section

The protection given by a non-preemptive kernel no longer suffices, forcing us to explicitly
protect such a region of code.

Type 3

Type 3 critical regions (P-IH) are protected as follows in the kernel mode process code:

disable interrupt;
critical section

enable interrupts;

Since the interrupt handler can only be interrupted by higher level Interrupts. with whose
handlers no variables are shared, It does no protection of the critical region:

critical section
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Type 4

These critical regions consist of two parts which are protected in SPUX as follows:

while(flag == 1)
sleep(event) ;

flag = 1;
critical section part 1

swtchO;
critical section part 2

flag = 0;
wakeup(event) ;

noncritical section
swtchO;

A
A
A

/* dispatch! */

B
B

The first 3 lines of code emulate, in a way, a P operation on 'semaphore' flag. The lines
marked B emulate the V operation, releasing all processes waiting for flag to be reset. The
protection with flag is necessary since the process may be replaced by another one in the
swtchO function. The new process might want to access the critical sections part 1 and/or
2. If so it must first check the flag and go to sleep when it is set. Therefore the new process
must either execute the code given above or, when it does not call the dispatcher, the code
given below:

while(f1ag == 1)
sleep(event) ;

flag = 1;
critical section

flag = 0;
wakeup(event);

noncritical section
swtchO;

This code contains what we have called a type 5 critical region.
Janssens et al make the folloWing notes to the flag protection mechanism. First of all they
note that setting the flag In the first piece of code can be done anywhere between the while
statement and the swtchO call. Also resetting the flag can be done anywhere between the
first and second swtchO call. Shifting these statements down respectively up Is done to
optimize the code. Due to the non-preemptiveness of the kernel on a uniprocessor the
protection stays Intact. Finally Janssens et al remark that in the second piece of code the flag
need not be changed at all, again because of the (SPUX) guarantee that the process is not
preempted In the critical section.

From the above It Is evident that protecting the Unix critical regions will be a tough job, not
because the choice of the right protection mechanism Is that difficult, but because it is hard to
find the critical regions. Finding the beginning of type 4 and 5 critical regions Is a favorable
exception to the rule, They can be easily recognized from the leading while statement.

In our group a start to this formidable task has been made by A. Kwaks [KWAK87]. We refer to
his work for further details in this area.
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6.2 Process Scheduling

Process scheduling on a uniprocessor is a well known topic. Equally well known is the fact that
the ways to perform scheduling are numerous and that ample research has been carried out to
find still more and better ways of doing it.
On a multiprocessor several degrees of freedom are added and the complexity of the scheduling
problem Is therefore even greater. In fact, the scheduling problem defined as the problem of
finding an optimal schedule as to throughput and response time, belongs to the class of np­
complete problems, even when all knowledge about processes and processors is available on
beforehand.
For this reason many scheduling methods try to achieve local optima in the hope that this renders
a solution that is close to the global optimum.
Below we will discuss a number of these methods and setup requirements to which scheduling
methods for multiprocessor should in general conform. Having done so we will discuss the
situation for Unix on a mUltiprocessor.

6.2.1 What is Scheduling?

Let us first give some definitions related to process scheduling.

Definition 6.1

Process Scheduling Is assigning processors to runnable processes in such a way that some
function of one or more quantities is optimized.

Note that processors and processes may have arbitrary characteristics. Processes for example
have the following:

execution time
resource usage
priority
precedence relations with other processes
etcetera

Processors exhibit, amongst others, the following properties:

scalar processing speed
vector processing speed
10 speed
private memory
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Definition 6.2

A Schedule is an assignment of processors to a given set of processes such that both where
and when any individual process is run is given.

Definition 6.3

A P_SET is a set of processes containing single processes SP and group processes GP. A
GP Is built up of processes between which precedence relations are present. A GP cannot
be further divided in subsets without having any precedence relation between two processes
belonging to different subsets of GP. Any SP is free of precedence relations both with respect
to other SP's as to GP's.

Note: A group process GP as defined here has also been termed Crowd [LEBL87] and
Task Force [JONE79] in literature.

Using the last two definitions one can also say that Process Scheduling is the act of making a
schedule for a P_SET to optimize some quantity.

The quantity to be optimized can be dependant of the following:

Optimum response time
Optimum processor utilization
Safe Schedule (No deadlocks)
Fair Schedule (No starvation etc)

6.2.2 How to Schedule

Let us define the entity that performs the scheduling, be It a program or a human, the scheduler.
Then we may define two different ways of sct*rullng depending on the viewpoint of the
scheduler. First we have what we call central scheduling
where the scheduler Is hierarchically placed above the processors. (This does not mean that the
scheduler function Is not carried out by these processors!). Associated with central scheduling
Is one single run queue. (This does not mean that this run queue has no internal structure as will
be eXplained In paragraph 6.2.6). Second we have distributed scheduling where there are as
many schedulers as there are processors and where the viewpoint of each scheduler is as if it
was a processor. In this situation we have per processor run queues.
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Both for central as for distributed scheduling we can define a number of policies used to generate
a schedule. These are depicted in figure 6.3.

Distributed Scheduling
P_SET

Central Scheduling

entrustment
policy

r

I where whenl
I I
I Schedule IL --'

Local Remote

AsSigmentJ lLocation
~~y ~~y

r ----------- --,
I When I Where rl
I ,I

L Schedule I
--------------.1

Figure 6.3 Scheduling Policies

For central scheduling we see a so called entrustment policy which decides which processor must
run which processes. This policy may take precedence relations into account. The second policy
for central scheduling is the assignment policy which determines when to schedule a process. In
practice we meet scheduling algorithms that implement both policies in an interrelated form to
obtain the optimum schedule, in other implementations we see that the entrustment policy is done
first and then, independently, the assignment policy.
In case of distributed scheduling we find the transfer policy which decides whether a process
must be executed on the local processor or must be transferred to a 'remote' processor. For
processes that stay local the already known assignment policy determines when processes are
executed. For processes to be transferred the location policy decides which processor they will
be sent to. The apostrophe with the schedule indicates that this Is the schedule for the local
processor and that the total schedule must be obtained by combining all information from the
local schedules. The terminology for the policies In this distributed case stem from [EAGE86]. Two
remarks are due now. First observe that in·the distributed case a global optimum for the entire
system schedule Is not practically achievable anymore. Even If such an optimum could be
calculated In a reasonable time the calculation would cause a lot of communication between the
processors (or better their schedulers) to gain access to all necessary irlformation. But this
effectively returns us to central scheduling for which better methods exist. Second we may see
the combination of the transfer and location polley as the counterpart of the entrustment policy
from the central case.
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6.2.3 Types of Policies

Each of the policies as defined above uses some parameters to base its decisions on. Depending
on the way these parameters are obtained we can classify the policies in each of the quadrants
of the following matrix:

Figure 6.4 Scheduling Types

nondeterministic

deterministic

dynamicstatic

A policy is said to be static when the
parameters it uses are determined once
and fed to the policy at system startup
time. A static policy will therefore never be
able to adjust to any deviation of the
system state from the one prevailing when
the parameters were determined. Short-
term deviations may be caused by work­
load peak-hours or because department X
is on holidays. Long-term deviations may
be caused by an adjustment of the user
community to the system given the set of
parameters in use.
A dynamic policy on the other hand relies on parameters that are measured from the system at
regular time intervals or that are requested when needed. A dynamic policy typically adjusts to
medium-term and long-term changes in system state. If it would react to short-term changes
unfavorable effects like continuous process transfers may occur.
The other dimension in the matrix above is whether the parameters are deterministic or non­
deterministic. A deterministic policy uses deterministic parameters that may be either known on
before-hand, estimated or measured. A non.cJetermin/stic policy uses stochastic parameters that
are characterized by a probability density function (pdf). These parameters are in general either
measured or calculated for certain types of processes. Most of the time however probabilistic
models are used to calculate the (estimated) behavior of policies that are born from a different
type of reasoning. Most of the methods we refer to are traditional assignment policies like round
robin (RR), first come first served (FCFS), shortest job next (SJN) and priority schedUling.
Having said something about assignment policies we might as well add that these can be further
divided along a third dimension, that of preemption. Some assignment policies choose a process
to run which will then run until completion or until it is blocked. These policies are non-preemptive.
Others preempt the processor(s) as soon as a higher priority process Is detected In the set of
runnable processes. ( For reference: The Unix system basically uses round robin scheduling,
allowing each process to execute for a certain amount of time (the time quantum). Processes that
are not ready at the end of their time quantum are fed back to one out of many priority queues,
dependent on its history. This assignment policy is known as round robin with multilevel
feedback.).
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6.2.4 Optimal Response Time

To obtain an optimum schedule a lot of information is necessary. Especially the scheduling of
processes belonging to a GP is difficult. The information required to optimally schedule a GP
comprises the precedence relations between the processes of the group and the execution times
of these processes. The precedence information is often given as a graph while the resultant
schedule Is usually given as a so called Gantt chart. (See figure 6.5)
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It is assumed that there are p
identical processors and a P_SET
for which an optimal preemptive
schedule must be derived.
Furthermore it is assumed that all
process execution times are
multiples of some common value
so that start- and endpoints of
process executions are found at
discrete points in time. The
common value is called weight.

An example taken from
[HWAN84] is used to clarify the
type of reasoning under1ying
these schedule methods. The
example uses a deterministic
preemptive scheduling method
due to [MUNT69]. As mentioned
ear1ier this type of scheduling
interrelates the entrustment policy
and the assignment policy as we
defined them.

A schedule Is derived for the GP
as given In figure 6.5a and given
In figure 6.5b.

(b)

Figure 6.5 Optimal Schedule
The algorithm Is as follows:

First transform the graph for the GP Into one where all processes have unit-weight. That is
transform all processes with a weight larger than 1 into strings of unit-weight processes. (See
figure 6.5 process T4).

Second partition the graph Into a sequence of disjoint subsets in such a way that all nodes
In a subset are Independent. Number the subsets, starting at the terminating node and
working to the top, from 1 to N. The initial node thus obtains number N.
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Entrust processes to the processors (in this example 2) starting at the highest numbered
subset which contains the Initial node. Every time a subset contains only one node a node
from the next lower subset may be entrusted to the second processor unless prohibited by
precedence relations (f.e. T2 belongs to subset 4 but is co-entrusted with T3 from subset 5).
Every time a subset contains an uneven amount of nodes the method as used for T5, T6 and
T7 can be used to reach minimum-time execution.

Since 1969 many other methods have been proposed for broader classes of processes. We will
not discuss them here since this does not fall within the scope of this text. The sole purpose of
presenting the above example here was to make the reader aware of the fact that when Inherent
parallelism In an algorithm Is to be exploited on a mUltiprocessor, knowledge of the precedence
relations between the processes that Implement that algorithm Is needed.

6.2.5 Optimal Processor Utilization

Processor utilization (or efficiency) is defined here as the cumulative amount of time a set of
processors Is executing processes divided by the cumulative amount of time they were available
for execution of processes while runnable processes were present. On a uniprocessor processor
utilization can be degraded by a large overhead due to process switching. On a multiprocessor
another phenomenon may add to this degradation, namely load unbalance. Load unbalance is
the situation where one processor has lots of work while others are idling.

Although optimal response time and optimal processor utilization are strongly related they are not
quite the same. Examples exist where processor utilization is enlarged at the cost of the response
time for the several users. Deriving a schedule for optimal response time is usually not practical,
causing methods to be used that use other optimization criteria. One of these criteria may be
processor utilization.
The situation with respect to achieving good processor utilization is somewhat different for central
scheduling as for distributed scheduling as will be discussed next.

With central scheduling we have all Information about all processes and all processors. This
means that it will be relatively easy to obtain a good processor utilization. Unbalances In the load
will not occur since the scheduler will assign a new process to every processor as long as there
are runr18b1e processes available.

With distributed scheduling It Is quite different. Here every site-scheduler has all information about
the local processes and only a subset of the total jnformatlon about 'remote' sites. (If the
Information about remote sites were complete at every site we would effectively have returned to
the central scheduling case. The central scheduler could then be considered to be composed of
a number of cooperating subschedulers each having total knowledge.)
The partial avaDabDIty of 'remote' Information In the true distributed case gives rise to minor or
major unbalances In the load of the respective processors.
To remove any unbalances processes can be either placed In a lightly loaded site upon their
creation (Initial placement) or they can be moved from one site to another even when they have
been already executed for some time (process migration). Both initial placement strategies and
process migration strategies belong to the transfer policy. If we model the creation of a new
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process as a migration from an imaginary processor to a real one, we may include initial
placement in process migration. A definition of process migration in our terminology, can then be
as follows:

Definition 6.4

Process Migration Is the transfer of the duty to assign a process for execution, from one
processor to another.

A process migration can only be successful when the destination processor has access to all
relevant parts of the process's context. In order to be able to judge the consequences hereof we
need to know how a process context looks like.

A process context Is composed of a number of segments as depicted in figure 6.6 below. C'Ne
chose to present the context for a process in the Unix operating system since that is the operating
system we are concerned with.)

Process Context for Unix processes

User_level
context

User Stack
I

Dynamic Dale
---s~-t.i~--D~l;-----

Code (text)

private

sharable

private

sharable
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only in
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f---------l
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Stack pointer
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Purpose
Registers
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Buffer Cache
Rel!ion Table
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Semaphore Table

Etcetera

Figure 6.6 Unix Full Process Context

As you can observe the context is presented using a two-level hierarchy. This hierarchy is due
to M.Bach [BACH86]. We also use his terminology to a large extent. The user-level context is,
loosely spoken, the program. The system-level context contains all data-structures necessary to
control (or manage) the process as long as it 'lives' In the system. The register-level context Is
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formed by the contents of all processor- or other registers used by the process when it is actually
running. The environmental context is not especially set aside by M.Bach but does form an
Important part of the process's context, its Importance becomes evident when trying to migrate
processes In distributed computers [OUST88]. The environmental context is composed of bits and
pieces of those system tables that relate to the process.
For the purpose of process migration we can Ignore the register-level context since It will always
be saved on the kernel stack before migration takes place.

In true distributed systems It will not be very easy to allow access to all these subcontexts after
a process has migrated away. It Is evident and one of the key advantages of multiprocessors
satisfying our definition 2.2 that access can be guaranteed through the use of shared memory for
appropriate parts of the process context. The severe problem of forwarding communication to a
migrated process as encountered In distributed computers is also avoided in this way. Also no
problems arise, at least not for migration, with shared segments of context.
A natural consequence of using private memory for parts of process contexts (as we intend to
Investigate) is that these problems return.

In the field of distributed computers initial placement and process migration have been thoroughly
studied and stili are. From these Investigations a number of advantages gained through these
methods are mentioned. The main ones are:

A. Load Balance. As discussed this can have a favorable effect on the performance
of a system.

B. Fault Tolerance. Critical processes can be kept running. Some reasons for a
process to be Interrupted when running on some processor can be advertized in
advance. A process that must stay running can then migrate to another processor.

C. Move small process to large data. In a distributed computer It Is possible that an
operation must be performed on large amounts of remote data. When the process
that performs the operation and the result of the operation are small (or, when
large, can be left at the remote site) • It is wiser to ship the process to the remote
site than to fetch the data. When the operation finishes the result data are returned.
An example of such a situation might be the gathering of statistical information from
a remote database.

D. Remotely locking a resource 'may be impossible because remote locking primitives
are not provided. In such a case sending the process to the remote site enables
It to lock the requested resource there using local locking primitives.
Similar reasoning can be applied to file access mechanisms.

We may Immediately conclude that advantages C and D above cannot be achieved on a
multiprocessor since the underlying problems do not exist. Data will be at hand easily and locking
primitives can be made of equal semantics for all processors. Advantage B has already been
discussed In chapter 2 and Is achievable In a multiprocessor too. As observed in the previous
section load balancing (A) Is also an Item of discussion In a multiprocessor when distributed
scheduling is applied.
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A lot of load balancing strategies have been suggested in literature. Many of them try to control
a certain quantity that has an Intuitive relation to the balance of the load. Krueger and Finkel

[KRUE84] for example try to keep the length of the processor run queues close to the system
average queue length. Hoozemans measures all processor Idle times to find the best site to move
processes to [HOOZ86].

We will discuss two types of transfer and location policies explicitly targeted towards load
balancing. The policies of the first type are known as Threshold policies, the other type uses
process behavior to base decisions on.

6.2.5.1 Threshold Policies

The threshold policies discussed here are due to Eager et al [EAGE86]. They investigated three
location policies with a fixed transfer policy in order to achieve insight into the complexity level
needed to get near optimal results. This is also the main reason for treating them here. A
mUltiprocessor like ours, employing a time-shared bus, suffers greatly from large bus loads. In

order to minimize the load an Impression of the complexity of load balancing policies is necessary

to setup the right simulation experiments. These experiments should uncover the optimum
compromise between the bus overhead caused by the policies and the effectiveness of the
policies.

The system for which the policies are discussed is a distributed computer having K identical

uniprocessor nodes. The nodes (or sites) are interconnected through a LAN with broadcast
facilities.

A number of other assumptions are made mainly to simplify the system model. These
assumptions are:

The arrival rate L of new processes is Identical for each site.

There is only one type of process (average service time S).
The cost of transferring a process from one site. to another is represented by an

average processing cost C at the sending end.

The processing cost of receiving a process is included in the service time S.

The communication costs are negligible.
The cost of obtaining state Information from a remote site Is negligible.
The scheduling performed locally Is Independent of the actual process service

times.

The transferring of tasks has preemptive priority over processing tasks.

Eager discusses these assumptions thereby broadening the validity of his analysis to cases where
site processors are not Identical and where the arrival rate L Is the same only over the long-term.

The transfer policy used Is very simple. Any time the policy Is Invoked It examines the run queue,
determines Its length Q (= number of processes queued) and decides to transfer the process
under consideration when Q>T, otherwise the process Is executed locally. Eager et al have the

transfer policy Invoked only when new processes are created locally (and with one location policy

when processes arrive from other sites). Processes that have been partially executed at some site

will never be transferred to another site because of the problems that may potentially occur. (Think
for example of the environmental context).
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As soon as the transfer policy has decided to transfer a process the location policy is invoked to
decide on the destination of the process. Three different location policies have been investigated
by Eager et al. These policies have been selected for their increasing level of complexity. The level
of complexity is strongly related to the amount of information about the state of remote sites that
is necessary.
The three policies in order of increasing complexity are:

Random
Threshold
Shortest

The Random policy chooses the destination site at random. A process arriving at the destination
site due to a transfer is treated there as if it was created locally. This means that there is a risk
that the process is further transferred, If the number of transfers allowed is unbounded the
Random policy is unstable, that is after sufficient time all sites will be transferring processes to
each other without executing any of them. (For a proof see [EAGE86]). For this reason a counter
field is tagged to the process in transfer to indicate the number of transfers It has gone through
since its birth. By imposing an upper bound L, (the transfer limit) onto the value of the counter this
undesired behavior is avoided. A process that arrives at a site with a counter value L, must be
processed (and not transferred) by that site.
Note that the Random policy does not need any state information from other sites.

The Threshold policy also chooses a destination at random. It does not however send the
process immediately but first inspects if the chosen site is above threshold. If so it retries for a
maximum of ~ times. ~ Is called the probe limit since Inspecting a remote site for the required
Information Is called probing. When sites probed are all above threshold, ~ will be reached and
the process is not sent at all but kept for local execution. When a process arrives at the
destination site It will be processed there.
Note that the Threshold policy needs, at the most, ~ binary values representing the state of ~
remote sites. In general the process will be sent within less than ~ retries.

The Shortest policy randomly probes ~ sites and sends the process to the one having the least
number of processes on queue. Of course'the process Is not sent when all ~ remote sites are
above threshold. When a process arrives at the destination site It will be processed there.
Note that the Shortest policy always needs ~ remote state values. The values needed are integers
In this case.

To give the reader some more background we summarize the modelling method used by Eager
et al below.
The entire system has been modeled as a queueing network in order to calculate Its behavior. The
calculations were validated through simulation for a system employing 20 site-processors.
To simplify calculations the sites of the network are assumed to be stochastically Independent.
Eager et aI state that this is an asymptotically exact simplification. This means that for finite
systems the analysis Is an approximation. Because of the 20-site simulation the analysis can be
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applied to systems with 20 processors without difficulty. For systems with fewer sites an extra
validation should be done.

Because of the simplification the system now is a collection of stochastically Independent sites
that feed each other with processes in transfer. These streams of transfer processes are modeled
as an arrival process for each site with arrival rate L,.
In equilibrium a site sends as much processes away as it receives. Because of this balance it is
possible to calculate the behavior of the entire system (at equilibrium) from the behavior of one

node. A node can be seen as a birth~eath process as depicted in figure 6.7.

•

•

Figure 6.7 Birth-Death Model

In this figure, two phases a site can be in, are indicated. A site Is in the processing phase when
its queue length Is below or equal to the threshold T, otherwise It is In the transferring phase.
In the processing phase the site-processor either idles (n = 0) or executes processes (0 < n < =

T). In the transferring phase It either executes processes or transfers them (n > T).
The conduct during the processing phase is calculated using standard methods. The behavior of
the transferring phase is identical to that exhibited by a two class, preemptive priority HOL M/M/1
queue in its busy period [KLEI76] and calculated as such.

Eager et al compared the three location policies with each other and with two bounding cases:

K Independent M/M/1 queues and one M/M/K queue. The former has no load sharing at all the
latter has perfect load sharing. The overhead for the M/M/K queue Is assumed to be zero. In a
real system at least some overhead will be present so that the performance of some policies may
be Judged somewhat better than may appear from the graphs.
The quantity that Is compared Is the mean response time of processes.
We will only repeat the principal performance comparison done by Eager. The principal
comparison Is made using figure 6.8 as a guide. This figure gives average ·response time RT
versus system load R (= site load at equilibrium). There are a number of parameters to the figure

with values as indicated. Eager et al motivate these values In their article. We will discuss them
later.
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The Threshold policy does even
better due to the use of some
remote state Information. At a
load of 0.7 the response time
becomes 1.7S. Such a decrease
of RT indeed is what one would
expect.

The Shortest policy disappoints
with respect to the expectations.
Intuitively one would have
expected another substantial
increase over the Threshold
policy. This is not so as the
average response time reaches
1.6S when the Shortest policy is
adhered to, only 0.1 S below the
Threshold value.

It appears from the figure that the
Random policy substantially
improves the response time. For
example for a load of 0.7
response time decreases from 3.4
to 2.1 times the uniprocessor
response time S.

Figure 6.8 Threshold Policies Performances

S(task service time) = 1.
C(cost of task transfer) = 0.1
T(threshold) = 2
lp(probelimit for Threshold and Shortest) = 3
L,(transfer limit for Random) = 1

Eager et al have Invested
considerable effort in validating
the above outcome. They
investigated into the sensitivity
of the policies to the transfer
cost C, the choice of Threshold
T and probe limit lp. The
network traffic caused by
probing and transferring
processes may turn out to
create a bottleneck for the
system. In a multiprocessor
with a time-shared bus as the network and employing local memory, the amount of extra traffic

Induced by the load sharing policies also Is a critical factor. Eager et a\ calculated the rates of
transfer and probing for each of the policies. These are shown In figure 6.9.
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Figure 6.9 Process Transfer and Probe rates

The policies that use state information are much more efficient at high system loads in that they
refrain from process transfers when they are not beneficial. This advantage is gained at the
expense of some probing information. However the amount of traffic for probing Is likely to be
much less than that for a process transfer.

Eager et al conclude that their analysis predicts system behavior very well over a wide range of
parameter values. This especially is true for the relative comparison of the policies. Their
conclusion that the complexity level needed to achieve near optimal results can be very modest
appears to be Just. A modest complexity level has the advantage of a higher degree of stability,
a better maintainability and less overhead In processing time and network load. As mentioned
earlier especially this last aspect is of interest to us.

6.2.5.2 Process Behavior based Policies

Scheduling policies can also be derived starting from the actual behavior of processes. An
argument for taking this approach is the observation that actual process behavior Is far from
exponential. For the Unix environment this observation Is made in a.o [LELA86] and [CABR86].
In scheduling models based on queueing theory and often also In simulation models it is
commonly assumed that a process has an exponential arrival rate, CPU usage, disk usage
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etcetera. The empirical data show otherwise. Leland and Ott [LELA86] observed from their data
the following 3 classes:

1. Large CPU Intensive processes with relatively few disk accesses.
2. Large disk intensive processes with relatively little CPU-usage.
3. Ordinary processes that need little of both.

Class 1 forms the 'tail' of the distribution of CPU-usage. This tail is much thicker than with the
exponential probability distribution. The same goes for the disk access arrival rate. Leland and Ott
also showed that the 98% smallest processes needed 35% of total CPU time while the 0.1 %
largest needed 50%. Intuitively, a lot of effort may be put in transfer and location policies for large
CPU intensive processes for the overhead for these processes will be relatively low. Also an even
distribution of these processes over the processors has largest effect on total system response
times since they account for 50% of CPU time. Small processes will also benefit from evenly
distributed large processes for then they will hardly ever have to run in the presence of more than
one large process. The data from [CABR86] support the above reasoning. Cabrera found that
50% of all processes needed less than 0.4 seconds and between 78% and 95% less than 1.0
seconds of CPU time. Most processes should therefore not be moved between processors
because of the relatively large transport overhead.
Two remarks are due. First of all when the vast majority of processes is small, a lot of user
sessions will be composed of only such small processes. To provide such a user with improved
response times, balancing the large processes helps, but is not enough. Crowds of small
processes may exist on a particular processor. The expected exit time of one such process may
therefore lie far into the future because many higher priority processes run first. It might be better
to ship the process (or a group of processes) to another ,less loaded, processor and receive it
back before the time It would have exited locally, in spite of large transport overheads. Second,
balancing small processes becomes possible in the environment of a shared memory
multiprocessor because of the high IPrC bandwidth. For example in a distributed environment
(often used as the target environment in papers discussing migration policies) based on VAX750s
the IPrC bandwidth is not higher than 100 kilobytes average at the user-level [LELA86]. In a
shared memory environment with Unix operating system the bandwidth can easily reach 1
Megabytes per second and, with some effort, 3 Megabytes per second and more. Still, even in
the shared memory case a number of processes use so little CPU time that it is not worth
balancing them. For this reason we see that most migration policies based on actual behavior,
alike the Threshold Policies, have a threshold (as was to be expected).
Hence threshold policies emerge from both the 'exponential camp' as the 'actual camp'. This
makes one wonder how the actual behavior Influences the policies. For the case of Leland and
Ott the empirical data are used for two purposes.First It Is used to Justify a threshold and to
estimate an efficient value for It. Second It is used to derive an estimation rule for the classification
of an unfinished process above or below threshold. The rest of the policy (not discussed here)
could have equally well been based on exponential behavior. To estimate whether a process's
total CPU-usage lies below or above threshold the CPU usage so far has to be measured and the
residual CPU-usage has to be estimated. Leland and OTT found the mean residual CPU-usage
X, of a process that already used x CPU seconds to be approximately:

x, • k1 + lye with k1 very small
and x > 3 seconds.
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Hence a process's lifetime can be estimated as

x + x, .. x + k~ = (1 + k2)x

for x larger than 3 seconds.

Since the class of processes that Is of Importance to migration in a shared memory
multiprocessor has an average CPU-usage of less than 3 seconds the above estimation cannot
be accepted without further study into X, for x smaller 3.

6.2.6 Congestion Problems with Scheduling

A number of bottlenecks In the multiprocessor will prevent its performance to rise unlimited with
the number of processors N. The main bottleneck will be the time-shared bus. By taking
appropriate measures this bottleneck can be widened to allow for at least 16 processors
[FREE84]. The first measure Is to use caches with every processor which allows for somewhere
between 4 and 8 processors. The second measure Is the use of local memory for the process
descriptor and process stacks. This last measure raises the number of effective processors above
16. ( e.g Freeman and Kaplinsky measured a relative throughput of 0.89 on a multiprocessor
employing 16 processors, using 8k of cache and 1k of local memory. The throughput is relative
to a system of 16 Independent ideal uniprocessors of the same type as the processors in the
multiprocessor.) .
As soon as the time-shared bus bottleneck Is eliminated new bottlenecks will become apparent.
These will mainly be caused by congestion problems when accessing shared data structures. An
outstanding case Is the run queue. This queue is heavily used by all processors In the system.
Assuming for now that we stick to the single processor Unix scheduling mechanism, using the
same time-slice of one second, this would mean that at least N (= the number of processors)
times per second an access to the run queue occurs. This number will be higher because
processes are created, get blocked, must be woken again and exit'. All of these actions require
access to the run queue. For an arrival rate of 1 process per second and an 10 rate of 2 per
process (above the loading of the process code (exec)) this adds at least another 10 accesses.
The total number of accesses could therefore easily reach 100 on a 10-processor system under
a modest load. This means that when all these accesses are equidistant, run queue manipulation
may not take more than 10 milliseconds. As indicated 100 Is an underestimated number which,
together with the effects of randomizing the accesses, will leave less time for the run queue
manipulations, potentially causing performance degradation.
To eliminate this bottleneck It Is possible to partition the run queue Into more queues. The most
obvious way to do this Is to give each processor Its own queue, containing the processes to be
run by that processor only. This will necessitate load balancing for then we have distributed
scheduling.
A solution also exists for the case of central scheduling as Indicated by Cezzar and Klappholz
[CEZZ83].

1. Cabrera measured a maximum of 670 processes being created in 5 minutes on a VAA 11 /785.
This means more than 2 creations per second, more during peaks.
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Cezzar and Klappholz try to show the effect of multiple run queues when processors access these
randomly and uniformly. Because of the manner in which the queues are used we effectively (or
functionally) have 1 central queue.
Cezzar and Klappholz make the following assumptions about the system they declare their results
valid for:

Identical Processors
Uniform access to common memory; where no processor is favored over others
Uniform sharing of 10 resources.

Our system fits In this class. They further recognize a functional entity that performs the following
actions:

Creating and Destroying processes
Putting processes to sleep and waking them up
Scheduling

This functional entity is referred to as the Program Management System (PMS). This PMS consists
of executive code, one or more run queues and one or more blocked queues. Cezzar and
Klappholz present their results using two measures. effective throughput and the number of
effective processors K (= our Ne). We will not concern ourselves with the effective throughput but
only present their results regarding the effectiveness of processors.
A queueing-analytic model is made to calculate the desired values. In this model a run queue is
modeled as a server having a service rate of M.
Three cases are considered. The first case treats the situation where only one run queue exists.
The second case treats a system with m run queues in which processors choose an unlocked run
queue (e.g. to fetch a process) without any cost. If all queues are locked processors choose
one at random and spin lock until it becomes free. The third case is like the second case except
that a processor Immediately chooses a run queue at random without even investigating whether
It, or another one, Is free. When the chosen run queue is locked the processor spin locks even
If other queues are free. This third case is introduced to avoid as much as possible the overhead
for choosing a free queue, that is assume9 to be zero in case 2. It is this case that is finally

proposed by Cezzar and Klappholz as tractable for-practice. For the first two cases results have
first been derived using deterministic values for arrival and service rates. These results give an
upper bound on the effectiveness of the N processors In the system. Then the results using
stochastic arrival and service rates have been calculated.
The 'probabilistic' results from the first and second case serve as a lower and a higher bound
respectively for the third case.
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The following symbols are used:

N =
Ne =
L
M
A =

A =
m

number of processors
number of effective processors
arrival rate of run queue accesses
service rate of run queue
run queue access traffic Intensity (LIM)
PMS overhead In a 1 processor system (L/(L+M»
number of run queues

Case 1: One run queue (m= 1):

The following graph presents the results for the deterministic and the probabilistic case. (All
results are measured from the original graphs).

Cezzar and Klappholz conclude
for the central queue system:

there is an upper limit to the
number of processors
executing processes equal
to 1/A independent on N.
This upper limit is reached
for N = (1 +A)/A = 1/A In
the deterministic case.

As an illustration of the
probabilistic case consider the
following numbers:

i
z

Cpzzar/Klappholz; A = 0.1..',....-----------------,
r-------

Increasing from 10 to 15
processors In the above
graph increases the number
of effective processors Ne
with 2.5.
Increasing from 15 to 20
Increases Ne by 1.

______ PrObabllls1.1c Sln;l. Run ~UI' nod_I

~ - 0 hle-r.jnis\ ic C.5.

Figure 6.10 Single RunQueue Bottleneck
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Case 2: Multiple run queues (m>1); Choose free one:

Processors choose free run queue If any, otherwise at random.
For this case the additional assumption Is made that the time spent In a run queue does not
depend on m!

Observe the graph:

This graph presents the results
for m=AN and for m=N run
queues. In the deterministic case
the marginal gain of adding a
processorbecomes independent
of N when AN run queues are
used. The curve for this case is
the same as the one for the
probabilistic case shown In the
graph, where m= N. In the
probabilistic case m=AN is not
enough, at least N run queues
are needed to achieve constant
utilization.

Cezzar and Klappholz conclude:

there is an upper limit to the
number of processors
executing processes equal
to mjR Independent on N.
This upper limit is reached
for N = mjA In the
deterministic case.
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Figure 6.11 Decentralized Run Queues

for constant utilization rates m must be at least equal to N in the stochastic case.

When also taking Into account the centralized overhead for getting the Information whether
queues are unlocked the upper bound becomes:

M'jL for N > = 1+(M'j(N-1)A)(from [CEZZ83])

where 1jM' Is the overhead time spent In the central server. Because this overhead cannot
be avoided Cezzar and Klappholz proposed to access a run queue at random:
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Case 3: Multiple run queues (m=N); Choose one at random:

For the deterministic case the results have been obtained through simulation. For the
probabilistic case the results have been calculated using an approximation of a queueing
network. The graph below gives all results.

Cezzar and Klappholz conclude:

When m= N run queues with
random access policy are
employed, speedup factors
very close to N are
achievable.
The random access policy
is a viable method for
avoiding centralized
mechanisms and the
resulting bottleneck
conditions.

and they remark:

The random routing policy
as proposed does not take
Into account accesses to
other then the run queue
resources.
Factors such as what
happens when a run queue
is found empty are not
considered.

RandoM-Rou\ing Probabilis\lc Cas~

35,....---------------,

r
~
'" 25

~
D-

o. 2.
.?

"o.
';; 15

• • ru11'l ~c~tl".. JiJ.d: M:H

-.&._6 Dlfc.-nl,..Jir.d: ••A*N

---0- - e C.n'l ,..1 i %rd: 11I=1

Figure 6.12 'Random-Routing' Run Queues

6.2.7 General Requirements for Scheduling

The scheduling of processes on a system's resources Is done with a specific goal In mind.
Multiprocessors too are developed with several goals In mind. One naturally hopes to achieve all
possible benefits from ones ventures but practice learns that this Is hardly ever the case. This is
also the reason that some multiprocessors are designed to Increase throughput while others are
aimed at decreasing response-times. The first type of multiprocessor is called throughput­
oriented, the latter speedup-oriented multiprocessor. The type of scheduling in these types of
multiprocessor will therefore differ. In the speedup-oriented type it is necessary to know the
parallel structure of a program in order to achieve the speedup, In the throughput-oriented type
one seeks to balance the load, considering all processes to be independent.
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The requirements for the scheduling are therefore also different for the two types. Furthermore
there exist a number of requirements coming forth from pragmatic arguments, like for example
the dedication of one or more processors to a specific task. There also are a number of
requirements that must be fulfilled in all of the possible situations. We do not attempt to classify
the requirements, this would lead to a bulky classification scheme, but we will present one unified
list of requirements for scheduling.

Scheduling Requirements:

The scheduling mechanism must make It possible to,

dedicate certain processors to certain (sets of) processes
dictate the maximum number of processors to be used in parallel for a given
application.
(If special processors exist) make use of special processor characteristics.
switch between preemptible and nonpreemptible scheduling (for research purposes
only)
prioritize processes and/or applications.
dynamically adjust scheduling parameters to tune the scheduling to the work load
(manual tuning of active system).

The scheduling mechanism must

Schedule P-SET processes optimally.
balance the system load.
automatically adjust scheduling parameters (e.g. time slice) to the number of processors
and to the load.
log information pertinent to scheduling.
minimize context switches.

6.3 Scheduling in 8 Unix based Multiprocessor

In this section we will Investigate scheduling for our own special case, the Unix based
multiprocessor. We will first discuss the Unix single processor scheduling. Based on this
discussion we will drop some requirements from the set given In the previous paragraph. The
remaining requirements are given In 6.3.2. In paragraph 6.3.3 the scheduling is extended to the
multiprocessor case. Finally 6.3.4 summarizes.
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6.3.1 Single Processor Unix Scheduling

Unix is a time-sharing system. This means that all users share the processor. The way in which
this is achieved Is to give each process a quantum of the processor time which Is called time­
slicing. (Users with many processes thus receive many processor time and users with few
processes receive Iittle.(See [HENR84] for a fair sharing of processor time). ). Unix is also
targeted towards the processing of largely Interactive processes where response time must be
low. For this reason processes are attributed a priority that Is manipulated In such a way that
interactive processes are favored over batch processes. The process of highest priority is selected
to run at certain points In time. When several processes of the same priority exist they are served
on a FCFS basis. Although al processes that are ready to run are kept on one run queue the
behavior of the scheduler can be more easily discussed by placing all processes of equal priority
in a separate (imaginary) queue.
The characteristics mentioned above place single processor Unix schedUling Into the class of
schedulers that Is known as round robin with multiple feedback.

Explaining Unix scheduling Is easiest done using the following figure. This figure gives an
overview of the queues that playa role in the scheduling mechanism.

The queues are divided in two sets,
the set of kernel priority queues and
the set of user priority queues. Kernel
priorities are higher than user priorities,
processes of kernel priority will
therefore run before any process
having user priority. Processes
normally operate In user mode where
they have one of the possible user
priority values. When a process wants
to perform 10 it does a system call.
Because 10 takes time the kernel puts
the process to sleep until 10 is done
by placing it on a sleeping queue. As
soon as the 10 is done the processes
awaiting this, wake up and are placed
in one of the kernel priority queues
visible in figure 6.13. The process has
been given the kernel priority when It
went to sleep. Kernel priorities are
used to minimize the time that
processes own valuable system
resources. The kernel priorities are
leveled such that processes
performing the most critical system
actions have highest priority.
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Figure 6.13 Unix Scheduling

When a process Is running In user
mode it may reach the end of a time quantum period. When at that moment a process of higher
priority is present in one of the queues the current process is replaced by the highest priority
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process available. The replacement is done by the dispatcher (often named swtch in Unix
sources) shown In the figure. The dispatcher's only function is to find the highest priority process
available and make it running (after saving the context of the current process when one was
running). The dispatcher does so on request. Requests are made when a process returns from
kernel to user mode and a higher priority process is present, when a process is put to sleep and,
as said, when a time quantum ended.

That the dispatcher Is simple is nice but makes one wonder when and where the priorities are
determined. The calculation of the user priorities is the essential scheduling that takes place. The
priorities are calculated and/or assigned at the following occasions:

Priority assigned

Process creation
Process used up quantum
Timeslice event
Process returns from

kernel to user mode
Process is put to sleep
Process wakes up

Initial Priority
Preempted Priority
Timesliced Priority

User priority
Kernel Priority
Penalized Priority

The initial priority is a fixed value in system V apart from one component called the nice priority
which is inherited from the parent process. The meaning of this nice priority is explained further
on. The initial priority is given to a child process during the fork system call.
The timesliced priority is given by the clock interrupt handler. The clock interrupt handler does
this every second just before It calls the dispatcher, but only for ready to run processes In user
mode. The calculation of the priority Is done according to the following two formula's which are
evaluated in the order given:

Priority = f(CPU_usage,threshold priority,nice)

The CPU_usage Is a field In each process descriptor. A process acquires a value In this field
when It Is In execution. The CPU_usage field Is Incremented for the current process by the clock
interrupt handler on evety Interrupt and not only once per second. Clock Interrupts usually occur
at line frequency rate which Is 50 or 60 Hertz. (sometimes even twice that rate). So processes in
the run queue may have a CPU_usage that Is not 0 when they have previously been In execution,
but have been preempted from the processor. In Unix a low Integer value represents a high
priority and vice versa. The priority formula Is such that when the CPU_usage Is decayed the
priority value decays and hence the priority rises. In this way processes that do not receive CPU
time are migrating from low priority queues to high priority queues, finally obtaining the highest
priority which will have It executed at the next process switch.
When a process has used up Its time quantum Its priority is calculated according to the same two
formula's applied in exactly the same way.
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Processes that return from kernel to user mode check a switch flag usually called runrun to see
If a higher priority process has arrived in the time the process was not preemptable. If so the
process's priority is recalculated according to the forementioned formula's and it is put in the run
queue, giving way to the higher priority process.
We already explained how processes acquire kernel priority when they are put to sleep. When
these processes wake up there priority is recalculated using the same formula for priority
calculation again. Its CPU_usage has been decayed every second during the period that the
process was blocked like for all ready-to-run processes and need not be adjusted at wake up
time. One additional component Is added to the priority value which is a penalty for using the
valuable system resources.

Typical values for priorities are 0 to 50 for the kernel priorities (50 = threshold priority) and 127
for the level n user priority. The decay and priority formula's are different for every version of Unix.
For example:

decay(CPU)

Version 6:
Version 7:
System V:
BSD 4.2:

priority

= max(threshold priority,CPU-10) + nice
= 0.8*CPU + nice
= CPU/2 + nice
= «2*avenrun)/(2*avenrun+1))*CPU + nice

where avenrun = average nr of processes in the run queue

Version 6 +7: = CPU/16 + threshold priority + nice
System V: = CPU/2 + threshold priority + nice
BSD 4.2 = CPU/4 + threshold priority + 2*nice

Note: BSD 4.2 employs a scheduler that is more complex in the way it gathers and
uses Information. This makes straight comparison of the above formula's
risky. It also makes the BSD 4.2 scheduler expensive: Up to 10% of CPU time
may be used for priority calculation [LEFF84].

The nice value can be Incremented by the user by calling the nice system call. It generally ranges
from -20 to 20. Only the super user can use negative Increments. This component of the process
priority Is meant to allow the user to be 'nice' to fellow users by lowering his or hers process
priorities.

The characteristics of the scheduling discussed above makes Unix a friendly operating system for

Interactive processes. These processes have a high sleeptime-to-CPU_usage ratio which usually
causes priorities to have risen to the threshold level by the time they are ready for execution. On
the other hand batch processes will not starve from lack of processor time since they too will
reach the highest priority level. In general this will take more time because their priority Is lowered
a lot due the high CPU usage at preemption time.
One peculiarity about Unix System V scheduling must be mentioned. It Is that processes just
dispatched are not given a full time quantum but only the remainder of the current one. This
means that the successor to a process that goes to sleep at the very end of the current quantum
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will have an extreme short quantum. Although it is highly probable that this successor will be
awarded a second quantum immediately (because its priority can hardly have changed) it is not
an elegant method that causes more overhead than necessary. Newer schedulers grant processes
that enter the processor a full quantum.(e.g. [STRA86]).

6.3.2 Practical Requirements for Scheduling

It will be extremely difficult to provide a scheduler that will optimally schedule the P-SET processes
as discussed earlier. Besides the problem of providing process characteristics on beforehand, the
algorithms available today are not universal enough.
Therefore we drop the requirement that a P-SET must be scheduled optimally. In fact this means
that we choose for a throughput-oriented multiprocessor.

Practical Scheduling Requirements:

The schedUling mechanism must make it possible to,

dedicate certain processors to certain (sets of) processes
dictate the maximum number of processors to be used In parallel for a given application.
(If special processors exist) make use of special processor characteristics.
switch between preemptible and nonpreemptible scheduling (for research purposes
only)
prioritize processes and/or applications.
to dynamically adjust scheduling parameters to tune the schedUling to the work load.

The scheduling mechanism must

balance the system load.
automatically adjust scheduling parameters (e.g. time slice) to the number of processors
and to the load.
log Information pertinent to scheduling.
minimize context switches.

8.3.3 Multiprocessor Scheduling

A number of possIbilities exIst to perform multiprocessor scheduling as seen before. From these
Central Scheduling seems to be the most favorable when it Is combined with so called processor
self-dispatching. In this case the process that Is to run next Is determined by a central mechanism
while the switching of processes Is carried out by a dispatcher per processor. In this way no
process migration Is necessary and load balancing is achieved Inherently. Processors that cannot
carry on with the current process fetch a new one from the central run queue preventing idling
In the presence of ready-to-run processes.
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Our first attempt will therefore be to employ central scheduling with decentralized dispatching.
This very closely resembles the nature of the Unix System V uniprocessor scheduler which has
a priority calculation that Is easily kept global and which has a clearly Identifiable dispatcher for
the processor. For several reasons outlined below It would be nice to use this existing scheduler.
However this scheduler has been criticized too. Therefore the main decision to be taken first is
whether we Indeed use the single processor Unix scheduler as it exists now as a starting point
for the MPUX scheduler or that we deVelop or adopt a new one.
The advantages of the first option are that we will work with a well known scheduler. Its functions
are known, Its Implementation Is known and Its behavior Is largely known. Choosing this scheduler
will also provide easier porting of future releases of single processor Unix onto the multiprocessor.

The SPUX scheduler has been criticized on the following points:

Not highly tunable; available tuning (nice) gives unpredictable effects. [STRA86]
Not very well suited for large programs.
Not very well adapted to type of majority of processes.
Costly priority assignments. [STRA86]
Fluctuating quantum sizes.

Because of the disadvantages it will be of benefit to use an entirely new scheduler. In [STRA86]
such a scheduler is discussed which, although new, still is in the spirit of Unix (simplicity,
responsiveness). It has a much more process-behavior-related way of priority calculation causing
better predictability and less overhead. Priorities are in- or decreased when certain events in the
life of a process occur. For example the priority is lowered when a process consumes a full
quantum while it is increased for terminal 10 events. Furthermore each process is given a fUll time
quantum when It is elected to run. Another scheduler can be found in [JAC086].

We will stick to the single processor Unix System Vscheduler (at least for the time being) because
of the ease of implementation. We aim to keep the scheduler fUlly intact, making only minor
changes to make It more tunable. In this case dispatching of processes is the same as with the
uniprocessor. The priority calculation and assignment is also done in the same manner as in the
case of the uniprocessor. This Is straightforwardly extended to the multiprocessor environment
with the exception of the actions of the clock Interrupt handler. The modifications to be made to
allow for these (global) actions are presented In paragraph 5.2.2.
All data structures related to scheduling are kept the same except that they are protected against
corruption. Suggested enhancements are to make the time quantum size dependent on the
system load and the number of processors and to allow for a smaller quantum. Further the decay
and priority formulas should be alterable (by the system administrator), possibly within hardcoded
limits.

The above straightforward copying of the SPUX scheduler might cause a bottleneck to occur as
Indicated by Cezzar and Klappholz. In order to Investigate the number of processors that will be
efficient In our multiprocessor a GPSS model was made to simulate the behavior of the
mUltiprocessor with respect to scheduling.
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6.3.3.1 Simulation Model

The model that has been built is written using GPSS (General Purpose Simulation System)
[GPSS88]. Our objective was to model the Unix Process Management System with a level of
detail that would allow us to quantify the Influence of the number of queues, queue manipulation
times and arrival times for queue manipulation. The following figure presents the system that was
modeled:

SQ4

'-'--------= ITIJIK
RQ '

~ EXIT

Figure 6.14 Version 7 Scheduling

In this figure we recognize the processors (Px) and the run queue (RO). The other four queues
(S01-4) are the queues in which sleeping' processes reside. The channel (or kernel virtual
address) on which a process sleeps Is hashed on bItS 5 and 6 to decide on the sleep queue to
put a process In2

•

The way in which this system Is modeled is somewhat different from what one would expect. One
would expect the GPSS transactions to represent processes. We chose a transaction to represent
a processor (in fact we have 11 transactions per processor of which only one Is 'active'). The next
figure gives the routes that a transaction may follow in the model:

2. We took the Unix version 7 situation In our THE KUNix system, for the system V source code
had not yet arrived.
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As said there are 11 transactions per processor. These transactions all represent one single event
that may occur In the life of a processor. The 11 events are:

- Process Creation (FORK)
- Process Deletion (EXIT)
- Timeslice event (TIMESLlCE)
- Process goes to sleep on queue a (SLEEPa); 1 ~ a ~ 4
- Process wakes up from queue a (WAKEa)

All of these events cause the processor to manipulate one or more of the queues. From the 11
transactions 10 are queued on a perprocessor queue ('chain' in the sequel). The 11th transaction
Is walking one of the routes given in the figure dependent on its event type. In such a route the
time that a processor exclusively needs a queue is modeled as a server. For example the
TIMESLICE event causes the processor to access the run queue to place the current process in
it and to remove a process for execution. The time this takes is Ts units of measure (1 millisecond
in the model) which is the service time of the appropriate server (See figure). (The service time
per queue Is also referred to as the Queue Manipulation Time (QMT) in the sequel). The FORK
and EXIT events both need access to the entire Unix process table which is modeled as the
seizure of all queues. The actions performed for each event concerning the queues are:

FORK

EXIT

TIME
SUCE

SLEEPa

WAKEUPa:

Search process table for free slot
Copy data from parent to child slot
If process is group leader:

send hangup to all members of group
reset process group for all members to 0

Make process state zombie
Assign parent 10 of all child processes to be init process (1).
Send death of child signal to parent.

Fetch new process from run queue.
Switch process.

Add current process to run queue
Fetch new process from run queue

Put a process to sleep.
Add current process to sleep queue a
Fetch new process from run queue

Wake up a process. -
Fetch process from sleep queue a
Add this process to the run queue
(Our Wakeup times do not depend on the number of processes woken
up (yet)).

When a transaction has completed a route It will rejoin Its processor chain after It has rescheduled
itself on the system time axis. It then causes the event due next for Its processor to be unlinked
from the chain and sent on Its way to complete Its route.
The processor load In the model is 100%. The real world load of the processors can not be
extracted from the model but has a strong correspondence with the inter arrival times for the
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events. The inter arrival times are initially determined for a uniprocessor. As more processors
cooperate their efficiency will decrease. A global system efficiency Is calculated in the simulation
and used to lengthen the IAT's proportionally as one would expect in a real system. The inter
arrival times of TIMESLICE events are similarly derived.

A number of experiments have been carried out with this model. The first experiment was set up
to validate the model. To do so, the model was used with all queue times (server times) set to O.
except for the S04 time which was set to 30 (= 1/MsoJ The Inter Arrival Time (IAT) for this event
was exponential with a mean value of 300 (= 1/~). The traffic Intensity for S04 (R = L/M)
therefore is 0.1. In the deterministic case this would allow for 10 effective processors (Ne = 10)
in the system. The values above were chosen to arrive at an R also used by Cezzar&K1appholz.
In the graph below our results are compared to those of Cezzar&KJappholz and the deterministic
case. (Appendix C presents results in detail).

It appears that our results are
trustworthy considering the fact that
Cezzar&Klappholz calculated under
nearly worst-case assumptions and
for a system with exponential service
and inter arrival times. The coefficient
of variance is less than 1 in our case
which causes our curve to be closer
to deterministic. (See also next
experiment) .

In the following we will establish
formula's to estimate the number of
effective processors in the system.
These formula's can then be used to
limit the amount of simulation to be
done. The following assumption
underlies these formula's: The
aggregate Inter arrival rate is
exponentially distributed.

U.lidation .g.inst determinislic C.s~

and C~zzar ~ Klappholz Calculation

11,----------------,

'0

-e------e 1 0: I'U= 30 l~bd.l = 3ee "5
--0 _ 0 D.t.rlllini,t ic c.,.
-0--8 C.zz8r" I().appholz

Figure 6.16 Validation of Model

The objective of the next experiment we did was to Justify the following reasoning, In which we
attempt to approximate part of our system by a G/G/1/N/N system with N very large.
We assume first that the server times for the Sleep Queues are zero. We then have a system
with 1 queue, the run queue RO. Arrivals at this queue are caused by all events. The next table
shows two sets of IAT's and service times for the events that we used:
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II Set 2 II Set 4 II
======================

Fork 300 10 300 5
Exit 300 10 300 5
TimeSIi 1000 7 1000 4
SIeep1 750 5 750 3
SIeep2 700 5 700 3
Sleep3 650 5 650 3
Sleep4 300 5 300 3
Wakeup1 750 2 750 1
Wakeup2 700 2 700 1
Wakeup3 650 2 650 1
Wakeup4 300 2 300 1

======================

All arrivals are exponentially distributed except for the TimeSlice event which is deterministic. As
long as the other distributions stay exponential we may neglect the influence of the TimeSlice
event on the coefficient of variance. We assume it to be 1 for the arrivals.

We calculate the following quantities:

L. 1/IAT. [1 ]

L = Sum(L.) [2]
•

E[t.] = ( Sum(L•.t..) )/L [3]
•

2 2

Elt.] = ( Sum(L..t..) )/L [4]
•

2 2 2 2

Cia = (E[tJ-E [tJ )/E [t.] [5]

2 2
K = (C1 + Ct. )/2 [6]

RRQ = L . E[t.] (= Sum(L •. t..» [7]

Ne = 1/RRQ [8]
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where, lAT. is the inter arrival time of events of type e
L. is the arrival rate for event e
L Is the aggregate arrival rate for all events
t.. Is the service time of a queue for events of type e
E[t.] Is the expectation of the service time

2

E[t.] Is the expectation of the squared service time
2

Cg Is the coefficient of Variance of the service time distribution
2

C1 is the coefficient of Variance of the combined inter arrival times.
RAQ is the traffic intensity for queue RO.
Ne Is the number of effective processors.

The results for the two sets are:

Validation or N~ calculation

1<,----------------,
II Set 2 II Set 4 II

====-==============
I II II

L I 0.0263 II 0.0263 II
~i I 1 II 1 II
E[t.] I 5.482 II 2.970 II

I II II
E[e.] I 38.842 II 11.005 "~Ia I 0.292 110.248 II
K I 0.646 110.624 II
RAQ I 0.144 110.078 II
Ne I 6.94 II 12.82 II

I II II
===================

.2.
&
:: is
u
~
0.

2
i

.0

I,,
I

60

--......-... .... lc.alcl • 12.82 ; so n."I" • e
--&- -. NltfcalcJ. fi.$4 , SO n •••• e

Note that K is less than 1 indicating that
queue lengths, waiting times etc. In Figure 6.17 Calculated versus Measured
general are smaller than for the full
exponential case. This was confirmed In our first experiment (figure 6.16) where our curve was
closer to the deterministic case than the exponential one calculated by Cezzar&K1appholz.

To find out whether these calculations hold for our model we simulated for set2 and set4 values.
The results are plotted in figure 6.17 above.

The results are Indeed as expected.
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The third experiment was aimed at discovering the model's (system's) sensitivity to the service
times of the sleep queues. We thereto simulated using the following values for sleep queue service
times:

II Set 1 II Set 3 II
(ms) II sleep I Wake I I sleep I Wake II
===========================

II II II
SQ1 II 2 2 II 1 2 II
SQ2 II 2 3 II 1 3 II
SQ3 II 2 4 II 1 4 II
SQ4 II 2 5 II 1 5 II

II II II
===========================

Note: The RQ service times are the same as those of sets 2 and 4 respectively.

The values were chosen equal for sleeps since this involves no more than adding a process at
the head of the sleep queue. The values were chosen unequal for wakeups to find out about the
influence of different sleep queue lengths on results. Using equations 1 through 8 mutatis
mutandis for the sleep queues gives us (Ne only; NeRQ added for reference):

Set 1 Set 3
Oueue Ne Ne

I
RO 6.94 I 12.82
S04 11.11 I. 18.75
S03 13.18 I 24.L
S02 13.55 I 25.6
S01 13.89 I 26.7

I

The existence of more queues In a system which are not independent makes one expect a lower
value for Ne. Intuitively one expects the influence of the SO's to be larger when their Ne-value is
closer to that of the queue used heaviest (RO). For example sets 1 and 3 render an NeS04 value
that Is approximately 1.5 as high as NeRQ. The SO impact will therefore be clearly noticeable:
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Figure 6.18 Sleep Queue Influence

In order to gain insight in the influence we did a number of experiments using 2,3 and 4
independent queues and an experiment using the run queue RQ with a fixed arrival rate and
service time and one sleep queL!e with a variable service time.

Figure 6.19 on the next page presents three views on the results of the experiments with
independent queues. Part a shows us the usual Ne versus N plots, part b plots Ne versus the
Queue Manipulation Times (QMT) of the queues and part c does this for Ne versus the number
of queues. It appears that Ne is reciprocally dependent on both the number of queues as the
QMT's.

Results of the experiment with one fixed RQ (set 4 values) and a 'walking' Sleep Queue are
presented In figure 6.20. The graph also contains a horizontal line representing the value of Ne
when no sleep queue were present (In fact only valid on the Y-axis). The hyperbolic line
represents the value of Ne for the sleep queue alone. (Ne here Is the maximum number of
effective processors, as in the deterministic case for large N).
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The model enables to selectively measure the influence of 'per event/per Queue Queue
Manipulation Times'. Figure 6.21 for example shows how the number of effective processors
changes when the service time for forking is altered.

Sensitivity {or rorktime
All oLher QueueTimps are kept
consLanL \0 SpL 3 values

1<

12

11\..
0
11\
11\ 19..
(J
0..

0.... 8
:>

U..
C>

6

(;

--'" ­_0

~ forkTimEl' =. 2 filS

---0 - 0 ror/( Time = 5 filS

~- e rorkT i",. Co 19~.

Figure 6.21 Forktime Sensitivity

6.3.3.2 Conclusions Simulation

The model we wrote has been validated against results from literature. The effects Incurred by
changing the number of queues or the QMTs and IAT's have an effect that Is correct in nature.
The model will generate results that are judged accurate with a high degree of confidence.
The model enables to independently vary all Important quantities In the system, such as the IAT's
and QMT's and their distributions, the number of hash queue's and I with a little effort, the number
of Run Queues. Also the order of locking and unlocking the queues Is easily controlled.

The next step to be taken is to quantify the different parameters to the model by measuring them
from a real system. Once this has been done changes to the Process Management System can
be easily evaluated through simulation.

Under set 3 assumptions we see that the Run Queue forms a bottleneck. restricting the number
of effective processors to approximately 11.6. reached when N rises to about 20. We also have
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seen that when we diminish the fork QMT of the Run Queue from 5 to 2 ms, we gain 1.6
processor. Or when we allow this time to rise to 10 ms, we loose 1.6 processor. It Is this kind of
information that can be obtained.

For information related to individual processes, such as response times, queue lengthes etcetera,
a model using processes as transactions will have to be used. Note however that when the
distribution of queue lengthes is known and have an influence on Queue Manipulation Times, we
may enter this into the current model by choosing an appropriate distribution for these QMT's.

In this paragraph we have derived some formula's to estimate the number of effective processors
in a system. We warn here to use these formula's only for that purpose as we did not prove their
global accuracy. The estimates made may depend on the mutual relations of the IAT's and QMT's.

Further simulation results can be found in appendix C.

6.3.3.3 Queue Manipulation Times

We do not consider run queue and sleep queue manipulation times to be prohibitive for a YME­
based system with 20 or 30 processors3

• However when the number of processors on a single
YME board becomes 3 or more (if ever, but likely so) a bottleneck could arise. As seen we may
then use multiple queues with random access to shift the bottleneck to a higher number of
processors. A more fundamental approach would be to completely eliminate any critical section
from the queue handling. The F&A synchronization primitive makes this possible4

• Choosing this
route would not only increase processor efficiency, but would also allow us to obtain experience
in using this synchronization primitive.
The Intention to use F&A primitives Immediately raises the question how to implement it on a
time-shared-bus based system. The following solutions exist; all of them represent small serial
bottlenecks, degrading system performance only for very high processor numbers:

Software Solution 1:

F&A(V,e)
{
While (T&S(V.f1ag));
temp = V.value;
V.value = temp + e;
V.f1ag = 0;
return(temp);
}

More complex schemes than spin-locking on V.f1ag can be used to diminish bus load. The
length of the critical section is some 5 to 10 micro seconds dependent on the Implementation.
This is small enough for our purposes.

3. In [GOTL83b] fig. 1 shows a noticeable degradation of efficiency from 10 processors upwards
due to a serial bottleneck In the queue handling of a program to calculate radiation transport.

4. Unfortunately no F&A-based algorithm Is known today that may manipulate linked lists without
critical sections. However solutions are available [EDLE85].
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Software Solution 2:

Since we will probably use the 68030 microprocessor, a solution could be to use its
Compare&Swap (CAS) instruction:

{Registers DO and 01 have an arbitrary value, 02 contains e}

FNA MOVE.L
MOVE.L
AOOX.L
CAS.L
BNE
RTS

V,OO
00,01
02,01
00,01 ,V
FNA

;Move V to DO
;Move 00 to 01 (01 used as accumulator for add)
;Add e to 01 (= M+e)
;If M not altered, write M+e to V.
;eIse try again.

{V and 01 contain [V] +e, DO contains [V], 02 contains e}

Note: The M obtained when leaving the routine may be different from the value resident
in V upon entering the routine. (due to other operations on V by different
processors.)

This Is not different from the semantics of F&A as defined in the NYU
Ultracomputer.

The true critical section consists solely by the CAS instruction which is a Read-Modify-Write
cycle on the VMEbus, taking for example 600 ns. However due to accesses of other
processors to V during the subroutine (ca 3Ms) a number of retries may be necessary,
causing a larger F&A execution time and hence a degradation of efficiency.

For both solutions one can imagine a case of starvation when a set of fast processors of high
bus priority continuously perform F&A's on the same location as a slow processor of lower bus
priority. It Is possible to deal with this unlikely situation for example by Including delay times in
the Iteration loops (after performing the routine once without delay) or through other more
sophisticated techniques. .

Hardware Solution 1

Implementing the F&A primitive In hardware can best be done using a Read-Modify-Write
cycle as for Test&Set and Compare&Swap. In fact all these primitives are special cases of
the Fetch&Operation primitive as discussed before. It Is possible to use the RMW cycle for
all F&O cases. A RMW cycle with the values for a F&A(V,e) operation Inserted looks as
follows:
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figure 6.22

Currently available processors do not provide the F&A primitive. For example the 68030
provides Test&Set and two versions of Compare&Swap but no Fetch&Add.
If we wish to use such a processor and the F&A primitive, we will have to add a separate
F&A-unit. Below an example F&A-unit Is given (princlRle only):

F&ACB
F&AWB F&AGB

F&ADB

VME I/F

LAB LDB

actions:
if PWE then I PGB ,NOT (F&AGB):

I connecl LDB lo VMEbus;

if F&AWB lhen I F&AGB ,NOT (PGB);
connecl F&ADB lo VMEbus;

I
1£B

wri te e to Rl a t address A
read [V]+e from T1 lit address A

CLK

PGB

CPU

P''''B
actions·

eLK

F&A UNIT

• actions. controlunit.
when write lo Rl

delay CPU ( ....ail slales)
obtain VME l/r
perform read (inlo R2)­

modify (=add)­
write (T2 to F&ADB)

end wrile cycle
when read from Tl

enable Tl

figure 6.23
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CLK

We chose the F&A-unit to have a separate interface with the VME IIF unit. The FaA-unit can
also be integrated Into the VME interface.
For normal VME accesses the CPU requests the VMEbus by asserting PWB (Processor
Wants Bus). When granted the bus normal VME accesses may proceed (including RMW
cycles such as T&S and C&S).

When the CPU writes a location in the address space reserved for F&A locations (which must
be distinct from the 'normal' VME address space) the F&A-unit will delay the processor by
having It perform wait-states. SimUltaneously It requests the VMEbus by making F&AWB
active. After being granted the bus (F&AGB) it performs a RMW cycle on the bus, using the
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address VMEmap(LAB). (VMEmap(LAB) represents the VME address corresponding to the
LAB address. The mapping Is done In the VME interface). The value read from the VMEbus
([V)) is placed In R2 via F&ADB. The sUbsequent write phase writes the outcome of the ALU
operation (an add In our case) to the F&ADB and from there to the VMEbus. Finally it releases
the CPU which ends Its write cycle.
So, when the CPU writes value e into register R1, the sequence of actions mentioned above
will provide value M +e at the output of the ALU when the write cycle ends. A subsequent
CPU read anywhere In the F&A space will always return value [V] +e. (Tristate buffer T1 is
enabled).
The VME I/F unit must decouple the LOB from the F&ADB, VMEbus pair during the write
cycle since it (the LOB) will carry the value e most of the time.
Extension to the more general Fetch&Operation Is straightforward. The required operator can
either be Included In e (this limits the range of e), or written to an F&A control unit register
on beforehand 5. Observe that multiple Instructions from the local CPU, not forming an
indivisible piece of code, cause one single indivisible RMW cycle on the VMEbus. The critical
region has now reduced to 600 ns. Observe also that read and write occur reversed In the
local CPU.

Hardware Solution 2

Incorporate the F&O primitive into the processor. This would allow for T&S, C&S, F&A and
possibly other convenient primitives. This route is recommended for ongoing and future
processor designs.

Hardware Solution 3

One could imagine the F&O primitives to be extra primitives to the memory module. This
would place the responsibility for performing the operation with the memory modules.
Extension of the RDJWR line ( or 050,1 *JW* lines ) would be necessary to request the
memory cycle operation:

An example with 2 signal lines:

00 Load
01 Store
10 T&S
11 F&A

(Possibly a separate timing line may be used.)

To truly tum the RMW operations Into 1 cycle we would have to split the databus Into a
separate (unidirectional) read and (unidirectional) write bus. Obviously this would cost a lot
of extra pins and wiring. (As approximately 90% of memory cycles are read cycles the profit

5. The description given Is not concerned with different operand lengths, It only shows one of the
possible principles of operation
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of parallel but independent read and write cycles is marginal. Furthermore a memory module
should support simultaneous reads and writes.)
This solution Is not only costly, It also requires modification of the time-shared bus, a
possibility we reject (Condition 3.1). (When changing the Processor-Memory Network, we
might as well go all the way and adopt for example an Omega Network).

Hardware Solution 4

This solution is meant for the situation where more than one processor is resident on a VME
board. We could then build an Omega Network for the local processors to access F&A
locations in the VME address space. The Omega Network could combine F&A operations
as discussed before. Critical sections would still occur when processors from different boards
access the same F&A location (Board serialization).
The Omega Network may be very small as it is unlikely to have a vast amount of processors
on one VME board. For 4 processors a 4-input-4-output Network would suffice. Using today's
technology this would comprise one chip. (See also [GOTI83a] where a 4-lnput-4-output
switch is estimated to comprise 2 chips using today's technology).
We would obtain:

Global
Memory

IJ"IT'l
~

GB (VME)

CPUBoard-2

idem

figure 6.24

The probability that the total (VME) system hostS-Lnumber of processors that is large enough
to experience the serialization bottleneck caused by F&A's Is negligible. This last method Is
therefore far too expensive, It will take the design and manufacture of a very complex chip
while showing no benefit at a1l6 •

6. Upovskl and Vaughan have shown that networks can be built that Implement the F&A and other
primitives using binary trees. The complexity of such a network is several orders of magnitude
lower than that of the NYU Ultracomputer [UP088].
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6.3.4 Summary

In this section we have discussed the process scheduling for a multiprocessor based on Unix.
We first considered the scheduling as It is commonly done in single processor Unix. The pro's
and con's of this scheduler were disputed and the decision was taken to use it as the basis for
the multiprocessor scheduler. The general requirements for scheduling from the previous chapter
have been screened to give a set of practical requirements for the multiprocessor scheduler. The
main requirement dropped was the requirement to optimally schedule P-SET groups. We then
considered multiprocessor scheduling mainly from the angle of the congestion that can occur.
To obtain measures on congestion we simulated the scheduler for several numbers of processors
and for several queue manipulation times. The model was validated and fed with an estimation
of queue manipulation times as they are likely to occur. Simulations will have to be done using
empirical data to accurately predict congestion. With the estimated manipulation times the
maximum amount of efficient processors is 12.8. We therefore looked Into the possibility to
diminish queue manipulation times. We found a method using the Fetch&Add primitive. The
Fetch&Add primitive has some very beneficial characteristics. It makes possible the true
simultaneous use of shared integer variables. It also returns more information to its 'invoker' than
T&S. making possible more sophisticated software primitives that are essentially critical-section­
free.
For a VME based system where the number of processors is Iowan implementation of F&A as
a critical section will not hurt performance when the time to pass the critical section is kept small
(for example < 50 us). This is easily accomplished by the methods presented in 6.3.2. Having
disposal of a non-critical-free F&A primitive still leaves the advantage of the higher level of
sophistication that can be built into more complex software primitives.
A heavy-weighing disadvantage of using the F&A primitive Is the necessity to rewrite the kernel.
For the access to resources that can only be used exclusively other synchronization types are
available. Especially when resources are unavailable for a long time or provide service after a long
time without main processor Intervention, process-suspending-primitives such as semaphores
should be used.
Our proposal is to use software method 1 (See 6.3.2) for implementation of the F&A primitive and
to apply the F&A in selected area's of the kernel In order to gain experience7

• (As an aside: For
ongoing and future processor designs we recommend to incorporate the F&A primitive). One
such a selected area clearly Is the scheduling subsystem. Using F&A can eliminate the service
time M of queue manipulation, removing the schedUling bottleneck.
Other synchronization can be dealt with using the traditional semaphores. For a first approach on
Unix version 7 see [KWAK87].

7. This experience can also be gained by running multiple processes. cooperating through a shared,
memory region, on an existing System V.3 implementation.
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7 Multi-Kernel PSM Architecture

Time was too short to fully Investigate this architecture. The fact that private memory is available
opens up a wide spectrum of optimization possibilities. The main guideline to decide whether an
item should move from shared to private memory Is that the move should diminish bus load.
This measure depends on the number of processors in the system and should therefore not be
used strictly.

One obvious use of private memory is caching data from remote memory, where 'remote' is
defined as: only accessible via the VMEbus. We have sometimes assumed that no bus bottleneck
existed for the numbers of processors we worked with, especially when we discussed scheduling.
In a VME system such an assumption together with the use of more than 4 processors implies
the use of a cache. A problem when using a cache, that also occurs in uniprocessors, is that
when a process switch takes place, the cached data is largely invalidated. A solution is to add
more private memory and use it to hold the context of all processes in execution on the local
processor. This solves the cache invalidation, the cache only needs to cache operating system
code and kernel data structures, but gives rise to a suite of problems among which the issue of
Context Placement and possibly Process Migration.
A problem occurring in multiprocessors only Is the possibility that cache data Is not coherent.
Coherency means that when more than one cache contains data from the same shared location
and have it tagged valid, the data in these caches Is the same. To enforce this cache coherence
several methods are available. We refer to the literature for details on the subject.

Other uses of local memory could be to hold process contexts or parts thereof is indicated
above. See figure 6.6 for a refresh on the different parts of a process context in Unix. From the
different parts of a context the ones that are most heavily referenced when the process is running
are the first to move to private memory. Also when referencing of process context parts by other
processors is small such part is eligible for a move to private memory. The Register Context
depicted in figure 6.6 Is always moved when we consider the processors registers as local
memory. Next the process stacks are used heaviest by the local processor so that they are the
first to move. The parts of the environmental context of a process, these are the pieces of kernel
tables used by the process, are the last to be moved. They are Integral parts of global kernel
tables. These kernel tables are, on the average, referenced equally by every processor.
A logical candidate for placement In private memory is the operating system code. It is read-only
and never changes under normal operating conditions. However Its size Is quite large as opposed
to the size of the stacks. Annot and Janssens [ANNe85] Investigated the matter and found the
following figures:

Approximate reduction of bus traffic

Local Stacks (+ / - 2k): 75 %
Local OS code (128k) : 3 %

(A write-through cache is used in both cases with an assumed hit ratio of 95%)
(100% is the total of memory references In a single processor system)
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The above percentages are derived for the situation where each of the measures is taken in the
absence of the other. When we first arrange for local stacks we have a bus traffic of about 3.5%
(using the figures also used by Annot and Janssens). Adding 128k of memory for OS code may
then reduce traffic to about 3% which Is a reduction of 15%5 with respect to the previous situation.
The amount of allowable processors then rises from 28 to 33. Note that a small change in these
percentages changes the amount of allowable processors quite much. (e.g 2.9% gives 34
processors) .

When process contexts can be local, It Is possible to enhance the process dispatcher to favor
processes of which the context Is locally available.

It may be obvious that when more than 32 processors must function effectively in a VME based
system this topic must be studied intensively. The amount of 32 processors for a VME based
system is quite high as it already necessitates multiple processors on a board. The effort and cost
to increase the number of processors above 32 will most likely prohibit such systems.

We did not take Into account the bus traffic for loading and flushing local stack memory when
a context switch occurs.
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8 Proposed Multiprocessor

When research capacity is limited a path of gradual growth is often followed to reach the final
goal. This Is what we propose for our case too. There are several pathes that will lead us to the
final goal, the Multi-Kernel PSM multiprocessor. Four of these 'routes' are discussed below.

Route 1

Route 1 will provide us with a working multiprocessor soonest. The actions along the path
are:

- Port Unix System V to the target hardware, however with only one processor.

- Add a processor and implement a Master-Slaves system.

- Make it a Uni-Kernel system.

- Gradually add protection mechanisms in the kernel for kernel data structures: Multi­
Kernel SMO.

- Utilize private memory: Multi-Kernel PSM.

- Pursue research for further improvement.

The early availability of the multiprocessor enables to test multiprocessor mutual exclusion
mechanisms in a realistic environment. It also enables students to acquire practical
experience in working with multiprocessor systems both in the field of hardware is in software.

Route 2

Route 2 largely divides the transformation of the kernel software on one hand and its testing
on the other in two phases that hardly overlap in time. The advantage thereof is that the
transformation can be done on stable single processor hardware. The disadvantage is the
postponement of testing the mutual exclusion primitives In a multiprocessor hardware
environment. To a large extent this can be alleviated by simulating processors through
processes on the single processor s~stem V system (use shared memory regions). The
actions along this route are:

- Port System V to the single processor target hardware .

- Build In Multiprocessor mutual exclusion mechanisms and test them
a. In the single processor but 'multi-process' environment
b. by emulating processors by processes.

- Add processors: Multi-Kernel SMO.

- Utilize private memory: Multi-Kernel PSM.

- Pursue research for further Improvement.
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Route 3

The third route would be to rewrite the kernel while not loosing Unix (binary?) compatibility.
Rewriting the kernel frees us from the labour of incorporating mutual exclusion mechanisms
In the existing kernel. It also enables to write a structured kernel and to adapt it to
mUltiprocessor and distributed computing environments. Suggestions are to

- make process contexts less location dependent

- diminish process's volatile environments

- Implement multithreading

- use Fetch&Add based algorithms to prepare for large numbers of processors (scalable
OS).

• design a scheduler geared towards scheduling of median-lived processes (0.4
seconds).

- instrument the scheduler so that it may measure data needed for process migration
In distributed environments.

- Implement network 10 as an independent 10 class.

- make access to 10 devices and file systems location independent (network
transparency).

- provide 'copy on write' shared memory

- make it dynamically reconfigurable

• explore object-oriented programming style

- etcetera.

Route 4

Route 4 would be to acquire an already existing 'Unlx-like' operating system that already
supports multiprocessors. A number of these operating systems exist within the academic
world ([OUST88], [ACCE86]) and can possibly be made available to us. Research could then
start from that point onwards.

Which route will be followed Is a matter of group policy. Personally I prefer route 3, giving priority
to the creative act of designing an operating system over the early possesion of a working
multiprocessor.
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Below I will make some proposals that are applicable to route 1 and 2 and partly also for route
3.

- Do not use the Implicit IPrc for MP-IOP traffic as discussed in chapter 4. Use a
separate IPrC subsystem Instead. Give the IPrC SUbsystem the functionality to pass
events, tokens, messages OlttJe data) and data Oarge). Also provide broadcasting
capability.

- Use VME interrupts for the signalling of Hardware Faults. Location Monitors will
provide for all other inter process Interrupts (a part of the IPrC subsystem).

- 10 ready events are signalled to a main processor using the IPrC subsystem.

- All clock interrupt handlers perform the local actions discussed in 5.2.2. One performs
the global set of actions. The responsibility for performing the global actions is passed
from processor to processor is done using a token from the IPrC subsystem.

- Scheduling

As with the entire multiprocessor we suggest to advance to the final goal step
by step. The current scheduler has several disadvantages as discussed in
chapter 6. To improve the scheduler in one step to its ultimate form is too much
work along with all other activities. We propose to:

- Start using the single processor scheduler with central run queue and sleep
queues.

- Protect the queues with only a few semaphores if one desires to have a
working system in the near future.

- Every processor self-dispatches processes.

- Adjust the clock interrupt handler as discussed in 5.2.2. (The timeslice
must depend on the number of processors N! (See appendix C)).

- Start redesigning the scheduler using the Fetch&Add primitive as a building
block and attacking existing problems by

- optimizing It for median process lifetime (0.4 seconds)
- making It tunable (automatic and manual)
- Instrument It for measuring data for performance monitoring,

process migration In a distributed environment and automatic
tuning.

- Improve behavior for large CPU intensive processes.
- avoiding linear searches, rather hash tables.
- lowering the overhead of priority calculations by using a new

mechanism based on measured process behavior (The amount
of data measured should be kept to a minimum, for example:
lifetime, CPU-usage, 10-usage, CPU-time-Thinktime ratio).
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9 Conclusions and Recommendations

In this chapter we will present our conclusions and recommendations. For easy reference we will
do this in the form of a bullet list. To not overly duplicate text we sometimes refer to previous
chapters.

The Unix operating system as It is In use on single processor systems is not suited for
use on mUltiprocessors. This Is due to the mutual exclusion methods used by Unix.
These do not mutually exclude processors.

The amount of work to be done to transform Unix Into a multiprocessor operating
system, in the sense that every available processor may simultaneously run kernel code,
Is very large. It Is possible to partly transform the kernel of Unix until a degree of
parallelism is reached that does not pose a bottleneck for the target system. For example
In a VME based system the amount of processors In the system will not easily surpass
32 processors (16 is more likely). A coarsely parallelized kernel will suffice in this case.
However to be prepared for other architectures I recommend to fully transform the
kernel.

If one wishes to quickly own a working prototype of a multiprocessor one should follow
route 1 as outlined in chapter 8. I prefer to follow route 3 as it allows to write an
operating system free of inherited choices and better suited for nowadays (parallel)
architectures.

From literature we observe that more levels of abstraction are introduced Into the
computing model. The names for the different levels somewhat vary. For a Unix-like
environment one usually recognizes the following abstractions:

- process
- thread
- Instruction

The aim of introducing extra abstraction levels is to be better able to exploit small pieces
of parallel code. The threads can be viewed as light-weight processes that run within a
normal process. Threads use the.resources owned by their process. Threads have a
small volatile context and hence can be quickly switched.
We recommend to Investigate Into the addition of abstraction levels.

Communication Is a main Item of concern In a multiprocessor. A separate subsystem
Is necessary to provide for all communication needs. The SUbsystem can best be
Independent of the operating system used. It should also be Implementable on several
types of hardware. A multilayered approach as In the 150-051 system therefore seems
best. See chapter 4 for details.
We recommend to develop an IPrC subsystem as close to the 150-051 model as
possible and to support It by special hardware. CNe already have such a project
[VERS87]. this however does not make use of shared memory. The use of shared
memory can be added though. A supplemental specification, design and Implementation
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would provide a uniform OS • IPrC-subsystem interface for both shared memory
multiprocessors as distributed systems.

In a multiprocessor distributed scheduling should be avoided. This avoids measures to
keep the load balanced and hence the associated overhead. A central scheduler will not
cause a bottleneck for small (10 - 30) numbers of processors. when existing mutual
exclusion methods are used efficiently. For large numbers of processors one can use the
Fetch&Add primitive. For even larger amounts one may use multiple run queues and
have them randomly accessed by processors while other queues can be hashed. See
the final paragraphs of chapters 6 and 8 for further conclusions on scheduling.

Process dispatching may be made to favor processes whose context Is In the processors
private memory (Multi-Kemel PSM architecture).

New Operating System Primitives (System Calls) will have to be provided that support
parallelism. New primitives could be: noway forks, noway waits, forks with user controlled
duplication of address space (Not, Partial, Complete), System Calls for the exclusive use
of a number of processors, etcetera.

Some small conclusions for Unix and VME:

Caches must be applied to push the bus bottleneck to approximately 6 to 7 processors.

Local memory for stacks will further shift this bottleneck to between 16 and 32
processors with each processor having an efficiency of 80 to 90 percent.

When less then N, the amount of main processors. processes are running, timeslicing
can be switched of and a fork could wam an idling processor of the birth of the new
process.

A lot of work still needs to be done. The Impression exists that current bus technology is
Insufficient, even for Industrial applications, In a few years time. The current efforts should
therefore be targeted at an environment In which much more than 32 processors are able to
cooperate. Especially the operating system should be scalable to run efficiently on
multiprocessors with hundreds of processors.
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Appendix AAbbrevlations and Definitions

ACM
adb
F&AGB
ALU
AM
F&AWB
BSD
CAE
CAS
c1ist
DMA
DTB
ECC
FCFS
FIFO
FLiH
FMB
FNA
GPSS
IAT
IC
IH
Inode
10
lOP
IPC
IPrC
ISO
LAB
LAN
LCB
LOB
LM
MIMD
MISD
MMP
MMU
MNI
MPC
MPUX
MP
OSF
OSI
pdf
PID
PMS
PNI
PSB

Association for Computing Machinery
A DeBugger
Fetch&Add Granted Bus
Arithmetic Logic Unit
Address Modifier
Fetch&Add Wants Bus
Berkely Software Department
Computer Aided Engineering
Compare And Swap
Character ~inked) UST
Direct Memory Access
Data Transfer Bus
Error Correction Code
First Come First Serve
First In First Out
First Level Interrupt Handler
Force Message Broadcast
Fetch aNd Add
General Purpose Simulation System
Inter Arrival Time
Integrated Circuit
Interrupt Handler
Index NODE
Input Output
Input Output Processor
Inter Process Communication
Inter ProcessoR Communication
International Standards Organization
Local Address Bus
Local Area Network
Local Control Bus
Local Data Bus
Location Monitor
Multiple Instruction Multiple Data
Multiple Instruction Single Data
Master Main Processor
Memory Management Unit
Memory Network Interface
Message Passing Coprocessor
Multi Processor UnIX
Multi Processor
Open Software Foundation
Open Systems Interconnect
Probability Distribution Function
Process IDentification
Process Management System
Processor Network Interface
Parallel System Bus



PSM
PWB
RD
Rise
RMW
RQ
SISD
SJN
SMO
SMP
SP
spl
SPUX
SQ
TAS
TOM
TOPLAS
tty
VME
VMS
VSB
WR

Private and Shared Memory
Processor Wants Bus
ReaD
Reduced Instruction Set Computer
Read Modify Write
Run Queue
Single Instruction Single Data
Shortest Job Next
Shared Memory Only
Slave Main Processor
Slave Processor
Set Processor Level
Single Processor UniX
Sleep Queue
Test And Set
Time Division Multiplex
Transactions On Programming Languages and Software
TeleTYpe (terminal)
VERSAtile Module Europe
VMe Serial bus
Vme Subsystem Bus
WRite

129
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Appendix BVMEbus - AM codes

AM codes occupy 6 signal lines on the bus. The range for these codes is therefore from 00 to 3F
hexadecimal.

HEXADECIMAL
CODE

3F
3E
3D
3C
3B
3A
39
38
30-37
2F
2E
20
2C
2B
2A
29
28
20-27
1o-1F
OF
OE
00
OC
OB
OA
09
08
00-07

NOTES:

FUNCTION

Standard Supervisory Ascending Access
Standard Supervisory Program Access
Standard Supervisory Data Access
Undefined
Standard Non-Privileged Ascending Access
Standard Non-Privileged Program Access
Standard Non-Privileged Data Access
Undefined
Undefined
Undefined
Undefined
Short Supervisory 10 Access
Undefined
Undefined
Undefined
Short Non-Privileged 10 Access
Undefined
Undefined
Undefined
Extended Supervisory Ascending Access
Extended Supervisory Program Access
Extended Supervisory Data Access
Undefined
Extended Non-Privileged Ascending Access
Extended Non-Privileged Program Access
Extended Non-Privileged Data Access
Undefined
Undefined

DEFINED
BY

VMEbus Spec.
VMEbus Spec.
VMEbus Spec.
Reserved
VMEbus Spec.
VMEbus Spec.
VMEbus Spec.
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
VMEbus Spec.
Reserved
Reserved
User
VMEbus Spec.
VMEbus Spec.
VMEbus Spec.
Reserved
VMEbus Spec.
VMEbus Spec.
VMEbus Spec.
Reserved
Reserved

Short address uses 15 address lines (A01-A15)
Standard address uses 23 address lines (A01-A23)
Extended address uses 31 address lines (A01-A31)

Codes defined by the "VMEbus Spec" should not be used for purposes other than those
specified.



131

Codes defined by "User" may be used for any purpose which the VMEbus user (board vendor
or customer) deems appropriate (page switching, memory protection, MASTER or task
identification, privileged access to resources, etc.).

Codes defined by "Reserved" should not be used by the user; they are reserved for system use
and future enhancements.
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Appendix C Simulation Results

The Model:

; GPSS/PC Program File MPUX_MOD.GPS. rv 2, :# 38447) 01-11-198900:28:25

.************************************************************************,
;* E I N D H 0 V E NUN I V E R SIT Y 0 F T E C H N 0 LOG Y
.*,

*
*

.*,

.*,

.*,

.*,

Program Name
Written by
Language

: P.J.M. Welten
: GPSS

Filename: MPUX MOD.GPS
Date : 01-11-1989

*
*
*
*

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*,

.*
I

.*.

.*,

.*.

.*,

.*,

.*
I

Description: This Model models the Scheduler of a Unix based
MUltiprocessor. The Unix Version 7 Scheduling
system as implemented in our THE-KUNix machine

served as a starting point. Transactions in this model represent
events in the life of a processor. There are 11 events per
processor. These are: FORK, EXIT, TIMESLlCE, SLEEPl-4 and
WAKEUP1-4. 10 ofthese are linked onto a per processor chain. The
11th is 'walking' an event dependent model route. A 'walking'
event seizes one or more facilities on its route. The facilities
represent the RunQueue or SleepQueuesl-4. The facilities occur in
more than one route causing interaction between events from
different processors. The resulting waiting times are summed and
used to calculate the system efficiency V$Effi. This V$Effi
multiplied by NrOfPro gives us our final result: The number of
efficient processors. Parameter 4 of the events holds the IAT
of the event as an absolute time on the system time axe. When an
event returns to the chain after its 'walk' it reschedules itself
on the time-axis and links itself onto the chain. The first event
due next Is then released. Both mean and distribution of IAT's
are Independent per event. The times spent in the facilities,
are also Independent In both aspects.

An attempt has been made to use (Unix) QueueLengthes to Influence
time spent in facilities. This was never finished. Residual
blocks are still In the model. They are best recognizable by
their use of parameter 3.

Time Unit = 1 millisecond

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.************************************************************************,
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;Number of Processors In System

;Fork Mean IAT in 1 msec Units
;Exit
;TimeSlice
;Sleep on SQl
;Sleep on SQ2
;Sleep on SQ3
;Sleep on SQ4
;WakeUp from SQl
;WakeUp from SQ2
;WakeUp from SQ3
;WakeUp from SQ4
;SaveValue Nr 20 Contains ProcNr
;Unix Queues have been numbered

for easy reference
and recognition
(These Unix Queues are
GPSS Facilities)

300
300
1000
750
700
650
300
750
700
650
300
20
5
1
2
3
4

FVARIABLE P4-ACl ;Used in RestTime Calculation
FVARIABLE (V$HULPVAR'G'O)#V$HULPVAR+(V$HULPVAR'LE'O)#O

;Time till return at Chain
; meas'd from Chain departure
;Q's that measure Wait Time for

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

10 *****************************************

20 * *
30 "* GPSS/PC PROGRAM *
40 * *
50 *"****************************************

60 *
70 *
80 ******************************************
90 *
100 * E QUA T E S
110 *
120 ******************************************
130 *
140 *
150 *
160 FOMEANl
170 EXMEANl
180 TSMEANl
190 SL1MEANl
200 SL2MEANl
210 Sl3MEANl
220 SL4MEANl
230 WUl MEANl
240 WU2MEANl
250 WU3MEANl
270 WU4MEANl
280 PROCNR
290 RQ
300 SQl
310 SQ2
320 SQ3
330 SQ4
320 *
330 *
340 *
350 ******************************************
360 *
370 * V A R I A B L E S

380 *
390 ******************************************
400 *
410 *
420 *
430 NROFPRO VARIABLE 16

440 *
450 HULPVAR
460 RESTIIME
470 *
480 *
490 WAITKJUS FVARIABLE 5+P6
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FVARIABLE P40 + (FOMEAN1# FN$XPDIS1# 1000) jV$EFFI

FVARIABLE P4O+(EXMEAN1#FN$XPDIS1#1000)jVSEFFI
FVARIABLE P40 + (TSMEAN1 # 1000) jV$EFFI

FVARIABLE P40 + (SL1MEAN1 #FNSXPDIS1 #1 OOO)jV$EFFI
FVARIABLE P4O+ (Sl2MEAN1 #FN$XPDIS1 #1000)jV$EFFI
FVARIABLE P40 + (SL3MEAN1 #FN$XPDIS1 #1 000) jV$EFFI

FVARIABLE P4O+ (SL4MEAN1#FN$XPDIS1#1000)jV$EFFI
FVARIABLE P4O+ (WU1 MEAN1 #FNSXPDIS1 #1000)jV$EFFI
FVARIABLE P4O+ (WU2MEAN1 #FNSXPDIS1 #1000)jV$EFFI
FVARIABLE P4O+ (WU3MEAN1#FN$XPDIS1 #1000)jV$EFFI
FVARIABLE P4O+ (WU4MEAN1 #FN$XPDIS1 #1000)jV$EFFI

; access to Facility P6
FVARIABLE (QC6#QT6) + (QC7#QT7) + (QC8#QT8) + (QC9#QT9) + (QC10#QT10)

;Sum of Overhead(Waiting) Times

FVARIABLE (C1'G'O)#C1 + (C1 'E'0)#1 ;C1 is time since CLEAR

;C1A is C1 except when C1 = 0
; then C1 A is 1 to avoid ovflw

FVARIABLE (((V$C1 A#V$NROFPRO)-VSSUMOHT) /(VSC1 A#V$NROFPRO))# 1000
;System Efficiency

FVARIABLE (TB$EFFICI#V$NROFPRO) ;Eff. Numb. of Proc'rs

500 *
510 SUMOHT

520 *
530 C1A

540 *
550 *
5SO EFFI

570 *
580 EFNROFP

590 *
SOO *
610 FOIAT

620 EXIAT
630 TSIAT

640 SL11AT
650 Sl2IAT

660 SL3IAT
670 SL41AT

680 WU11AT
690 WU21AT
700 WU31AT

710 WU41AT

720 *
730 ADDPROC FVARIABLE 1
740 GRABPROC FVARIABLE 3

750 PROCSWTCH FVARIABLE V$ADDPROC+VSGRABPROC
7SO MAKEZOMBI FVARIABLE 5
770 FORKTIME FVARIABLE 5
780 SLEEPTIM1 FVARIABLE V$ADDPROC
790 SLEEPTIM2 FVARIABLE V$ADDPROC

800 SLEEPTIM3 FVARIABLE V$ADDPROC
810 SLEEPTIM4 FVARIABLE V$ADDPROC

820 WAKETIM1 FVARIABLE 2

830 WAKETIM2 FVARIABLE 3

840 WAKETIM3 FVARIABLE 4
850 WAKETIM4 FVARIABLE 5

860 *
870 *
880 *
890 *****************************************
900 *
910 * MIS C ELL A N E 0 U S

920 *

X$PROCNR,O

73145,96847,31043,28645,40187,36641,91239
,1,100

INITIAL

RMULT
MATRIX

930 *****************************************

940 *
950 *
960 *
970

980
990 QL
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V$EFFI,10,10,100TABLE1000EFFICI
1010*
1020*
1030*
1040*****************************************
1050*
1060* FUN C T ION S
1070*
1080*****************************************
1090*
1100*
1110* Exponential Function
1120*
1130XPDISl FUNCTION RN1,C24
0.0,0.0/0.1,.104/.2,.222/.3..335/.4,.509/.5,.69
0.6,.915/.7.1.2/.75.1.38/.8,1.6/.84,1.83/.88,2.12
0.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5
0.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7.0/.9997,8.0
1140*
1150*
1160* Arrival Time per Event Type
1170*
1180IAT FUNCTION P2,M11
1.V$FOIAT/2.V$EXIAT/3,V$TSIAT
4,V$SLllAT/5.V$SL2IAT/6,V$SL3IAT/7,V$SL4IAT
8.V$WUlIAT/9,V$WU2IAT/10,V$WU3IAT/11,V$WU4IAT
1190*
1200*
1210* 'Which Route' per Event Type
1220*
1230EVCONT FUNCTION P2,Lll
l,FORK/2.EXIT/3,ALOT
4.ALOT/5,ALOT/6,ALOT/7,ALOT
8,ALOT/9,ALOT/1 O,ALOT/ll,ALOT
1240*
1250*
1260* (Initial) Influence on (Unix) QueueLength per EventType
1270*
1280QUNFLU FUNCTION P2.Lll
1,1/2,-1/3,0
4,1/5,1/6,1/7,1
8,-1/9,-1/10,-1/11,-1
1290*
1300*
1310* 'What Oueue to seize' per EventType
1320*
1330EVKJU FUNCTION P2,Lll
l,RQ/2,RQ/3.RO
4.501/5,S02/6,S03/7.S04
8,SOl/9,S02/10,S03/11,S04
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1340*
1350*
1360* 'Which Service Time' per EventType
1370*
1380EVTIME FUNCTION P2,M11
1.V$FORKTIME/2,V$GRABPROC/3,V$PROCSwrCH
4,V$SLEEPTIM1 /5,V$SLEEPTIM2/6,V$SLEEPTIM3/7,V$SLEEPTIM4
8,V$WAKETIM1 /9,V$WAKETIM2/1 O,V$WAKETIM3/11 ,V$WAKETIM4
1390*
1400*
1410* 'Where to go to' per EventType
1420*
1430EVJUMP FUNCTION P2,L11
1,RUN/2,RUN/3,RUN
4,SWITCH/5,SWITCH/6,SWITCH/7,SWITCH
8,WUSwrCH/9,WUSwrCH/1 0,WUSwrCH/11,WUSwrCH
1440*
1450*
2000****************************************
2010*
2020* S TAR T MOD E L
2030*

2040****************************************
2050*
2060*
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
'2180RESCHED
2190
2200
2210
2220

GENERATE ",V$NROFPRO
SAVEVALUE PROCNR+,1
ASSIGN 1,X$PROCNR
ASSIGN 2,-1
ASSIGN 3,0
ASSIGN 4,0
ASSIGN 40,0
ASSIGN 5,0
ASSIGN 6,0
ADVANCE 1
SPLIT 11 ,RUN1 ,2
LOGIC S P1
GATE LA P1
UNLINK P1 ,ENTRY,1
LOGIC S P1
TRANSFER ,RESCHED

;P1 = Processor Number
;P2 = Event Number: FORK = 1 etc.
;{ -1,0,1} Influence on UX Q Length
;Arrival Time
;Savecl Arrival Time

;AJlow For Contig. Proc. XACT Nrs
;Make the 11 Event XActs
;The original XActs serve as
; Gate Openers for Chains
;Send next Event On its Way
;C1ose Gate
;Go and wait for Event return

2230*****************************************
2240RUN
2250RUN1
2260
2270

LOGIC R
ASSIGN
ASSIGN
LINK

P1
4,FN$IAT
40,P4
P1,P4,ENTRY

;Trigger Gate Opener
;Rescheclule on System Time-Axis
;Remember this for next IAT calc.
;First Transaction Avoids Link

2280*****************************************
2290ENTRY
2300
2310

ASSIGN 4,V$RESTIIME
ADVANCE P4
TRANSFER ,FN$EVCONT

;Entry Point for Event Route
;Wait until due
;Transfer to Event Entry Point
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2320*****************************************
2330FORK
2340
2350
2360

ASSIGN
ASSIGN
TRANSFER
TRANSFER

3,1 ;FORK Entry Point; Incr. QueueL
DELTIM,V$FORKTIME ;Parm DELTIM holds Q Manipul. Tim.
SBR,BLOCKED,RETADDR ;Gall Subroutine BLOCKED
,RUN ;Return to Chain

2370*****************************************
2380EXIT
2390
2400
2410

ASSIGN
ASSIGN
TRANSFER
TRANSFER

3,0 ;EXIT Entry Point
DELTIM,V$MAKEZOMBI
SBR,BLOCKED,RETADDR
,ALOT

2420*****************************************
2430ALOT
2440
2450
2460
2470

ASSIGN
ASSIGN
ASSIGN
TRANSFER
TRANSFER

3,FN$QLlNFLU
DELTIM,FN$EVTIME
6,FN$EVKJU
SBR,KJU,RETADDR
,FN$EVJUMP

;Entry Point for rest Events

;Sleeps/WakeUps Jump to (WU)SWITCH

2480*****************************************
2490*
2500SWITCH
2510
2520
2530
2540
2550

ASSIGN
ASSIGN
ASSIGN
TRANSFER
ASSIGN
TRANSFER

DELTIM'v$GRABPROC ;BreakOut Sleep Events
3,-1
6,RQ
SBR,KJU,RETADDR ;"Grab a Process from RQ"
3,1
,RUN

2560*****************************************
2570*
2580WUSWTCH
2590
2600
2610
2620
2630
2640*
2650*

ASSIGN
ASSIGN
ASSIGN
TRANSFER
ASSIGN
TRANSFER

DELTIM,V$ADDPROC
3,1
6,RQ
SBR,KJU,RETADDR
3,-1
,RUN

;Breakout WakeUp Events

;"Add a Process to RQN

3000************************************************************************
3010*
3020* SUB R 0 UTI N E S
3030*

3040************************************************************************

;process table to do so

;you need entire
6
SQ1
6
SQ1
7
SQ2
7
SQ2

QUEUE
SEIZE
DEPART
QUEUE
QUEUE
SEIZE
DEPART
QUEUE

3050*
3060* Seize total Process Table:
3070*
3080BLOCKED
3090
3100
3110
3120
3130
3140
3150
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;release in reverse order

QUEUE 8
SEIZE SQ3
DEPART 8
QUEUE SQ3
QUEUE 9
SEIZE SQ4
DEPART 9
QUEUE SQ4
QUEUE 10
SEIZE RQ
DEPART 10
QUEUE RQ
ADVANCE P$DELTIM
MSAVEVALUE QL+.1,RQ,P3
DEPART RQ
RELEASE RQ
DEPART SQ4
RELEASE SQ4
DEPART SQ3
RELEASE SQ3
DEPART SQ2
RELEASE SQ2
DEPART SQ1
RELEASE SQ1
TRANSFER P,RETADDR,1

3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410*
3420* end of subroutine
3430*
4000************************************************************************

QUEUE V$WAITKJUS
SEIZE P6
DEPART V$WAITKJUS
QUEUE P6
ADVANCE P$DELTIM
MSAVEVALUE QL+,1.P6,P3
DEPART P6
RELEASE P6
TRANSFER P.RETADDR,1

4010*
4020* Seize one Queue
4030*
4040KJU
4050
4060
4070
'4080
4090
4100
4110
4120
4130*
4140* end of subroutine
4150*
5000************************************************************************

GENERATE 100
TABULATE EFFIC!

5010*
5020* Measure Transactions
5030*
5040
5050



5060
5070
5080*
5090*

SAVEVALUE FINAL,V$EFNROFP
TERMINATE 1

13Sd

6000************************************************************************
6010*
6020*
6030*

END OF MODEL

6040************************************************************************

The measurement Series:

First Series:

Event Inter Arrival Times:
Event Mean Distribution

FORK 300
EXIT 300
TIMESLICE 1000

Exponential
Exponential
Deterministic

Event M!!.!l Distribution

SLEEP1 750 Exponential WAKEUP1 750
SLEEP2 700 Exponential WAKEUP2 700
SLEEP3 650 Exponential WAKEUP3 650
SLEEP4 300 Exponential WAKEUP4 300

Exponential
Exponential
Exponential
Exponential

Add Grab Switch Fork Make Sleep Sleep Sleep Sleep Wake Wake Wake Wake
Number Proc Proc Tim Tim Zombie Tim1 Tim2 Tim3 Tim4 Tim1 Tim2 Tim3 Tim4

84 2 5 7 10 10 2 2 2 2 2 3 4 5
78 2 5 7 10 10 0 0 0 0 0 0 0 0
72 2 6 8 10 10 0 0 0 0 0 0 0 0
71 1 3 4 5 5 0 0 0 0 0 0 0 0
65 1 3 4 5 5 1 1 1 1 2 3 4 5
64 1 3 4 10 5 1 1 1 1 2 3 4 5
63 1 3 4 2 5 1 1 1 1 2 3 4 5
192 1 3 4 5 5 0 0 0 0 0 0 0 1

.191 1 3 4 5 5 0 0 0 0 0 0 0 2
190 1 3 4 5 5 0 0 0 0 0 0 0 5
189 1 3 4 5 5 0 0 0 0 0 0 0 10
188 1 3 4 5 5 0 0 0- 0 0 0 0 15
187 1 3 4 5 5 0 0 0 0 0 0 0 20
186 1 3 4 5 5 0 0 0 0 0 0 0 30
185 1 3 4 5 5 0 0 0 0 0 0 0 40

Second Series:

Event Inter Arrival Times:
Event Mean Distribution Distribution

FORK 300
EXIT 300
TIMESLICE 1000

Exponential
Exponential
Deterministic

SLEEP1 750
SLEEP2 700
SLEEP3 650

Exponential
Exponential
Exponential

WAKEUP1 300
WAKEUP2 300
WAKEUP3 300

Exponential
Exponential
Exponential
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SLEEP4 300 Exponential WAKEUP4 300 Exponential

Add Grab Switch Fork Make Sleep Sleep Sleep Sleep Wake Wake Wake Wake
Number Proc Proc Tim Tim Zombie Tim1 TIm2 Tim3 Tim4 Tim1 Tim2 Tim3 Tim4

70 0 0 0 0 0 0 0 0 0 0 0 10 10
69 0 0 0 0 0 0 0 0 0 0 10 10 10
68 0 0 0 0 0 0 0 0 0 10 10 10 10
67 0 0 0 0 0 0 0 0 0 0 0 5 10
66 0 0 0 0 0 0 0 0 0 0 0 15 10
62 0 0 0 0 0 0 0 0 0 0 0 12 10
58 0 0 0 0 0 0 0 0 0 0 0 5 5
57 0 0 0 0 0 0 0 0 0 0 5 5 5
56 0 0 0 0 0 0 0 0 0 5 5 5 5
55 0 0 0 0 0 0 0 0 0 0 0 20 20
54 0 0 0 0 0 0 0 0 0 0 20 20 20
53 0 0 0 0 0 0 0 0 0 20 20 20 20
52 0 0 0 0 0 0 0 0 0 0 0 1 10
51 0 0 0 0 0 0 0 0 0 0 0 3 10
199 0 0 0 0 0 0 0 0 0 0 0 20 10
198 0 0 0 0 0 0 0 0 0 0 0 25 10
197 0 0 0 0 0 0 0 0 0 0 0 0 10
196 0 0 0 0 0 0 0 0 0 0 0 0 5
195 0 0 0 0 0 0 0 0 0 0 0 0 20
194 0 0 0 0 0 0 0 0 0 0 0 0 15
193 0 0 0 0 0 0 0 0 0 0 0 0 25
157 1 3 4 5 5 0 0 0 0 0 0 0 1
156 1 3 4 5 5 0 0 0 0 0 0 0 2
155 1 3 4 5 5 0 0 0 0 0 0 0 5
154 1 3 4 5 5 0 0 0 0 0 0 0 10
153 1 3 4 5 5 0 0 0 0 0 0 0 15
152 1 3 4 5 5 0 0 0 0 0 0 0 20
151 1 3 4 5 5 0 0 0 0 0 0 0 30
150 1 3 4 5 5 0 0 0 0 0 0 0 40
184 1 3 4 5 5 0 0 0 0 0 0 1 1
183 1 3 4 5 5 0 0 0 0 0 0 2 2
182 1 3 4 5 5 0 0 0 0 0 0 5 5
181 1 3 4 5 5 0 0 0 0 0 0 10 10
180 1 3 4 5 5 0 0 0 0 0 0 15 15
179 1 3 4 5 5 0 0 0 0 0 0 20 20
178 1 3 4 5 5 0 0 0 0 0 0 30 30
1n 1 3 4 5 5 0 0 0 0 0 0 40 40
176 1 3 4 5 5 0 0 0 0 0 1 1 1

.175 1 3 4 5 5 0 0 0 0 0 2 2 2
174 1 3 4 5 5 0 0 0 0 0 5 5 5
173 1 3 4 5 5 0 0 0 0 0 10 10 10
172 1 3 4 5 5 0 0 0 0 0 15 15 15
171 1 3 4 5 5 0 0 0 0 0 20 20 20
170 1 3 4 5 5 0 0 0 0 0 30 30 30
169 1 3 4 5 5 0 0 0 0 0 40 40 40
168 1 3 4 5 5 0 0 0 0 0 1 1 1
167 1 3 4 5 5 0 0 0 0 0 2 2 2
166 1 3 4 5 5 0 0 0 0 0 5 5 5
165 1 3 4 5 5 0 0 0 0 0 10 10 10
164 1 3 4 5 5 0 0 0 0 CJ 15 15 15
163 1 3 4 5 5 0 0 0 0 0 20 20 20
162 1 3 4 5 5 0 0 0 0 0 30 30 30
161 1 3 4 5 5 0 0 0 0 0 40 40 40
160 0 0 0 0 0 0 0 0 0 0 0 0 30
159 1 3 4 5 5 0 0 0 0 0 0 0 0



Third Series:

Event Inter Arrival Times:
Event Mean Distribution Distribution

FORK 300
EXIT 300
TIMESLICE 1000'

Exponential
Exponential
Deterministic

SLEEPl 750
SLEEP2 700
SLEEP3 650
SLEEP4 300

Exponential
Exponential
Exponential
Exponential

WAKEUPl 750
WAKEUP2 700
WAKEUP3 650
WAKEUP4 300

Exponential
Exponential
Exponential
Exponential

.) Here lhe mean value is independent of N. (So not multiplied by V$EFFI)

Add Grab Switch
Number Proc Proc !l!!l

Fork Make
Tim Zombie

Sleep Sleep Sleep Sleep Wake Wake Wake Wake
Tim1 Tim2 Tim3 Tim4 Timl Tim2 Tim3 Tim4

59 2 5 7 10 10 2 2 2 2 2 3 4 5

Event Inter Arrival Times:
Event Mean DistribUlion

Fourth Series:

FORK 300
EXIT infinite
TIMESLICE infinile

Exponential
Exponenlial
Deterministic

~ Mean Distribution

SLEEPl infinite Exponential
SLEEP2 infinite Exponential
SLEEP3 infinite Exponential
SLEEP4 infinite Exponential

WAKEUP1 infinite
WAKEUP2 infinite
WAKEUP3 infinite
WAKEUP4 infinite

Exponential
Exponential
Exponential
Exponential

Add Grab Switch
Number Proc Proc Tim

Fork Make
Tim Zombie

Sleep Sleep Sleep Sleep Wake Wake Wake Wake
Tim 1 Tim2 Tim3 Tim4 Tim 1 Tim2 Tim3 Tim4

74 o o o 30 0 o o o o o o o o

Event Inter Arrival Times:
. Event Mean Distribution

Fifth Series:

FORK 300
EXIT infinile
TIMESLICE infinite

Exponential
Exponential
Deterministic

Event Mean Distribution

SLEEP1 infinite Exponential
SLEEP2 Infinite Exponential
SLEEP3 Infinite Exponential
SLEEP4 Infinile exponential

WAKEUP1 Infinite
WAKEUP2 infinite
WAKEUP3 infinite
WAKEUP4 300

Exponential
Exponential
Exponential
Exponential

Add Grab Switch
Number Proc Proc Tim

Fork Make

!!!!l~
Sleep Sleep Sleep Sleep Wake Wake Wake Wake
!!m1 T1m2 Tim3 Tim4 Tim1 Tim2~ Tim4

73 o o o 30 0 o o o o o o o 30



Measurement Data:

Measurement
Number 1

51
52
53 3.67 4.94 5.73
54 3.85 5.49 6.n
55 3.88 5.63 7.61
56 4.00 6.00 8.00
57 4.00 6.00 8.00
58 4.00 6.00 8.00
59 3.78 4.97 5.76
62 3.99 5.92 7.84
63 4.00 5.99 7.91
64 3.96 5.81 7.19
65 4.00 5.94 7.54
66 3.97 5.91 7.76
67 4.00 5.99 7.94
68 4.00 5.84 7.73
69 4.00 5.91 7.83
70 5.94
71 4.00 6.00 7.72
72 3.73 4.93 5.67
73 3.54 4.39 4.n
74 3.91 5.69 7.23
78 3.96 5.11 6.06
84 3.78 5.97
158 3.68 5.41
159 4.00 7.66
160 3.79 6.35
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
ln
178
179
180
181
182
183
184
185
186
187
188
189
190
191

25.78 26.01 26.93 26.78 27.32
26.29 27.36 27.35 28.33 28.51

6.34 6.40 6.75 7.06 7.02
7.49 8.06 8.59 8.85 8.71 8.82
8.25 9.07 10.08 10.41 10.59 10.78 10.78 10.66 10.64
10.00 12.00 15.76 19.2322.4325.11 26.60 27.78 28.36 28.98 29.23
10.00 12.00 15.89 19.60 23.19 26.39 28.98 30.75 32.06 32.89 33.08 33.82
10.00 12.00 16.00 19.72 23.58 27.24 30.64 33.36 35.81 37.73 38.71 39.62
6.09 6.23 6.30 6.07 5.88 5.79 5.72 5.40 5.40 5.25 4.90 4.73
9.71 11.40 14.40 16.53 17.50 18.20 18.42 18.59 18.86 19.07 18.96
9.37 10.73 12.24 12.94 13.11 13.12 13.24 13.32 13.36
8.28 8.83 9.37 9.65 9.n 9.85 9.88
9.05 10.15 11.10 11.19 11.48 11.51 11.83 11.68 11.68 11.66
9.52 11.03 13.62 15.03 15.78 15.89 16.01 16.61 16.33 16.55 16.60 16.68
9.88 11.81 15.44 18.5521.29 22.94 24.19 24.75 25.27 25.52 25.72 26.01
9.43 10.98 13.01 14.03 14.69 14.83 15.11 15.28 15.37 15.37 15.50 15.52
9.64 11.24 13.97 15.67 16.69 16.67 17.03 17.22 17.29 17.51 17.67 17.42
9.80 11.58 14.83 17.39 18.98 20.27 20.68 20.87 20.91 21.0221.0721.11
9.44 10.60 11.89 12.52 12.59 12.75 12.86 13.15 12.84 12.95 13.00 12.96
6.03 6.26
5.03 5.02 5.08 5.01 5.01 5.18 5.06 5.38 5.16 5.41 5.54
8.39 9.17 9.67 9.84 9.93 10.19 10.13 10.27 10.64 10.31 9.94 10.06 10.06 10.01 tPi
6.49 6.69 6.93 6.95 6.99 6.93 7.26 7.24 7.08 7.25 7.36 7.16
6.30 6.55 6.53 6.68 6.76

5.89 6.02 6.08 6.10 6.20
10.15 11.20 11.60 11.76 11.96 11.96
7.73 8.74 9.06 9.93

2.84
3.60
4.80
5.96
7.68
10.24
11.72
11.84
3.20
4.08
5.32
6.52
8.24
10.64
11.72
12.04
3.76
4.64
6.24
7.40
9.12
10.96
11.84
11.29
5.24
6.36
7.80
8.84
10.40
12.08
12.84



12.76
11.95
19.34
15.07

34.24 40.44 43.01 45.08
25.13 25.80 26.97 27.36 28.24
10.97 11.40 11.31 11.01 11.18
13.59 13.31 13.61 13.83 13.51

8.65 9.94 10.48 11.04 11.23 11.46
10.79 14.88 17.14 18.08 18.57
9.n 11.33 12.46 13.27
12.00 27.30
11.68 15.04 18.06 20.42 22.46

192
193 3.84 6.82
194 3.94 7.69
195 3.89 7.34
196 4.00
197 4.00 5.95 7.88 9.86
198
199

Several combinations of the above results are possible. Presenting these in graphs would lead to
excessive amounts of paper. One exception Is made for the measurements 59 and 84. The graph below
speaks for itself:
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Appendix 0 Chapter 2 In Tables

2.1 Memory Map

- Shared Memory Only
- Private plus Shared Memory

2.2 Interconnections

- Processors-Memory Modules
- Circuit Switching Techniques

- Time Shared Bus
- Crossbar
• Multiport

- Packet Switching Techniques

- Processor-Processor
• Point to Point
- Separate Time Shared Bus
• Using Processors-Memory datapath

2.3 Symmetry

- Full Symmetry
Main Processors are unequal to 10 processors

- Main Processors are of different types

- Totally asymmetric

2.4 Input/Output Structure

- All 10 done by uniprocessor
- 10 done by 10 processors (no OS tasks in 10)
• 10 done by 10 processors (including OS tasks)
- 10 requests via 1 main processor
- 10 requests via any main processor

2.5 Interrupts

*

*

*

*

*

*

• Internal Interrupts Local
• All others on 1 (master) main processor.
• Hardware Fault Interrupts on separate proc.
• Rest also Local
• Interrupter looks for handling processor according to some searching scheme.

(f.e Daisy Chain implementation)
- Others are handled by main processor that handles that partiCUlar level of interrupt.



137

2.6 Inter Processor Communication

- Local/Fast

- Shared Memory
· Data block In Memory
· Signal server
· Server reads block
· Server answers In same block or sends new separate block
· Server signals requester.

- Remote/Slow

- Communication Unes

- Message Handling Protocols (X400)
- Actor

- Software Methods

*

- Shared Memory/Polling
Slow
Deadlock (possibly when processor runs failing job that holds locks and other
processors have no way of knowing this)

- Hardware Methods

- Location Monitors (VME)
- SIGP (chapter 2 [SATY80])

2.7 Reserved Storage Areas

- Interrupt Vectors
- 10 status and control
- Diagnostics
- Process Relocation Address Spaces

Every main could have such areas: possible clash of reserved areas

*

Solutions:
- Put these areas on the same addresses for every processor: physically In parallel
- Put these reserved areas on the same addresses for every processor: 1 physical

memory(mutual exclusion mechanisms necessary)
- Put these reserved areas on sequential addresses
• Reserved Areas In private memory.

2.8 The Operating System
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- as in shared memorylevery main processor uses it.
ore-entrant
. locks around critical actions

• 1 master handles critical as codeln slaves do rest

• Every main processor has same as code to handle interrupts & traps. Rest of as
functions Is mapped at system startup time onto a set of main processors.

- Protection
- Scheduling
- Memory Management
- File Handling

2.9 User Facilities for Parallel Processing

- System Calls to manage processes
(create, sync, communicate, delete)

• Languages that provide 'parallel' constructs
(PARBEGIN {statement} PAREND;)

- Parallelizing Compilers and Ubraries

2.10 Error Recovery

- Watchdog timer
- Hardware-generated malfunction alert
- Reset; restart and diagnostic capabilities from one main processor towards another.
- Corruption Check of Critical Data & Recovery
- Deadlock
- Restart system from other hard disk instance of as
- Backtrack failed process until safe restart reached or restart completely.

2.11 Performance

• Memory Contention
- Cache Consistence Delay
- Longer Scheduling than on single processor system

Waiting in semaphore queues
- More complex device handling
- Load Balancing



Appendix E Implementation Conditions

Condition 3.1
The implementation must be based on the VMEbus.

Condition 3.2
The Operating System to be used is Unbt System V.

Condition 3.3
VME Interrupts shall only be used for the handling of hardware faults.

Condition 4.1
No Caches are used (yet).

139
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