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Abstract

This dissertation presents a simulation approach to improve a production line af-

fected by losses of efficiency. It starts with a theoretical overview of the topics

of the project. Chapter 1 is about production effectiveness. It inspects the Total

Productive Maintenance philosophy, its traditional evaluation measure, the Overall

Equipment Effectiveness, and further developed measures that fit more with the case

object of study. Chapter 2 deals with the job sequencing in multi-model lines, pre-

senting either theoretical aspects on production scheduling and solving techniques.

Chapters 3 and 4 concern the main concepts of simulation, its application in manu-

facturing and simulation modelling. A focus on the discrete-event based simulation

models is carried out, just like a presentation of the simulation software AnyLogic.

Chapter 5 regards a methodology for applying simulation to problem-solving, going

deep into the explanation of its phases. Finally, the aspects above are gathered in

the presentation of a case study about an automated bottling line whose bottleneck

is studied, modelled and tested with the jointly use of a heuristic algorithm cod-

ified in Python and the simulation software AnyLogic. The purpose of the thesis

project is to improve the efficiency performance of the line. Chapter 6 shows the

problem and how the simulation model has been built while chapter 7 contains the

experimental analysis, the tests and the economic analysis.
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Introduction

Changes in the market and in the demand for goods and services that have taken

place in the last decades have deeply influenced manufacturing systems. Increas-

ing variety and differentiation due to factors, such as more customization, shorter

product lifecycles and uncertainty in demand, need to go hand in hand with in-

creased effectiveness in order to compete (Mourtzis et al., 2012). As personalization

of products, mix variability, requirement of short time to market and risk of product

obsolescence all increase, the need of continuous flow and JIT solutions forces in-

dustry constant improvements in terms of product quality, operation efficiency and

production capacity utilization (Battini et al., 2006).

In a such a context, companies that belong to sectors characterized by high volumes

and low margins, like the food and beverage, have invested in automated flow line

manufacturing systems in order to guarantee a high efficiency in a mass production

perspective. This means that there are several machines working in sequence, con-

nected through various transport systems. Thus, modern companies must face a

new objective at odds with cost reduction, that is the flexibility of the production

plant that should manage the increasing variety of products and a rapid answer to

customers’ requests.

These aims can be achieved by means of a thorough control and measurement of

system performances in order to find out the critical issues and improvement areas.

A typical way to control companies’ processes is the use of KPIs (Key Performance

Indicator) that can give simple and instant insights on the performance of an activity,

a process or an entire company’s function. The main KPI utilized in the production

context is OEE (Overall Equipment Effectiveness) (Nakajima, 1998), index able to

gather much information on the performance of a system in terms of availability,

performance and quality.
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Implementing changes can be a difficult task for any organization, big or small.

A tool that may help is simulation, considered as a key technology to support

manufacturing in a fast, low cost and secure way. Simulation has gained importance

in the past few years since it allows designers to imagine new systems and it enables

them to both quantify and observe behaviours. Simulation can be used to study and

compare alternative designs or to troubleshoot existing systems. Whit simulation

models, how an existing system might perform if altered could be explored, or how

a new system might behave before a modify is really applied, thus saving on costs

and time (Hosseinpour et al., 2009).

The added value this dissertation wants to offer is a demonstration of simulation as

a versatile, flexible and reliable tool in support to the changes that manufacturing

system must face in order to remain competitive in the present ever-changing market.

This thesis project carries on the application of different functions of simulation

modelling applied to a case study. The case study regards an automated bottling

line affected by failures, set-ups due to format changes and predictive maintenance,

and product mix constraints. The purpose is to improve the OEE of the production

line and maximize its throughput. The issues investigated concern the sequencing

according to which the different formats of bottles are weekly produced (Format

Sequencing Problem) and the buffer capacity of the bottleneck, considered not able

to effectively decouple the operations of the work-stations between which it is located

(Buffer Sizing Problem).

A discrete-event based simulation model is built with the software AnyLogic; hence,

it is tested and validated. It is used as a benchmark to evaluate the suggested

improvements regarding the optimal format sequencing respect to the starting situ-

ation. Afterwards, the length of the bottleneck’s buffer is varied with a simulation

experiment in order to study the impact that this modification has on the efficiency

performances of the line and find out the optimal buffer size. The suggested scenario

is evaluated also from an economic point of view.
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Chapter 1

Effectiveness in a Flow Line

The changes of the market customization, shorter product lifecycles and uncertainty

in demand highly affect the production systems characterized by high volumes and

low margins. Among the sectors characterized by automated flow line manufactur-

ing systems, it is possible to find the food and beverage. In addition to automation

peculiarities, the food and beverage sector is nowadays characterized by the need

for safety, quality and sustainability. These aspects co-locate and identify the com-

pany in the market. Production systems effectiveness continues to be the principal

aim of each industry in order to be competitive and achieve success, but it is still

deeply influenced by the previews market requests. In this context, Total Productive

Maintenance (TPM) is a useful industrial tool to improve plant productivity and

operation efficiency (Zennaro et al., 2018).

The core metric for measuring the success of TPM implementation program is the

Overall Equipment Effectiveness (OEE) index. OEE combines three dimensions of

effectiveness in one value: availability, performance rate and quality rate. OEE is

the key measure to measure the performance of individual equipment. However,

research studies have proved that when machines operate jointly in a manufacturing

line, OEE alone is not enough to improve the performance of the entire system.

Therefore, various changes and extensions to the original OEE figure have been

carried out such as the Overall Line Effectiveness (OLE) and the Overall Equipment

Effectiveness of a Manufacturing Line (OEEML).

3



1.1 Total Production Maintenance

1.1.1 Historical background

Efficiency theories have origins far in the late nineteenth century by means of the self-

taught business management authority Harrington Emerson (1858-1931). According

to contemporary, Emerson was inspired by the discipline evidenced in producing

orchestral music, breeding horses and surveying railroad routes; he wanted to seek

similar planning and control for manufacturing processes (Drury, 1918). So, when

he decided to put his effort and his eclectic interests on manufacturing, he strove to

determine product characteristics, costs compared to planned outcomes, and losses

occurring in the use of raw materials, while planning, scheduling, and dispatching

work through a large factory in order to bring efficiency. The results of his theoretical

and hands-on manufacturing efforts became his “Twelve Principles of Efficiency”,

basis for all the further works.

Figure 1.1: The Twelve Principles of Efficiency by H. Emerson

These principles are reflected by present-day systems for manufacturing operations

such as Enterprise Resource Planning (ERP) or Quality Management Systems (ISO

9000).

A further advancement on the effectiveness theories was given by Seiichi Nakajima,

based on the experience of the practical application of maintenance best practice
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in Japan between 1950 and 1970. Nakajima is the pioneer of the Total Production

Maintenance, a methodology founded on three major concepts:

1. maximizing equipment effectiveness;

2. autonomous maintenance by operators;

3. small group activities.

TPM contributes effectively to improve the competitiveness and effectiveness of

industries. In fact, it is a maintenance program which involves a newly defined

concept for maintaining plants and equipment. TPM seeks to maximize equipment

effectiveness throughout the life time of that equipment. It strives to maintain

optimum equipment conditions in order to prevent unexpected break downs, speed

losses, and quality defects arising from process activities.

1.1.2 The 5s and the eight pillars of TPM

The traditional approach to TPM was developed in the 1960s and consists of 5S as

a foundation and eight supporting activities (sometimes referred to as pillars).

Figure 1.2: The TPM approach

The 5s Foundation

The 5s methodology gathers five steps into a systematic and repeatable method

that aims to optimize the working standards and therefore the improvement of

operative performances. It was born from the Japanese heritage which view was

oriented towards the elimination of everything useless in terms of functioning for

the activities (muda). It creates the foundation for the well-running equipment.
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The term is inspired by the initials of the words that recap the five steps of the

methodology:

1. Sort: eliminate anything that is not truly needed in the work area

2. Set in Order: organize the remaining items

3. Shine: clean and inspect the work area

4. Standardize: create standards for performing the above three activities

5. Sustain: ensure the standards are regularly applied.

The Eight Pillars

The eight pillars of TPM are mostly focused on proactive and preventative tech-

niques for improving equipment reliability. They create a system for maximizing

production effectiveness of any industry. The summary of eight pillars is given in

the following table (Pandey, 2016).

Figure 1.3: Eight pillars of TPM
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1.1.3 The Six Big Losses

Manufacturing processes are often influenced by disturbances. Such disturbances

have been classified by Jonsson and Lesshammar (1999) as chronic and sporadic

according to their frequency of occurrence. Chronic disturbances are usually small,

hidden and complicated because they are the result of several concurrent causes.

Sporadic disturbances are more obvious since they occur quickly and as large de-

viations from the normal state. Sporadic disturbances occur irregularly and their

dramatic effects are often considered to lead to serious problems. However, re-

search evidence suggests that it is the chronic disturbances that result in the low

utilization of equipment and large costs because they occur repeatedly (Nord et al.,

1997). Identification of chronic disturbances is only possible through comparison of

performance with the theoretical capacity of the equipment.

Chronic and sporadic disturbances both have different negative impacts on the man-

ufacturing process. They consume resources without adding any value to the final

product. The generic losses which reduce the effectiveness of the equipment have

been grouped and categorized as six big losses. In the technical literature, the six

big losses are also an expression of the gap between the valuable operating time

(VOT: fraction of the time in which an equipment works under optimal operating

conditions) and loading time (LT: actual available time for operation, after removing

all planned stops).

According to Nakajima (1998) the six big losses are:

1. Equipment failure/breakdown losses. They may be categorized as time losses

when productivity is reduced, and quantity losses caused by defective products

2. Set-up/adjustment time losses result from downtime and defective products

that occur when production of one item ends and the equipment is adjusted

to meet the requirements of another item

3. Idling and minor stop losses occur when the production is interrupted by a

temporary malfunction or when a machine is idling

7



4. Reduced speed losses refer to the difference between equipment design speed

and actual operating speed

5. Reduced yield that occurs during the early stages of production from machine

start up to stabilization

6. Quality defects and rework are losses in quality caused by malfunctioning

production equipment

The first two big losses are known as downtime losses and are used to help calculate

a true value for the availability of a machine. The third and fourth big losses are

speed losses that determine the performance efficiency of a machine, i.e. the losses

which occurs as a consequence operating at less than the optimum conditions. The

final two losses are losses due to defects, the larger the number of defects the lower

the quality rate of parts within the factory.
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1.2 Measuring effectiveness of a flow line

The definition of metrics for measuring the productivity of manufacturing facilities

has been an important field of research over the last decades. One of the first things

to do in order to meet the requests of an ever-changing market is to analyse the effi-

ciency metrics capable to assess how well equipment are exploited in comparison to

their theoretical potential. Throughput, production rate and equipment utilization

have been traditionally adopted as the standard way to assess the performance of

manufacturing equipment, mainly because of their simplicity. Even so, these met-

rics lack in inclusiveness, because they measure only a part of the performances of

a manufacturing system, while the effectiveness of a plant depends on the way it

uses equipment, material, men and methods. For the above-mentioned reasons, a

better choice to evaluate efficiency has been identified with the Overall Equipment

Effectiveness (OEE). With the help of the OEE, productivity and economic benefit

of a company can be well described. OEE was born as an index of performance

evaluation of individual equipment in a production system, therefore in recent years

various changes and extension to the original formula have been made in order to

adapt it to evaluate the performance of an entire line (OLE) or of a system as a

whole (OEEML).

1.2.1 Overall Equipment Effectiveness

The Overall Equipment Effectiveness was firstly proposed by Nakajima (1998) as

the key metric to support TPM, and it is now a widely accepted way to monitor the

actual performance of an equipment, in relation to its nominal capabilities under

optimal operating conditions. OEE has many purposes, indeed it can be used as a

”benchmark” to compare the initial performance of a manufacturing plant and its

future values, thus quantifying the level of improvement made. Moreover, it can be

used to measure the effectiveness of TPM and improve it in individual machines by

reducing the concerned losses.

OEE is usually formulated as a function of a number of mutually exclusive compo-
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nents (Hung et al., 2003), such as availability efficiency (Aef ), performance efficiency

(Pef ) and quality efficiency (Qef ). This formulation allows to break the performance

of a manufacturing unit into three separate but measurable components:

OEE = Availability · Performance ·Quality (1.1)

Figure below summarizes the key elements and the fundamental influencing param-

eters of the OEE. Besides, it links the components with their category of loss.

Figure 1.4: OEE and sources of loss to display the operational behaviour

As shown, the first two losses are categorized as downtime losses because they in-

fluence the true value of the availability of an equipment. In a similar manner, the

third and the fourth entries are known as speed losses because they determine the

performance efficiency of an equipment. The last two are known as defects losses

because they are connected to defects, scraps and reworked items.

OEE can also be expressed as the ratio between what was manufactured and what

could be ideally manufactured or, alternatively, as the fraction of time in which an

equipment works at its full operating capacity. This concept can be formalized as

follows:

OEE =
Actual Output

ReferenceOutput
=
Cycle T ime · V aluableOperating T ime

Cycle T ime · Loading T ime

=
V aluableOperating T ime

Cycle T ime

(1.2)

10



The three components of the OEE formulation are now explained.

Availability

The availability element of the OEE measure is concerned with the total stoppage

time resulting from unscheduled downtime, process set-up and changeovers, and

other unplanned stoppages. It is the ratio of actual operating time to the planned

operating time and considers the theoretical production time against which un-

planned downtime is highlighted.

Availability (%) =
Actual operating time (mins)

Planned operating time (mins)
· 100% (1.3)

where

• Planned operating time (mins) = Total shift time (mins) - Planned mainte-

nance (mins)

• Actual operating time (mins) = Planned operating time (mins) - Unplanned

maintenance (mins) - Minor stoppages (mins) - Setup changeover (mins).

Performance rate

Performance rate is the second element of the OEE calculation. It measures the

ratio of the actual speed of the equipment to the ideal speed. Performance efficiency

is achieved as the product of the operating speed rate and net operating rate. The

operating speed rate of equipment is about the variance between the ideal speed

and its actual operating speed.

The net operating rate measures the achievement of a stable processing speed over

a given period.

The performance rate calculates the losses resulting from minor recorded stoppages,

as well as those that go unrecorded on daily logs, such as small problems and ad-

justment losses.

Performance (%) = Net operating rate ·Operating speed rate · 100 % (1.4)

where
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• Net operating rate = No. produced·Actual cycle time
Operation time

• Operating speed rate = Theoretical cycle time
Actual cycle time

Quality rate

Quality rate is the final element of the OEE calculation. It indicates the proportion

of defective production to the total production volume.

Quality (%) =
Total no. produced−No. scrapped

Total no. produced
· 100% (1.5)

1.2.2 Limits of the traditional formula

Nowadays, OEE has been used in different industrial fields as the main efficiency

metric. Even so, its application is not always straightforward; many drawbacks

and difficulties have been found in several applications. The two main limits of the

traditional formulation of OEE can be recapped as it follows:

1. Neither all the problems/inefficiencies a line is subject to can be classified in

terms of the six big losses nor some problems can be directly tied to a specific

equipment;

2. OEE measures the efficiency of a single equipment installed within a factory,

whereas machines are usually not isolated, but operate jointly in a production

line. Therefore, if the line is unbalanced, or if the manufacturing process is

made of decoupled machines working in series or parallel, OEE alone is not

enough.

In order to solve the first problem, Jeong and Phillips (2001) suggested an alternative

losses classification scheme since the standard definition of OEE does not account for

additional causes of losses such as preventive maintenance, off-shifts and holidays.

Similarly, de Ron and Rooda (2005) noted that OEE takes into consideration losses,

like blocking or starvation, that, being an effect of the whole productive system,

cannot be directly attributed to a specific equipment. Thus, the authors proposed

to exclude from OEE all the losses that are internal to the productive system but

do not depend on the equipment itself.
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A first operative approach to achieve a tentative evaluation of the efficiency of an

entire line is presented by Robinson (2004). The author focuses on the aspect related

to the pace of the line and what influences it. Since this element is determined by

the constraining operation, both the availability and the performance rate of the

bottleneck machine must be the same as that of the line. Also, quality defects

upstream (US) from the constraining operation, affect the output of the line only if

they result in the starvation of the bottleneck, whereas quality defects downstream

(DS) from the bottleneck do affect the potential output of the line and should be

counted against the quality rate. For these reasons the author suggested to evaluate

the process OEE by means of equations (1.6) and (1.7), respectively:

ProcessOEE = ABN · PBN ·QTot (1.6)

QTot =
TIBN −DSD

TIBN

(1.7)

where ABN and PBN are the availability and the performance rate of the bottleneck

machine; TIBN is the total number of items processed by the constraining operation;

DSD is the total number of defects and reruns DS of the constraining operation.

1.2.3 Overall Line Effectiveness

Nachiappan and Anantharaman (2006) proposed the overall line effectiveness (OLE)

as an alternative metric to evaluate the efficiency of a continuous product flow

manufacturing system. As shown in equation (1.8), OLE is achieved as the product

of two independent terms, namely the line availability (LA) and the line production

quality performance (LPQPQ):

OLE = LA · LPQP (1.8)

This formula works under the hypothesis of no decouplers added between machines,

so all the operations performed in a manufacturing line are strictly connected. Con-

sidering that, the operating time (OT) of the first machine will be the loading time

(LT) of the second machine and, in analogy, the OT of the second machine will be

the LT of the third machine and so on, proceeding downward in the line. This con-

cept is shown in equation (1.9) where DT and PD stand for downtime and planned
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downtime, respectively:

OTi = (OTi−1 − PDi−1)−DTi (1.9)

Thus, LA can be evaluated as the ratio of the OT of the last machine (i.e. the nth

machine and the LT of the line, as stated by the following equation:

LA =
OTn
LT

(1.10)

Finally, as in the standard OEE definition, LPQP is defined as the ratio of the actual

and the ideal productive rate of the line and is evaluated by applying equation (1.11)

LPQP =
Gn · CTBN

OTl
(1.11)

If applied to a continuous production line, OLE yields good results. In other cases,

for example, when buffers or decouplers are displaced between machines, the hy-

pothesis made to evaluate OTi (of the generic ith equipment) do not apply. When

there are buffers in the line, a DS machine can continue manufacturing even if the

preceding machine is down and so, a straight application of OLE would underes-

timate the actual efficiency of the line. Furthermore, as shown in equation (1.8),

both the terms used to calculate OLE (i.e. LA and LPQP) refer to the operating

efficiency of the last machine. This is an additional disadvantage because by mon-

itoring exclusively the last machine it is hard to identify the main criticalities and

to detect the points of the line where they take place.
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1.2.4 Overall Equipment Effectiveness of a Manufacturing

Line

OEEML is a metric developed starting from the considerations on the limits of OLE

formulation related to the hypothesis on the continuity of the flow. As already seen,

when machines operate jointly in a production line, material flow, transportation,

buffers and queues have a direct impact on equipment performance and vice versa.

For this reason, in order to define a meaningful metric for the efficiency of the whole

line, it is important to separate all the losses that can be directly ascribed to an

equipment from the losses that are spread in the line (Braglia et al., 2008). These

two losses type differ mainly for their dependency on the equipment; thus, as regards

a manufacturing line it is efficient to distinguish between:

• Equipment dependent losses (EDL) such as defects or reduced yield;

• Equipment independent losses (EIL) such as blocking and starvation.

Any EDL can be eliminated repairing, improving or redesigning an equipment, while

EIL can be eliminated acting directly on the production environment (i.e. plant

layout, machine balancing, buffer sizing, etc.).

To evaluate the efficiency of a line, the early introduced additional modification

to the traditional structure of losses must be considered. As noted by Jeong and

Phillips (2001), the original definition of OEE is not appropriate for a production

line because losses are subtracted starting from the LT, which does not include

planned maintenance (PM) downtime. When PM is performed on a single machine

it can reduce the availability of the line and so it must be accounted as an additional

loss. Moreover, PM is intended to reduce machine failures and, if effective, it should

lead toward a sensitive reduction of unplanned maintenance tasks. When time losses

due to PM tasks are not detracted from the LT, such a positive balance between

planned and unplanned maintenance will not be underlined by the OEE evaluation.

According to the former considerations, the structure of losses shown below will be

adopted as the operative framework in supporting the new formulation of the OEE.
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Figure 1.5: An alternative structure of losses

Referring to the alternative structure of losses shown in figure 1.5, OEE can now be

modified as:

TOEE =
MV T

LLT
(1.12)

Since this efficiency metric considers all the possible losses that may affect the per-

formance of an equipment, it is referred to it as the Total Overall Equipment Ef-

fectiveness (TOEEE). Clearly, TOEE can also be expressed as the product of five

independent factors as shown in equation (1.13):

TOEE =
MLT

LLT
· MNLT

MLT
· MOT

MNLT
· MNOT

MOT
· MV T

MNOT

= APM · Aext ·OEE = Aext ·OEEM
(1.13)

where APM is the loss of availability due to predictive maintenance tasks; Aext is

the loss of availability due to the causes that are external to the machine (i.e. EIL);

OEEM is the real machine efficiency indicator and it equals OEE times APM .

It is important to note that OEEM is a real machine efficiency indicator because it

considers exclusively the events that are caused by the equipment itself and gives

evidence of how much an equipment could be exploited if it was always fed and

never blocked.

On the contrary, TOOE also includes the effects of the productive environment and

gives evidence of the actual usage rate of a machine, which is considered as an

integral part of a productive system.
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Through the definition of TOEE, the evaluation of the OEEML is straightforward.

Let CTBN be the ideal cycle time of the bottleneck machine and OLM the output

released by the last machine (or operation) of the line. In accordance with equation

(1.2), the following relation holds:

OEEML =
Actual Output

ReferenceOutput
=

OLM

LLT/CTBN

(1.14)

From the definition of machine valuable time (MVT), the output released by the

last machine can also be expressed as the product of the ideal cycle time and the

valuable time of the last machine of the line:

OLM = CTLM ·MV TLM (1.15)

Put into this form, OEEML can now be expressed as a function of the TOEE of the

last machine. This is shown in the next equation:

OEEML =
MV TLM/CTLM
LLT/CTBN

=
CTBN

CTLM
· TOEELM (1.16)

Through this formulation, the global efficiency of the plant is expressed starting

from the last machine’s one. However, this value regards only a certain amount of

the losses linked to production; the other ones are considered by the ratio between

the cycle times of the bottleneck and of the last machine.

CTBN

CTLM
(1.17)

In these terms, it is possible to determine a global performance index of the plant

evaluating the production losses of the last machine of the line. In addition to it,

the external factors that influence the performance within the system are considered

by means of a correction factor.
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Chapter 2

Job sequencing in a multi-model line

Sequencing and scheduling are decision-making issues that nowadays play a crucial

role in the control field of the short-term period production planning. Sequenc-

ing concerns the planning of the order of the operations, or jobs, to be processed.

Scheduling regards the allocation of (scarce) resources to tasks over given time pe-

riods. Their goal is to optimize one or more objectives. Usually, the optimization

is about minimizing a certain time (or cost) related function. The development

of these topics was driven by the increase of competitiveness and the necessity of

companies to meet an always-growing demand in order to survive in the market

place.

The study of the literature review on sequencing and scheduling problems in this

thesis had started from the need of finding a solution to the job sequencing problem

in a production system like an automated bottling line. An automated bottling line

may be able to process different formats of bottles. Between the production of one

format and the other, a changeover time to arrange the line for the next process

may occur. For this reason, it belongs to the category of multi-model production

lines. As regards the machine environment, an automated bottling line may be

attributed to a flow shop, where a set of n jobs or tasks has to be processed on

a set of m machines sequentially and with an identical operating order. Despite

these considerations, also a study of the single-machine environment scheduling

problems may be interesting in order to solve more complex configurations problems

that involve sequence-dependent setup times. The objective is to find out the best

sequence in order to minimize the total setup time; that is equal to minimize the

makespan.
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At first, an introduction to scheduling, sequencing and to their key notions to know

for a better understanding of the matter is given. The second part starts with a

literature review on scheduling problems. It is followed by a presentation of the

computational complexity theory that characterizes and it is used to classify opti-

mization problems. Then methods to solve this kind of problems, root of scheduling

problems, are introduced. As regards scheduling problems, the single-machine envi-

ronment is the heart of the chapter since it is the black box for solving more complex

systems and a good link to the automated bottling line case when cycle times of the

machine are equal. Therefore, some techniques to solve scheduling problems on a

single-machine are presented. Then the flow shop is also introduced. The focus on

both is towards the sequence-dependent setup times scheduling problems. Finally, it

is presented the solving method developed throughout the project in order to solve

the case study.
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2.1 Production scheduling

Production concerns processes and methods used to transform tangible inputs (raw

materials, semi-finished goods, sub-assemblies) and intangible inputs (ideas, infor-

mation, knowledge) into goods or services. Resources are used in this process to

create an output that is suitable for use or has exchange value. By a management

point of view, critical issues but also cornerstones in production are production

planning and production control.

• Production planning deals with basic concepts of what to produce, when to

produce, how to produce, etc. Basically, it involves taking a long-term view.

• Production control looks to utilize different type of control techniques to

achieve optimum performance out of the production system in a short-term

productive period.

Figure 2.1: Production planning and control

One of the most important functions in the production control system is scheduling.

Every production system should have a kind of production scheduling, no matter

whether it is managed and organized traditionally or have a systematic and scientific

approach to the planning. Given that, it is commonly known that an efficient

scheduling plan guarantees a better usage of the resources, especially machines and
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manpower, in order to achieve better production performances. Scheduling can

be theoretically defined as a decision-making process, used on a regular basis in

manufacturing and services industries, that deals with the allocation of resources

(often simply called machines) to tasks (jobs) over given time periods. Its goal is to

optimize one or more objectives (Pinedo, 2008).

Sequencing, scheduling and schedule are terms often used in this topic, but they

blend in different meanings. A clarification is mandatory to move on with the

discussion. Sequencing problem determines an appropriate order for the jobs to be

processed within, e.g., the shortest possible time called makespan, used by Bard et

al. (1992), Bolat (1994) and Lahmar et al. (2003). Scheduling is the process of

arranging, controlling and optimizing work and workloads in a production process

or manufacturing process. It is used to allocate plant and machinery resources, plan

human resources, plan production processes, purchase materials or start and finish

time for each order. Therefore, scheduling can bring productivity in a shop floor by

providing a calendar for processing a set of jobs. It is nothing but scheduling various

jobs on a set of resources (machines) such that certain performance measures are

optimized. Since the sequencing problem also results in a schedule for the jobs on

the stations, many authors use the term scheduling instead of sequencing. The work

of Beaty (1992) highlights that the two problems are either intimately tied together

or irrelevant to each other and many times are used interchangeably.

The work done in the scheduling phase ends up in a production schedule. Efficient

production schedules can result in substantial improvements in productivity and cost

reductions. Generating a feasible schedule that best meets management’s objectives

is a difficult task that manufacturing firms face every day (Ozgur et al., 1995).

The notation α|β|γ

Scheduling problems are characterized by a proper three-fields notation α|β|γ, where

α stands for the system and the number of machines, β for the potential specific

characteristics as set-ups, preemption, etc., and γ for the objective function. As

regards the system, the possible structures are single-machine, parallel machines,

flow shop and job shop, plus their derived structures; they will be denoted with

22



1, P, F and J respectively. The three fields of characterization of a scheduling

problem that are machine environments, characteristics of the jobs and optimization

objectives, will be presented in more detail later in this chapter.

2.1.1 Importance of scheduling in a manufacturing system

The current environment in manufacturing companies is characterized by massive

competition faced by market and customers’ requirement and expectations. The

requests are rapidly increasing in terms of quality, cost and delivery time. Generally,

the firm performance is built in two dimensions:

• Technological dimension

• Organizational dimension

The purpose of the technological dimension is to develop the inherent performance

of marketed products in order to satisfy the requirement of quality and lower cost

of the product. In this regard, it must be noted that the rapid technological growth

for these products forced the companies to opt for mass production. This needs a

flexible and progressive production system capable of adapting to market demand

and needs quickly and efficiently.

An organizational dimension intends to performance improvements in terms of pro-

duction cycle times, expected delivery date, inventory and work in process manage-

ment, etc. Therefore, companies must have a powerful method and tools at their

disposal for production planning and control. To achieve these goals, an organi-

zation normally implements several functions including scheduling with variety of

products, processes and production levels, production planning, material and ca-

pacity planning, etc., for better coordination to increase productivity and minimize

operation costs.

A production schedule detects the control over the release of jobs to the shops, ensure

required raw materials are ordered in time and find strategies for resource conflicts.

A production schedule can determine whether delivery promises can be met and

identify the time period available for preventive maintenance. In a manufacturing
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environment, all jobs or tasks are associated with a due date. These jobs must be

processed on the machines in a given order or sequence. All these mentioned aspects

build scheduling problems.

2.1.2 Characteristics of a scheduling problem

As seen in 2.1, term scheduling refers to a wide class of problem, often different in

structure and complexity. From that issue, a proper notation to differentiate them

is born.

β - Characteristics of a job

The scheduling problem is about the assignment of a resource to an activity to be

done. Resources and activities are indicated as machines and tasks. Job is used to

mean a collection of tasks technologically connected (e.g., three tasks necessary to

produce the same object form a job). From now on, the letter m will represent the

number of machines and n the number of jobs. Several information can be linked

to a job:

• Processing time pij: time requested by the job j to the machine i to complete

it.

• Release date rj: timing (respect an initial time 0) before which it is not possible

to start the job j.

• Due date dj: timing (respect an initial time 0) within which the job j shall be

finished. Usually, if the dates are not respected some costs occur like penalties,

losses of trust from a client, etc.

• Weight wj: relative importance of the job j respect the other jobs.

The aim of a scheduling problem is to find the best time utilization of the machine

by the jobs that need to be done. This solution is called schedule. Instead, the

sequence specifies only the order that the jobs must follow during the process, the

schedule specifies also the starting time. Given a schedule S, S(j) will be the starting
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time of a job j. It has to be stated that only the admissible schedules are interesting

in being taken into consideration. They must respect all the implicit constraints

of a scheduling problem. For example, the same job cannot be executed simulta-

neously by two machines, the same machine cannot work two jobs simultaneously,

a job cannot be stopped (except in a case of a preemptive problem), that certain

priorities must be respected. These specifications can be made clear when defining

the scheduling problem. They may be:

• Set-up time sjk: time necessary to reconfigure the machine that has worked

the job j to make it work the following job k.

• Preemption: act of stopping a job to let the execution of a more urgent one

be done.

• Priority constrains : they state that a certain job j is not allowed to start

before a certain job k. Or conversely.

• Blocking e no-wait. If the buffer of the machine i is full, a job just finished on

the machine i - 1 cannot be placed on the buffer of machine i. This situation

causes a block of the machine i - 1. In a no-wait situation, a job is not even

allowed to wait on a machine. In a better case, it should be guaranteed that

at a certain point a task is completed on a machine, the next machine might

be free to process the job.

Purposes of a scheduling problem can be various and different. To state them in a

formal way, it is also required to introduce some functions connected to the jobs in

an admissible schedule.

• Completing time Cj: time at which the last task of the job j ends.

• Lateness Lj: difference between the completing time and the due date of the

job j. A positive value states a delay, a negative one states an advance respect

to the due date. The formulation is: Lj = Cj - dj.

• Tardiness Tj: it is equal to the lateness when the latter is positive, otherwise

it is zero. That is, Tj = max(0, Cj - dj).
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α - Machine environments

In addition to the characteristics related to the jobs, there are the ones connected

to the system. There is indeed a huge variety of service or production system

architectures; this dissertation will introduce just many of them and it will focus

mainly on the ones that depict the situation under analysis: an automated bottling

line. With a single machine, all the jobs require the same resource to be done. In

this case, every job consists of a single task. It is different the situation when m

machines are in parallel. In the case of a job shop there are m machines but the jobs

do not have an order to follow in the sequence of the process.

Finally, there is the flow shop. The system is made by m machines (work-stations)

sequentially ordered. Every job must be executed by every machine progressively.

That is, a job has to visit before the first machine, then the second machine, ..., and

so on until the last machine m. It is often assumed that every machine has a FIFO

type buffer that implies that the order that the jobs follow to be worked is the same

for all the machines. The jobs cannot be overtaken. This configuration is named

permutation job shop. A manufacturing automated flow line can be marked out as

a permanent flow shop.

γ - Objective functions

It is now presented a list of some objective functions to be solved in a scheduling

problem.

• Maximum completing time or make-span Cmax. The makespan is equivalent to

the completion time of the last job to leave the system. A minimum makespan

usually implies a good utilization of the machine(s).

• Maximum lateness Lmax. It measures the worst violation of the due dates.

• Maximum tardiness Tmax. It is defined as max(0, Lmax).

• Weighted sum of completing times. It gives an indication of the total holding

or inventory cost incurred by the schedule.
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2.1.3 The study of a scheduling problem

One of the first classification schemes for scheduling problems appeared in Conway,

Maxwell and Miller (1967). Lawler, Lenstra and Rinnooy (1982), in their survey

paper, modified and refined this scheme extensively. Herrmann, Lee and Snowdon

(1993) made another round of extensions. For a survey of scheduling problems sub-

ject to availability constraints, see Lee (2004). For surveys on scheduling problems

with non-regular objective functions, see Raghavachari (1988) and Baker and Scud-

der (1990). For a survey of scheduling problems with batch processing, see Potts

and Kovalyov (2000). The complexity hierarchy of scheduling problems is motivated

primarily by the works of Rinnooy Kan (1976), Lenstra (1977), Lageweg, Lawler,

Lenstra and Rinnooy Kan (1981, 1982) and Lawler, Lenstra, Rinnooy Kan and

Shmoys (1993).

The example cases from the literature that are going to be presented in this chapter

are the one more relevant in the study of an automated flow line. A flow line may

be properly the case of a flow shop, with m machines and series and an equal flow

to be followed by all the n jobs that enter the system. Besides this, a rooted look

at the literature has brought to infer that also a single machine environment, with

proper assumptions, can be studied to schedule the products of a line with m > 1

machines. The single machine environment is very simple and a special case of all

other environments. The passage can be easily legitimized mentioning the example

of a given production line with m > 1 machines whit equal cycle times. The study

of the case associating it to a flow shop may be either worthless and misleading

because an optimal sequencing of the n jobs (or products) may be achieved just

focusing on the first – single - machine of the line. Furthermore, it has not been

found a proper algorithm for the flow shop scheduling problem with m machine with

equal processing times pj = p, since the resolution methods for flow shop, like the

Johnson algorithm, always consider machines with different cycle times.

When an algorithm for one scheduling problem can be applied to another case there

is a so-called reduction in the field. For example, 1||
∑
Ci is a special case of

1||
∑
wiCi and a procedure for the latter scheduling problem can, of course, also be
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used for 1||
∑
Ci. In complexity terminology it is then said that 1||

∑
Ci reduces to

1||
∑
wiCi. This is usually denoted by:

1||
∑

Ci ∝ 1||
∑

wiCi

2.1.4 Scheduling problem in multi-model lines

In many industries, also belonging to the Food & Beverage sector, the choice of uti-

lizing common resources to manufacture multiple products implies changeover and

setup activities, representing costly disruptions to production processes. Therefore,

setup reduction is an important feature of the continuous improvement program of

any manufacturing, and even service, organization in general.

Setup time can be described as the time necessary to arrange the necessary resource

(e.g., machines, people) to perform a task (e.g., job, operations). The figure below

depicts a multi-model line with setup times between the processing of one job and

the following one.

Figure 2.2: Multi-model production line

Setup time can be of two types: sequence-independent and sequence-dependent. If

setup time depends exclusively on the task to be processed next, regardless of its

preceding task, it is called sequence-independent. On the other side, setup time

depends either on the task and its preceding task; it is called sequence-dependent

setup time. They have been classified along this dimension by Allahverdi et al.

(2008).

Scheduling problems with sequence dependent setup times can be found in various

processing environments such as production, service and information processing sys-

tems. They can be shortened with SDST scheduling problems. One famous case

of SDST problem regards a printing industry. Setup time is required to clean the

machine and prepare it to print in a new colour, therefore it depends on the colour
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of the current and immediately following jobs.

In a bottle industry, setup time may rely on the sizes and the shapes of the bot-

tle. Similar situations arise in chemical, pharmaceutical, food processing, metal

processing, paper industries, and many other areas.

The benefits of reducing setup times include:

• reduced expenses;

• increased production speed and output;

• reduced lead times;

• faster changeovers;

• increased competitiveness, personal and customer satisfaction;

• increased profitability;

• enabling lean manufacturing;

• broader range of lot sizes;

• lower inventory, total cost curve, minimum order sized;

• faster deliveries.

The importance and benefits of incorporating setup times in scheduling research

have been investigated by many researches. See for instance Flynn (1987), Kogan

and Levner (1998), Krajewski et al. (1987), Liu and Chang (2000), Trovinger and

Bohn (2005).
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2.2 Computational complexity theory

The objective functions presented in 2.1.2 are defined in relation to a key issue for a

manufacturing firm: the maximization of productivity and therefore the minimiza-

tion of completion times, the reduction of production costs and a better efficiency

in materials management. During the years, many methodologies have been devel-

oped to reach the aimed solution. They can be implemented through algorithms

codified in specific software. Before proceeding with an overview of these methods,

it is interesting to present an important aspect related to optimization problems

that is the complexity theory behind them. The aim of this theory is to determine

whether a given kind of optimization problem is easy or not. This explanation helps

to understand why an approach might be chosen rather than another. The elements

used to evaluate the problem and to state its difficulty are:

• the computational time needed to solve the algorithm that identifies the prob-

lem;

• the amount of computational memory needed to find a solution.

When the computational time required can be described with a np function the al-

gorithm is noted as polynomial. The algorithm is exponential if the computational

time can be described through a 2n function. In this notation n is associated to the

dimension of the input data and p is a certain constant value.

An algorithm is considered efficient when it is of polynomial type, given that poly-

nomial type problems are faster than exponential ones.

Complexity classes

Introduced the basic concepts of the Computational complexity theory, it is possible

to present the categories to which a given problem can be associated to.

• P class: problems whose solution can be reached in polynomial time.

• NP class: problems for which the precision of their solution can be verified in

a polynomial time.
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• coNP class: problems for which the inaccuracy of their solution can be verified

in a polynomial time.

• NP-complete: kind of problems such that an NP problem can be transformed

into an NP-complete problem in a polynomial time.

• NP-hard: problems that are at least as complicated as the most difficult NP

problem, but they could be even more difficult than it.

It is necessary to precise that for a problem it is enough to verify the (non) accuracy

of a single solution for that to enter into the classes NP or coNP, it is not mandatory

to verify all the possible solutions. Moreover, certain problems present the charac-

teristic to make verifiable either the accuracy and the non-accuracy of a solution in

a polynomial time. This characteristic is associated with all the problems belonging

to the class P, that is as a consequence a subset of NP. The figure below depicts the

links between the different complexity classes of the problems.

Figure 2.3: Representation of complexity classes
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2.3 Solving techniques

After a presentation of the evolution that has regarded the short-period planning

techniques, a brief overview of general purpose procedures is given. They are useful

in dealing with scheduling problems in practice and they can be implemented with

relative ease in industrial scheduling systems. Different kinds of techniques have

been developed since scheduling problems had appeared. Like all the optimization

problems, a scheduling problem can be solved with exact methods or heuristics

methods based on its complexity. The two categories are different as regards the

computational time needed to solve the problem and the goodness of the solution.

Heuristics do not guarantee an optimal solution; they instead aim at finding reason-

ably good solutions in a relatively short time. Heuristics can be further categorized

into two types: constructive and improvement.

2.3.1 Evolution of short-term planning methods

Production planning techniques that regard the short-term have started to be de-

veloped since the beginning of the seventies. In literature is present a suggested

classification based on four eras for describing this evolutionary process (Caridi and

Sianesi, 1999).

Figure 2.4: Evolutionary eras of production planning techniques
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Optimization era

The so-called period regards the approaches aimed to optimize the productivity

born between 1970 and 1980. They were characterized by Computer Integrated

Manufacturing (CIM) based on a completely automated system. Nevertheless, this

technique shows some problems that undermined its success:

1. It is required a long time to reach a good level of total automatizing, that is

at odds with the need of the increasing speed of answer to the market in order

to remain competitive.

2. A higher level of automating calls a higher standardization of the product. It

is opposed to the desire to differentiate the production of many firms.

3. It is not that simple to translate decision processes and rules of a complex real

system into analytic models.

As soon as these limitations have been completely understood, the pure optimization

approach has started to be seen as something a bit utopian. Therefore, researchers

started to develop techniques diametrically opposed to it.

Heuristics

Heuristic era started to develop in the eighties. It is born from the need to overcome

the difficulties appeared with optimization methods when modelling reality. A better

tool in decision-making processes was required. Basically, a heuristic model is the

framework of the mental passages made by the planner during its decision process.

The advantages of heuristic methods are:

• the logic model is closer to the physical one;

• the model is based on the experience of a single individual. This often implies

that may be reached different objectives simultaneously.

The main lack of this approach is it to be static. That is, the rules and priorities of

the firm might differ over time, but they are decided a priori when the scheduling

system is designed. This limits the ability of the model to adapt rapidly towards

the changes in the market.
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Virtual Manufacturing Era

Dynamic systems started to arise the second half of the eighties with the era of Arti-

ficial Intelligence, denoted also as Virtual Manufacturing Era, until now. This epoch

results to be the best answer in order to interpret the complex modern production

systems. Different techniques were born during this period: Expert Systems, Neural

networks, Genetic algorithms, Ant Colony Optimization, and so on. Some of these

methods will be briefly presented later.

Interactive schedulers

Interactive schedulers were born at the beginning of 1990. The attempt was to ex-

ceed the problems that had emerged from the optimization approaches and heuris-

tics. The new methods are planning systems that are easier to manage, where it

is the scheduler that takes all the decision. The machine, with the implemented

software, verifies the feasibility of what proposed by the scheduler or suggests a new

general plan to use as a reference point. For that, this period is named Interactive

schedulers era.

2.3.2 Exact optimization methods

Exact methods guarantee, at least theoretically speaking, to solve a Combinatorial

Optimization (CO) problem in an exact way. That is, to find an admissible solution

corresponding with the optimum of the objective function between all the admissible

solutions. The application of exact methods is not always possible, mostly for two

reasons:

• The complexity of the problem may cause a lot of computational time to solve

the problem (e.g., NP-hard problems).

• Available time to solve the problem.

In spite of this, exact methods may be used to solve scheduling problems when the

situation allows it. Therefore, here is given an overview of two exact optimization

techniques such as branch-and-bound and dynamic programming.
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Branch-and-Bound

Branch & Bound is a general-purpose technique to solve combinatorial optimization

problems. It was at first proposed by Land and Doig in 1960 to solve integer linear

programming problems.

It is based on the decomposition of the original problem in sub-problems that are

easier to solve. Because of their method of trying all the possible solution until

they found the optimal (or correct) one, Branch & Bound algorithms may also be

classified as implicit enumeration algorithms.

Figure 2.5: Example of ”tree” generated from a B&B analysis

The figure above represents the branching process. It can be depicted as a branch

decision tree, where every knot represents the sub-problem whereas every arch is a

descendant relation.

Dynamic Programming

The Dynamic Programming method works on sub-problems like division method

and division-based methods. It has been widely used in optimization problems since

Richard Bellman developed it in the 1950s. A basic condition for using the method

to calculate the optimal case is known as optimality principle. Optimality principle

is to solve the problem optimally including optimal solution of all the sub-problems.

That is, the problem should be such that when finding its optimal solution, optimal
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solutions of all its sub-problems is also obtained. The number of sub-problems in

this method is 2nn and each sub-problem can be solved in a time in linear order.

2.3.3 Heuristics methods

When a scheduling problem and/or the background of the solution does not allow to

apply exact solving techniques, it is necessary to reach ”good” admissible solutions

in ”reasonable” computational time. Heuristic methods come from that need. These

methods took their name from the Greek word euriskein, that means - to find-. In

fact, the reason why these methods have spread in many fields of application is that

they allow finding reasonably good solutions in a relatively short time; rather than

an optimal solution but in a big amount of time. They tend to be fairly generic and

can be adapted easily to a large variety of scheduling problems.

The literature on heuristics is wide, and it is supposed to become wider for the ease of

adaptability of this method. Many and different techniques have been developed to

the point to make really tough every attempt in giving an acceptable classification.

A possible list of categories of heuristics methods sees:

1. Constructive heuristics: they start without a schedule and gradually construct

a schedule by adding a job at a time. Dispatching or priority rules fit in this

category.

2. Meta-heuristics: generic methods that define components and their interaction

in order to reach a good solution. Meta-heuristics can be classified also as

algorithms of the improvement type. They differ from the previous one because

they start out with a complete schedule, which may be selected at random,

and then try to obtain a better schedule by manipulating the current one.

3. Approximate algorithms: they offer, for each instance of the problem, a solu-

tion that might not be worse than the optimal one, within a given percentage.

4. Iper-heuristics: pioneering field at the edge between artificial intelligence and

machine learning. The aim of the research is to define algorithms that are
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able to find themselves certain optimization methods and automatically adapt

them to different problems.

The first two methods are better presented in the next section.

As regards meta-heuristic, there will be a presentation of local search procedures

such as Simulated Annealing (SA), Tabu-search (TS), Hill Climbing (HC), Genetic

Algorithm (GA). In addition to them, a framework that combines local search tech-

niques, dispatching rules and other techniques is also showed: the Ant Colony Op-

timization (ACO) algorithm.

Constructive heuristics

Constructive heuristics determine an admissible solution by starting only from the

input data of the given problem. A common feature is the lack of backtracking:

it is started from an empty solution and through an iterative way, new elements

are added to a solution until the solution is completed. This is called expansion

criteria. The computational complexity of the techniques of this type is polynomial.

The expansion criteria for each iteration is based on the choice of the element that

produces a better improvement of the objective function, according to the constraints

of the problem. For this reason, some constructive heuristics are also named greedy.

Dispatching rules belong to the set of greedy algorithms since they take advantage

of the order of the element in the sequence. During the initialization phase, oper-

ations are ordered based on rules or priority index, and they are assigned to the

available machines following this order. Dispatching rules are useful in scheduling

problems when one attempts to find a reasonably good schedule with regard to a

single objective such as the makespan, the total completion time or the maximum

lateness.

The most used dispatching rules are:

• First Come First Served - FCFS

• Weighted Shortest Processing Time - WSPT

• Longest Processing Time - LPT
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• Earliest Due Date - EDD

• Minimum Slack Time - MST

Examples of their application are given when studying the single-machine case in

the next section 2.4.

2.3.4 Meta-heuristic methods

The first type of meta-heuristics investigated regards a crucial class of improvement

type algorithms: the local search procedures. A local search procedure does not

assure an optimal solution. It usually attempts to find a schedule that is better

than the current one in the neighbourhood of the current one. Two schedules are

neighbours if one can be obtained through a well-defined modification of the other.

At each iteration, a local search procedure performs a search within the neighbour-

hood and evaluates the various neighbouring solutions. The procedure either accepts

or rejects a candidate solution as the next schedule to move to, based on a given

acceptance-rejection criteria.

Local search algorithms may be further divided into punctual and population-based

algorithms. Punctual algorithms, such as Simulated Annealing, Tabu-Search and

Hill Climbing, build a punctual trajectory in the solutions space, considering one

solution at each iteration.

There are instead meta-heuristics that keep a population of solutions; the so-called

population based algorithms. That is, at each iteration they combine the set of

solutions in order to achieve a new population. These methods are often inspired by

natural mechanisms since in nature there are situations where the subjects tend to

arrange themselves in ”optimized” structures. During the last years, many studies

concerning this topic have been carried on; also, with strong links between different

disciplines such as Operative Research, Artificial Intelligence, Soft Computing, etc.

These researches led to the definition of various optimization methods. The ones that

will be further presented are the Genetic Algorithm and Ant Colony Optimization.

Other population-based algorithms are Evolutionary Computation, Scatter Search,

Swarm Optimization, etc.
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Figure 2.6: Classification of meta-heuristic algorithms by J. Dreo (2007)

The ones just introduced are only a side of a possible list or classification of meta-

heuristic algorithms. For a deeper investigation on meta-heuristic see J. Dreo (2007),

Naepolitan and Naimipour (2004), Voss et al. (1999). Beheshti et al. (2013) re-

viewed population-based algorithms.
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Simulated Annealing

Simulated Annealing is a computational procedure developed in 1983 by Kirck-

patrick in order to solve combinatorial optimization problems. The name recalls

the metallurgy treatment that establishes to heat a metal at high temperatures and

then cool it down slowly, to let the crystal lattice modify its asset in order to achieve

defined characteristics. In the same way, SA process states that each solution is to

be associated with a certain T temperature. Decreasing the temperature following

a cooling rate, is it possible to find more solutions in the neighbour of the actual

one. The process is shown in the flow diagram below (Mc Mullen, 1998).

Figure 2.7: Flow chart for the Simulated Annealing algorithm
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Tabu-Search

Building upon some of his previous work, Fred Glover proposed in 1986 a new ap-

proach, which he called Tabu Search, to allow local search methods to overcome local

optima. The basic principle of TS is to pursue local search whenever it encounters

a local optimum by allowing non-improving moves; cycling back to previously vis-

ited solutions is prevented by the use of memories, called tabu lists, that record the

recent history of the search, a key idea that can be linked to Artificial Intelligence

concepts. The flowchart below illustrates the decision moments of Tabu Search (Mc

Mullen, 1998).

Figure 2.8: Flow chart for the Tabu-search algorithm

Hill Climbing algorithm

Hill Climbing algorithm is one of the simplest local search algorithms. It takes a

random point in the search space and it states this as the initial solution for which

calculating the objective function. In the next step, the neighbours of the initial

solutions are investigated. If a neighbour with better value of the objective function

exists, the algorithm changes the location to that point. Otherwise, if there is no

better neighbour, the current location is selected as the optimal solution. High

climbing may belong to greedy algorithms since it selects a good neighbour without
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thinking where to go. At any point in state space, the search moves in the only

direction that optimizes the cost of function with the hope of finding the optimal

solution at the end. This aspect makes the algorithms fast in improving bad states,

but it can give results different from real ones and the optimal one. The Hill Climbing

algorithm may be associated with a state space diagram. State space diagram is a

graphical representation of the set of states the search algorithm can reach (X-axis)

related to the values of the objective function (Y-axis). The best solution will be

that state space where objective function has a maximum value(global maximum).

Figure 2.9: State space diagram for HC algorithm

The state space diagram may present different regions:

• Local maximum : It is a state which is better than its neighbouring state

however there exists a state which is better than it(global maximum). This

state is better because here the value of the objective function is higher than

its neighbours.

• Global maximum: It is the best possible state in the state space diagram. This

because at this state, objective function has the highest value.

• Flat local maximum: It is a flat region of state space where neighbouring states

have the same value.

• Ridge: It is a region which is higher than its neighbours but itself has a slope.

It is a special kind of local maximum.

• Current state: The region of state space diagram where we are currently

present during the search.

42



• Shoulder: It is a plateau that has an uphill edge.

Genetic Algorithm

Basic principles of Genetic Algorithms were set up by Holland in 1975, inspired by

Darwin’s theory of evolution, published in 1859. Genetic algorithms, when applied

to scheduling, view sequences and scheduling as individuals or members of a popu-

lation. Each individual is characterized by its fitness. The fitness of an individual

is measured by the associated value of the objective function. The procedure works

iteratively, and each iteration is referred to as a generation. The population of one

generation consists of survivors from the previous generation plus the new sched-

ule, the offspring of the previous generation. The offspring is generated through

reproduction and mutation of individuals that were part of the previous generation,

the parents. Individuals are sometimes also referred to as chromosomes. In each

generation, the fittest individuals (the best solutions) reproduce while the least fit

die.

Ant Colony Optimization

Ant Colony Optimization (ATO) algorithm was firstly proposed by Dorigo et al. in

1996 as a tool for solving the Travelling Salesman Problem. It derives from princi-

ples of another type of heuristic techniques and it is inspired by the trail following

behaviour of ant colonies. Ants, when moving along a path to a destination, leave

along with their path a chemical called pheromone as a signal for other ants to

follow (left figure in 2.10). An ACO algorithm assumes that a colony of (artifi-

cial) ants iteratively construct solutions for the problem at hand using (artificial)

pheromone trials that are related to previously found solutions as well as to heuristic

information.
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Figure 2.10: Food finding behaviour of real ants

The ants communicate with one another only indirectly through changes in the

amounts of pheromone they deposit on their trails during the algorithm’s execution.

The more amount of pheromone is deposited, the better is the solution (right figure

in 2.10). Because the solutions constructed by the ants may not be locally optimal,

many ACO algorithms allow the ants to improve their solutions through a local

search procedure.
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2.4 Single-machine scheduling problems

The single-machine environment is worth to be analysed because he represents a

building block for more complex configurations. Many researchers have dealt with

job scheduling problems on a single-machine under different constraints. A funda-

mental issue is the difficulty bound with the one machine scheduling problems that

involve sequence dependent setup times. It means that setups are separate from the

processing times. Pinedo (2008) proved that the makespan optimization on a single

machine with sequence dependent setup times is strongly NP-hard. That is, it is not

possible to find optimal solutions in reasonable computational time for large-sized

instances but searching local optimal solution via other applications.

In the first place, this section deals with generic single-machine scheduling prob-

lems that may be encountered in manufacturing environments. The problems are

explained, and a resolution method is given. Later on, the focus is switched towards

what better represents the multi-format bottling line case: the sequence-dependent

setup times scheduling problems on a single machine, also denoted as SDST-SMSP.

2.4.1 Analysis of the single-machine case

It is firstly considered the problem of scheduling a set of n jobs on one machine.

Job j, with j = 1, ..., n, is characterized by its processing time pj. Afterwards, more

constraints are added in the β field with different objective functions to optimize.

Minimize the total completion time

The problem of minimizing the sum of the completion times of each of the n jobs,

is denoted as:

1||
n∑

i=1

Ci

The input of the problem are n given jobs to be processed on a machine, with

related processing times pi, i=1,..., n. The aim is to sequence the jobs in order to

minimize the objective function, that means to minimize the total completion time.
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An optimal solution can be achieved by using the Shortest Processing Time First,

also known as SPT rule. The theorem implies to process before the jobs with the

minimum processing time.

Minimize the weighted total completion time

The problem of minimizing the sum of the completion times of n jobs with a given

associated weight wi and processing time pi, is denoted as:

1||
n∑

i=1

wiCi

The theorem applicable in this situation is the Weighted Shortest Processing Time

(WSPT) rule. This heuristic procedure jumped out for the first time in a seminal

paper by W. E. Smith (1956) and it has been further developed. In the basic form

1||
∑n

i=1wiCi of the problem, a solution is achieved by processing the n jobs ordered

by the smaller ratio pi
wi

.

Minimize the maximum Lateness

In this problem there are n given jobs, all available at the beginning (release date

ri = 0) and each job have an assigned due date di to be respected. The aim is to

minimize Lmax = maxrLr. The notation for this case is:

1||Lmax

The lateness of a job i is the difference between its completion time and its due

date. The maximum Lateness may be minimized by using the Earliest Due Date

(EDD) rule due to Jackson (1955). It states that to achieve the solution the n job

must be ordered by increasing due dates.
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Figure 2.11: Representation of the lateness of a given job i

As it is possible to notice in the figure above, lateness is positive when job i is

completed late and negative when it is completed early. If the due date is exceeded,

positive lateness, a penalty occurs. The tardiness of a job i is instead defined as

Ti = max(Ci − di, 0). Tardiness is never negative.

Sometimes it may also happen that a firm accepts to delay some jobs in order to

finish within the due date other jobs if it is justified by economic reasons.

The unit penalty of job i is defined as:

Ui =

1 if Ci > di

0 otherwise

Minimize the number of late jobs

In this case, n independent jobs are given, with relevant and known due dates. The

preemption is not admissible; it means that the jobs cannot be overtaken. Setup

times do not depend on the sequence so they may be either null or included in the

processing times.

An algorithm to solve this problem was developed by Moore and Hodgson (1968).

The outputs are a set E that includes the sequencing of the non-late jobs and a set

L for the late jobs. The late jobs are to be sequenced in any order after the relative

jobs of the set E. The steps to follow to solve the algorithm are:

1. Create the sets E* and L*. E* includes the jobs ordered by increasing due

date whereas L* is initially empty.
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2. Based on the order in E*, determine the completion time of each job, and

identify the late jobs.

3. If set E* remains still empty, it means that there are no late jobs so E = E*

and L = L*. Stop.

4. If inside set E* there is at least one late job, being k the first late job in the

sequence.

5. Identify the job with the longest processing time within the first k jobs of the

sequence E*. Remove that job from the set E* and place it in L*. Go to step

2.

2.4.2 SDST-SMSP

Sequence-dependent machine setup times are here considered. That is, if job k is

carried out on the machine straightaway after job j, setup time is needed during

which the machine cannot process any job. It is denoted as sjk and it is also related

to the changeover cost that occurs, cjk. In a bottling line system or a similar multi-

model line, when the production switches from one format to another all the line

stops to let the required adjustments be done. The objective considered concerns

the minimization of the makespan of the schedule or total completion time of all

jobs. The aim is a result of minimizing the total setup time.

Solving the SDST scheduling problem

Using the classical notation in Scheduling Theory, this problem is noted as 1|sjk|Cmax.

This problem is equivalent to the Travelling Salesman Problem (TSP), which is one

of the most known route and scheduling problems.

The problem of job scheduling with sequence-dependent setup times have been

deeply studied in the literature. State of the art surveys can be found in Allahverdi,

Gupta and Aldowaisan (1999), Allahverdi et al. (2008), Zhu and Wilhelm (2006).

For the one machine case, complexity analysis is not encouraging. Despite this,

researchers have developed exact approaches based on branch and bound, dynamic
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programming or integer linear programming. The objective function under study in

this section is the makespan and can be expressed as:

Cmax =
n∑

j=1

pj +
∑
j→k

sjk

When setup times are dependent on the sequence, minimizing makespan becomes

equivalent to minimizing the total setup time. That is because the sum of processing

times remains a constant through the whole scheduling when all information about

jobs is deterministic and known at the initial time of scheduling (Montoya et al.,

2010).

This problem corresponds to what is usually called the Travelling Salesman Problem

(TSP). Travelling salesman problem was proposed by mathematicians, Carl Menger

and Hustler Wietni in 1930. The problem is that a travelling salesman wants to

visit a large number of cities and his goal is to find the shortest path; such that it

passes all cities and each city is only passed once and finally returns to the starting

point. Linking TSP to the SDST scheduling problem, each city corresponds to a

job and the distance between cities corresponds to the time required to change from

one job to another. If the setup times for all pairs of jobs are indifferent to their

sequencing order when scheduled consecutively, the scheduling problem is equivalent

to a symmetrical TSP, otherwise, it is equivalent to asymmetrical TSP.

Related works

One of the initial works on the sequence-dependent setup time problem was pre-

sented by Gilmor and Gomory in 1964. They presented a solvable sequencing case

applying TSP on a one-state variable machine. Presby and Wolfson (1967) provided

an optimization algorithm that is suitable only for small problems. Bianco et al.

(1988) formulated the problem with jobs characterized also with non-negative integer

release dates rj as a mixed integer linear program. They developed a heuristic algo-

rithm using lower bounds and dominance criteria. He and Kusiak (1992) examined

the SDST scheduling problem with precedence, proposing a simpler mixed-integer

formulation and a fast heuristic algorithm of low computational time complexity.

Ozgur and Brown developed a two-stage travelling salesman heuristic procedure for
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the problem where similar products produced on the machine can be partitioned

into families.

There are plural works in literature that consider other objective functions. Barnes

and Vanston (1981) combined branch and bound with dynamic programming to

solve the problem noted as 1|sjk|
∑
wjCj +

∑
sjk. For the case of precedence lim-

itations with a special structure (chains), Uzsoy et al. (1992) developed a branch

and bound and a dynamic programming algorithm for 1|prec, sjk|Lmax. They also

developed a dynamic programming algorithm for 1|prec, sjk|
∑
Uj, where the objec-

tive function corresponds to the minimization of the number of tardy jobs. Tan and

Narashiman (1997) proposed a simulated annealing algorithm to minimize total tar-

diness. The problem they wanted to solve is denoted as 1|sjk|
∑
Tj. Later, in 2000,

they compared the performance of branch and bound, genetic search, simulated an-

nealing and random-start pairwise interchange heuristics for the same problem. Dif-

ferent versions of genetic algorithms have also been presented; see Tan et al. (2000)

and Armentano and Mazzini. Gagne et al. (2002) proposed an Ant Colony Opti-

mization (ACO) algorithm for the same problem. Montoya et al. (2010) analysed

the problem on a single machine with also release dates, denoted as 1|rj, sjk|Cmax

and proposed a heuristic based on a random insertion strategy.

2.4.3 Karg-Thompson’s algorithm

The case at issue is an advancement of 1||
∑n

i=1Ci, where the sequence depends on

setup times. There are n given jobs with not relevant due dates and preemption is

not admissible. The characteristic of this environment is that in case of changing

from a just processed job i to a next job k, a certain amount of time to arrange the

machine is needed. The notation for this kind of scheduling problem is:

1|sjk|
n∑

i=1

Ci

Good order for the sequence results in a reduction of the total amount of setup times

and therefore also the makespan decreases. The heuristic algorithm developed by

Karg-Thompson (1968) is a way to reach the aim. The procedure is composed of

the following steps:
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1. Select two random jobs from the set of the n jobs to be processed.

2. Select a third new job and attempt to place it in the available spots of the

current sequence.

3. Calculate the total setup for each new position.

4. Allocate the job to the sequence that allows having the lowest setup time.

5. Repeat from step 2 since all the jobs have been allocated.

The computational complexity of this algorithm is quite low.

N∑
j=1

j =
N · (N + 1)

2
<< N !

The K-T algorithm presents a double limit. The result depends on the initial couple

that has been picked and on the order of insertion of the other jobs. Although

the algorithm of Karg-Thompson does not bring to an optimal solution, it can be

considered a good tool to solve scheduling problems with dependent setup times.

Moreover, it is possible to iterate it by seeking better solutions by changing the

initial couple of jobs.
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2.5 Flow shop scheduling problems

Flow shop machine environment better represents the generic case of an automated

bottling line. In a flow shop model n jobs (n formats of bottle) require to be

processed on m machines in series. Here, the attention is on the permutation flow

shop problem, where the process sequences of all the jobs are the same. But the

processing times for various jobs on a machine may differ. If an operation is absent

in a job, and then the processing time of the operation of the job is assumed to be

zero. The objective is to find a job sequence that minimizes the completion time

(makespan) of the last job. Often, between successive machines are located buffers.

A buffer is an inter-operational warehouse with a defined capacity. The figure below

depicts a flow line with K stations and K-1 buffers of capacity Bi.

Figure 2.12: Flow shop with intermediate buffers

Random processing times and unreliable stations with stochastic failures and suc-

cessive repair may lead to blocking and starvation in the line. A station starves if

it cannot produce due to lack of material in the upstream buffer, whereas a blocked

station ceases production due to a full downstream buffer. The resulting throughput

losses can be mitigated by larger buffer capacities. However, buffer capacities can be

costly or limited. The decision on the allocation of buffer capacities between station

is known as the Buffer Allocation Problem (BAP). The case study will face also this

problem. Several researches have carried out models that concern Flow Shop with

both unlimited and limited intermediate storage. Broadly speaking, the storage or

buffer capacities in between successive machines may be virtually unlimited in case

of products physically small (e.g., printed circuit boards, integrated circuits), mak-

ing it relatively easy to store large quantities between machines. When the products

are physically large (e.g., television sets, copiers), then the buffer space in between

two successive machines may have a limited capacity. The latter is the situation

when a block occurs.
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2.5.1 Solving methods

Permutation flow shop is one of the traditional combinatorial optimization problems

since the work of Johnson (1954), which is widely applied in real life, such as com-

puter work, industrial engineering, mathematics. Johnson presented an algorithm

for solving a scheduling problem in a 2-machine flow shop, noted as F2||Cmax;

processing times of the machines are assumed to be different. This method was

successively advanced by Palmer (1965) who adapted it for a m-machine case; re-

cently Hossain et al. (2014) carried out a study starting from Palmer’s in order to

solve a 4-jobs and 10-machines flow shop scheduling problem using heuristics. Other

extensions of Johnson’s rule can be found in Smith and Dudek (1967), Campbell et

al. (1970), Baker (1974).

Many other heuristics have been developed for Fm||Cmax; see, for example, Gupta

(1972, 1993), Dannenbring (1977), Widmer and Hertz (1989) and Taillard (1990).

For complexity results with regard to various objective functions, see Gonzalez and

Sahni (1978b) and Du and Leung (1993a, 1993b). Also, exact methods have been

developed to solve the flow shop scheduling problems such as the works of Ignall et

al. (1965) and McMahon et al. (1967), who applied the branch & bound technique.

The flow shop with limited intermediate storage Fm|block|Cmax is studied in detail

by Levner (1969), Reddy and Ramamoorthy (1972) and Pinedo (1982).

2.5.2 SDST-FSSP

The flow shop scheduling problem with sequence dependent setup times is considered

and shown to be NP-complete. It has been an investigated object for years as one

of the most popular scheduling problems in manufacturing systems. It means that

setup times of the processing jobs depend both on the preceding job and the job

to be processed. Due to the too high computation cost of exact methods, more

heuristics and meta-heuristics have been developed. See the paper by Wang et al.

(2017) for a review on the most related solving techniques for the permutation flow

shop scheduling problem with sequence-dependent setup times.
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2.6 Implementation of the K-T algorithm

It is now explained the procedure that has been developed to solve the scheduling

problem in a multi-model automated bottling line with sequence-dependent setup

times and equal machine cycle times pj = p. This explanation will regard only

the theoretical and computational aspects, whereas the practical features of the

case study will be carried out in a further chapter. The need of the work arises

from the cons and the limits of the Karg-Thompson algorithm introduced in 2.4.3.

Karg-Thompson’s algorithm deals with the sequence whose setup times are relevant.

Multi-model lines are one example of a situation of this kind. This is the reason why

I focused on this algorithm to solve the 1|sik|
∑n

i=1Ci scheduling problem, stated

that in a case like this all the work-stations of the line are set to the same productive

speed or cycle time. The limits of Karg-Thompson’s algorithm are that the sequence

found by the algorithm depends on the first couple of jobs that have been picked

and the order of inserting the next jobs. A solution to this issue can be achieved by

iterating the algorithms many times.

Given a review on K-T algorithm, before introducing the codified version is it better

to sum up the characteristics of the scheduling problem that this codified algorithm

will solve.

• The sequence depends on setup times, given in a matrix either symmetric or

asymmetric.

• It is attributed to a single-machine scheduling problem or a flow shop environ-

ment with equal processing times pj = p.

• There is a list of n jobs to be processed.

• No preemption is admitted. That is, jobs cannot be overcome.

• The first job picked may be either random or chosen by the user. For example,

when planning the production of different weeks, it is to be considered that

the week w+1 the machine may still be arranged to process the last job of the

week w.
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The algorithm is built with the programming language Python. It translates the

Karg-Thompson algorithm in a code. The user has to enter as input the set of jobs

that need to be processed and create the setup matrix. This matrix needs to be

read from row to column (predecessor to successor).

Figure 2.13: First part of the algorithm codification in Python

The algorithm is iterated 1000 times in order to find the best possible solution

that minimizes the total setup times and to overcome the limits of the traditional

algorithm of Karg-Thompson. Given a set of jobs to process, needed jobs, and a

setup matrix, the code at first translate the letters in numbers.
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Figure 2.14: Second part of the algorithm codification in Python

The algorithm that is iterated follows the steps of the Karg-Thompson algorithm.

Chosen the first two jobs j1 and j2 and added them to the jobs list, it is calculated

the setup time to switch from the first to the second. It is denoted as current time.

Current time represents the total setup time, that is the function that has to be

minimized.

Until the jobs list contains n > 0 jobs, a random job from the needed ones is taken.

At first, the last position in the sequence is assumed to be the best for a new job.

The new setup time is then calculated, to switch from the second-last to the last

(the new) job, and it is assumed to be the best one. This time is afterwards used
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as a comparison with the other possible positions for the new job.

So, also for the other possible positions in the sequence, excluded the last one, two

values are calculated:

• c is calculated as the current time less the setup time to switch from the

positions between which the new job may be included. Denote them as ji and

ji+1.

• To c is now added the setup times to switch from ji to the new job and from

the new job to ji+1.

If c is lower than the current best time, then that position is assigned to be the

best one and c the best time. The procedure is iterated until the list of available

jobs is empty.

Finally, the optimal sequence and its total setup time are obtained and ready to be

used for further studies.
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Chapter 3

Simulation and manufacturing

Simulation modelling is considered an effective work tool in manufacturing allowing

the system’s behaviour to be learned, tested and improved in a low cost and quick

way. In this chapter, the concepts behind simulation modelling are discussed, from

nature and the purposes of simulation, with a look to simulation in manufacturing, to

the classifications of simulation systems. Then, there is an explanation of discrete-

event based simulation models and its elements, since the thesis mostly concerns

a discrete system such as an automated bottling line. The final part introduces

AnyLogic, the simulation software used for the case study.

3.1 Introduction to Simulation

In literature, it is possible to find various definitions of simulation. Ravindran et

al. (1987) defined computer simulation as ”A numerical technique for conducting

experiments on a digital computer which involves logical and mathematical rela-

tionships that interact to describe the behaviour of a system over time”. By means

of computers, simulation allows to imitate, or simulate, the operations of different

kinds of real-world facilities or processes over time. It can be used either to study

and compare alternative designs or to troubleshoot existing systems. The prediction

of the future behaviour of the system is then achieved by monitoring the behaviour

of different modelling scenarios as a function of simulated time.
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3.1.1 A system for each kind of environment

For the purpose of this dissertation, a system is defined as a set of interrelated compo-

nents working together toward a common objective (Blanchard and Fabrycky, 1990).

A deeper definition was pointed out by the Air Force System Command (1991): ”A

system is a composite of people, products, and processes that provide a capability to

satisfy stated needs. A complete system includes the facilities, equipment (hardware

and software), materials, services, data, skilled personnel, and techniques required

to achieve, provide, and sustain system effectiveness”. The components of a system

are called entities. In practice, what is meant by the system depends on the objec-

tives of a particular study. To describe a system at a particular time, we need a

collection of variables, called state.

Figure 3.1: A conceptualization of a system

As depicted in the figure above, the components of a system work on the inputs that

arrive to produce output. The decisions regarding how to conceptualize the system

will drive the level of abstraction within the model. In fact, the model should include

enough information to get confident answers for the specific questions asked from

the study; at the same time too much not required details can bring confusion into

the study or cause a waste of time.

Before going on with the modelling aspect of simulation, it is good to discuss some

general system classification. This is triggered by the fact that the modelling phase
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is driven by how a system is conceptualized. There are different ways to categorize

the systems:

• man-made (e.g., manufacturing system) or natural (e.g., solar system);

• physical (e.g., an airport) or conceptual (e.g., a system of equations);

• stochastic if stochastic or random behaviour is an important component of the

system, otherwise it is deterministic;

• static if it does not change significantly with respect to time, else it is dynamic.

A dynamic system is said to be discrete if the state of the system changes at

a discrete point in time, whilst it is said to be continuous if the state of the

system changes continuously with time.

Few systems in practice are wholly discrete or wholly continuous, but since one type

of change predominates for most systems, it will usually be possible to classify a

system as being either discrete or continuous.

3.1.2 Application areas

Application areas for simulation are numerous and diverse. Below there is a list of

some particular kind of problems for which simulation has been found to be a useful

and powerful tool:

• Designing and analysing manufacturing systems;

• evaluating hardware and software requirements for a computer system;

• evaluating a new military weapons system or tactic. Designing communica-

tions systems and message protocol for them;

• determining ordering policies for an inventory system;

• designing and operating transportation facilities such as freeways, airports,

subways, or ports;
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• evaluating designs for service organizations such as hospitals, post offices, or

fast-food restaurants;

• analysing financial or economic systems.

Simulation applications can also be sorted by the abstraction level of the corre-

sponding models, as shown in the figure below.

Figure 3.2: Application areas of simulation

At the bottom are the physical-level models that use highly-detailed representa-

tions of real-world objects. At this level, it has cared about physical interaction,

dimensions, velocities, distances, and timings; problems of this category require low

abstraction modelling.

The models at the top are highly abstract, and they typically use aggregates such

as consumer populations and employment statistics rather than individual objects.

Since their objects interact at a high level, they can help understand relationships

without requiring modelling intermediate steps. Other models have an intermediate

abstraction level.
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3.2 Simulation modelling

At some point in the lives of most systems, there is a need to study them to try

to gain insights into the relationship among various components or to predict per-

formances under some new conditions being considered. The figure below maps

out different ways in which a system might be studied. This thesis focuses on the

mathematical models to be studied by means of simulation, henceforth referred to

as simulation models. The interest in building a simulation model derives from the

fact that real-world systems are often too complex for analytic models and often too

expansive to experiment with directly.

Figure 3.3: Ways to study a system

Simulation modelling has the capability of modelling an entire system and its com-

plex interrelationship. The model usually takes the form of a set of assumptions

concerning the operation of a system. These assumptions may be expressed in

mathematical, logical, and symbolic relationship between the entities, or objects of

interest, of the system. Once developed and validated, indeed, a model can be used

to investigate a wide variety of ”what if” questions about the real-world system.

The main purpose of a simulation model is to let people study a particular system
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and collect observations as a function of time. Simulation can also be used to

study systems in the design stage before such systems are built. Thus, simulation

modelling can be used both as an analysis tool for predicting the effect of changes

to existing systems and as a design tool to predict the performance of new systems

under a varying set of circumstances. This is the use of prescriptive modelling

technique: to convey the required behaviours or properties of a proposed system.

Moreover, simulation modelling can be used also in a descriptive way to depict

the behaviours or characteristics of an existing or proposed system. Even though

the most valuable use of simulation is the first expressed, that is to recommend a

solution.

3.2.1 Classification of the simulation models

The main purpose of a simulation model is to allow observations about a particular

system to be gathered as a function of time. From that standpoint, there are distinct

types of simulation models. In a parallel manner as the classifications in 3.1.1,

simulation models can be classified along three different dimensions:

• Static or dynamic simulation models. A static simulation model, sometimes

called a Monte Carlo simulation, represents a system at a particular point in

time. Dynamic simulation models represent systems as they change over time.

• Deterministic or stochastic simulation models. Deterministic models have a

known set of inputs, which will result in a unique set of outputs. A stochastic

simulation model has one or more random variables as input. Random inputs

lead to random outputs. Since the outputs are random, they can be considered

only as estimates of the true characteristics of a model.

• Continuous or discrete simulation models. Continuous simulation requires

that observations are collected continuously at every point in time. In a

discrete-event simulation, observations are gathered at selected points in time

when certain changes take place in the system.

The simulation models that will be dealt with in the remainder of this thesis will
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be discrete, dynamic, and stochastic; they are the so-called discrete-event-based

simulation models.

3.2.2 Advantages and disadvantages of simulation modelling

Simulation is intuitively appealing because it mimics what happens in a real system

or what is perceived for a system that is in the design stage. Simulation models are

”run” rather than solved. Given a particular set of input and model characteristics,

the model is run, and the simulated behaviour is observed. This process of changing

inputs and model characteristics results in a set of scenarios that are evaluated.

A good solution, either in the analysis of an existing system or in the design of

a new system, is then recommended for implementation. The advantages of using

simulation in problem-solving are multiple, even though drawbacks are also present.

Advantages

1. Simulation models allow to analyse systems, also complex and with stochastic

elements, and find solutions where methods such as analytic calculations and

linear programming fail.

2. Once the abstraction level has been chosen, it is easier to develop a simulation

model than an analytic model.

3. The structure of a simulation model naturally reflects the system’s structure.

4. In a simulation model, it is possible to measure values and track entities within

the level of abstraction and to add measurements and statistical analysis at

any time.

5. ”What if” questions can be answered.

6. New hardware design, physical layouts, transportation systems, and so on can

be tested without committing resources for their acquisition or disrupting the

current ones. Simulation can be seen as a money-saver solution.
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7. Simulation allows to study a system with a long-time frame in compressed

time, or alternatively to study the detailed workings of a system in expanded

time.

8. It allows to play and animate the system behaviour in time. Animations can

be useful for demonstrations, verification, and debugging.

9. Simulation models are far more convincing than other presentation tools (for

example Excel spreadsheets). If a proposal is supported by simulation, there

is a clear advantage over those who only use numbers.

Disadvantages

Simulation is not without its drawbacks. Some disadvantages are as it follows.

1. Each run of a stochastic simulation model produces only estimates of a model’s

true characteristics for a particular set of input parameters. On the other

hand, an analytic model, if appropriate, can often easily produce the exact

true characteristics of that model for a variety of sets of input parameters.

2. Simulation models may result expensive and time-consuming to develop.

3. Model building of complex systems might require special training.

4. A basic knowledge of language programming is needed or to be developed.

Finally, it should be noted that in some studies both simulation and analytic models

might be useful. In particular, simulation can be used to check the validity of

assumptions needed in an analytic model. An analytic model can also suggest

reasonable alternatives to investigate in a simulation study.
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3.2.3 Simulation languages

Attempting to implement the simulation model, from scratch, in a general-purpose

language such as FORTRAN, Visual Basic, C/C++, or Java requires above-average

programming skills. Luckily, the repetitive nature of computations in simulation

allows the development of computer libraries that are applicable to simulation mod-

elling situations.

The computational power and storage capacity have motivated the development of

specialized simulation languages that provide standard programming facilities and

will differ in how the user will take advantage of these facilities. There is normally

some trade-off between how flexible the language is in representing certain modelling

situations. Some languages are more programming oriented (e.g., SIMSCRIPT) and

others are more ”drag and drop” (e.g., ProModel, Arena, AnyLogic). The latter

is the one picked to develop the simulation model of the case study. It will be

introduced in chapter 4.
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3.3 Simulation in manufacturing

Modelling and simulation are emerging as key technologies to support manufacturing

in the 21st century. A great contribution of literature has been given to the modelling

and analysis of manufacturing systems such as production lines since the early 1950s

because of their economic importance and their academic interest. The cornerstone

works are linked to Gershwin (1992), Buzacott and Hanifin (1978) and Papadopoulos

(1996). Hosseinpour et al. (2009) presented a comprehensive literature review on the

importance of simulation in manufacturing as a very helpful work tool in industrial

fields to test the system behaviour. Different aspects of many different system

configuration may be analysed in a fast, low cost and secure way through simulation.

The use of simulation for solving manufacturing problems results in a simulation

model. The concepts of simulation using a simulation software were presented by

Kelton (2007). He pointed out the steps that a modeller should follow in order to

reach the ability to carry out effective simulation modelling. Among the modelers

who developed simulation models in this field we find Seraj (2008) who modelled

a rusk production line to increase its capacity, Hecker et al. (2010) who analysed

and optimized a bakery production line while Chassapis et al. (2009) simulated a

production line to select a preventive maintenance schedule, which gives the best

utility and performance values. Hesmat et al. (2013) used a simulation model to

analyse and test several bottlenecks that cause severe congestion in different areas

on a production line.
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3.3.1 The value of production systems models

Simulation is a low cost, secure and fast analysis tool with many different system

configurations. Simulation may be used either to design new manufacturing systems

or to improve the performance of existing ones. Simulation has been used success-

fully as a supporting tool in the design of new production facilities, warehouses, or

distribution centres. It can be used by analysts and engineers for evaluating the

impact of capital investments in equipment and physical facility and of proposed

changes to material handling and layout.

Figure 3.4: Models of a job shop and a palletizing system in AnyLogic

A simulation model can provide a ”test drive” without making rushed capital invest-

ments in new systems or disrupting the existing system with untried changes. It has

to be stated that simulation is not the only tool used in the decision-making process

and not all the firms are used to adopt it, but its implementation in manufacturing

has contributed to raise the quality of the insights that managers and engineers can

have when evaluating a system.
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3.3.2 Applications in manufacturing

Already seen the general application of simulation, possible applications of simu-

lation addressed in manufacturing can be categorized listed as it follows (Law and

Comas, 1997):

• The need for and the quantity of equipment and personnel: number of type

of machines for a particular object, physical arrangement of transporters, con-

veyors, and other support equipment, location and size of inventory buffers,

evaluation of a change in product volume or mix, evaluation of the effect of

a new piece of equipment on an existing manufacturing system, evaluation of

capital investment

• Performance evaluation: throughput analysis, time-in-system analysis, bottle-

neck analysis

• Evaluation of operational procedures: production scheduling, inventory poli-

cies, control strategies for an automated guided vehicle system, reliability anal-

ysis, quality-control policies.
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3.4 D.E.S.: Discrete-event simulation models

A manufacturing system most of the time satisfies the requirements to be stochastic,

dynamic and discrete. This system does not need to be observed on a continuous

basis but only at selected discrete points in time, resulting in the applicability of

a particular type of simulation models: the discrete-event simulation model, also

referred to with DES model, previously disclosed in 3.2.1. DES was developed

in the 1960s in industrial engineering and operation research to help analyse and

improve industrial and business processes. The term ”discrete” refers to the fact that

this type of model moves forward in time at discrete intervals and then the events

are discrete (mutually exclusive). These factors give the flexibility and efficiency to

be used over a very wide range of problems and they allow to provide an intuitive

approach in representing complex systems.

Discrete-event simulation concerns the modelling of a system as it evolves over time

by a representation in which the state variables change instantaneously at separate

points in time. These points in time are the ones at which an event occurs; where

an event is defined as an instantaneous occurrence that may change the state of the

system.

Although discrete-event simulation could conceptually be done by hand calculations,

the amount of data that must be stored and manipulated for most real-world systems

dictates that discrete-event simulations be done on a digital computer.

3.4.1 Components of a DES model

The core concepts of a discrete-event simulation model are entities, attributes,

events, resources and queues. It follows a brief explanation of them.

• Entities are the discrete items that enter the system, flow through the system,

potentially use the resources of the system and depart the system;

• attributes are features specific to each entity that allow it to carry information;
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• events are things that can happen to an entity or the environment;

• resources are something that is used by the entities and may constrain the

flow of the entities within the system;

• if a resource is busy when an entity needs it, then the entity must wait, forming

a queue.

3.4.2 The discrete-event clock

In DESs, an event is something that happens at an instant in time which corresponds

to a change in the system state. It can be conceptualized as a transmission of

information that causes this action of change. For this reason, when simulating

a system, it is required to be able to generate a sequence of events so that at the

occurrence of each event, the appropriate actions that change the state of the system

are invoked. In simulation, events are created by adding logic to the normal state

changing actions. This additional logic is responsible for scheduling future events

that are implied by the actions of the current events.

There is generally no relationship between simulated time and the time needed

to run a simulation on the computer. This happens because of the mechanism

that advances simulated time from one value to another. This mechanism is the

simulation clock. It does not ”tick” at regular intervals. Instead, the simulation

clock jumps from event time to event time. Historically, two principal approaches

have been suggested for advancing the simulation clock: next-event time advance and

fixed-increment time advance, but to stick to the discrete-event simulation models

the focus will be on the first one. The next figure represents the next-event time

approach for a general single-resource queuing system. The following notation is

needed:

• ti = time of arrival of the ith entity (t0 = 0)

• Ai = ti - ti−1 = inter-arrival time between (i-1)st and ith entities

• Si = time that the resource actually spends working the ith entity
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• Di = delay in queue of the ith entity

• ci = ti + Di + si = time that the ith entity completes service and departs

• ei = time of occurrence of ith event of any type (ith value the simulation clock

takes on, excluding the value e0 = 0)

Figure 3.5: The next-event time-advance approach illustrated for a single-resource

queuing system

With the next-event time-advance approach, the simulation clock is initialized to

zero and the times of occurrence of future events are determined. The simulation

clock is then advanced to the time of occurrence of the most imminent (first) of these

future events, at which point the state of the system is updated to account for the

fact that an event has occurred. Then the simulation clock is advanced to the time

of the (new) most imminent event, the state of the system is updated, and future

event times are determined, etc. This process of advancing the simulation clock from

one event time to another is continued until eventually, some pre-specified stopping

condition is satisfied.

Since all state changes occur only at event times for a discrete-event simulation

model, periods of inactivity are skipped over by jumping the clock from event time

to event time.
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Chapter 4

AnyLogic R©

Modelling is a way to solve real-world problems. In many cases, it is not affordable

to experiment with real objects to find the right solutions: building, destroying,

and making changes may be too expensive, dangerous, or just impossible. If that

is the case, a model that uses a modelling language to represent the real system

is built. This process assumes abstraction: are included the details believed as

important and left aside those thought to be not important. The model is always

less complex than the original system. Given the model of a system, in order to

achieve insights or output data able to solve a problem related to it, it is necessary

to translate the conceptual model within a calculator. The means available for

doing it are general purpose languages such as Pascal, C, C++ or specialized one like

SIMSCRIPT, MODSIM, GPSS. An alternative is to resort to interactive applications

for simulating. The most knows are AutoMod, Simul8, Arena Simulation, Witness,

Extend, Micro Saint and AnyLogic. They are easy to use and therefore suitable for

building models quickly.

Among the developed software that predicate on modelling the process flow of ”enti-

ties” through a system, AnyLogic is the one picked for carrying on this dissertation

and to develop the case study. AnyLogic is a multimethod simulation modelling

tool able to support agent-based, discrete event, and system dynamics simulation

methodologies (Weimer et al., 2016).
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Figure 4.1: AnyLogic’s icon

With AnyLogic modellers can create prototypes of different systems during the

phases of the study, designing or development. Models are further used to investi-

gate aspects and details concerning the design and implementation of the related

systems in an easy way and without risks. AnyLogic is written in Java. Moreover,

it is characterized by a rapid and intuitive modelling style. It includes a graphical

modelling language based on a drag-and-drop of items and also allows the user to

extend simulation models with Java code. The model can be built in a 2D or 3D

environment, where animations can play a crucial role in the representation of a real

system.

The remainder of the chapter deals with the historical background related to the de-

velopment of the software and then its key feature to be a multi-method simulation

software. Agent-based, System Dynamics and Discrete-event based simulation mod-

els are introduced. Section 3 concerns the practical issues and AnyLogic’s workspace.

It presents the main components used to create a model and the main characters

of it as well as the different libraries included in AnyLogic. The final sections are a

brief look at the output analysis and the experimental phase.

It has to be clarified that not all AnyLogic’s components, features and functions are

named. Moreover, the practical explanations are not enough to get proper knowledge

of the use of AnyLogic. However, the application of many concepts introduced can

be seen in the Case Study’s chapters.
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4.1 History of AnyLogic

At the start of 1990, there was a big interest in the mathematical approach to mod-

elling and simulation of parallel processes. This approach may be applied to the

analysis of correctness of parallel and distributed programs. The Distributed Com-

puter Network (DCN) research group at Saint Petersburg Polytechnic University

developed such a software system for the analysis of program correctness; the new

tool was named COVERS (Concurrent Verification and Simulation). This system

allowed graphical modelling notation for system structure and behaviour. The tool

was applied for the research granted by Hewlett-Packard.

In 1988 the success of this research inspired the DCN laboratory to organize a com-

pany with a mission to develop a new age simulation software. The emphasis in

the development was placed on applied methods such as simulation, performance

analysis, the behaviour of stochastic systems, optimization and visualization. New

software released in 2000 was based on the latest advantages of information tech-

nologies: an object-oriented approach, elements of the UML standard, the use of

Java, a modern GUI, etc. (Molderink et al., 2009). The tool was named AnyLogic

because it supported all three well-known modelling approaches: system dynamics,

discrete event simulation, agent-based modelling, and any combination of these ap-

proaches within a single model (Borshchev and Filippov, 2004; Bazan and German,

2012).

The first version of AnyLogic was AnyLogic 4 because the numbering continues the

numbering of COVERS 3.0. A big step was taken in 2003 when AnyLogic 5 was

released. The new version was focused on business simulation in different industries.

AnyLogic 7, was released in 2014. It featured many significant updates aimed at

simplifying model building, including enhanced support for multimethod modelling,

decreased need for coding, renewed libraries, and other usability improvements.

AnyLogic 7.1, also released in 2014, included the new GIS implementation in the

software: in addition to shapefile-based maps, AnyLogic started to support tile maps

from free online providers, including OpenStreetMap. 2015 marked the release of
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AnyLogi 7.2 with the built-in database and the Fluid Library. Since 2015, AnyLogic

Personal Learning Edition (PLE) is available for free for the purposes of education

and self-education. The PLE license is perpetual, but created models are limited

in size. The new Road Traffic Library was introduced in 2016 with AnyLogic 7.3.

AnyLogic 8 was released in 2017. Beginning with Version 8.0, the AnyLogic model

development environment was integrated with AnyLogic Cloud, a web service for

simulation analytics. The platform for AnyLogic 8 model development environment

is Eclipse.
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4.2 A multi-method simulation software

One of the key advantages of AnyLogic is that its models can be based on any of

the main simulation modelling paradigms: discrete event or process-centric (DE),

systems dynamics (SD), agent-based(AB). It is also possible to have a model that

combines the three kinds of models together.

Figure 4.2: The three methods in simulation modelling

In simulation modelling, a method can be defined as a framework used to map a

real-world system to its model. It can be seen as a type of language or a sort of

”terms and conditions” for model building. The methods that can be considered in

modern simulation modelling are three: DES, SD and AB. Each method serves a

specific range of abstraction levels. System dynamics assumes very high abstraction,

and it’s typically used for strategic modelling. Discrete event modelling supports

medium and medium-low abstraction. In the middle are agent-based models, which

can vary from very detailed models where agents represent physical objects to the

highly abstract models where agents represent competing companies or governments.

A model should be always selected after having carefully considered the system to

model and the goals of the study.

AnyLogic allows the modeller to combine these simulation approaches within the

same model. As an example, one could create a model of the package shipping in-

dustry where carriers are modelled as agents acting/reacting independently whereas

the inner workings of their transport and infrastructure networks could be modelled
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with discrete event simulation. Similarly, one can model consumers as agents whose

aggregate behaviour feed a systems dynamics model capturing flows such as revenues

or costs which do not need to be tied to individual agents. This mixed language

approach is directly applicable to a wide variety of complex modelling problems that

may be modelled via any one approach albeit with compromises.

4.2.1 Agent-based modelling

Agent-based modelling is a relatively new method compared to system dynamics and

discrete event modelling. In fact, agent-based modelling was largely an academic

topic until simulation practitioners began using it some 15 years ago.

It was triggered by:

• A desire to gain deeper insights into systems that traditional modelling ap-

proaches don’t capture well;

• Advances in modelling technology made possible by computer science, such as

object-oriented modelling, UML, and statecharts;

• The rapid growth of CPU power and memory. Agent-based models are more

demanding than system dynamics and discrete event models.

Agent-based modelling offers a modeller another way to look at the system. The idea

behind is that even though it is not known how a system behaves, be able to identify

its key variables and their dependencies or recognize a process flow, it is possible

to have insights into how the system’s objects behave. In this case, it is possible

to start building the model by identifying the objects (agents) and defining their

behaviours. Afterwards, the agents created can be connected and allowed to interact

or put in an environment which has its own dynamics. Agents in an agent-based

model may represent very diverse things: vehicles, units of equipment, projects,

products, ideas, organizations, investments, pieces of land, people in different roles,

etc. The system’s global behaviour emerges from many (tens, hundreds, thousands,

millions) concurrent individual behaviours. There is no standard language for agent-

based modelling, and an agent-based model’s structure comes from graphical editors
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or scripts. There are many ways to specify an agent’s behaviour. Frequently agent

has a notion of state and its actions and reactions depend on the state; then the

behaviour is best defined with statecharts.

Figure 4.3: Example of statechart in an Agent-based model

Sometimes behaviour is defined in rules executed upon special events. In many cases,

the best way to capture the agent’s internal dynamics is to use system dynamics

or a discrete event approach, and then place a stock and flow diagram or a process

flowchart inside an agent. Similarly, outside agents, the dynamics of the environment

where they live is often naturally modelled using traditional methods. It’s why many

agent-based models are multi-method models.

Figure 4.4: Example of Agent-based model
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4.2.2 System Dynamics modeling

The system dynamics method was created in the 1950s by MIT Professor Jay For-

rester. Drawing on his science and engineering background, Forrester sought to

use the laws of physics, in particular, the laws of electrical circuits, to investigate

economic and social systems.

Today, system dynamics is typically used in long-term, strategic models, and it

assumes high levels of object aggregation: SD models represent people, products,

events, and other discrete items by their quantities. System dynamics is a method-

ology to study dynamic systems. It suggests to:

• Model the system as a causally closed structure that defines its own behaviour.

• Discover the system’s feedback loops (circular causality) balancing or reinforc-

ing. Feedback loops are the heart of system dynamics.

• Identify stocks (accumulations) and flows that affect them.

Stocks are accumulations and characterize the system state. They are the memory

of the system and sources of disequilibrium. The model works only with aggregates

- the stock’s items are indistinguishable. Flows are the rates at which these system

states change. Stocks are usually expressed in quantities such as people, inventory

levels, money, or knowledge, while flows are typically measurements of quantities in

a given time period such as clients per month or dollars per year.

Figure 4.5: Example of System Dynamics model
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4.2.3 Discrete-event modelling

Discrete event modelling is nearly the same age as system dynamics. In 1961, IBM

engineer Geoffrey Gordon introduced GPSS, considered to be the first software im-

plementation of the discrete event modelling method. Today, a number of programs

- including modern versions of GPSS - offer discrete event modelling.

In a Discrete-event model, the system is seen as a process, a sequence of operation

that agents perform. A model’s operations can include delays, service by various

resources, process branch selections, splits and many others. As long as agents com-

pete for limited resources and can be delayed, queues will be part of nearly all dis-

crete event models. The model is specified graphically as a process flowchart where

blocks represent operations. The flowchart usually starts with ”source” blocks that

generate agents and inject them into the process and ends with ”sink” blocks that

remove them. Agents, originally named transactions in GPSS or entities in other

simulation software, can represent clients, patients, phone calls, physical and elec-

tronic documents, parts, products, pallets, computer transactions, vehicles, tasks,

projects, ideas, and so forth. Resources represent staff, doctors, operators, workers,

servers, CPUs, computer memory, equipment, and transport. Service times and

agent arrival times are usually stochastic, and since they are drawn from a proba-

bility distribution, discrete event models are themselves stochastic. In simple terms,

this means a model must run for a specific amount of time or complete a specific

number of replications before it produces meaningful output.

Figure 4.6: Example of DES model in AnyLogic: a job shop
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Typical output expected from a discrete event model includes:

• Utilization of resources

• Time spent in the system or its part by an agent

• Waiting times

• Queue lengths

• System throughput

• Bottlenecks

84



4.3 Modelling in AnyLogic

It is now given a brief explanation of modelling with AnyLogic. This section

deals with the basic concepts and items of AnyLogic’s environment: agents, blocks,

flowchart, diagram grid, statecharts, parameters, variables, etc. The software has

available an interactive guide, the so-called AnyLogic Help, where all the elements

are explained. In spite of that, the only guide is not sufficient for being able to

build a model as soon as one starts to use AnyLogic. In fact, it can be considered

a learning-by-doing software for the wide variety of possibilities that a modeller has

for representing and characterizing its system in the simulation environment. A

basis on Java’s concepts is also required due to the nature of the software.

In AnyLogic’s workspace, all the available model items are contained in the palette

view grouped by categories in a number of stencils (palettes). The modeller drags

the element for the palette and drops it in the diagram of the model that might

be seen as a canvas for the model under construction. Each agent’s type has its

own diagram. Libraries are the bases of the simulation, and it is in this section of

the palette where it is possible to change how the system acts. AnyLogic includes

six standard libraries; they can be mixed together. The System Dynamics palette

contains elements frequently used by system dynamics modelers while the State-

chart palette contains elements of statecharts. Statecharts are advanced construct

to describe event- and time-driven behaviours. The Agent palette contains general

elements used for defining dynamics of the model, its structure and data such as

parameters, variables and more. The Space Markup palette contains elements for

marking up the space in models to define, for instance, agent locations. The Anal-

ysis palette contains elements, used for collecting, viewing and analysing output

data. There are then palettes for the graphical aspects like the Presentation palette

(shapes used to draw presentations of the models) and the 3D Object (set of 3D

images of frequently modelled objects).

In addition, the Projects view allows to access the AnyLogic models opened in the

workspace, and the workspace tree helps to easily navigate them. The Properties
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view allows to view and modify the selected item’s properties. Another feature that

helps make AnyLogic such a powerful modelling tool is 3D animation. AnyLogic’s

camera objects allow defining the view that displays in the 3D window.

The chapter continues with a more detailed look at the main items contained in the

palettes.

4.3.1 Agents, attributes and behaviours

Agents are a model’s building blocks, and they can be used to model all kinds of

real-world objects, including organizations, companies, trucks, processing stations,

resources, cities, retailers, physical objects, controllers, and so on. Each agent typi-

cally represents one of the model’s logical sections. This allows decomposing a model

into many levels of detail.

Parameters and variables

Attributes are characteristics linked to the agents in order to define them and to

reflect the characteristics of the object they mimic. To describe objects statically it

is used the parameter while to store the results of a model simulation or to model

some data units or object characteristics, changing over time, variable are needed.

They can both be found in the Agent palette and they can be of different value

types. There are eight primitive data types in Java, but in AnyLogic models are

typically used these four: double, int, boolean and String.

Figure 4.7: Parameter, variable and collection in AnyLogic

Another type of variable is the Collection. A collection represents a group of objects,

known as its elements. Collections are used for defining data objects that group

multiple elements into a single unit. Collections are used to store, retrieve and

manipulate aggregate data. For example, a collection can be used to store a set of

agents - e.g., neighbours or colleagues of a given agent.
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Statecharts

The best way to define behaviour in AnyLogic is by using statecharts. A statechart

is a state transition diagram. The statechart’s states are alternative, which means

the object can only be in one state at a time. A transition execution may lead to a

state change that makes a new set of transitions active. Statechart is used to show

the state space of a given algorithm, the events that cause a transition from one state

to another, and the actions that result from state change. By using statecharts you

can visually capture a wide variety of discrete behaviours, much richer than just

idle/busy, open/closed, or up/down status offered by most block-based tools.

Figure 4.8: Statechart with different transition’s triggers

States changes can be triggered as a result of various types of events occurred like

timeout, rate, condition, agent arrival or message. The trigger type is specified in

the ”Triggered by” property of a transition.

4.3.2 The Network

Paths and nodes are space markup elements that define the locations of agents:

• A node is a place where agents may reside or perform an operation.

• A path is a route that agents can use to move between nodes.
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Together, nodes and paths make up a network that a model’s agents can use to move

along the shortest paths between their origin and destination nodes. It is usually

created a network when the model’s processes take place in a defined physical space

and it has moving agents and resources. Path and nodes are general space markup

elements, like also attractors and pallet rack. They can be dragged into the diagram

from the space markup palette. The Space markup palette contains also elements

for a more aimed-purposes environment such as conveyors, stations, walls, railway

tracks and more. Other tools to sketch the graphical environment can be found in

the Presentation palette.

Resources

Resources are objects that agents use to perform a given action. An agent must ob-

tain the resource, perform the action, and then release the resource. Some examples

of resources include hospital model’s doctors, nurses, equipment, and wheelchairs;

supply chain model’s vehicles and containers; warehouse model’s forklift trucks and

workers.

There are three types of resources: static, moving, and portable.

• Static resources are bound to a specific location, and they cannot move or be

moved

• Moving resources can move independently

• Portable resources can be moved by agents or by moving resources.

In AnyLogic, the Process Modeling library’s ResourcePool block defines each set or

pool of resources.

Figure 4.9: ResourcePool block in AnyLogic

Resource units can have individual attributes, and each resource has a graphical

diagram where adding elements such as statecharts, parameters, and functions.
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4.3.3 AnyLogic Libraries

The blocks in AnyLogic’s Libraries allow using of combinations of agents, resources,

and processes to create process-centric models of real-world systems. It has been

spoken about agents and resources earlier in this section, and the model is built upon

that foundation by defining processes as operations sequences that include queues,

delays, and resource utilization. The model’s processes are defined by flowcharts, the

graphical process representations constructed from the Modeling Library’s blocks.

AnyLogic includes the following standard libraries:

• The Process Modeling Library supports discrete-event modelling paradigms.

With Process Modeling Library objects it is possible to model the real-world

systems in terms of agents (transactions, customers, products, parts, vehicles,

etc.), processes (sequences of operations typically involving queues, delays, re-

source utilization), and resources. The processes are specified in the form of

flowcharts - a widely adopted graphical representation used in many areas:

manufacturing, call centres, business processes, logistics, healthcare, etc.

• The Pedestrian Library is dedicated to simulating pedestrian flows in a

physical environment. It allows creating models of pedestrian-intensive build-

ings (like subway stations, security checks etc.) or streets (large numbers of

pedestrians). In models created with the Pedestrian Library, pedestrians move

in continuous space, reacting to different kinds of obstacles (walls, different

kinds of areas), as well as other pedestrians.

• The Material Handling Library assists in process simulation in factories

and warehouses. The library contains conveyors, transporters, and other ele-

ments simplifying the creation of detailed production models.

• The Rail Library supports modelling, simulating, and visualizing opera-

tions of a rail yard of any complexity and scale. The rail yard models can

be combined with discrete event or agent-based models related to: loading

and unloading, resource allocation, maintenance, business processes, and other

transportation activities.
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• The Fluid Library allows the user to model storage and transfer of fluids,

bulk goods, or large amounts of discrete items, which are not desirable to model

as separate objects. The library includes blocks such as a tank, pipeline, valve,

and objects for routing, merging and diverging the flow.

• The Road Traffic Library allows users to simulate vehicle traffic on roads.

The library supports detailed, physical level modelling of vehicle movement.

Each vehicle represents an agent that can have its own behavioural patterns

inside. The library allows users to simulate vehicle movement on roads, consid-

ering driving regulations, traffic lights, pedestrian crossings, priorities at junc-

tions, parking lots, and public transport movements. The library is suitable

for modelling highway traffic, street traffic, on-site transportation at manufac-

turing sites, or any other systems with vehicles, roads, and lanes.

Besides those above, the user can also develop a set of reusable agents and Java

classes for a particular application area, package them and save as a library. Such

custom library can be opened in the palette view along with the standard ones.

The case study in chapter 6 will use blocks from the Process Modeling Library to

build a model that represents the bottleneck of an automated bottling line, there-

fore further explanations on the blocks as well as many other elements previously

introduced are not present in this chapter, but they will be presented later.
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4.3.4 Output Analysis

As stated in chapter 7 of ”Simulation Modeling and Arena” by Rossetti (2015), the

inputs in a simulation model are random; hence, the outputs are also random. In

AnyLogic, randomness can be controlled through the dedicated pane in the simula-

tion experiments. Managed the randomness and run the simulation, it is relevant

to see the statistical output and analyse how the model performed. Results can be

visualized through plots.

Randomness in AnyLogic

There are three possibilities for modelling the randomness in AnyLogic’s simulations:

1. Random seed: the software initializes a different seed for each experiment

performed. Thus, the model runs cannot be reproducible.

2. Fixed seed: the user sets a fixed seed for the randomness. This option is very

valuable in the development phase as the simulations are reproducible.

3. Custom generator: it lets the user create his own random class.

Visualization

Visualization of data values is vital when the user has to get the right perception

of the simulation. Therefore, making good visualization is very important. In Any-

Logic is it possible to use different plots for the visualization of the results or of a

value that changes during the run. Plots like time plot, bar plot, stack chart plot

and more.
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4.3.5 Experiments

Another key feature of AnyLogic is represented by the experiments. The basic one is

the Simulation experiment, that runs the model in the way the user has set it. Other

experiments may be used when the model parameters play a significant role and it

is needed to analyse how they affect the model behaviour, or when it is wanted to

find optimal parameters of the model.

AnyLogic supports the following types of experiments:

• Simulation experiment

• Parameters variation experiment

• Optimization experiment

• Monte Carlo experiment

• Compare runs experiment

• Sensitivity analysis experiment

• Calibration experiment

In addition to them, Custom experiment runs an experiment with custom scenario

entirely written by the user. The custom experiment gives maximum flexibility with

setting parameters, managing simulation runs, making decisions. It simply gives a

code field where do all that (and a lot more) by using a rich Java API of AnyLogic

engine (functions like run(), stop(), etc.). This experiment has no built-in graphical

interface as well as no predefined behaviour.
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Chapter 5

Problem-solving with Simulation

The successful application of a simulation approach in a study requires a lot of up-

front work prior to building a computer simulation model. This chapter regards

the steps to follow in order to build a simulation model by discussing the problem-

solving process in the context of an iterative methodology. It will be explained what

this iteration concerns and a proper methodology will be presented. The most fol-

lowed within this dissertation is the General Methodology for Applying Simulation to

Problem Solving (Rossetti, 2015), that is also the method followed in the developing

of the case study. Five major phases are identified: problem formulation, simulation

model building, experimental design and analysis, evaluation and iteration, imple-

mentation. They will be discussed in detail gradually by identifying the steps to

follow the good execution of the methodology.

5.1 The methodology

Detailed modelling and coding are just part of an overall simulation effort to under-

stand or design a complex system, and that attention must be paid to a variety of

other concerns, ranging from statistical experimental design to problem formulation

and model validation. Many papers have appeared in the past on the process of ap-

plying the simulation technique (also referred to with ”simulation methodology”),

the successful application of simulation and how to avoid the pitfalls of simula-

tion. Among the most famous pioneers, we can find Law (1991), Musselman (1992),

Sadowski (1989), Ulgen (1991) and Rossetti (2009).

In the following sections, the steps one must follow in applying the simulation
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methodology to solve real problems are described. Five major phases are identi-

fied for the proper application of simulation; each phase is further broken into steps.

The phases are:

1. Problem formulation

2. Simulation model building

3. Experimental design and analysis

4. Evaluation and iteration

5. Implementation

Although these phases are generally applied in sequence, one may return to the

previous phases due to changes in the scope and objectives of the study. It is also

possible that something that emerges in further steps implies to go back to a previous

phase in order to apply changes.

5.1.1 The DEGREE problem-solving methodology

A methodology is simply a series of steps to follow. Since simulation involves systems

modelling, a simulation methodology based on the general precepts of solving a

problem through systems analysis is first presented. A general methodology for

solving problems can be stated as follows:

1. Define the problem. It helps to ensure that the problem under solving is right.

2. Establish measures of performance for evaluation. It helps to ensure that the

reason to solve the problem for is right and to check that the metrics are

coherent with the problem.

3. Generate alternative solutions.

4. Rank alternative solutions. With the previous step, it ensures that there are

looks at and evaluations of multiple solutions to the problem.
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5. Evaluate and iterate during the process. It evaluates how the process is pro-

ceeding and allows for iteration.

6. Execute and evaluate the solution. If there is the opportunity, the solution

should be executed by implementing the decisions.

This methodology can be referred to by using the first letter of each step. The

DEGREE methodology for problem-solving represents a series of steps that can be

used during the problem-solving process.

The concept of iteration means that the problem-solving process can be repeated

until the desired degree of modelling fidelity has been achieved. The first model

should be representative at a level that allows it to be initiated. It is suggested

to start with simple models and then to build them up until the desired goals are

reached. It is important to get started and get something established on each step

and continually go back in order to ensure that the model is representing reality in

the way that the modeller wants to intend.

5.2 Applying simulation to problem-solving

Despite the DEGREE problem-solving methodology works well for the modellers,

often it is not enough when simulation involves certain unique actions that must be

performed during the general overall problem-solving process. When applying the

DEGREE to a problem that may require simulation, the general DEGREE approach

needs to be modified to explicitly consider how simulation will interact with the

overall problem-solving process. The next figure depicts a general methodology

for applying simulation to problem-solving developed by Rossetti (2015) with its

phases that will be further discussed. The phases, that are composed of many steps,

can be collected in 5 main ones: problem formulation, simulation model building,

experimental design and analysis, evaluation and iteration, implementation. The

book of Rossetti (Simulation Modeling and ARENA, 2015) contains all the detailed

procedures to carry on the methodology.
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Figure 5.1: General simulation methodology

The phases are overlapped with the DEGREE methodology. The first phase, prob-

lem formulation, captures indeed the essence of the first two steps of the DEGREE

process. The second phase, model building, captures the essence of step 3 of the

DEGREE process. When building models, certain design alternatives are either

explicitly or implicitly being developed. The third phase, experimental design and

analysis, encloses some of steps 3 and 4 of the DEGREE process. In designing ex-

periments, design alternatives are specified, and when analysing experiments, their

worth is being evaluated with respect to problem objectives. The fourth phase,

evaluate and iterate, captures the notion of iteration. Finally, the fifth and sixth

phases, documentation and implementation complete the simulation process.
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5.2.1 Problem formulation

Every study must begin with an evident statement of the study’s overall objectives

and specific issues to be addressed. The problem formulation phase of the study

consists of the following activities:

• Defining the problem

• Defining the system

• Establishing performance metrics

• Building conceptual models

• Documenting model assumptions

These activities are useful in developing an appreciation for and an understanding

of what needs to be solved, since a problem starts whit a perceived need.

Defining the problem

This phase of the simulation process has the most effect on the total simulation

study since a wrong problem definition can waste a lot of time and money on the

project. The output of this activity is a problem definition statement, that is a

narrative discussion of the problem necessary to accurately and concisely represent

the problem for the analyst and the problem stakeholders. It should include a

detailed description of the objectives of the study, the desired outputs from the

model, and the types of scenarios to be examined or decisions to be made.

In addition, during this preparatory phase, more steps might be developed:

• Estimate how long a project will take and which resources (financial, human,

etc.) will be used for the study. A tool very useful to point out these aspects

is the PERT chart, that gives the minimum, maximum and mode duration

for each task in order to estimate the total project time at different levels of

confidence.

• Perform a cost-benefit analysis.
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• Create a planning chart (e.g., Gantt chart) of the proposed project.

Defining the system

A system definition statement is necessary to accurately and concisely define the

system, particularly its boundaries. This ensures that the simulation study is focused

on the appropriate areas of interests to the stakeholders and that the scope of the

project is well understood.

Establishing performance metrics

In this phase, the required objective and measurable performance metrics for the

model are needed to be figured out. They are necessary to meaningfully compare

alternative scenarios. The performance metrics should include either quantitative

statistical measures and qualitative assessments. The focus should be placed on

the performance measures that are considered to be the most important to system

decision makers and tied directly to the objectives of the simulation study.

Building conceptual models

Prior to create the simulation model with any software, it is good to use conceptual

modelling tools in order to create a conceptual model. This aims to convey a more

detailed system description so that the model may be translated into a computer

representation. A conceptual model can be depicted as a context diagram, activity

diagram or with the use of Software Engineering Diagrams.

When modelling, it is important to start with an easy conceptual model that cap-

tures the basic aspects and behaviours of the system. Then, adding details, consid-

ering additional functionality. Finally, it is to be remembered that the complexity

of the model has to remain proportional to the quality of the available data and the

degree of validity necessary to meet the objectives of the study.
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Documenting model assumptions

Since the model is just a mimic of the real system, it would be impossible to recreate

the system exactly as it is. The assumptions help us to fill the gap. They must be

summarized at this step. This includes assumptions regarding the behaviour of

model components, input data, model detail level, start-up conditions of the model,

etc. It is to be decided which components of the real system will be excluded,

included as a black box, included in moderate detail, or included in fine detail.

5.2.2 Simulation Model Building

During the simulation model building phase, alternative system design configura-

tions are developed based on the previously developed conceptual models. Addi-

tional project planning is also performed to yield specifications for the equipment,

resources, and timing required for the development of the simulation models. The

simulation models used to evaluate the alternative solutions are then developed,

verified, validated, and prepared for analysis. Within the context of a simulation

project, this process includes input data preparation, model translation, verification

and validation.

Input data preparation

Input data should be analysed and tested through the utilization of statistical tools.

Patterns in data should be identified, if any, and incorporated as part of input data

generation. Theoretical distributions should be fitted to actual data and used in the

model whenever possible (Law et al., 1991).

Model translation

The procedure for coding the model are described, including timing and general

procedures and the translation of the conceptual models into computer simulation

program representations.

The simulation modeller must also decide whether to program the model in a general-

purpose language such as FORTRAN, Pascal, Java or C or in a specially designed
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simulation language (Flexsim, AnyLogic, Arena, etc.).

Verification

Verification of the computer simulation model is performed to determine whether

or not the program performs as intended. To perform model verification, model

debugging is performed to locate any errors in the simulation code. Model debugging

also includes scenario repetition utilizing identical random seeds, ”stressing” the

model through a sensitivity analysis to ensure compliance with anticipate behaviour

and testing of individual modules within the simulation code.

Validation

Validation of the simulation model is performed to determine whether or not the

simulation model adequately represents the real system. That is, the model must

have an acceptable level of confidence in the performances processing assumed. The

simulation model is shown to personnel (of various level) associated with the system

in question. Their input concerning the realism of the model is critical in establishing

the validity of the simulation. In addition, further observations of the systems are

performed to ensure model validity with respect to actual system performance. A

simple technique is to statistically compare the output of the simulation model to the

output from the real system and to analyse whether there is a significant difference

between the two.

Figure 5.2: Conceptual Validation, Verification and Operational Validation in Sim-

ulation

The relationship between the conceptual validation, verification and operational
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validation of a model is shown in figure 5.2. A rigorous validation procedure for the

conceptual model is as important as the verification and operational validation of

the model because, being earlier than the others, it saves time and redirects in the

right direction before a lot of time is wasted in the study.

5.2.3 Experimental Design and Analysis

Experimentation with the model and applying the design of experiments techniques

in order to investigate the results driven from the model is the third big phase of the

simulation process. Preliminary simulation experiments should be performed to set

the statistical parameters associated with the main experimental study. The exper-

imental method should use the simulation model to generate benchmark statistics

of current system operations. The simulation model is then altered to conform to a

potential scenario, and it is rerun to generate comparative statistics. This process is

continued cycling through suggested scenarios and generating comparative statistics

to allow evaluation of alternative solutions.

5.2.4 Evaluation and Iteration

Utilizing the criteria specified by system decision makers, and utilizing the simula-

tion model’s statistical results, alternative scenarios should then be analysed and

ranked to carry on an efficient study.

Iteration is required if the simulation has not achieved the objectives of the study.

In fact, this procedure helps to determine if any additional data, models, experi-

mentation, or analysis is needed to achieve the modelling objectives.

5.2.5 Implementation

When the simulation satisfies the goals of the study, it is time to document and

implement the recommended solutions. Afterwards, the project should be evaluated

as to whether or not the proposed solution met the intended objectives.
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Chapter 6

Case Study: Automated Bottling

Line

This chapter gathers all the topics prior discussed in a case study. The steps followed

while developing it are the ones of the General Methodology for applying Simulation

to Problem Solving presented in chapter 5, integrated with the job sequencing res-

olution method explained in 2.6. A brief introduction to the methodology carried

on in order to solve the case study is shown in the following diagram. It reflects

the combination of the use of both simulation modelling - by means of the software

AnyLogic - and combinatorial optimization techniques through the implementation

of Karg-Thompson’s algorithm. This is just an overview to which details will be

added along the case study.

Figure 6.1: Interaction between simulation and combinatorial optimization in the

case study
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6.1 Problem formulation

6.1.1 Define the problem

The case study aims to improve the Overall Equipment Effectiveness, and therefore

the production rate, of an automated bottling line that works different formats and

types (returnable and one-way) of bottles of water. The ASME scheme of the line

can be seen in the figure below.

Figure 6.2: ASME scheme of the line

An important measure performance related to the throughput of the line and its

efficiency is the OEE (Overall Equipment Effectiveness). The higher it is, the higher

the production rate results. The factors that affect the line, and so the OEE, are

failures and set-ups. The aim of this work is to raise the OEE of the line by solving

two problems:

• Job sequencing

• Optimal buffer sizing

The way of doing it involves the development of a simulation model of the critical

section of the line and the utilization of a codified heuristic algorithm. An improve-

ment of the bottleneck results in an improvement of the whole line effectiveness.
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6.1.2 Define the system

Our system is the critical section of the line, the so-called bottleneck. It has been

identified by looking at the nominal cycle times of the line’s work-stations.

Figure 6.3: Histogram of line’s machines nominal cycle time (min/bottle)

Having a look at the histogram, the bottleneck can be identified as the group of

machines from the bottle-washer to the labeler. Their cycle time of 0,0024 minutes

per bottle makes them the slowest section of the line. Since the nominal production

rate of the work-stations included in the critical section is equal and they are all

affected by failures, the real bottleneck can be either the bottle-washer or the group

of work-stations from the rinser to the labeler. The latter works in sync, so during

our analysis, we can consider only the last work-station: the labeler.

Structure

The system is therefore composed of three conveyors - the buffers - and two work-

stations; we will refer to them as elements of the line. The first two buffers are

related to the type of bottle being it of the returnable type or one-way.
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Figure 6.4: ASME scheme of the system

The bottles arrive at the entry point with a rate of 33000 bottles per hour after

that they have been subjected to other works. They appear on of the first conveyors

(buffer) depending on the type of the bottle being produced: if they are glass bottles

the conveyor has a length of 33,5 meters while if it is plastic the conveyor’s length

is 100 meters. The buffers feed the bottle-washer, a work-station with a production

rate of 25000 pieces per hour, followed by a second buffer that makes the bottles

flow until a second work-station. The second buffer of the section is long 8 meters.

The width of the buffers is 0,6 meters.

Down-times

Both the work-stations can be the real bottleneck since their availability is strictly

influenced by the micro down-times. The output of this piece of line, that corre-

sponds with the exit from our system, is represented by the bottles with the stuck

labels. The main problem of this bottleneck is the capacity of the second buffers

(directly proportional to its length) considered as not enough to let the flow of bot-

tles continuous even when a micro-downtime occurs, that it should be its scope.

The failures can affect either the conveyors and the work-stations, their causes are

many and each element might have different problems. They happen after a certain

time (TTF) and then it takes a certain amount of time to the machine (or conveyors)

to restart working (TTR). Once a failure occurs the elements of the line affected by

it stops to work, so TTF can also be seen as up-time and TTR as down-time. In

our study, the second ones are considered micro down-times because the time that

the machine stalls is lower than 5 minutes.
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The table below contains the elements of the line with their failures and their sym-

bols.

Figure 6.5: Line elements with their failures

Set-ups

In addition, the entire line is also stopped by set-ups: one that happens for a change

of the format of the bottles and the other one it occurs once a week for predictive

maintenance. The setups for changeover influence the performances of the line too.

In fact, the line is able to produce 13 different formats and their total setup time

is sequence-dependent. It means that the order the formats are processed straight

affects the efficiency of the line because the time to switch from a certain format i to

j may differ from the time to switch from j to i. Therefore, the current sequence of

jobs (formats) might not be the optimal one and make the system sub-performing.
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6.1.3 Inputs of the system

The inputs given to build the model, analyse the system and improve its perfor-

mances, are:

• ASME scheme of the line taken into the study. ASME (American Society of

Mechanical Engineers) is a symbolism used to represent production systems.

The ASME scheme is depicted in figure 6.2;

• Rate of bottles that enter our system per hour (33000 bottles per hour). They

arrive from the previous section of the line;

• Product mix of a generic x month;

• Weekly product mix of the generic x month. Every day are processed n lots

of the same and/or different formats of bottles;

• Nominal production rate of the work-stations (figure 6.3). It is expressed in

pieces per minute;

• Length and width of the buffers (6.1.2);

• Data sets of Time to Failure and Time to Repair of the buffers and the work-

stations for each kind of failure. They are present in the appendix at the end

of the thesis;

• Set-up matrix for format changes;

• Weekly sequence of the jobs (format lots) being processed;

• Average weekly values of the Overall Equipment Effectiveness of the as-is

situation of the four weeks. It is about 63/64 % the first and the fourth week,

whereas it is about 55/57 % the second and the third week. To be useful the

model needs to match as much as possible the current OEE values of the line;

• Shift timetable. During a year, the line works 24 hours a day for 8 months

and 16 hours a week during the rest months.

The following sections will present some of these inputs in a more detailed manner.
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Product mix

The overall product mix is shown through a table and a pie chart. It represents the

product mix of the month x. The table indicates also the capacity of the formats

expressed in litres; the bottle’s diameter depends on the capacity of the bottle.

Figure 6.6: Monthly product mix

The data state that the predominant formats are D, E, F, G and H. Together they

cover almost the 78 % of the total production. H, letter that stands for the glass

bottle of 1 litre, is the format more produced with a percentage up to 26,8 %, more

than a quarter of the total production.

Job sequence and weekly product mix

Every week the different lots are worked on a different given order, called sequence.

The sequences of the four weeks are:

1. HHHEEEEEFDDDIDIIIIJJJJJDCCCCC (29 lots)

2. CDDFDDDDDFFFFHHHGGGGGGGGGHHHGGEFHHEEEEEEHEE (43 lots)

3. FFFEFEDDFDDDHHCCHGHGGGGFHHHHHEFFEE (34 lots)

4. EFFEEEEDDDDDHHAAAHKLHMKLKKKF (28 lots)
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The tables there contain the product mix of the weeks (weekly demand) of the x

month. This information is required to set up the model and as a comparison in

order to verify its validity.

Figure 6.7: Weekly product mixes

Set-up matrix for format changes

The set-up matrix contains all the theoretical times to change the format. It’s the

time to clean, prepare the tools, arrange the machines to work the next format. This

time is better considered as a changeover time, meant by the specific time it takes

to go from the last good part of one product run to the first good part of the next

product run. Anyway, the two terms can be used also interchangeably.

Figure 6.8: Set-up matrix for change format

It is possible to notice that the matrix is asymmetrical, that is the time required to

switch from a format i to a format j may be different from switching from j to i.
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6.1.4 Establish performance metrics

The situation of the system can be evaluated by different types of performance

metrics and they are generally listed under the five headings of quality, speed, de-

pendability, flexibility and cost.

• Throughput: job exiting from the production line per unit time;

• Overall Equipment Effectiveness (OEE ) that reflects the six major losses based

on its Availability, Performance and the Quality rate of the output;

• Productivity: production rate in terms of bottles processed per hour.

As seen in chapter 1, the most practice way to calculate the Overall Equipment

Effectiveness value for the entire plant (or production line) implies the using of the

following presented formula. This will be used to calculate the OEE of the critical

section of the line during our simulation study. The elements of the formula are

prior explained in chapter 1.

OEELINE =
Production rate

Nominal production rate
=

Throughput
Production T ime

25000
(6.1)
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6.1.5 Build conceptual model

To depict our system, we use an activity diagram where each shape represents

something different. Zigzag lines indicate the creation or destruction of entities.

The queues are shown as a circle and stand for the buffers of the line, instead of the

activities shown as rectangles.

The resources that interact with the agents, in our case the working machines that

work on them, are represented by small circles.

Lines/arcs indicate flows (precedence ordering) for engagement of entities in activ-

ities or for obtaining resources. Dotted lines are used to indicate the seizing and

releasing of resources.

Figure 6.9: Activity diagram of the system
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6.1.6 Document model assumptions

The model requires some assumptions due to needed works to do on the data or to

the level of detail desired, that could not require to represent every aspect of the

real line. The assumption made to build the model are the following:

1. the layout of the line in the model does not follow the real one;

2. the time spent by the agent on the conveyor is the same as its next work-

station’s cycle time;

3. the speed of the conveyors has been calculated using the data about the cycle

time of the line we had as input and the length of the conveyors;

4. to represent the grouping of the bottles when they flow on the real line, we

use a statistical approach to determine the batch size;

5. the diameter of 1 L bottle is about 9 centimetres. The diameter of the bottle

of the other formats is calculated with proportions. Bottles of the same format

have the same diameter regardless they are glass or plastic;

6. conveyors and work-stations’ repair and failure times are randomly distributed;

7. the time required to change format is taken from the setup matrix. It is

assumed that this time may vary plus or less 10% depending on the conditions,

tiredness and knowledge of the workers;

8. for weeks 2, 3 and 4 it is present in the sequence also the last lot worked in the

previous week. It is indeed assumed that when a new week begins, the line is

still arranged as it was to work the last format of the previous week;

9. workers are not considered in the analysis;

10. there are no physical constraints to consider when performing the optimal

buffer sizing;

11. the time of a model run is set to 10080 minutes, equal to a week of work.
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6.2 Simulation Model Building

As stated in the General simulation methodology for applying simulation to problem

solving, the phases of model building and data collection are strictly linked in order

to realize a model as closest as possible to the real system (Rossetti, 2015). In fact,

the model building has to depict the best trade-off between all the inputs that affect

the study and the investigated level of detail. Since our study aims to improve

the productivity on the line, a focus on the efficiency of the model rather than the

graphical aspect is preferred. There are many elements and variables that interact

between them in the model, therefore when building it, it is important to have a look

also at the general set while working on the data preparation of the singular one.

For this purpose, assumptions and calculations are made and repeatedly modified,

moving up and down through the phases of the iterative process proposed by the

methodology. The distributions for the TTF and TTR have been figured out with

the use of the statistics. The information about the physics element of the line are

important to make the line behaviour as realistic as possible, just like cycle times

and buffer lengths.

The approach used for this phase can be seen as a data funnel: the inputs of the

case study enter the funnel, where they are worked to exit it as input for the simu-

lation model. The funnel reflects the phases of Input Data Preparation and Model

Translation, as represented in the image below.

Figure 6.10: Funnel of the work done on the data
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6.2.1 Input data preparation

This phase consists in starting from the input data and working them to use them

as inputs for the on-building model. To reach this aim, various techniques are used.

Statistical approaches and methods are needed to develop the proper distributions

for Times to Fail and Times to Repair of both the work-stations and the buffers.

The Cumulative Distribution Function helps to find out a suitable batch size for

representing the flow of the bottles in the model, combined with logical consider-

ations. Information about the physical elements of the line as work-stations and

buffers are to be collected and managed with their production speed and lengths in

order to be useful for the model.

Fit the availability parameters with a probability distribution

To achieve randomness in the simulation we need to find the proper probability

distribution for the data samples regarding the Times to Failure and Times to Repair

of the different causes of down-times of the line. This work is very important because

the quality of the data used in a simulation study is vital for the validity of the result.

That is the reason for which a thorough analysis of the data with the software

Minitab is needed. The result of the analysis is the set of distributions to put into

the software AnyLogic to manage the failures.

The first thing to do when analysing some data is to create a histogram and collect

descriptive statistics. The histogram can show the frequency distribution of the

data and then find out an appropriate distribution with its parameters at first sight.

The next step brings to the use of the Anderson Darling Goodness of Fit test to

investigate which probability distribution would fit the most with the data samples.

The kinds of distributions taken into consideration for the test are the continuous

distributions because they can be used to situations where the set of possible values

occurs in an interval or set of intervals. Furthermore, within discrete-event simula-

tion, they are often used for modelling time to perform a task (Rossetti, 2015).
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The method used to investigate the distributions for Times to Failure and Times to

Repair is the same. It is composed of due steps:

1. Create a histogram from the data sample;

2. Identify the probability distribution that fits the most the data through the

Anderson-Darling test.

The Anderson-Darling test

The Anderson-Darling test measures how well the data follow a particular distri-

bution. For a specific data set and distribution, the better the distribution fits the

data, the smaller this statistic will be. It is defined as:

• H0: the data follow a specific distribution;

• Ha: the data do not follow the specific distribution;

• Test Statistic: A2 = −N − S.

Where: S =
∑N

i=1
(2I−1)

N
[lnF (Yi) + ln(1− F (YN + 1− i))]

F is the cumulative distribution function of the specified distribution. Note that Yi

are the ordered data.

The Anderson-Darling statistic (A2) measures the area of the expected model (based

on the chosen distribution) and the empirical distribution function. More precisely,

it is a squared distance that will have a greater weight in the tails of the distri-

bution. Low values of the Anderson-Darling statistic mean that the hypothesized

distribution fits the data well.

Use the corresponding p-value (when available) to test if the data come from the

chosen distribution. If the p-value is less than a chosen α (usually 0.05 or 0.10),

then reject the null hypothesis that the data come from that distribution.

Thus, to choose the right distribution, it is needed to look in order at:

• AD value - The less it is, the better the distribution is;
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• p-value - It should be >0.05 to make the distribution be considerable. The

p-value is also used to choose the right distribution when the AD values of

two alternative distributions are very close. In these cases, it is picked the

distribution with a higher p-value.

In our case, the Anderson-Darling test is made for the first reason for the failure

of the bottle-washer, denoted with the symbol ”A”. Before it, a histogram for the

Times to Failure of the failure A of the work-station bottle-washer is created. This

failure is caused by a lateral stuck of the bottles inside the machine.

The histogram displays statistical information with rectangles to show the frequency

of data items in successive numerical intervals of equal size. The Times to Failure

expressed in minutes that stay in the same interval class are grouped together and

it, therefore, allows to identify the possible distributions for the sample. They are

then checked with the Anderson-Darling Test for the data sample.

Figure 6.11: Histogram for the TTF A of the bottle-washer

It is followed by some statistical information about the data sample.

Figure 6.12: Descriptive statistics for Bottle-washer Time to Failure A
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The Anderson-Darling Goodness of Fit test shows that the Lognormal distribution

fits the best the data sample for the Time to Failure of the failure A of the bottle-

washer. This because its AD value of 0,246 is the lowest from the results of the

test. Afterwards, the parameters of the chosen distribution are pointed out and

they will be the input of model for the Time to Failure related to the failure A of

the work-station bottle-washer.

Figure 6.13: Anderson-Darling test for TTF A

Figure 6.14: Probability plot for TTF A
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Figure 6.15: Distribution parameters for TTF A

The steps are repeated for all the availability parameters. The results of the analysis

and the chosen distributions are shown in the tables below.

Figure 6.16: Fitted distributions of the Times To Failure and Times To Repair
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Set-ups

The predictive maintenance happens once a week and it lasts 90 minutes. Therefore,

it has been modelled in the following way:

• rate: event that happens once during the simulation;

• duration time: 90 minutes.

The changeover time is modelled in the same way, even though the frequency is

higher, and it depends on the number of lots in the sequence.

• Rate: number of lots processed during the week

• Duration time: triangular(min, max, mode) depending on the total set-up

time of the sequence. Min and max are the minus and plus 10% of the set-up

time due to the variability related to the worker (assumption 6)

The total set-up time for format changes of each week is calculated by considering

the set-up matrix and the current sequences seen in 6.1.3. In the following table

frequency is equal to the number of lots in the sequence.

Figure 6.17: Weekly sequences and setup times

Working Time is calculated as 10080 - Total setup time; 10080 minutes is equal to

the total amount of available time in one week. The other terms in the table are:

• Time to Setup = Working Time / Frequency

• Setup T imeMEAN = Total Setup / Frequency where Total Setup is the total

setup time of the given sequence according to the setup matrix
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• Setup T imeMIN = Setup T imeMEAN minus 10%

• Setup T imeMAX = Setup T imeMEAN plus 10%

Figure 6.18: Modelling the setup times for format changes

Batch size

In automated bottling lines, the bottles are not worked one by one, but they flow

together on the conveyors and they can enter the work-station grouped as well. This

aspect has been subject to a particular analysis. It is indeed to be decided which

size of the group, referred to as batch size, would fit the most the similarity with

the real line. It is also needed a trade-off between the real line, without distorting

its normal functioning, and a statistical explanation of the choice.

In the first place, it is assumed that 50 bottles as one agent might be a reasonable

number for the desired batch size. The analysis carries out some calculations: the

input of the line is 33000 bottles per hour, equivalent to 550 bottles per minute.

Thus, 50 bottles are generated in 0,09 minute. The aim is to confirm that the batch

size of 50 bottles is reasonable with the buffer capacity and that guarantees that

the likelihood of finding a failure within a time span of 0,09 minute is less than 1%.

The latter is the hypothesis of the analysis.

The tool used to evaluate the hypothesis is the Cumulative Distribution Function.

Indeed, the Cumulative Distribution Function (CDF ) of a distribution function of

a real-valued random variable X is the function given by:

Fx(X) = P (X ≤ x)
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where the right-hand side represents the likelihood that the random variable X takes

on a value less than or equal to x. In the case subject to study:

• X is the probability distribution for the Times To Failure;

• x is equal to 0,09 minutes, the rate of arrival of 50 bottles.

In the diagram below, we can see that for the bottle-washer there is a likelihood of

1% to find a failure stuck load before 2,72 minutes. This amount of time is bigger

than 0,09 minutes, therefore the likelihood of finding a failure in 0,09 is less than

1% and our hypothesis is valid for this Time To Failure. If it happens the same for

all the Times To Failure then our hypothesis is confirmed at all and we can use a

batch size of 50 bottles.

Figure 6.19: Plot of the Cumulative Distribution Function of TTF A

The results of the analysis have been collected in the following table. They confirm

that the batch size of 50 bottles, decided to use to have an aggregation that would

have been reasonable with the system properties, is valid also from a statistical point

of view. Afterwards, the cycle time of the elements of the line becomes:

Cycle time =
1

25000/60
×Batch Size = 0, 12 [minutes/batch] (6.2)
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Figure 6.20: Results of the CDF test

Given the batch, one agent will represent a number of bottles equal to the batch size.

In the model one agent will represent 50 bottles; then the output may be calculated

either expressed in batches or bottles.

The rate of bottles that enter the system is 33000 bottles/hour so the time of arrival

of one agent is set as:

Interarrival time =
1

33000/60
×Batch Size = 0, 091 [minutes/batch] (6.3)

This value is inserted in the AnyLogic’s block Source.

Figure 6.21: Source’s block pane in AnyLogic

Conveyors’ attributes

AnyLogic has a proper Conveyor block to set all the parameters related to this item.

The cycle time of the conveyor is meant as the time spent by one agent to move on

the entire length of the conveyor in a situation of normal functioning. The formula

used is:

SpeedCONV EY OR =
Conveyor Length

Cycle time
(6.4)
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The second aspect to be considered is the capacity of one buffer. This because in

the AnyLogic model, like in the real cases, the capacity of the buffer is directly

proportional to its length: the more the buffer is long and the bigger is the number

of bottles that the buffer can have on it (its capacity). For this reason, every batch

length that is added increases the buffer capacity of 50 bottles. To calculate the

length of the batch it has been used the assumption made on the diameter of a

one-litre bottle: 0,089 meters. The diameter of the bottles of the other formats

is calculated proportionally. The procedure to achieve the length of the batch is

composed of the following steps:

1. consider the width of the conveyor of 0,6 meters and the diameter of one bottle

in order to calculate how many bottles stay in a row;

2. calculate the number of rows that form a batch dividing 50 by the number of

bottles in a row;

3. the length of one batch is obtained from the multiplication of the diameter of

one bottle and the number of rows that form a batch.

Figure 6.22: Procedure to calculate the length of the batches

The batch’s length corresponds with the Agent length in the AnyLogic’s Conveyor

pane. The capacity of the buffers can be calculated by considering its length, the

length of the batch and the batch size of 50:

CapacityBUFFER =
Conveyor Length

AgentLength
×Batch Size [meters] (6.5)

The next figure shows the properties pane of the block that manage the conveyor in

the software.
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Figure 6.23: Conveyor’s block pane in AnyLogic

6.2.2 Model’s input recap

After the input data preparation phase, the data that are going to be inserted into

the model as input are:

• Rate of arrival: 0,091 minutes/batch equal to 0,00182 min/bottle

• Batch size: 50 bottles

• Agent length = length of the current batch

• List of the different formats with their batch length

• Work-stations and conveyors cycle time: 0,12 minutes/batch equal to 0,0024

min/bottle

• Probability distributions for machines and conveyors’ failures and repairs

• Set-up times

• Length of the conveyors

• Simulation time: 10080 minutes.
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6.2.3 Model translation

This phase entails the description of the procedure carried out to code the model,

in other words, to represent the real system with the software AnyLogic. The

aspects explained in this section regard the translation of the conceptual model into

computer simulation program representations.

The model aims to represent the critical section of the bottling line of our case

study. It is composed of three main parts, that will be introduced and explained

in the following sections: graphics, flowchart and statecharts. A fourth section is

added in order to explain how the format changes are modelled.

Graphics

The software AnyLogic allows the model to have different graphical levels of detail,

linked with the aimed level of detail of the study. In this case study, it is not that

important the graphical issue since the main purpose is to increase the performance

of the system and it can be done also without a rich design. For this reason, just few

elements of the Space Markup palette have been used to depict the critical section

of our bottling line in an easy way and a 3D object as a bottle to stand for the batch

of bottles. The buffers are therefore represented with paths and the work-stations

with rectangular nodes.

Figure 6.24: Critical section of the bottling line in the model
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Flowchart of the system

The simulation model works following the logic created by the user, called flowchart.

This is made with the blocks of the Process Modelling Library.

Figure 6.25: Flowchart of the model

The agents are generated in the block source with an arrival rate of 33000 bot-

tles/hour, converted into 0,091 minutes/batch. The selectOutput5 directs the agents

towards the right buffer: buffer1RB if the bottles are returnable; buffer1OWB if they

are one-way bottles. The agent is moved along the first path by one of this Conveyor

block, to reach the first work-station. The work-stations are inserted in the model

as resources initialized by the Resource Pool block.

Figure 6.26: Work-stations

When the agent arrives at the work-station, it enters the restricted area and then it

is seized by the resource. It reaches the delay block and it waits there for a delay

time that corresponds with the cycle time of the machine, set at 0,12 minutes/batch.

When the operation is completed, the agent is released, and it exits the restricted

area to proceed along the line. It flows along the second buffer until the work-

station labeler is reached. The functioning of the operation is the same as the

previous station. Once the operation of labelling is completed as well, the agent

exits the system through the block exit. In the real line, it will go to further work-
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stations but the system of the case under analysis finishes here. In conditions of

normal functioning, the agents flow along the line with a nominal speed of 0,12

minutes/batch, whether they are on buffers or work-stations. This condition is not

always present since these elements are subject to failures that stop their functioning

for a certain amount of time until they are repaired, or because of some action of

set-up due to a change in the format that is going to be produced or to predictive

maintenance. These stops are operated through the use of statecharts. The way

through which they have been managed is discussed in the next paragraphs.

Managing the failures with statecharts

A thorough analysis of the data sample of the Times to Failure and Times to Repair

has been carried out since this is a critical aspect of the system. Failures influence

the system and decrease the performance of the line. More often the failures occur,

more time the elements of the line subject to failure are stopped and the production

output rate decreases. The bottleneck is characterized by many causes of failure

and some elements are subject to more than one cause of failure too, as seen in 6.5.

For example, the bottle-washer can be stopped by either a stuck while loading the

bottles into the machine or while unloading them after the operation of rinsing, but

also due to a problem of synchronization. The labeler instead can be stopped for a

failure due to a wrong positioning or a label that is not well stuck on the bottle.

For these underlined reasons, the model presents a statechart for each kind of fail-

ure, for each work-stations and buffer. The set-ups are managed with statecharts

too. Moreover, have been added functions, parameters and variables; they will be

explained moving on.
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Figure 6.27: Statechart of a failure with its states

In our case, the statechart is basically composed of three different states. The first

one, waiting, is active before the system starts. When the first agent is created,

a trigger activates the working one and the machine (or the buffer) starts to run.

After the Time to Failure, the state failure is triggered and a code suspend() (or

stop() for the buffer) stops the machine. A new code resume() acts when the Time

to Repair is over and the machine starts to work again.

The one just discussed is the simple case when an element of the line is subject to

only one failure or stop. This situation happens with the second buffer, for which

it has been observed only one cause of failure, due to a bottles block during their

flowing on the conveyor. For the rest of the elements of the system, at least two

causes of failure have been detected: two for the first buffers and the labeler, three

for the bottle-washer. These sets of failures are managed with more statecharts in

a single agent diagram and some codes and functions either in the states and in the

transitions. The way to manage more failures set in our simulation environment

follows the logic for which every time a failure occurs, it is verified whether there

are other active failures or not. In the latter case, the failure just occurred is the

dominant one and it will manage the resume(); otherwise, there is a comparison

between the Time to Repair of the failure occurred and the remaining repair time of

the other active failure (failures). The biggest amount of time states the dominant
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failure, that will be the one responsible for the resume() of the machine (buffer).

This logic is shown in the flowchart below, where there are two random failures (A,

B), with their Time to Repair and Time to Fail (TTFA, TTRA, TTRB), that acts

on a machine.

Figure 6.28: Flowchart of the operation of the statecharts

As stated before, the computational work implies functions and parameters, that

are key elements in the creation of a model with the software AnyLogic. They are

written in a Java language and they are needed to operate all the logic explained

before about the failures. Moreover, codes are also written inside the transitions

and the states. The functions that we have used are:

• updateTTR. When called, it swaps the Time to Repair presents in the col-

lection ttr with the remaining time until the repair is over through another

function restTime. The collection ttr contains the values of the TTR of the

failures: 0 if the failure is not active, a certain amount of time otherwise. The

code for this function is:
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Figure 6.29: Function updateTTR

• restTime. When called, it initializes a double variable rest to which assigns

a value if a failure is already ongoing. This value is equal to the remaining

time of the Time to Repair related to the ongoing failure. The code for this

function is:

Figure 6.30: Function restTime

Though in our model the coding method has been repeated for all the work-stations

and the buffers, the following procedure represents the way used to code the state-

charts that manage the failures of the flowchart 6.28. It is a generic approach that

can also be used in other systems.

Each statechart is made by:

• States: waiting, working and failure;

• Transitions ttf and ttr. They are triggered by a timeout that follows the

probability distribution related to that availability parameter.

• Variables: restartA and restartB are used to check which is the dominant

failure when it is time to restart the machine; maxTTR is a boolean variable

used to store the value of the current maximum Time to Repair.
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Figure 6.31: Statecharts of Failure A and Failure B of the machine

The codes are written as entry actions inside the status failure and inside the tran-

sition of the Time to Repair, that links the failure state to the working one. It is

explained the meaning and the functioning of the statechart of the failure A taking

into consideration that the procedure to code the failure B is similar.

When a failure occurs, the function updateTTR is called and it is calculated the

maximum ttr between the active ones. It is also initialized the position 0 of the

ttr collection with the value of ttrA. An if-else statement declare which action is

carried out. If there is not another ongoing TTR transition, the function suspend()

is called and the machine stops to work, the double variable restartA is assigned to

be true and the dominantTTR is declared to be the one that occupies the position

0 inside the ttr collection (equal to failure A; while the Time to Repair of the failure

B occupies the position 1).

Instead, if the transition ttrB is active (failure B has already stopped the machine)

it is checked whether the Time to Repair A is the biggest one respect to the other

ongoing failure. The Time to Repair of the ongoing failure B, during the comparison,

is meant as the time remaining until ttrB is over. It is so assigned a true value to

the restart variable related to the failure with the maximum Time to Repair and

false to the other one.
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Figure 6.32: Code of the state failureA

The transition ttrA contains the code that restart the machine if the variable restA

is true. Moreover, it initializes the boolean variable restA to false that it is its

default value and to 0.0 the position related to the ttrA in the collection ttr.

Figure 6.33: Code of the transition ttrA
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Format changes

As already introduced, the line works different kinds and formats of bottles according

to the demand (weekly product mix). This fact brings us to two decisions:

• it is needed to create one model of each week, that differs on the formats

processed and the set-up times;

• it is required a way to model the change of format in order to reach the desired

product mix.

Setups have their own diagram and the stops are managed in the same way of

the failures. In 6.18 are present the times for the set-up related to the format

change, that are inserted into the model as variables. The Time to Setup is a

unique value while the Setup Time is inserted into the model with a triangular

distribution according to assumption 7.

Figure 6.34: View of Setup’s diagram in AnyLogic

AnyLogic allows using of tables, collections of related data held in a structured

format within a database. It consists of fields (columns), and rows. It is possible to

easily import a ready-to-use database with data in the AnyLogic project or create

a database table(s) in the model and enter data manually. Since that, a table is

created with the information regarding the different formats of the week such as

format (letter), batch length, line and type (returnable or one-way). Moreover, the
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table contains also the changing time, when the production of one format switches

to the production of another format. In fact, reproducing several runs has helped to

find out the production time needed to reach the correct percentage of each format,

according to the weekly mix. The following image depicts the database table related

to the first week.

Figure 6.35: Database table for the first week model

The data in the table can be inserted in the form of a variable of different type (int,

double, boolean, String). They are attached to the agent once it exits the Source

block by means of codes in the ”On exit” section of the block, based on the current

value of the related variables. The change of the format is managed by the changing

time present in the database table; when it happens, the Dynamic Event Switch

Format is created whose purpose is to attribute information about the new format

to the current ones.

The figure below illustrates the items such as variables that gather the outputs, the

dynamic event Switch Format and the variables that characterize the production of

the first week.
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Figure 6.36: Items related to the format change

This attribution of the parameter to the agent is important for different reasons:

• it allows to characterize the agent and make it be representative of that par-

ticular format on production;

• it directs the agent to the first buffer it belongs to;

• it allows calculating an accurate output. The output is indeed calculated by

a code in the Sink block: when an agent arrives, the output variable of the

corresponding format is increased by 1.

Data collection

Since the object of study is the performance of the system, variables and elements

of the Analysis palette to collect statistics during the runs have been added to the

model. They are useful to:

• calculate the Overall Equipment Effectiveness of the machines;

• collect availability and efficiency parameters of the machines: availability, per-

formance, MTTF, MTTR;

• calculate the product mix;

• achieve other performance measures: throughput of the machines and of the

line.
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6.2.4 Verification

The verification-phase consists of running the model many times to be assured that

the codes work and that the model does what is supposed to do. It has also helped

to change and improve the model during the whole building.

Before the validation, it was needed to run the model with 1000 replications. In

fact, since the model is stochastic, the result of a single model run might not be

representative of the system. This is due to the randomness of the simulation. For

this reason, it is required a proper number of replications with independent random

numbers in order to make valid conclusions. The approach used to determine the

enough number of replications for a simulation is practical and it requires to create

a steady-state plot. A steady-state plot is a plot of the average over the number

of replications. It allows to find out graphically the number of replications from

which on the average result is stable (it does not change a lot more replication after

replication).

Figure 6.37: Steady-state plot to investigate the number of replications

In the plot, it is shown that the steady-state, where the values of the production

rate become approximately constant, it is reached with about 300 replications.
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6.2.5 Validation

In order to achieve the validation, parameters and performance values are checked

to determine whether or not the simulation model adequately represents the real

system. The technique used is to statistically compare the output of the simulation

model to the output from the given input. The outputs considered are the OEE of

the line, the production rate (bottles/hour) and weekly product mixes. For both the

criteria, a result can be accepted only if it does not differ more than 2% compared

to its target value.

The results obtained from the model runs after 300 replications are shown in the

following tables and compared with the given ones. The AS IS situation reflects the

values of the original line object of the study.

Effectiveness values

Figure 6.38: Target values VS Simulation results: OEE and productivity

Weekly Product mix

Figure 6.39: Target values VS Simulation results: Product mix 1 and 2
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Figure 6.40: Target values VS Simulation results: Product mix 3 and 4

Validation

It is possible to state that thanks to these results the model can be validated and

used to run experiments. In fact, the results show that the proposed model has an

acceptable level of confidence in the expected and required performances.

Hence, the model is ready to perform experiments.
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Chapter 7

Case study: Experimental analysis

and improvements

Model simulation runs are carried out to see at first the as is situation, expressed

mainly with the values of the Overall Equipment Effectiveness and the production

rate. The first optimization regards the sequence under which the lots of different

formats are processed in the four weeks of study (Format sequencing problem). The

aim is to reduce the total setup time, that implies a reduction of the makespan.

This period of analysis is divided in the four weeks according to the weekly rate of

updating of the production plan.

Afterwards, set the optimized scenario, it is performed a Parameter Variation ex-

periment where the length of the second buffer is varied in order to maximize the

throughput (Optimal Buffer Sizing). In fact, in the current situation, the second

buffer is not able to effectively decouple the operations of the bottle-washer and the

labeller. That is, it does not guarantee its proper function. The buffer has indeed

the aim of allowing process continuity and should be placed between two critical

areas from the point of view of the micro-downtimes, making it possible for each

machine to continue operating also after the interrupting of the adjacent machines

(Gershwin, 1992). An optimal buffer size allows to improve the OEE and maximize

the throughput of the line.

To sum up, the implemented methodology sees an interaction between combinatorial

optimization and simulation modelling in order to increase the performance of the

automated bottling line. The procedure is shown in the following scheme.
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Figure 7.1: Experimental methodology

AnyLogic is used to recreate the line as a model, collect the data on the as-is

situation and carry on the buffer optimization while the codified heuristic algorithm

(Karg-Thompson algorithm) is helpful to find out the optimal format sequencing.

An economic analysis is performed on the most interesting scenario by means of the

Net Present Value method.
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7.1 AS IS Situation

The first thing to do when performing an experiment is to collect the data about the

current situation, in order to use them as a comparison with the further improved

suggested scenarios. Some values already seen in 6.2.5 during the validation phase

are now recalled, they regard the effectiveness parameters such as Overall Equipment

Effectiveness, production rate, total output and format’s output of the line during

the four weeks object of study. In addition to them, there are the current weekly

sequences with their corresponding total setup time for the format change. The

simulation results of the AS-IS situation have been divided into the four weeks;

gathered, the four weeks represent the starting scenario of the experimental analysis.

Week 1

The current situation of the first week of production is shown in the table. The

figure below shows the current sequence of formats processing.

Figure 7.2: Results from the simulation: Week 1 AS IS

Figure 7.3: Current format sequence: Week 1
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The production rate and the output consider the total number of bottles and there-

fore they are not dependent on the type of format. Overall Equipment Effectiveness

is calculated as the ratio between the actual production rate and the nominal pro-

duction rate. The current sequence results into a total setup time for format changes

that is calculated from the set-up matrix (thus, to be considered as theoretical) and

insert into the model as a variable. The changeover time, in this case, 1650 minutes,

is one of the factors that decrease the availability and therefore the effectiveness

of the line, like failures and the time spent still because of the action of predictive

maintenance that happens once a week.

Week 2

The current situation of the second week of production is shown in the table, while

the figure below indicates the current sequence and the total setup time due to the

arrangements for the next productions. The sequence includes the first lot of the

previous sequence, that is C. The resulting setup time is 2525 minutes.

Figure 7.4: Results from the simulation: Week 2 AS IS

Figure 7.5: Current format sequence: Week 2
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Week 3

The current situation of the third week of production is shown in the table, while

the figure below indicates the current sequence and the total setup time due to the

arrangements for the next productions. The sequence includes the first lot of the

previous sequence, that is E. This current sequence entails a total theoretical setup

time for format change of 2580 minutes.

Figure 7.6: Results from the simulation: Week 3 AS IS

Figure 7.7: Current format sequence: Week 3
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Week 4

The current situation of the last week of production (fourth) is shown in the table,

while the figure below indicates the current sequence and the total setup time due

to the arrangements for switching the formats production. The sequence includes

the first lot of the previous sequence, that is E. The total setup amounts to 1740

minutes.

Figure 7.8: Results from the simulation: Week 4 AS IS

Figure 7.9: Current format sequence: Week 4

146



7.1.1 Overall view of the first scenario

The first scenario’s values are collected as monthly OEE derived from the average of

the four weeks’ OEE and an average production rate, the average and total output.

The total amount of bottles produced for each format is also present. After the tests

and the suggested improvements driven from them, the As Is values derived from

the current settings will be compared with the new ones in order to evaluate each

proposed solution from a technical standpoint.

Figure 7.10: Effectiveness values of the AS IS scenario

Figure 7.11: Bottle formats’ output
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7.2 Format sequencing problem

The first improvement wanted to be made regards the sequencing. Given the char-

acteristics of the line, this can be called Sequence-dependent setup times scheduling

problem. In fact, setup time depends either on the processing lot and on the next

one in the sequence. The total amount of setup time is equal to the makespan; there-

fore, the aim is to reduce it in order to gather a greater amount of available working

time. Since the cycle time of the bottleneck is equal either for the work-stations and

the buffers, this problem can be reduced to a single machine scheduling problem:

an optimized starting sequence is valid in order to increase the overall effectiveness

values. The notation for this kind of scheduling problem is:

1|sjk|
n∑

i=1

Ci

The solving method has been introduced in 2.6. It concerns the Karg-Thompson

heuristic algorithm that has been codified in the programming language Python. By

inserting the current sequence and launching the program, the algorithm is iterated

and the optimal sequence with its related total setup time is given.

7.2.1 Execution of the program

The interface of the program is very simple. It is necessary just to enter the list

of the lots of formats (jobs) to be processed during the week as input. The figure

below shows the procedure done for the sequence of the first week.

Figure 7.12: Input phase in Python

The outputs are the optimal sequence and the total setup time related to it.
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Figure 7.13: Output of the program

7.2.2 Results

The procedure repeated for all the four weeks gives back the following new sequences:

1. HHHFEEEEEDDDDDCCCCCIIIIIJJJJJ (1020 minutes of setup time)

2. J-GGGGGGGGGGGHHHHHHHHHFFFFFFEEEEEEEEEDDDDDDDC (1490

minutes)

3. C-CCDDDDDHHHHHHHHHGGGGGFFFFFFFFEEEEE (1120 minutes)

4. E-EEEEEFFFDDDDDAAAHHHHKKKKKLLM (1420 minutes)

These new setup times are compared with the ones related to the starting sequences.

Figure 7.14: Results from the new sequences
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It is possible to notice that with the optimized sequences the total setup time has

been reduced as regards all the four sequences, with a higher impact on the second

and the third ones. It results in a sequencing more balanced and effective. A small

improvement could have been reached even without the algorithm; a simple hint is

indeed to work in series the lots of the same format since they require the smallest

setup time. The entity of these improvements is evaluated by implementing the

optimized sequencing in AnyLogic’s model.

7.2.3 Evaluation of the improvements with AnyLogic

The format sequences achieved by means of the algorithm are supposed to increase

the effectiveness values of the line. To know how much the OEE, the production

rate and the throughput of the line would be increased if the format were processed

following these new sequences we need to implement the new scenarios in AnyLogic.

In the AnyLogic’s model the current setup times in the changeFormat statechart

are substituted with the ones figured out in the previous phase. The results from

the simulation runs are reported.

Figure 7.15: Simulation output of the new scenarios

Figure 7.16: Monthly improvement of the line

The outputs from simulation show how the line effectiveness could increase by chang-

ing the order under which the different lots of formats are worked, the so-called

sequence. The OEE increases by over 6% and with the new settings the line would

produce 1500 more bottles per hour.
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7.3 Optimal buffer sizing

The second action performed to improve the system regards the buffer capacity,

strictly linked to the buffer’s length. The buffer under analysis is the second one,

considered not able to effectively decouple the operations of the bottle-washer and

the labeller. It must mitigate the effect of the disturbance caused by failures and

micro-downtimes and let the n+1 machine continue working even though the n is

stopped. To perform this test, we use the Parameter Variation Experiment of Any-

logic. It affords the opportunity to run the model with different model parameters

and analyse how some certain parameters affect the model behaviour. In the figure

below it is possible to see the pan of this experiment in Anylogic.

Figure 7.17: Pane of the Parameter Variation Experiment in the software Anylogic

As stated in 6.1.6, the simulation time is 10080 minutes and the number of repli-

cations per iteration is set to 300. This number of replications derives from the

analysis of the steady-state plot in 6.37. The parameter set to vary in our test is the

length of the second buffers. The length of the first buffers is fixed while the length

of buffer 2 varies between 8 and 56 meters. The step this parameter will increase

its value to reach the maximum is set to 8. The purpose is to assess the impact

in terms of OEE and productivity of an increase or decrease in the length of the

intermediate buffer through simulation. The final aim is to verify whether a modify
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in the layout would improve the effectiveness of the line or not.

The experiment will concern either the weekly scenarios, set with the optimized

sequence and some single format situations. Thus, the study is split into two searches

that can produce useful insights in order to decide the optimum buffer sizes:

• Local optimum - running the test under the assumption that the line processes

only a single format of bottles, therefore in this model setup times for format

changes are not present;

• Global optimum - test on the weekly models with optimized sequencing.

Local optimum

The local optimum research regards the three main produced formats D, F and H.

Together they cover about the 65% of the total production: D (18,3%), F (20,5%),

H (26,5%). Because of this, they may have a certain weight on the choice of the

suggested buffer’s length.

Figure 7.18: OEE vs buffer length (m) variation - Formats

152



The plot shows as the buffer length, and therefore the capacity, has a significant

effect on the increase in the line efficiency till 16 meters for the format D, 32 meters

for F and 40 meters for the format H; with further increase in the buffer size, the

increase in efficiency is only marginal. These are the local optimum; if the line was

mono-format then a change of the buffer length to these value would allow a great

performance as regards the effectiveness.

Global optimum

Global optimum means a buffer length that, if implemented in the system, would

guarantee an increase of the weekly performance measure of the line such as OEE and

production rate. Finding out the optimal buffer size would result in increasing the

throughput of the line; this is the purpose of the simulation tests. The results from

the parameter variation experiments are to be compared with the local optimums

and afterwards supported by an economic analysis. The tests run on the four weeks

gives back the following results.

Figure 7.19: OEE vs buffer length (m) variation - Weeks

The plot shows how the increase of the length of the second buffer produces a

significant effect on line efficiency from 24 meters on. Indeed, the average OEE
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value changes from 65,7% with 8 meters of buffer length to 67,5% with a length of

the second buffer equal to 24 meters. After 40 meters of length, corresponding with

67,5% of OEE and a productivity close to 16900 bottles/hour, a further increase in

the buffer size results into a null or only marginal increase in efficiency. Since the

aim is to maximize the throughput of the line, a buffer size of 40 meters is considered

as the optimal one. The results in the following plot and table are calculated as the

average of the values of the four weeks simulations.

Figure 7.20: Plot: OEE and Production Rate vs buffer length (m) variation

Figure 7.21: Table: OEE and Production Rate vs buffer length (m) variation
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7.4 Analysis of the results

The starting scenario had an average monthly OEE of 59,4% and average produc-

tivity of about 14850 bottles per hour. The simulation’s results state that the ad-

justment of the second buffer size by itself would bring an improvement in the OEE

by 2,5% while acting only on the sequence would increase the OEE by 6,3%. The

jointly implementation of an optimized sequencing and a modification on the second

buffer’s length from 8 to 40 meters would instead increase the values of OEE by 8%

and the production rate by 13%. The plot below depicts the actions carried on in

order to improve the effectiveness of the line with the related effectiveness values.

While the optimal sequencing does not imply an additional cost to be implemented,

the suggested improvements regarding the buffer sizing do. Therefore, they need to

be supported by an economic analysis.

Figure 7.22: Suggested improvements and simulation results
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7.5 Economic Analysis

The final step relates to the cost-benefit analysis to evaluate the solutions proposed.

Economy data are fictitious. A solution proposed to improve the effectiveness and

therefore the throughput of the line was an optimal buffer sizing able to mitigate

down-times that affect the line. The solution that maximizes the throughput of the

line suggests a change in the length of the second buffer from its original 8 meters

to 40 meters; this could guarantee a great impact in the increase of the effectiveness

parameter of the line.

The cost of investment and the recoverable OEE, as well as the payback period,

have been calculated. The recoverable OEE is considered as the increase in the

value from the scenario of optimized sequencing. The cost of the investment to

increase the length of the second buffer is assumed to be e 1000,00/m. The labour

cost of the project and the rearrangement of the layout are assumed to amount to

e 8000,00 and about e 10000,00, respectively. The modification of the buffer length

brings additional fixed costs of the period; these cost items form the negative factor

of the cash flow of the period in the NPV formula.

Figure 7.23: Costs of the new scenario
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Given an increase in productivity of 461 bottles/hour from the scenario of optimized

sequencing, the annual increase amount to about 3590358 bottles. The contribution

margin for the first level has been calculated as the production increase for the

unitary contribution margin without fixed costs. The unitary contribution margin

is supposed to be independent on the format and it is considered to vary in a range

from e 0,01 to e 0,25 per bottle. For the second level, incremental fixed costs such

as costs for maintenance, cleanings, utilities, work-in-process and others have also

been considered.

Figure 7.24: Contribution margin calculation

With the second level contribution margin the payback period was calculated, as

well as the cash flow, using the Net Present Value (NPV) index for the following

weeks and assuming an increase in production with an interest rate of 5 percent.

NPVi = −C0 +
N∑
t=0

Ct

(1 + i)t
(7.1)

where C0 is the initial investment, C is the cash flow and i the interest rate.
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Figure 7.25: Payback period calculation

Results show that the payback period decreases as the contribution margin increases.

With a contribution margin of e 0,01 the period of time required to recoup the funds

expended in the investment, or to reach the break-even point, is equal to 3 months

while this period decreases if the contribution margin increases.

Figure 7.26: Payback period graphic with variable CM
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Conclusion

Manufacturing companies have been facing a period in which the market is charac-

terized by large variability in the requests of the customers. The aspects of flexibility,

reduced lead time and differentiation must be a core issue mainly in companies that

produce high volume and different product mixes such as the ones that belong to the

food and beverage sector. Only adapting to the changes in a quick way and raising

the effectiveness values can let a company stay competitive in the market. Simu-

lation is the best tool that can be used to improve manufacturing systems since it

allows to search for a good feasible solution without disrupting its operation, saving

time and costs.

In literature, different works have been found out where researchers have developed

simulation models to solve manufacturing cases: Seraj et al. (2008) achieved an

increase in the production rate of a rusk production line by 50% replacing a machine

with a new one, Chassapis et al. (2009) used simulation to select a preventive

maintenance schedule for a production line. Hecker et al. (2010) analysed and

optimized a bakery production line proving that high utilization of the equipment

would increase the line productivity, therefore, the line performance. Hesmat et

al. (2013) applied simulation to solve the bottleneck of a cement production line;

the results achieved showed that a modification of work-stations utilization and

buffer capacities would bring an increase about more than 15% of the production

rate. Aamen et al. (2018) designed a simulation model and used it to evaluate the

effect of the buffer capacity and the repair rates of the machines on production line

efficiency; they achieved an increase by over 10%.

The purpose of this thesis project was to use simulation to improve the OEE of an

automated bottling line. The aim is to operate on the inefficiencies losses that affect

the line, that are due to failures, set-ups for predictive maintenance and set-ups for
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format changes, the capacity of the buffers between the work-stations. Besides, the

line is characterized by product mix constraints. The problems faced by the project

are the sequencing according to which the different formats of bottles are weekly

produced and the size (capacity) of the buffer of the bottleneck. The case study

has been carried out following the General Methodology for Applying Simulation

to Problem Solving (Rossetti, 2015). Input data have been studied and analysed to

be used in a discrete-event based simulation model in AnyLogic that would reflect

the behaviour of the starting one. The most interesting features of the simulation

model created are the flowchart that controls the actions of the bottles along the line,

the statecharts that allow managing precisely the failures that affect the different

elements of the line and the functions that manage the change of formats. After

reached the validation, the model was ready to perform simulation runs.

The first scenario simulated collected the results of the as-is situation, the starting

situation: 59,37% of OEE and about 15000 bottles/hour of production rate. The

first optimization regards the sequence under which the lots of different formats

are processed in the four weeks of study (Format sequencing problem). The aim

is to reduce the total amount of setup time in order to gather a greater amount

of available working time. The sequencing problem of our bottling line is classified

as sequence-dependent setup times scheduling problem because setup time depends

either on the processing lot and on the next one in the sequence. This first matter

has carried out two main considerations:

• Literature presents a great deal of solving techniques as regards scheduling

problems. Therefore, when facing one, it is suggested to use the methodology

that best fits with the problem to solve.

• The optimal sequencing problem happened to be resolved in a faster way by

means of a heuristic algorithm rather than using simulation. This is due to a

matter of computational time and the ease of using the algorithm.

Thus, the format sequencing problem has been solved codifying the Karg-Thompson

algorithm in the language program Python. Inserted the original sequence of format
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lots to be processed, the code run gives as output the optimal sequence with its

corresponding setup time. The new scenarios have been implemented in AnyLogic

model to collect the improvements in terms of OEE and productivity. The OEE

increases by over 6% and with the new settings the line would produce 1500 more

bottles per hour.

Afterwards, it is performed a test to achieve the optimal buffer size by means of

the Parameter variation experiment in AnyLogic. The purpose is to assess the

impact in terms of OEE and productivity of an increase or decrease in the length

of the intermediate buffer. The maximization of the throughput corresponds with

67,5% of OEE and productivity close to 16900 bottles/hour. Ultimately, the jointly

implementation of an optimized sequencing and a modification on the buffer’s length

would increase the values of OEE by 8% and the production rate by 13%. The figure

below summarizes the steps carried out to improve the automated bottling line.

Figure 7.27: Final evaluation of the improvements

The dissertation has carried on a methodology that improved the OEE of an au-

tomated bottling line through the combination between the use of both simulation

modelling - by means of the software AnyLogic - and combinatorial optimization

techniques through the implementation of the Karg Thompson’s algorithm.
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The considerations pointed out suggest that a simulation model is a powerful tool

either for having a benchmark of a manufacturing system to compare with improved

situations and to be directly modified in order to gather values of a new possible

scenario. AnyLogic has turned out as a very interesting multimethod modelling

simulation software. Its main features such as the drag-and-drop mode to create

the model, the suite of industry-specific tools gathered in its libraries, animation

and visualizations, the data interoperability, and more, supported by a basic knowl-

edge of the JAVA language, allow to create several environments and solve issues of

different kinds of system and enhance their performances.

The analysis of and the improvements on the system have pointed out that the

higher impact in terms of efficiency is due to the optimization of the format se-

quences, followed by the research for an optimal buffer size that would increase even

more the values of OEE and productivity (bottles/hour). The line still presents

margin of improvements, so future studies can be conducted to extend the devel-

oped model to test the performances in relation with a decrease or the elimination

of certain failures, by means of actions of TPM. Moreover, it would be interesting

to simulate a hypothetical replacement of machines with more performing ones in

order to bridge the gap between the input of the line and the production rate of the

current machines.
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Appendix A: Data Samples

Figure 7.28: Times To Failure (minutes)
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Figure 7.29: Times To Repair (minutes)
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Appendix B: Output Statistical Anal-

ysis Minitab R©

Figure 7.30: Probability distributions Identification for TTFs and TTRs
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Figure 7.31: Probability distributions Identification for TTFs and TTRs
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Figure 7.32: Probability distributions Identification for TTFs and TTRs
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Figure 7.33: Probability distributions Identification for TTFs and TTRs
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Figure 7.34: Probability distributions Identification for TTFs and TTRs
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