American University in Cairo

AUC Knowledge Fountain

Theses and Dissertations
6-1-2016

Scheduling of pipeline construction projects using simulation

Hany Mohsen Zahran

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation

APA Citation

Zahran, H. (2016).Scheduling of pipeline construction projects using simulation [Master’s thesis, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/280

MLA Citation

Zahran, Hany Mohsen. Scheduling of pipeline construction projects using simulation. 2016. American
University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/280

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/280?utm_source=fount.aucegypt.edu%2Fetds%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/280?utm_source=fount.aucegypt.edu%2Fetds%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

School of Sciences and Engineering

SCHEDULING OF PIPELINE CONSTRUCTION PROJECTS USING
SIMULATION

A Thesis Submitted to

Department of Construction Engineering

in partial fulfillment of the requirements for
the degree of Master of Science

by Hany Mohsen Zahran

(under the supervision of Dr. Khaled Nassar)
January/2015

ABSTRACT

Scheduling of Pipeline Construction Projects using Simulation

Hany Mohsen Zahran

American University in Cairo

Repetitive Projects represent a large percentage of construction projects. They usually have
an immense importance for a nation’'s economy and future. Highways, tunnels, infrastructure
networks, high-rise buildings, housing projects, pipeline networks, airport runways, railways,
bridges, sewer mains and mass transit systems are all considered projects of repetitive
nature. Research that started to serve industrial purposes for the military efforts in World War
Il has been revised and improved to be employed for repetitive construction projects.
Obtaining an optimum schedule that would be achievable, feasible, and comprehensive by all
involved parties besides maintaining minimum overall cost and duration has been an
important objective. Another main objective was to maintain an optimal formation of various
types of crews and equipment that would avoid idle periods as well as work stoppages.
Various examples of mathematical models presented in the literature were presented as an
example to show their limitations. This research presents a simulation-based scheduling
model for pipeline construction projects. The model was developed with a simulation software
called “AnyLogic”; this software supports discrete events, agent based and system dynamics
simulation, presents an easy graphical user interface and utilizes Java coding. The model
consists of various types of pre-programmed objects that were used and connected together
to model the different stages of the project and resources involved within them. The model
also contains a simulation experiment that would be used to provide the visual presentation of
the construction process including the layout of the project and all kinds of utilized resources
moving within it. The final part of the model is the optimization module. This module has the
definition of the optimization objective, the optimization parameters and constraints. This
module would run the simulation experiment a numerous trials while changing the parameters
to get the optimal solution which is the optimal schedule for the project. This simulation model
would aid planners in scheduling, tracking and controlling the construction operations over the
lifetime of the project. It would present an important tool for top management to visualize the

impact of their decisions.

ACKNOWLEDGEMENTS

| wish to express my deepest gratitude and sincere appreciation to my supervisor Dr. Khaled
Nassar, for his unconditional support, valuable advice, constructive guidance and
encouragement throughout all stages of this study. His effort and suggestions to improve the
contents of this thesis are greatly appreciated. | would also like to express appreciation to
each of my committee members for the time and effort they gave to m y comprehensive and

final defense.

| am grateful and will always be indebted to my family, and especially my future wife, who
always encouraged me, believed in me and provided unlimited support during the course of

this study.

TABLE OF CONTENTS

LIST OF FIGURES..... oottt e e e e e e e e eaaaa s Vi
LIST OF TABLESooe oottt e e e e e e e e e e s s s e e e e e e e s s nnnnaraneeaaens viii
CHAPTERL1
INTRODUGCTION. ..tttttieei st ittt e e st e e e e s e st e e e e e e e s s s e eeeeeesasnnnssaeeeaeeeeannnnens 1
S O [1Yo [o 1T o S 1
1.2. Pipeline Construction scheduling.............ccccooeooi . 3
1.3. Considerations in the Planning and Control of Pipeline Construction 4
1.4, Problem Statement..........c..uviiiiiei e 5
1.5. Research ODbJecCtiVES........ccoooiiiiii 5
1.6. Thesis Organization............ccco oo 6
CHAPTER 2
LITERATURE REVIEW ...ttt e e e e e e nnnnaeneeeaeeeens 7
2205 I | 011 o T [T oo R 7
2.2. Traditional Scheduling TEChNIQUES..........cciiiiiiiiiii e 7
2.2.1. BarChart Methodccooee i, 7
2.2.2. NetWork TECHNIQUESutiiiiiieeii ittt 8
2.3. Techniques for Scheduling Repetitive Activities...............ccccc 9
2.3.1. Line of Balance (LOB)uuuiiiieeiiiiiiiiieiee e csiieee s e e e e eenineeeeae e 10
2.3.2. Linear Scheduling Method (LSM)cciiiiiiiiiiiiiiieeee e 11
2.4, Optimized SChedUIING.......cuviiiiee e 11
2.4.1. Operations Research Models............cccccciiii 12
2.4.2. SIMUlation MOEISouviiiiieeee e 13
2.5. Summary and CONCIUSION.........ccceeiiiiiiiiiiiieee e 14
CHAPTER 3
STAGES OF PIPELINE CONSTRUCTION ..ottt 15
1 700 R [011 (oo (3 T3 T o W 15
3.2 Stages of Pipeline ConsStruction............ccccccciiiiici 15
3.3 Summary and CONCIUSION............cooviiii 23
CHAPTER 4
DETERMINISTIC MODELSooeiiiiiiiiiiiiiit ettt e et e e e e e e e 24

4.1 (g T 1811 170 o 24

4.2 MethodOlOQYccoovviiiiiiiiiiiiii 24
o T (0] 0T 1T =T 1Y, Lo [R 25
4.3. 1 JONNSON'S RUIE ..ottt 25
4.3.2 Mixed Integer Programmingcoooovoooiiiiiii e 27
4.3.3 SIOPE HEUNSHIC oo 31
4.4 Summary and CONCIUSION.........uuuuiiiieeiiiiiiiiiere e e e e e e e s s esnrraereeaee s e e 33
CHAPTER 5
SIMULATION MODEL ...ttt 34
5.1 INFOAUCTION .ottt 34
5.2, SIMUIAtION SOfWAIE......ccoiiiiiiiiiiiie e 36
5.3. Model Development........ccccceiiiiiii 36
5.4. Summary and ConcluSioN.............cccccccciiii 75
CHAPTER 6
OPTIMIZATION MODEL ..ottt ettt 77
B.1. INIFOAUCTION ...citiiiic ittt 77
6.2. Optimization EXPErIMENT.........ccuiiieiiiiiiiiiiiiiee et e e e e s siereeeeeee e s eeeneees 82
6.3. Case Study DEeSCHPLIONueiiiiiie et e e e e 89
6.4. Application Of MOElcc.vvuiiiiiieiii e 91
6.5. Validation of MOGEloocuiiiiiiii e 96
B6.6. CONCIUSION ... 97
CHAPTER 7
CONCLUSIONS. ...ttt ettt e sttt e e e sn e e e e ensbeeeeeansaeeesanneeeeeannes 98
7.1. Summary of ReSearch..........cccccciiiiiii 98
7.2. Research ContributionS ... 99
7.3. Recommendations for Future Research.............cccccccoiiiiiiiiii, 100
F N o] =] Lo [5 NP PPPPPPPPPRE 102
APPENTIX B .o a e e e 106
N o] =] Lo [5 PP PPPPPPPIRE 110
REFERNGCES ..ottt e e 113

LIST OF FIGURES

CHAPTER 1

Figure 1-1 : Nord Stream and South Stream Pipelines...........cccocvcvvveeiiiiciiieieee e 2
Figure 1-2: Pipeline Construction Quantities in 2013...........cccciiiiiiieeniiiiiiieeee e 3
CHAPTER 3

Figure 3-1: Flowchart of Spread Method ACtIVItIESccovviiiiiiiiiiiie e 16
Figure 3-2 : Pipe Stringing ACHIVILYuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiisreeseeeeeeene. 19
Figure 3-3 : Pipe Welding ACHVILYccuviiiiieie et e e snee e e e e 20
Figure 3-4 : Trench EXcavation ACHVILY..........uuuuuuiiiriiiiiiiiiiiiiiiiiiiiiieeen. 21
Figure 3-5: Lowering pipes iN TrENCNES.........uuuuivviiiiiiiiiiiiiiiiiieiiiirrrrrererrerrrrr. 22
Figure 3-6: Pipeline Construction OPerationeeueererrirrrurrinnrnerrnrrrnmerrre. 23
CHAPTER 4

Figure 4-1 : MS Excel Worksheet Used for (MIP)cooooiiiiiiiiiiiiee e 30
CHAPTER 5

Figure 5-1: Typical Interface in ANYLOGIC........cooiiiiiiiiiiiiieiiiie e 37
Figure 5-2: Palette VIEW WINGOWuuuuuiieiiiiiiiiiiiereeerinnenerenrnnnern. 38
Figure 5-3: Layout of Pipeline Project in ANYLOQGICc.ccoiiiiiiiiiiiiiiieeiiiiieeeee e 39
Figure 5-4: First Window in “New Java Class” Wizard............ccccccuuvvvmnnnnenniininnnnnnnin. 41
Figure 5-5: Second Window in “New Java Class” Wizardccccvvvvevimiimneinnnnnnnnn. 42
Figure 5-6: Properties View for “Pline” Resource POOlc.cc.vvvvvvvvivviiiiininnieinninnn, 46
Figure 5-7: Resource P0oOIS DIiagram..........cccveeiiiiiiiiiiieeee e isiiieeesee e s s s sivnneeeee e e nanes 49
Figure 5-8: Complete Flowchart of MOdeluuvuviiiiiiiiiiiiiiiiiiiiiiiiiriirieeeeeeee. 49
Figure 5-9: Stage (1) — Creating ENtitieS..........uuviiiiiiiiiiiiiiiiiiiiieeeennnnnnnes 55
Figure 5-10: Stage (2) - PIiPe StNGING ..vvvvvveeeeiiiiciiieiieee e st e e enrraereeae e 61
Figure 5-11: Stage (3) - Pipe Bending and Weldingccccveeiiiiiiiiiiiiiiiinee s 65
Figure 5-12 : Stage (4) - Weld Inspection and Repair...........cccccccvvveeiiiiciiiiineeee s 68
Figure 5-13: Stage (5) - Joints Coating, Trench Excavation and Pipe Lowering 73
Figure 5-14: Stage (6) - Joints Welding and Weld InSpection..............ccccuveeeeeeeennnnns 75
Figure 5-15: Stage (7) - Trench Backfilling and Hydrotestingccccvvvvvveeennnns 79
CHAPTER 6

Figure 6-1: Properties View of Optimization Model.............cccvvvvviiiiiiiiiiiiniiiiiii, 82
Figure 6-2: Setting the Optimization OBJECtIVE..........ccvvveeeiiiiie e 83

Vi

Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Defining Optimization Parameters........ccccccvvviiiiiie e 85
Constraints Table in Properties VIEW........ocee, 91
Graphical Presentation for Optimization Modelcccooiiiiiiiiiiiinnnns 92
Map of South Valley Gas Pipelineccccccvviiiiii 93
Results of 50 Simulation RUNS..........ccuviiiiiiii e 95
Second Stage Optimization MOAElevvviiviiiiiiiiiiiiiiii. 97
Example of Used Sub-models........ccccccviiiiiiiiii 98

Vi

LIST OF TABLES

CHAPTER 4

Table 4-1: Job durations in MaN-hoUrSccccvveii i 25
Table 4-2: Completion times for jobs in man-hourscccccciiiie e, 26
Table 4-3: Dividing jobs int0 tWO SEtS.......ccooiiiiiiiii 26
Table 4-4: Completion times for jobs after applying Johnson'’s rule

(IN MANENOUIS) .ttt s 27
Table 4-5: Job durations in Man-hourscccceeiiiiiiii e 28
Table 4-6: Completion times for jobs in man-hourscccccciiii e, 29
Table 4-7: Decision Variable MatrixX (XjK)ueeeeeeeeeiiiieiieiieeee e eciiiieiee e e e e s eennveeeeeens 29
Table 4-8: Waiting Time MatriX (WiK)........oooviriiiiiiiieeeeeeee e 30
Table 4-9: Idle Time MatriX (HK)uueeeiioiiiiiiiii e 30
Table 4-10: Completion times for jobs in Man-hoursccccccccciiiiiiiii, 31
Table 4-11: Job durations in MaN-NOUISciiiiiiiiiiii e 32
Table 4-12: Completion times for jobs in man-hoursccccccecii 32
Table 4-13: Slope INdeX fOr JODSuviiii i 32
Table 4-14: Completion times for jobs in man-hourscccooiiiee e, 33
CHAPTER 5

Table 5-1: Names and Animation Shapes of Model Components.................cccceeee.. 40
Table 5-2: New Fields of Entity ClasScoovvviiiiiiiiiiiiieeeeeeeeeeeeeeeee e 43
Table 5-3: Arrays PrOPEITIEScccuvviiiieee e e ettt e et e e e e s e e e e e e e s nneraeeeees 53
CHAPTER 6

Table 6-1: Properties of “StationPropsSL”cceeveeeiiiiiiiiiiiieee e 84
Table 6-2: Values of Optimization Parameter “Strngl”cccccccvviiiiiiiiiiiiiiee, 85
Table 6-3: Properties of Arrays “stationProps2” to “stationProps14”cccccceee.n. 87
Table 6-4: Values of Optimization Parametersccccccccciiiicic 90
Table 6-5: Definition of 1% Constraint for Stringing Optimization Parameters........... 90
Table 6-6: Definition of 2"* Constraint for Stringing Optimization Parameters........... 91
Table 6-7: Constraints for Optimization Parameters...........cccccceiiccee 92
Table 6-8: Second Stage’s Resulting Sequence of Work for Pipeline Stations 97
Table 6-9: Final Sequence of Work for Pipeline Stations.............ccccccvvveeviiciviiennenn, 98

viii

Chapter 1

Introduction

1.1. Introduction

Pipelines transport crude oil and raw natural gas over long distances from producing regions
to refineries and processing plants, where these energy sources are converted into useful fuel
types such as gasoline, diesel and commercial-grade natural gas. Pipelines are also used to
transport these consumer-ready fuels from refineries and gas processing plants to large
terminals on the edge of towns and cities, where they can then be distributed to homes and
businesses. Pipelines are utilized for many reasons such as:
e Pipelines are more cost-effective than the alternative transportation options such as
tanker trucks or rail cars.
e They are more stable and reliable as they are not affected by any conditions such as
road or weather conditions
e They require significantly less energy to operate than operating trucks or rail and

thus, have a much lower carbon footprint.

Pipelines for major energy resources (petroleum and natural gas) are not merely an
element of trade. They connect to issues of geopolitics and international security as well. The
construction, placement, and control of oil and gas pipelines often take an important position
in state interests and actions. A notable example of pipeline politics occurred at the beginning
of the year 2009, wherein a dispute between Russia and Ukraine seemingly over pricing of
sold natural gas led to a major political crisis. Russian state-owned gas
company Gazprom cut off natural gas supplies to Ukraine after talks between it and the
Ukrainian government failed. In addition to cutting off supplies to Ukraine, Russian gas
flowing through Ukraine, which included nearly all supplies to Southeastern Europe and some
supplies to Central and Western Europe, was cut off, creating a major crisis in several
countries heavily dependent on Russian gas as fuel. To avoid another crisis, two new
pipelines, “Nord stream” and “South stream”, were constructed to connect Russia with central

and south Europe without passing by Ukraine.

Oil pipelines are made from steel or plastic tubes with inner diameter typically from 4 to
48 inches (100 to 1,220 mm). Most pipelines are typically buried at a depth of about 3 to 6
feet (0.91 to 1.83 m). The oil is kept in motion by pump stations along the pipeline, and
usually flows at speed of about 1 to 6 meters per second (3.3 to 19.7 ft. /s). Pipelines could
also be used as multi-product pipelines; they are used to transport two or more different

products in sequence in the same pipeline.

The Nord Stream and South Stream pipelines

SLOVENIA |

 Fnabdeaid

| HUNGARY

ALY |

J

Source: south-stream.info, nord-stream.com ‘

SULGARIA

Figure 0-1: Nord Stream and South Stream Pipelines (Insa Wrede, 2014).

Pipeline networks are composed, other than the pipe itself, of several pieces of
equipment that operate together to move products from location to location. The main
elements of a pipeline system are:

Initial injection station
It is also known as supply or inlet station, is the beginning of the system, where the product is
injected into the line. Storage facilities, pumps or compressors are usually located at these

locations.

Compressor/pump stations

Pumps for liquid pipelines and Compressors for gas pipelines are located along the line to
move the product through the pipeline. The location of these stations is defined by the
topography of the terrain, the type of product being transported, or operational conditions of
the network.

Partial delivery station
It is also known as intermediate stations; these facilities allow the pipeline operator to deliver
part of the product being transported.

Block valve station

These are the first line of protection for pipelines. With these valves the operator can isolate
any segment of the line for maintenance work or isolate a rupture or leak. Block valve stations
are usually located every 20 to 30 miles (48 km), depending on the type of pipeline. Even
though it is not a design rule, it is a very usual practice in liquid pipelines. The location of

these stations depends exclusively on the nature of the product being transported, the

trajectory of the pipeline and/or the operational conditions of the line.

Final delivery station

It is also known as outlet stations or terminals, this is where the product will be distributed to
the consumer. It could be a tank terminal for liquid pipelines or a connection to a distribution
network for gas pipelines.

The market size for oil and gas pipeline construction experienced tremendous growth. For
2013 only, operators planned to build more than 15,300 miles of oil and gas pipelines
worldwide at a cost of more than $50 billion. For 2012 only, companies had planned nearly
8,900 miles at a cost of more than $39.6 billion (Smith, 2013). For projects completed after
2013 (Table 2), companies plan to lay more than 44,800 miles of line and spend roughly $144
billion. It is estimated that $193 billion will be spent on onshore pipeline projects worldwide
through 2015, according to data in energy business analysts Douglas-Westwood’s third
edition of The World Onshore Pipelines Report 2011-2015. (Worldwide Onshore Pipeline
Construction Market Appears Strong through 2015, 2010)

PIPELINE CONSTRUCTION IN 2013' At
4-10in. 12-20in. 22-30in. 32+ in. Total
Area — Miles
GAS PIPELINES
us 27 961 835 393 2,216
Canada 149 48 76 273
Latin_America — 155 - 155
Asia-Pacific? 20 939 1,553 2,512
Europe? 50 230 132 412
Middle East 34 227 308 569
Alfrica 26 - — 26
Total gas 53 1,369 2,279 2,462 6,163
CRUDE PIPELINES
us 164 516 485 1,165
Canada 152 129 - 281
Latin_America 129 - 129
Asia-Pacific? ot 570 1,553 2,123
Europe® 20 175 195
Middle East 135 255 — - 390
Africa - 186 186
Total crude 135 720 1,401 2,213 4,469
PRODUCT PIPELINES
us - 2426 530 2,956
Canada - 719 719
Latin_America 19 156 606 781
Asia-Pacific? = 270 — — 270
Europe? 0
Middle East —_ —_ -_ 0
Africa — - — - 0
Total product 19 3,571 1,136 0 4,726
WORLD TOTAL
Gas 53 1,369 2,279 2,462 6,163
Crude 135 720 1,401 2,213 4,469
Product 19 3,571 1,136 - 4,726
Total 207 5,660 4,816 4,675 15,358
"Projects planned to be completed in 2013. *Regions east of the Ural Mountains and
somfco{l Caucasus Mountains, excluding the Middle East, *Regions west of the Ural

Mountains and north of the Caucasus Mountains.

Figure 0-2: Pipeline Construction Quantities in 2013 (Smith, 2013).

1.2. Pipeline Construction scheduling

Due to the economical and sometimes political significance of pipelines projects, they are
usually constructed under a very tight schedule. They require working under difficult
conditions in remote locations such as mountains, jungles, deserts, and even the Arctic Circle

which causes logistical constraints of deploying equipment, materials and labor. They

3

sometimes require working within different countries which means different labor and
equipment conditions. They involve various types of labor and equipment that work
simultaneously or consecutively along the pipeline path. Avoiding delays during the
construction phase of pipeline projects can yield significant benefits to owners, pipeline
contractors, and the public. Delays in completing pipeline construction projects not only result
in higher costs to owners and contractors, but also add to the cost passed down to the end
users. Although some of the variables causing delay are difficult to control, good planning and

scheduling of pipeline construction projects can reduce the time and cost of construction.

Pipeline construction falls under the category of repetitive construction. Other examples
of repetitive construction can be highways, multiple housing projects and dike construction
projects. In repetitive construction, the same activities are repeated for a similar number of
units at different locations. Pipeline path is divided into number of segments or stations which
are covered by number of construction base camps. Accordingly, each station can be

considered a separate unit for which all activities of the project are performed.

Pipeline construction projects require resources to perform the same work in the various
stations by moving from one station to the next in the project. Because of this frequent
resource movement, an effective schedule is important to ensure the uninterrupted usage of
resources of repetitive activities between stations. Consequently, the waste from resource
waiting for preceding resources to finish their work should be eliminated to maintain continuity
of work. Maintaining work continuity leads to maximizing the learning curve effect and

minimizing the idle time of each resource.

Various scheduling techniques have been used for repetitive construction projects.
However, they have all proven not to be capable of providing all the benefits simultaneously.

Each technique had to overlook some aspects to reach an optimal schedule. Further

discussion of the disadvantages of using these techniques will be fully shown in Chapter Two.

1.3. Considerations in the Planning and Control of Pipeline
Construction

There are various challenges that should be considered in the development of an effective
model for the planning and control of pipeline construction. During the construction phase of a
project, job superintendents place resource utilization as a priority, thus creating resource

driven schedules will help reflect the actual construction process.

The first challenge is to develop a resource-driven scheduling model that incorporates
utilization of different kinds of resources. Due to The linear shape of the construction site that
spread over hundreds of kilometers, all the resource work together in each station from one
end of the segment, served by the construction camp, to the other. If any resource is detained

in one station for any reason, it shall hold the rest of resources used in the following activities

4

and leave them idle. In addition, several types of resources utilized in pipeline construction
are expensive and sophisticated that only one crew would be available for the whole
segment. Therefore, the utilization of each crew of every resource separately among the

various stations would help in obtaining the optimum schedule.

The second challenge is to develop a model that deals with the geographic nature of the
pipeline construction site. Pipelines are usually located in remote areas that are not served
with any type of infrastructure. There are a number of base camps that contain labor housing,
technical offices, material storage and equipment’s shelters and workshops. The location and
number of base camps that serve the project is decided based on the nearby populated
areas. An optimum schedule would take into account the travel time of the resources to the

site and back to the camp based on its location relative to the different stations.

The third challenge is considering realistic activity durations in the model. As the stations
of the pipeline varies in their conditions such as the soil type and the topographic nature, the
productivity of various resources and quantity of needed work are affected. As a result, the
activities duration becomes function not only of resources productivity but also the conditions

of each station.

1.4. Problem Statement

Scheduling of repetitive construction projects is done by several techniques. These
techniques shall be shown in the literature review in the next chapter. These techniques have
limitations in accomplishing some or all of the following requirements:

e Finding the optimal number of units that should be utilized simultaneously within an
activity

e Visualizing the entire project

e Ensuring work continuity.

e Satisfying resource constraints

o Dealing with probabilistic durations.

e Maintaining logical interconnections between various activities

e Providing assistance for planners and the management in justifying their decisions.

e Answering "what-if” questions.

1.5. Research Objectives

The main objective of this research is to study planning and scheduling of pipeline projects
and develop a model for scheduling and control of pipeline projects that addresses the
challenges outlined in the earlier section. In order to develop this model, the objectives of this
study are:

1)

2)

3)

4)

5)

1.6.

To study related literature focusing on scheduling of repetitive activities and

determine the problems that faced researchers in this field.

To develop simple models based on the literature to solve the scheduling problem
addressed previously and illustrate the limitations of these models

To develop a simulation model that represents the process of pipeline construction

and considers the special characteristics and unique features of pipeline projects.
To develop an optimization module that produces a resource-driven schedule

To implement the model on a real case study and study the difference between the
real and proposed schedule.

Thesis Organization

Chapter 2 presents a literature review of available scheduling techniques for repetitive

construction projects.

Chapter 3 explains the stages of pipeline construction projects. The sequence of activities is

explained showing the utilization of the different kinds of resources in each activity.

Chapter 4 presents the stages of creating the deterministic models found in the literature that

could be used for repetitive construction projects and the limitations of their use.

Chapter 5 presents the stages of constructing the simulation model which would represent the

different stages of pipeline construction

Chapter 6 presents the stages of defining the optimization module which would depend on the

simulation model to come out with the optimum schedule

Chapter 7 presents the results of the case study, summarizes the results of this research,

highlights its contributions and advises the recommendations for future research.

Chapter 2
Literature Review

2.1. Introduction

The main purpose of Construction Management is to deliver a project on time, within a certain
budget and in accordance to pre-defined quality standards. Time, cost and quality create a
triangle, which is called the fundamental triangle of project management. The planning of a

project is carried out in a manner to accommodate these criteria.

The creation of a realistic schedule also serves purposes other than the one stated
above, in fact its use is not just limited to the construction stage, and it is extended to the pre-
construction and post-construction stages as well. The schedule provides the necessary
insight for the project manager or his/her representative to identify the required resources and
plan for their timely allocation ahead of time. Cash flows, the assignment of work crews,
delivery of material and equipment allocation are such considerations. Schedules are also
appropriate tools for project control. In the post construction stage, project schedules serve as

a reference to facilitate construction claims and disputes.

Different types of construction projects are planned and scheduled according to their
characteristics, in order to achieve an optimum schedule in respect to the fundamental
triangle of construction management. Among the available categories existing in construction,
pipelines construction fall into the category of repetitive construction projects. Repetitive
construction projects are made up of a number of similar or identical units (El Rayes, 1997).
Examples of repetitive construction could be high-rise buildings, housing projects, highways,
airport runways, railways, bridges, tunnels, wind energy farms, water pipes and civil
infrastructure. Repetitive projects may be divided into two categories: (1) projects that are
repetitive due to a uniform repetition of a unit work throughout projects such as multiple
similar houses and high rise building; (2) projects that are repetitive due to their geometrical

layout such as highways, tunnels and pipelines.

This chapter presents a review of recent literature in traditional scheduling technigues for
construction projects in general, and special scheduling techniques for repetitive construction

projects in particular.

2.2. Traditional Scheduling Techniques

2.2.1. Bar Chart Method

Bar Chart method utilizes graphical approach to represent the project schedule by plotting the

activities against time. It was invented and developed by Henry L. Gantt during World War |.

7

The duration of each activity is represented by the length of the bar in accordance with the
time scale of the chart. Bar charts are still popular and are used in construction till now. Due
to Its graphical nature, it is easily understood by all levels of management and supervision,
thus becoming an effective means of communication between engineers and foremen. It is
also used as a tool to identify the required resources. Resource allocation and leveling is
often done using Bar charts. The major deficiency of this method is that it cannot illustrate the
interrelationships between activities, thereby failing to identify the critical activities, which
actually control the project duration (Chzanowski and Johnston, 1986; Stradal and Cacha,
1982).

2.2.2. Network Techniques

Network techniques were the next step after bar charts. Network diagrams had the ability to
graphically represent the activities and their relationships. By displaying the relationships
between activities, these diagrams effectively eliminated the main disadvantage of bar charts.
This way the Network techniques enabled the identification of critical activities that control the
project duration. They are either deterministic or probabilistic. (Chzanowski and Johnston,
1986)

The Arrow Diagram Method (ADM) and the Precedence Diagram Method (PDM) are the
two common deterministic network techniques available. These methods are also known as
the Critical Path Method (CPM). In ADM, activities are represented by arrows and nodes
connecting these arrows are considered events or milestones. In PDM, nodes represent
activities and connecting arrows represent the interrelationship among these activities. PDM
has a number of advantages over ADM; there is no need for 'dummy activities' in PDM, and
ADM can consider only one type of relationship namely finish to start whereas PDM can
consider four different types of relationships namely, Finish to Start, Finish to Finish, Start to

Start and Start to Finish with lag and lead times.

As for probabilistic network scheduling techniques, one method, Program Evaluation and
Review Technique (PERT), considers three different durations for each activity, the most
optimistic, the most likely and the most pessimistic durations. This characteristic helps the
scheduler in modeling the uncertainty associated with the duration of each activity. Besides
the fact that PERT has the same limitations of deterministic network methods, its use is

limited due to the assumptions it is based on.

As for repetitive construction, there are limitations for the network scheduling techniques.
The main concern is that these techniques do not consider effective resource utilization and
for this reason it is widely criticized in literature (Birrell, 1980; Kavanagh, 1985). Network
techniqgues emphasize on minimizing the total project duration and thus make the
fundamental, unrealistic assumption that resources are unlimited and centrally controlled. Top

management can relate to such goal. On the other hand, site superintendents focus on

minimizing the resource input and maximizing resource utilization rather than critical paths or
early project completion (Birrell, 1980; Kavanagh, 1985). That's why they are reluctant to use

it in spite of management encouragement (Tavakoli & Riachi, 1990).

Moreover, these techniques produce large and complex schedules when applied to
repetitive activities and the complexity increases with the increase in repetitions (Carr and
Meyer, 1974). Hence it becomes practically inapplicable for projects that comprise a large
number of repetitive activities such as a housing development project with 100 houses. For
example, if a housing project with 50 typical houses is to be considered and if the work of
each house can be broken down into only 20 activities, the project network would consist of

1000 activities, which complicates the understanding of the schedule and control process.

Another important shortcoming of traditional techniques is its inability to maintain crew
work continuity. Its application during scheduling is to schedule work in repetitive units in an
order that enables well-timed movement of crews from one unit to the next, avoiding crew idle
time. This is known as the “crew work continuity constraint’. Crew work continuity makes
maximum use of the learning curve effect for each crew, maintains a constant workforce by
reducing the number of hires and fires, minimizes the crew and equipment idle time, retains
skilled labor and last but not least it has proven to be an effective resource utilization strategy

for repetitive construction (Birrell, 1980; EIRayes and Moselhi, 1993 (a)).

In addition to all of the mentioned shortcomings of network scheduling, there are hidden
interrelationships between activities due to resource constraints which are not shown in the
actual network. The methods used to calculate the float of activities cannot depict this
constraint, therefore there is actually a 'Phantom Float' which alters the network calculations

and perhaps even the total project time (Kim and de la Garza, 2003).

They also complicate the implementation of multiple-crew strategies. They cannot provide

data for the progress of individual crews alongside the progress of the project itself.

2.3. Techniques for Scheduling Repetitive Activities

Due to the limitations of the network techniques mentioned in the earlier section, a number of
techniques were proposed in the literature for scheduling. Repetitive activities generally can
be divided into two categories: ‘typical’ and ‘non-typical’ or ‘atypical 'activities. In the typical
repetitive category, common activities in all repetitive units are assumed to have identical
durations, such as the paving activity. In the non-typical category, activities need not have

identical durations, as in the earth moving activity.

Methods of scheduling projects with repetitive activities can be grouped into two main
categories. The first category comprises of methods, which were developed to schedule

typical repetitive activities only. These methods are often referred to as 'Line Of Balance'

(LOB) (Al Sarraj, 1990; Carr and Meyer, 1974). The second category includes methods which
were developed to schedule both typical and non-typical repetitive activities, and are often
referred to as 'Linear Scheduling Method' (LSM) (Russell and Caselton, 1988; Chrazanwski
and Johnston, 1986).

There are other techniques proposed in the literature for scheduling repetitive activities
utilizing the principles of either LOB or LSM, with the main objective of maintaining crew work
continuity. These techniques include 'Vertical production method' (VPM) (O'Brien, 1975;
O'Brien et al. 1985), Time-Space Scheduling (Stradal and Cacha, 1982), 'Disturbance
Scheduling' (Whiteman and Irwing, 1988), 'Horizontal and Vertical Logic Scheduling’, (Thabet
and Beliveau, 1994), 'Velocity Diagrams' (Dressler, 1980), Simulation of Repetitive Networks
(SIREN) (Kavanagh, 1985), Repetitive Project Modelling (RPM) (Reda, 1990).

2.3.1. Line of Balance (LOB)

Line of Balance (LOB) method was developed by the U.S Navy in 1942 for planning and
control of repetitive projects. The method was primarily designed for industrial manufacturing
operations. It was used by the industrial engineers to optimize the cost of output by
determining the required resources and setting the speed of each stage. However, in
industrial manufacturing, products move along a production line. On the other hand, in
construction of repetitive projects the products are stationary and machines move along a
line. Due to this difference, LOB method was modified in 1966 from its original manufacturing
industry purpose to enable its application to housing. The developed method was simple and
the schedule could be represented by plotting the number of units in Y-axis and the duration
in X-axis. Repetitive activities are represented by separate inclined bars. (Al Sarraj, 1990)

There are several methods proposed in the literature having the same name 'Line of
Balance' (LOB) and sharing the same concept (Al Sarraj, 1990; Arditi and Albulak, 1986;
Ammar, 2013). Arditi and Albulak (1986) used LOB to schedule a highway project. They
concluded that LOB schedule is easy to understand and requires less time and effort. Al
Sarraj (1990) developed a formal algorithm for LOB to facilitate scheduling, resource
management and project analysis and control in order to provide a mathematical alternative
for the graphical LOB method. Ammar (2013) introduced a method that integrates CPM with
LOB to make use of the analytical capabilities of CPM in addition to LOB'’s capabilities in

resource utilization

LOB method has been found to have apparent advantages such as maintaining crew
work continuity, generating resource driven schedules, incorporating multiple crews and
providing clear and easy way to produce schedules (Arditi and Albulak, 1986). However, it

has been criticized in the literature for a number of reasons.

10

Kavanagh (1985) indicated that LOB method was designed to model simple repetitive
production process and is not suitable for complex construction projects. Arditi and Albulak
(1986) commented about the visual problems associated with the graphical LOB diagram
and suggested that different colors can be used to distinguish overlapping activities. They
also stated that the schedule is very sensitive to the estimations of activities’ man hour
requirements and needed crew sizes. Any error in these estimations would be magnified due
to repetition. Neale and Raju (1988) stated that the calculations needed in LOB are tedious
and requires a lot of trials in order to make the pace of work similar for all activities. Thus,
they introduced a way to refine LOB method using a spreadsheet format but they faced
complex relationships and concluded that it was practically infeasible to draw the schedule in
the form of a diagram. Another major disadvantage of LOB method is its inability to schedule
non-typical repetitive activities as well as any non-repetitive activities that occur within the
project (Moselhi and El-Rayes, 1993(a) (b)).

2.3.2. Linear Scheduling Method (LSM)

Linear Scheduling Method (LSM) was developed to overcome the limitations of LOB method.
LSM is capable of scheduling typical and non-typical repetitive activities along with all the
apparent advantages of LOB method (Russell and Caselton, 1988; Chrzanowski and
Johnston, 1986; Moselhi and El Rayes, 1993(a)). An important difference between LOB
method and LSM is the graphical presentation of the schedule. In LOB method, an activity is
represented by two parallel lines with a constant slope, whereas in LSM it is represented by a

single line with varying slope.

Johnston (1981) described the basic presentation format of LSM as having two axes. The
horizontal axis represents the project duration and the vertical axis represents the number of
repetitive units while separate diagonal lines represent repetitive activities. He suggested that
LSM schedule is simple and can convey detail work schedule. Chrzanowski and Johnston
(1986) employed CPM technigue with LSM to schedule a highway project in order to evaluate
the capabilities of LSM. They concluded that LSM has several advantages such as its
simplicity that helps personnel to understand with minimum training, the ability to extract
various types of information such as job progress and resource allocations and the ability to
take quick decisions in resource utilization matters. On the other hand, LSM cannot be used
for non-repetitive activities and it is a graphical method that cannot utilize numerical

computations.

2.4. Optimized Scheduling

As mentioned before, in the practice of professional construction management, time, cost and
quality are of essence. For repetitive projects such as pipeline, roads, high rise buildings or
housing projects, corporations usually invest a large capital and need the project up-and-

running as fast as possible. Thus, minimizing total construction costs along with the duration

11

is of utmost importance when scheduling construction projects with repetitive activities. In the
literature, Attempts made to optimize LSM using mathematically based models can be
categorized as follows: 1) operations research models; 2) simulation models; and 3) artificial

intelligence (Al) models (Hassanein, 2002).

2.4.1. Operations Research Models

In recent attempts made to optimize repetitive construction, operation research models have
proven to be the tool of choice among the researchers. Either linear programming or dynamic

programming was employed in these models.

Reda (1990) developed a model called Repetitive Project Model (RPM) to minimize
project direct costs. It combined a linear programming formulation with network technique to
present a typical stage of the project and a graphical technique to represent the results. This
formulation had a number of limitations. One of which is that the productivity rates are
constant for all stages of project which limits its application to typical repetitive projects.

Another was that the possibility of work interruptions was ignored.

Selinger (1980) was the first to develop a dynamic programming formulation solution to
optimize linear schedules. The formulation managed to maintain crew work continuity
however it did not consider cost.

Handa and Barcia (1986) presented a model that relied on Optimal Control Theory. The
model could take account for variable production rates. The work continuity constraint was
maintained but not enforced. Moreover, the model was incapable of considering multiple

crews for activities.

Russell and Caselton (1988) built on the works of Selinger (1980) and developed a two-
variable N-stage dynamic programming solution that can find the minimum project duration. In
order to achieve this, the set of possible interruption vectors were defined for each activity as
the second variable where the first is the set of possible durations for the activity. The
possibility of work interruption contradicts with the work-continuity constraint; however, it
achieves the objective of schedule optimization in respect to time. The limitations of this
model are that it does not consider cost like Selinger (1980) and it is incapable of considering

multiple predecessors and/or successors.

Moselhi and El Rayes (1993 (a) & (b)) proposed a dynamic programming model that
overcame the limitations of previous models of Selinger (1980) and Russell and Caselton
(1988). Their model was an object oriented optimization model that used a two-variable N-
stage dynamic programming formulation to consider overall project cost as a priority as well
as the learning curve effect and the impact of weather on crews’ productivity. The model's

optimization procedure was executed in two stages, forward and backward paths, and

12

enforced work continuity. It offered assistance to the user to select an optimum crew

formation from a set of possible alternatives.

Eldin and Senouci (1994) also used a two-variable N-stage dynamic programming
formulation to minimize total project cost. The two variables represented possible activity
resources and acceptable interruptions at each stage. The model, however, could only

consider one crew per activity.

El Rayes and Moselhi (1998) developed an algorithm that considers precedence
relationships, crew availability and crew work continuity constraints. In addition, it considers
the impact of the following practical factors: (i) type of repetitive activity (i.e. typical or
atypical); (ii) multiple crews assigned to work simultaneously on an activity; (iii) crew
availability period on site; (iv) activity interruption; and (v) order of executing repetitive units.
The model has the ability to generate interruption vectors that would minimize total
construction cost by itself, unlike the model presented by Eldin and Senouci (1994) where it

was necessary to input predefined interruptions.

Moselhi and Hassanein (2003) developed a model that employs a two-variable, N-stage,
dynamic programming formulation coupled with a set of heuristic rules. It had the ability to
optimize either project duration, total cost or their combined effect (A+B bidding). The model
supported multiple crews to work simultaneously on any activity while accounting for: 1)
accounts for the presence of transverse obstructions, such as rivers and creeks; 2) utilizes
resource-driven scheduling; 3) incorporates repetitive and non-repetitive activities in the
optimization procedure; 4) enables the consideration of multiple predecessors and
successors for each activity; and 5) accounts for variations in quantity of work and unit length

of repetitive activities

2.4.2. Simulation Models

Several simulation models have been developed to introduce computer simulation modeling
to scheduling of repetitive projects. Computer simulation models are utilized to change some

of the deterministic input elements in the construction process and estimate the consequence.

Ashley (1980) proposed a simulation model for scheduling of repetitive projects that
adopts a queuing model to resolve the crew availability problem. The model is implemented
using GPSS simulation language, and is based on the concept that repetitive units are
organized in a queue to be served by the assigned crew. A main limitation in this model that

it doesn’t recognize any priority for an activities or units

Kavanagh (1985) presented SIREN (SImulation of REpetitive Networks), a repetitive
construction model coded in the GPSS language. The model would first carry out a
deterministic analysis and then it employs Monte-Carlo simulation to account for the

probability distributions for values of activity durations and weather conditions. The presented

13

a priority system for assigning crews that is close to a superintendent’s priorities. However,
this model had some limitations. First, one activity cannot utilize more than one type of crew.
Second, it doesn't allow the user to enforce his plan of work and priorities for activities or

stages. Finally, the model presumes that the repetitive units are essentially independent.

Pena-Mora et al. (2008) developed a Discrete Event & System Dynamics hybrid
simulation model to simulate the combined effect of operational and strategic management
decisions on infrastructure projects performance. The model was coded using Extend
simulation environment. They concluded that simulation models are useful means for
construction managers to consider the impact of their decisions without facing costly

consequences.

Hajdasz (2014) utilized MoCCAS (MOnolithic Construction Computer Aided System), a
comprehensive decision support tool for flexible construction site management in repetitive
projects. MOCCAS supports the construction site manager in developing optimal execution
scenarios by providing different construction strategies.

Moradi et al. (2015) proposed another hybrid simulation model that uses both Discrete
Event & System Dynamics to simulate repetitive construction projects. The model was
developed using AnyLogic software. The model used concreting projects as an example to
test the performance of the proposed model. They concluded that using hybrid model that
employs both Discrete Event & System Dynamics is better than using each of them

individually.

2.5. Summary and Conclusion

This chapter presented a review of recent literature on scheduling of construction projects
with repetitive activities. Traditional scheduling techniques and their shortcomings in respect
to repetitive construction were also discussed. The emergence of linear scheduling methods,
the pros and cons of each of the developed techniques, their considerations and limitations
were also reviewed. All the proposed models disregarded the linear nature of many repetitive
projects such as pipelines, roads and railway projects; a main factor which would highly affect
the crew movement and its continuity of work. Another is that these models didn't consider
the possibility to change the sequence of work in the project units from one activity to the
other. These findings have been effectively used in the development of the proposed model
for scheduling, tracking and control of pipeline projects, which is described in the following

Chapters.

14

Chapter 3
Stages of Pipeline Construction

3.1 Introduction

This chapter presents the stages of pipeline construction illustrating the sequence of activities
and the resources employed in each of them. Pipeline construction is one of the complex
construction projects which employ a large number of specialized crews as well as many
types of heavy machinery. Such projects need an accurate schedule to maintain the crew

work continuity and minimize idle times.

3.2 Stages of Pipeline Construction

A pipeline can be broken down into three basic elements where different forms of pipeline
construction method are used. They are:

(i) Open cross-country areas, where the spread technique is used
(i) Crossings, where specialist crews and civil engineering technigues are used

(iii) Special sections such as built up urban areas, restricted working areas, difficult
terrain sections and environmentally sensitive areas.

The basic method of constructing steel, welded oil and gas onshore pipelines in open
cross country areas is generally known as the “spread technique”. The spread technique
utilizes the principles of the production line system, but in the case of a pipeline the product
(the pipeline) is static and the individual work force, (crews) move along the pipeline track.
The implementation of the spread technique is conditional on the pipeline being welded above
ground in maximum possible continuous lengths between obstructions/crossings, which can
extend to lengths in excess of 10 kilometers. These welded pipe lengths are then immediately
installed into unsupported/unobstructed trenches gradually in one continuous length utilizing
multiple (three or more) mobile lifting tractors (side-booms) together. The breaks in the
continuous main spread method of working result from the location of existing services, roads,
railways, tracks, ditches, streams and river crossings, and are also dependent upon restricted
working, time constraints and physical features/obstructions. These breaks in the main
pipeline spread activities are undertaken by dedicated specialist crews utilizing a variety of
special construction techniques and are generally undertaken after the main pipeline sections

have been installed.

The main pipeline spread installation is undertaken by dedicated crews undertaking one
operation at a time commencing at one end of the pipeline and travelling forward to the other

end at anything from 500m to 1,500m per day depending on the diameter of the pipe, terrain,

15

soils, etc. The program of activities and the start-up of the crews is dependent on available

resources and the risk of one crew having an impact upon the following activities.

Pre-construction activities need to be carried out by the Installation Contractor prior to the
start of the main pipeline installation activities. These activities include finalizing the pipeline
route, detailed design finalization, mobilization, notification of entry to landowners, setting-up
of pipe yards and base camps, establishing temporary works requirements, setting-up of
geographic positioning stations, design of land drainage in agricultural areas and
reinstatement works, construction of temporary access roads, pre-environmental mitigation
works, and agreeing with landowners any special requirements prior to entry onto their
properties. The Installation Contractor will carry out pre-entry surveys as-and-where required

so as to record the condition of the land prior to the start of any work.

Once the pre-construction activities have been completed, then the main construction
works can commence. Generally, operations are carried out in three main activities groups as

shown in figure (3-1):

1. Preparing Work Area
2. Layout Pipe and Weld above Ground

3. Excavate Trench and Installation of Pipe

Terrain Trench Pre-
Setting- and excavation construction Testing of
out ground in rock . welders
stability areas cut-off drains
Pipe forming Welﬁ:zg of NDT Weld
stringing field bends pipeline inspection repairs
Field joint Trench Pipe ?ﬁzkﬂilhgl?n(;f
coating excavation installation PP
trench

Figure 3-1: Flowchart of Spread Method Activities

16

The first group which is Preparing Work Area contains many operations, First, Setting-
out. The setting-out crews are the first personnel from the construction contractor’'s workforce
to enter the site to commence the main construction activities. The setting out of the works
should be scheduled to commence at least four weeks prior to the remainder of the first group
activities. This work will be carried out with small four man crews using GPS and surveying
instruments. Setting-out pegs will be placed at all boundaries, changes in direction and
intermediate sightings on the proposed centre line and the extremities of the working
easement. In areas of open country where good and level access is available along the
pipeline route and it is anticipated the rock or ground is of sufficient strength that it could
impede progress of the trench excavation, then initial ground investigations works will be
carried out directly behind the setting-out crew. Part of the setting-out crew’s duties is to
identify any existing services that cross or are in close proximity to the pipeline and supervise
the trial hole crew. The trial hole crew will hand excavate to expose, identify and determine
the exact location of all existing services. This data will be recorded and transferred to the

engineers for incorporation into the final pipeline design.

The second activity is Pre-construction terrain and ground stability. At locations where
there is a risk of ground movement that could result in safety risks to the construction
activities and/or undermine the pipe during installation and the period prior to final
reinstatement then permanent stability of the affected terrain needs to be undertaken. This
work can be separated into two elements; first, Removal of material such as the overburden
at the top of ravines and the removal of loose material that could move during the installation
works and second, Addition of material such as Bentonite, which is injected under pressure
into gravels with high and fast water tables and deep mining areas to provide a protective
curtain around the pipe. It also includes the adding (placement) of boulders/ground at the toe

of steep gradients on forwarded and side slopes in the second element.

The third activity is Trench excavation in rock areas. In areas where rock is confirmed as
such by the initial ground investigation works then the trench is excavated ahead of any pipe
operations. This sequence of working is undertaken to ensure that the excavation of the
trench cannot cause any damage to the pipe and/or pipe coating and provide an extended
safe working width for the excavation crews allowing double —sided trench working by

excavators/ breakers.

Following the review of the data from the initial ripper and trial hole surveys, the ground
will be classified in ease of excavation into five groups defined by the method of removal.
These are (i) utilizing standard excavation, (ii) larger more powerful excavators (face shovels
converted to back-actors), (iii) ripping/hydraulic hammer and excavation, (iv)
blasting/hydraulic hammer and excavation and (v) rock trenchers (saw and blade). The

finished trench should be to the correct depth and width to suite the pipe diameter, plus any

17

bedding and pipe cover. The trench should also be in a straight line so that the pipe can la y
central in the trench without coming into contact with the trench sides. All loose and jagged
outcrops, which could come in contact with the pipe during lay operations, will be removed.
The excavation will commence with dedicated crews immediately following the ROW
operation. The forward progress will be dependent upon the ground strength, grain structure,

terrain, access, method of removal and number of crews/equipment employed.

The fourth and last activity is Pre-construction cut-off drains. All cut-off drainage works,
which comprise the connection of existing drains to a new header pipe, will commence
immediately after the right of way and fencing operations. Cut-off drainage works will be
undertaken at locations where there are existing concentrated drainage schemes on
agricultural land and where agreement is reached with the landowners and/or occupiers to
their installation. This work will be resourced taking account of the scope of work and the
requirement to achieve pipeline installation progress of, say, 500 to 1,500 meters per day

along the pipeline route.

The second group of activities is layout pipe and weld above ground. The first activity is
Project mechanical procedures/testing of welders. prior to the start of any mechanical works
the Contractor will issue for Client approval a full set of mechanical procedures for bending,
welding, x-ray and coating. These procedures will address how the Contractor intends to
undertake the work in accordance with the project specifications detailing equipment and
specific mandatory requirements. The procedures, particularly with regard to welding and x-
ray will be sufficient to cover the full ranges of the various parameters characteristic of the
project in terms of diameter, wall thickness and technique. Once the documented procedures
are approved then full trials for each element of the works will be carried out, fully inspected
and witnessed by the Client. The welding will include non-and full destructive testing to
ensure that the procedure welds are undertaken in strict compliance with the contract
requirements and fully comply with the minimum strength, hardness and quality requirements
of the relevant specifications. Once the procedures have been approved then the welders will
be tested to ensure that they can comply with the requirements of the procedure welds. A
register will be maintained of the welders employed on the project with the various welding

techniques they are approved to work on.

The second activity is Pipe stringing. The pipes and pre-formed bends will be scheduled
to be delivered to, and stock piled at, the proposed pipeline pipe yards some 4 to 8 weeks in
advance of stringing operations. The pipe supply should ensure that the various grades, wall
thicknesses and coatings are supplied in sufficient and correct quantities to meet the
program. Immediately following ROW or topsoil strip or excavation in rock areas, the pipe
stringing operations will commence, which involves laying the pipe lengths along the
easement length using pipe trailers. A typical crew will consist of two cranes - one at the base

camp loading the pipe trailers and the other on the pipeline easement off-loading the pipe

18

trailers. In the event that ground conditions do not permit travel down the easement with
standard or special heavy-duty pipe trailers then the pipes will be loaded on to tracked pipe
carriers at the public roads or at a point where the change in ground conditions occurs and
permits the turning of the wheeled pipe trailers. See figure (3-2)

Figure 0-2 : Pipe Stringing Activity

The third activity is forming field bends (cold bending). Once the pipe has been strung
along the easement, engineers will follow to determine the location of all bends required in
order that the pipeline can follow the contours of the land and the required line and level as
detailed on the drawings. There are two types of bends normally used i.e. hot pre-formed or
forged bends which are manufactured off site in a factory and are to a radius of 5 or 3 times
the pipe diameter and cold bends which are to a radius of 40 times the pipe diameter and are
formed in the field. A typical cold bending crew consists of a four-man team together with a
bending machine and a side boom tractor. The bending machine is towed along the pipeline
route by the side boom and includes “formers” consisting of 20 — 150 ton hydraulic rams,
which bend the pipe to the required radius and angle. The side boom acts as a lifting device
and has a fixed jib attached to a tracked dozer with a capability of lifting between 15 to 120
tons, dependent upon the size of the machine used. The number of cold bends required
depends on the route and contours of the pipeline. Typically, they can range from 1 pipe in 10
in developed regions to 1 pipe in 50 in open country. The cold bend angle that can be
achieved ranges from maximum angles of 12 degrees (42" pipe) to 40 degrees (12" pipe).

The fourth activity is Welding of the pipeline. The welding of the pipeline will commence a
few days after the cold bending crew. The welding crew will weld the pipeline in continuous
lengths between features such as roads, watercourses, tracks, railways, services and other
underground obstacles that prevent the pipeline being continuously installed in the trench.

There are primarily two methods of welding which are manual or automatic. As the names

19

imply manual welding involves the welding of the pipe by welders and automatic involves a
semi-automatic system. Both systems generally (although certain automatic systems can now
do single pass complete welds) operate on a front-end/back-end principle. The front-end
consists in a manual operation with, say, 3 separate welding stations placed on CAT D6
carriage consisting of a HIAB for the welding shelter (used in inclement weather or windy
conditions), 4 welding bullets and a compressor. The welding stations work on 3 separate
joints and complete one pass before moving on with the sequence being the bead (2 - 4
welders), immediately followed by the hot pass (2 — 3 welders) and then hot fill (2 welders).
With the automatic process, 1 machine deposits sufficient weld metal equivalent to the 3
manual passes. The weld is allowed to cool after the front-end passes and then sufficient
welders working in pairs or multiple automatic machines follow on to fill and cap that day’s
production. The crew will achieve progress in the order of one weld approximately every 3 to
5 minutes or up to 90 to 150 welds per day, which is equivalent to 1,000 to 1,500 meters of
pipeline on 12 meter pipes and up to twice that if double -jointed pipes are used. See figure
(3-3).

o
L "?"-“
Figure 0-3 : Pipe Welding Activity

The fifth activity is Non Destructive Tests (NDT) inspection. All welds on the pipeline are
generally subjected to inspection by radiography. This is achieved on the main pipeline by an
internal x-ray tube travelling along the inside of the pipe carrying out x-rays at each weld for
approximately 2 minutes per weld. On completion of the x-ray the film is taken to a dark room
and processed in time for the results to be available for inspection at the end of the day or
early the next day. Welds, which do not meet the required acceptance criteria, are either
repaired or cut out and re-welded. Experienced and qualified x-ray specialists undertake the
radiography under controlled conditions. Before the operation is started, the section of
pipeline is cordoned off by marker tape to stop entry by non x-ray personnel and
audio/flashing warning alarms are activated during all times when the x-ray tube is energized.
The x-ray personnel are on constant surveillance to ensure that the workforce and members

of the public are aware of the x-ray activities and only authorized access is permitted. Welds

20

completed by semi-automatic welding processes are examined using automatic ultrasonic
testing (AUT) techniques. This consists of an assembly that traverses the circumference of
each completed weld in order to detect any defects. The results of each ultrasonically
inspected weld are automatically recorded and are used to determine whether a weld repair is

required and if so what type.

The sixth activity is Weld repairs. A weld repair crew follows immediately behind the NDT
inspection activities to either carry out repairs to or cut out any defective weld. On completion
of all repairs a further x-ray is carried out on the weld to ensure that the finished weld
conforms to the standard required. The x-ray of repair welds is usually carried out from the
outside of the weld by a two-man crew. The last activity is Field joint coating. The coating of
the pipeline field joints to prevent corrosion starts a few days after the welding. This extended
period is to allow for any repairs or cut-outs to be completed without prejudicing the coating

crew’s operations.

The third group of activities is excavation of trenches and installation of pipes. The first
activity is Trench excavation. In areas other than rock, trench excavation commences a few
days after the field joint coating operation. A typical trench excavation crew consists of 5 - 8
excavators working in line. This operation only excavates the length of open cut trench
sufficient to install the main line welded pipe; it does not excavate any roads, ditches, services
or obstacles. The number of excavators employed will be such that the amount of trench
excavated in a single day matches the rate of progress of the welding crew. The spoil from
the trench will be stored adjacent to the trench on the opposite side of the ROW from the
topsoil stack. The finished trench will be to the correct depth and width to suit the pipe
diameter, plus any bedding and pipe cover. As far as possible, the trench should also be in a
straight line so that the pipe can lay central in the trench without touching the trench sides. All
loose and jagged outcrops, which could come into contact with the pipe during laying
operations, will be removed. See figure (3-4).

Figure 0-4 : Trench Excavation Activity

21

The second activity is Pipe installation. The pipeline will be positioned approximately 5
meters from the trench centre-line and will be installed into the open unobstructed trench
utilizing a number of side-booms. This operation will usually be carried out immediately
following the excavation crew. As the pipeline is being installed a coating crew will be present
who will holiday detect the pipe to detect any damage to the pipe coating just prior to the pipe
entering the trench. Any damage detected will be repaired by a fast setting repair coating. In
areas of rock, the pipe installation will commence anything from 5 to 15 days after the welding
crew. If there are any above ground breaks in the mainline due to access openings across the
ROW, expansion breaks or bend breaks, then these will be welded above ground, x-rayed
and coated during the excavation and lowered-in as part of the mainline lower & lay
operation. This will optimize the use of the side-booms within the lower & lay crew and reduce

the number of below ground tie-ins. See figure (3-5).

Figure 0-5: Lowering pipes in Trenches

The last activity is Backfilling of the pipeline trench. Trench backfill starts immediately
following the placement of the pipeline in the trench and the undertaking of a survey of the
pipe levels by the engineers to confirm that the required pipe cover has been achieved. There
is a requirement that the initial backfill around the pipe and to 300mm above the crown be of
loose and relatively fine particles, which can be readily compacted and do not damage the
pipe coating. In areas of rock it will be necessary to place the pipe on a 150mm bed of similar
material. In order to provide this material it may be necessary to import sand/soft material
offsite, sieve the excavated material or crush the excavated material. The sieve and crusher
equipment will be portable machines, which will be transported along the pipeline ROW. The
pipe is backfilled over the entire length except for, say, 30 meters at each end of the pipeline
work section, which is left free to facilitate the tie -in to the crossing/line break pipe work. The

whole operation can be summarized in figure (3-6).

22

1. Burvey and Buaking 1"

2 Cleanng 12
3 FronkEnd Grading 138
4 ROW Topsol Stripping 13
5 mmoﬂm 13c
6. Swinging Pipe 4.
7. Fieid Bending Pipe 18,
8. LLine-Up. i Wold 18
8. Fil & Cap, Final Waid ”

10, As-But Footage 18.
8.

|
i Typical Pipeline Construction Sequence
! MinnCan Project

M-Ray Inspection, Welkd Repar
Coating Fiekd Welds

Trenching (whesl ditchar)
Tranching (beckhos)
Trenching jrock)

Inspaction & Fepair of Coating
Lowsring Pipe inko Tranch
As-Buil Survey

Pad, Backill, Rough Geade
Hydrostatic Teating, Final Tie-in

Reglace Topsod, Final Clesn-
Up, Full Restoration

Figure 3-6 : Pipeline Construction Operation

3.3 Summary and Conclusion

This chapter presented a review of the pipeline construction method known as “Spread

Technique”. The different stages were shown to show the sequence of work

usually followed

i.e. the activities precedence, and the resources utilized in each activity. Understanding this

sequence is a main step in identifying the scheduling problem and developing the proposed

simulation model presented in this research.

23

Chapter 4
Deterministic Models

4.1 Introduction

This chapter presents the methodology of constructing simple deterministic models based on
the literature. There are numerous mathematical models that are used to solve various
scheduling problems. Repetitive construction must be classified into a form of the different

forms present in the literature in order to choose the appropriate model.

4.2 Methodology

According to the framework established by Pinedo (2011) (oiB|y), our scheduling problem

would be formulated as follows: FFc | prmp, sjk, M;, prmu | Cmax. Each part of this

formula will be explained in the next paragraphs.

The first part of the formula (o) describes the arrangement of the machines and the
sequence in which each job will be processed through these machines. The pipeline project
site would be categorized best as Flexible Flow shop (FFc). The construction project consists
of a number of stages as it was illustrated earlier (Stringing, Bending, Weldingetc). Each
stage utilizes a single or a number of resources (machines) which are either similar to each

other or vary in their productivity.

The second part of the formula () describes the characteristics of construction stages
and the constraints imposed on them. The first characteristic is preemptions (prmp). It
means that after the job is on the machine, it is allowed to stop processing this job for some
time and then proceed once again until it's finished. In our problem, this means that after
starting a certain activity in one station, it is allowed to stop working in this station, utilize the
resources in a different station and then returning the resources to finish working in the first
station. The second characteristic is sequence dependent setup times (sjk). This means that
there is setup time for the resources incurred as the resources are relocated between
stations. Pipeline projects extend over hundreds of kilometers and it utilizes heavy machinery
such as excavators and side booms. Arrangement of stations in a certain sequence will
greatly affect setup times of resources. The third characteristic is machine eligibility
restrictions (Mj). This means that not all machines in one stage of the project is suitable for all
jobs (stations). One major example of that is the (Excavation) activity. As the pipeline passes
through different areas, different types of soil starting from loose sand all the way to hard rock
may be incurred within the same project. As a result each station would require a different
type of excavation equipment depending on the nature of soil. The fourth characteristic is

permutation (prmu). This means that the sequence of work in stations is fixed for all

24

activities. In linear projects such as construction of pipelines, it is established that work
sequence is fixed for all activities. It is even preferred to make the sequence made so that all
the equipments move from one end of the pipeline directly to the other end. However, as
shown previously in the literature and in the model used in this thesis, permutation could be

overlooked to get a better schedule.

The third part of the formula (y) describes the objective that needs to be minimized. Our
objective is to minimize the makespan (Cmax) which is the completion time of the last job. This

objective is the common objective in construction projects. In pipeline projects, it is crucial to

finish all the stations as early as possible in order to start the operation of it.

4.3 Proposed Models

There have been many approaches to solve scheduling problems for flowshop and flexible
flowshops environments. It will be illustrated that these methods are not sufficient to solve the
scheduling problem of pipeline construction projects. The methods developed according to

Pinedo (2011) will be illustrated in the next part.

4.3.1 Johnson’s Rule

This method was developed by Johnson (1954) to minimize the makespan for flowshops with
2 machines (F2 | | Cmax)problems. It is commonly referred to as Johnson’s rule. If there are
(n) jobs in one problem .The processing time of job (j) on machine 1 is (p4;) and its processing
time on machine 2 is (py). An optimal sequence can be generated as follows. First, divide the
jobs into two sets with “Set I” containing all jobs with (p+;) < (py) and “Set II” containing all jobs
with (p4;) > (p2)- The jobs with (py;) = (p2;) may be put in either set. Second, the jobs in Set | go
first in the sequence and they go in increasing order of (p4;). “Set I” is referred to as (SPT).
Finally, the jobs in “Set II” follow in the sequence in a decreasing order of (py). “Set I” is
referred to as (LPT). Such schedule is referred to as “SPT (1) — LPT (2)"schedules. The

following example illustrates the way this method works.

If we take five jobs (stations) j1, j2, ..., j5 and two machines (activities) e.g. “Excavation”

and “Welding” , the following is the durations for the five jobs on the two machines:

Table 4-1: Job durations in man-hours

Job il j2 i3 ia j5
Excavation P4, ik 62 86 87 66 56
welding Py, ik 60 75 57 82 76

Where, p4, j = the duration for job (jx) on machine (1)
P2, x = the duration for job (jx) on machine (2)

25

The makespan or the total completion time for the five jobs on the two machines equals the

completion time for the last job on the second machine (Cy,js). The completion time (C; jk)

for job (jk) on machine (i) is calculated using the following formulas:

Crjn=Puj

(Eq. 4-1)

C1ik=Cypjx1t+Prik fork=2,.....5
(Eq. 4-2)

C2i1=Cypj1+P2ja

(Eq. 4-3)

Co,ik=max (Cyjk, Coj k1)) *+ P2 jk fork=2,.....5
(Eq. 4-4)

If the jobs were processed on the machines with their default sequence (j1, j2, j3, j4, j5), the

total completion time equals 459 man-hours as calculated in the following table:

Table 4-2: Completion times for jobs in man-hours

Job Sequence jl j2 j3 ja j5
Completion
Time (Ci,jk) C1y Cj G Caj Csi
Excavation 62 148 235 301 357
(machine 1)
welding 122 223 292 383 459
(machine 2)

Next, the makespan is minimized by applying Johnson’s rule. The five jobs are divided to two

sets (SPT) and (LPT) as follows:

Table 4-3: Dividing jobs into two sets

Job i1 j2 i3 ia i5

Excavation P1, ik 62 86 87 66 56

welding P2, ik 60 75 57 82 76
LPT LPT LPT SPT SPT

For (SPT), jobs are arranged in increasing order, so, “j5” comes first and “{4” comes second in
the sequence. Followed by these two jobs, comes (LPT) jobs in decreasing order. As a result,
the jobs would be arranged in the order “2”, “j1” and finally “j3”. Applying this sequence and

calculating the total completion time, the resulting total decreases to 414 man-hours.

26

Table 4-4: Completion times for jobs after applying Johnson’s rule
(In man-hours)

Job j5 ja j2 jl i3
Completion time
(Ci,jk) CS,J C4IJ CZ,J Cl,j C?’:J
Excavation 56 122 | 208 | 270 | 357
(machine 1)
welding 132 214 | 289 | 349 | 414
(machine 2)
In conclusion, Johnson’s rule is suitable for getting optimal schedule for (F2 || Cmax)

problems. However, it cannot be generalized to problems with more than two machines
(activities). In addition, it cannot be used for flexible flowshops (FFc). Another disadvantage of

this method is that the sequence of jobs is fixed through both machines i.e the schedule must

be permutation (prmu).

4.3.2 Mixed Integer Programming

Wagner (1959) developed a method in order to solve problems with more than two machines
(Fm | prmu | Cmad. His method was based on formulating the problem as a Mixed Integer
Program (MIP). First, the variables are defined. The decision variable (x;) equals 1 if job () is
the kth job in the sequence and 0 otherwise. The auxiliary variable (lik) denotes the idle time
on machine (i) between the processing of the jobs in the kth position and (k + 1)th position
and the auxiliary variable (Wik) denotes the waiting time of the job in the kth position in
between machines (i) and (i+1). Wagner (1959) stated that minimizing the makespan is
equivalent to minimizing the total idle time on the last machine, machine m. hence, the

problem was formulated as follows:

m-1 n n-1
min(z z Xj1 Pij + Z Lnj)
i=1 j=1 j=1 (Eq. 3-5)
With the following constraints:
n
Z Xj =1 fork
j=1
=1,...,n (Eq.3—-6)

27

(Eq.3—7)
k=1
n n
Ly + Z Xji+1Pij T Wiker — Wi — ijkal,j (P
=1 =1
=0
fork=1,.,n-1; i
=1,...m—-1 (Eq.3—18)
Wi,=0 fori
=1,....m-—1 (Eq.3-9)
Lir=0 fork
=1 -1 (Eq.3 — 10)

The first set of constraints (Eq. 3-6) specifies that exactly one job has to be assigned to

position (k) for any (k). The second set of constraints (Eq. 3-7) specifies that job (j) has to be

assigned to exactly one position. The third set of constraints (Eq. 3-8) relates the decision

variables (xk) to the physical constraints. These physical constraints enforce the necessary

relationships between the idle time variables and the waiting time variables. The fourth set of

constraints (Eq. 3-9) insures that the waiting time for the first job equals zero on all machines.

The last set of constraints (Eq. 3-10) insures that the idle time for the first machine equals

zero for all jobs.

The following example illustrates the way this method works. If we take five jobs (stations)

i1, j2, ..., j5 and three machines (activities) e.g. “Excavation”, “Welding” and “Lowering of

pipes” , the following is the durations for the five jobs on the three machines:

Table 4-5: Job durations in man-hours

Job i1 j2 i3 ja i5

Excavation Pk 62 86 87 66 56
welding P2,k 60 75 57 82 76
Lowering P2,k 78 82 77 87 80

Following the default sequence (j1, j2, j3, j4, j5) for processing the jobs on all three

machines, the total completion time equals 550 man-hours as calculated using equations (3-

1) to (3-4) in the following table:

28

Table 4-6: Completion times for jobs in man-hours

Job Sequence j1 j2 i3 j4 j5
Completion
Time (Ci,jk) Cai Cai G Ca Cs,
Excavation 62 148 235 301 357
(machine 1)
welding 122 223 292 383 459
(machine 2)
Lowering 200 305 382 470 550
(machine 3)

Next, the Mixed Integer Program (MIP) is used to minimize the makespan. A MS Excel
worksheet (see figure (1)) is set as follows. First, the matrix of job durations (pij) [table (4-5)]
is set as the input matrix. Second, three matrices are set as variables matrices: the decision
variable matrix (x;) [table (4-7)], the waiting time matrix (Wik) [table (4-8)] and the idle time
matrix (lik) [table (4-9)]. In table (4-7), Cells (D11:H15) can take one of two values (0 or 1) so
that each the total of each row and column equals one to satisfy equations (3-6) and (3-7).
Cells (U36: X37) in table (8) and (L37: O38) in table (4-9) can take any value = zero.
However, these values must satisfy the set of constraints (Eq. 3-8) which in this example
would add up to 8 equations e.g. for the second machine (i=2) and third job (k=3), the

constraint would be:

n

n
I3 + Z XjaP2j+ Wos—Wy3— Z Xj3P3j — 133 =0
= =1

Table 4-7: Decision Variable Matrix (xjk)

Excel Cell
Designation

10 Xik ji1 j2 i3 ja j5
11 1
12 2
13 3
14 4

5

by

C D E F J H I

B (R (R R =M

15
16

=R | O 0O 0| O |k
=P, O O O0O|O0O
B OO0 |r | O|O
= O|r| O 0|0
=R O O O0O|—=|O

29

Table 4-7: Waiting Time Matrix (Wik)

Excel Cell
Designation

35 il i5 i3 ja j2)y
36 Wi 0 2
37 Wa 18 2 11 33
38 W 0 0 0 0
39)y 18 4 12 40

S T U \% W X Y

oO|O|O|O
| O|N |

Table 4-8: Idle Time Matrix (lik)

Excel Cell
Designation
35 il i5 i3 ja j2

36 Iy 0
37 Py 11

38 I3k 0
39 T 11

K L M N O P Q

™M

21

o|lO|O|O
N O |V |O
Wl o |lw| o
o/lO|O O

21

The target cell, for which the objective is to be minimized, would contain the equation:

2 5 4
mln(E 2 le pU + 2 13’]')
j=1

i=1 j=1

[Microsoft Excel non-comenercial use - Deterministic Methods (1)
Y 0 .

] Fm | prmu | Cmax

z b [B ["] b Cy Cy (=9 Cy Cy
T T sdul
i mr] Pus “ ™ L] ® ™ z w2 m m » [<:< - u e
1 m Bendng Pus b = n L1 L]) 200 Ec) E 3 an = Cmam
:
1 Variable L
PRt .- - sl it ki e
5 ~ " = \
e L E
A “
(X]k))| =

x

" = 2 B
x] s e L | I % Py]]]
. “ ¥ ! ‘I Py o] o

B ——\ ==t === =2 - v T
7 22 P T w2 0 : 1 b Fa o o o
) Bl m]s o e
S

[[" b cy cu Lo R Y

e P & " C " - & ™) s m W Py | 0
wdng P, w0 % 2 ® ™ [m 3d u | e P U T
Bendng Py ™ " T o 20 m 7 4 = om d Py o o [
Pu | 0. 0. 0
3 L)
P lo 0

o | 3 [] [] [0 o v, o + o [
" v, 0 »
] [] e]]] v, o o] 8

Figure 4-1 : MS Excel Worksheet Used for (MIP)

30

The resulting schedule would decrease the makespan to 526 man-hours as the following

sequence is followed:

Table 4-9: Completion times for jobs in man-hours

Job Sequence i1 i5 3 ja 2
Completion ; i i i j
c1, C5, c3, ca, 2,

Time (Ci,jk) : : : : :
Excavgtlon 62 118 205 271 357
(machine 1)

Welding 122 198 262 353 432
(machine 2)

LoV 200 280 | 357 | 444 | 526
(machine 3)

In conclusion, MIP is suitable for (Fm | prmu | Cmay). It can be used to any number of
machines and jobs. However, like Johnson’s rule, it cannot be used for flexible flowshops
(FFc) and the sequence of jobs is fixed through all machines i.e. the schedule must be
permutation (prmu). In addition, (F3 || Cmao) problems were found to be strongly NP-Hard
(Pinedo, 2011). Thus, any problem with more than three machines would also be strongly NP-
Hard.

4.3.3 Slope Heuristic:

Another method to solve scheduling problems of type (Fm | prmu | Cmax) Was developed by
Palmer (1965). It was based on the same principle used by Johnson (1954). Jobs with small
processing times on the first machine and large processing times on the second machine
should be positioned more towards the beginning of the sequence, while jobs with large
processing times on the first machine and small processing times on the second machine
should be positioned more towards the end of the sequence. According to this heuristic a

slope index (Aj) is computed for each job. It is defined as:

Aj = =¥it,(m— Q2i — Dp;; (Eg. 3-5)

Where, m = total no. of machines
i = machine number

p;j = processing time of job (j) in machine (i)

The jobs are then arranged in a decreasing order of the slope index. The following
example illustrates the way this method works. If we take five jobs (stations) j1, j2, ..., j5 and
three machines (activities) e.g. “Excavation”, “Welding” and “Lowering of pipes” , the following

is the durations for the five jobs on the three machines:

31

Table 4-10: Job durations in man-hours

Job i1 j2 3 ja i5

Excavation Pk 62 86 87 66 56
welding P2k 60 75 57 82 76
Lowering P2,k 78 82 77 87 80

Following the default sequence (j1, j2, j3, j4, j5) for processing the jobs on all three machines,
the total completion time equals 550 man-hours as calculated using equations (3-1) to (3-4) in

the following table:

Table 4-11: Completion times for jobs in man-hours

Job Sequence jl j2 j3 ja j5
Completion
Time (Ci,jk) Cu Ci G Cai Csi
Excavation 62 148 235 301 357
(machine 1)
welding 122 223 292 383 459
(machine 2)
Lowering 200 305 382 470 550
(machine 3)

Next, the slope heuristic method is applied by calculating the slope index (Aj) for each of the

five jobs using equation (3-5). For example, for (j1):

A =—-CB-((2x1D-1)x62-3B3-(2x2)-1)x60-B3—-(2x3)—-1)
X 78
Aj; =32

The following table presents values of (4;) for jobs j1 to j5:

Table 4-12: Slope Index for jobs

Job it | j2 |3 | ja | js

Slope Index (Aj) | 32 | -8 | -20 | 42 | 48

According to the jobs’ slope index (4)), the jobs are arranged in the sequence (j5, j4, j1, j2,
j3). Applying this sequence and calculating the total completion time, the resulting total

decreases to 538 man-hours.

32

Table 4-13: Completion times for jobs in man-hours

Job Sequence j5 4 i1 i2 13

Completion
Time (G jk) Cs; Caj Cyj Gy, Csj
Excav:atlon 56 122 184 270 357
(machine 1)

selidling 132 214 | 274 | 349 | 414
(machine 2)

Lowgrmg 212 301 379 461 538
(machine 3)

In conclusion, slope heuristic is suitable for (Fm | prmu | Cmay. It can be used to any
number of machines and jobs. However, like MIP, it cannot be used for flexible flowshops

(FFc) and the sequence of jobs is fixed through both machines i.e. the schedule must be

permutation (prmu).

4.4 Summary and Conclusion

After testing all the methods demonstrated by Pinedo (2011), they all have proven, as shown
above, to be inadequate to solve the scheduling problem of pipeline construction projects due
to the following reasons. First, all three methods are not suitable for flexible flowshops (FFc).
They only deal with one machine per stage which is not applicable. In pipeline construction,
each stage usually utilize a number of machines (crews and equipments), which may be
different in their productivity. Second, the large number of stages involved would, if they were
reduced to a single machine, result in a huge problem for which an optimum solution would
be impossible to find. Third, all three methods inflict the permutation (prmu) condition in the
schedule. As mentioned earlier, overlooking this condition would result in a much optimal

schedule.

33

CHAPTER 5
SIMULATION MODEL

5.1. Introduction

As addressed in the previous chapters, heuristics and analytical methods are incapable of
finding the optimal schedule for linear projects, involving various activities and resources.
Simulation modeling, which represents a powerful alternative, would be illustrated in this

chapter.

The simulation method used is Discrete Event Simulation. This method is based on
modeling the operation of any system as a discrete sequence of events occurring in different
instances of time. Each event occurs at a particular instant in time and marks a change of
state in the system. Between consecutive events, no change in the system is assumed to

occur; thus the simulation can directly jump in time from one event to the next.

5.2. Simulation Software

The simulation software used is called “AnyLogic”. It is a general-purpose modeling and
simulation tool for discrete, continuous and hybrid systems. It supports all three well-known
modeling approaches: System dynamics, Discrete event simulation, Agent-based modeling in
addition to any combination of these approaches within a single model. AnyLogic includes a
graphical modeling language i.e. the model is built in a graphical editor that allows the user to
edit the diagram of the model graphically. It also allows the user to extend simulation models

using Java code.

The “Active objects” are the main building blocks of AnyLogic models. Active objects can
be used to model very diverse objects of the real world such as processing stations,
resources, and various operations. Active objects may encapsulate other active objects to any
desired depth. This enables building the model from as many levels of details as required,;
each active object typically represents a logical section of the model. Each AnyLogic model
has a main active object which contains embedded objects which, in turn, may contain their
embedded objects, and so on. These embedded objects serve as tools to facilitate modeling

the events of the process.

These objects are assembled in a number of libraries. One of the main libraries is called
the “Enterprise Library”. The Enterprise Library supports discrete-event, or, to be more
precise, process-centric modeling paradigm. This library’s tools are used to create discrete
event patterns frequently used in process-centric modeling such as queuing, resource usage
and entity generation. Using the Enterprise Library objects, the real-world systems can be
modeled in terms of entities (transactions, customers, products, parts, vehicles, etc.),

processes (sequences of operations typically involving queues, delays, resource utilization),

34

and resources. The Enterprise Library contains a set of objects specifically designed for

“Network Based Modeling”.

Network-based or layout-based modeling is used to model processes that take place in a
certain physical space, referred to as a Network, with moving entities and resources. To use
the "Network” set of objects, the network topology needs to be defined. A network is a set of
nodes interconnected with segments. It may have parts that are not connected to each other.
The entities and resources are automatically animated moving along the network segments or
staying at nodes. Movement always is done along the shortest path between the origin and
the destination nodes. Entities and resource units may have individual speeds; moreover,
those speeds may change dynamically. For example, you can set different speed for loaded
and unloaded trucks. It is assumed that segments have unlimited capacity, so entities moving

along a segment do not interfere.

There are two main classes that are used in discrete event models: Entity and
ResourceUnit. Entity is a base class for all entities, that are generated, access resources and
take part in the process flow in process-centric models. An entity may represent a person, a
document, a piece of information or a vehicle. Entity is a regular Java class with functionality
sufficient for the Enterprise Library objects to handle and animate it. Its functionality could be
extended by creating a costume entity subclass, adding custom fields to it accessing them
from the process model. Enterprise Library objects are used to handle entities through the
process whether by generating them like Source, Combine and Split, disposing of them like
Sink, handling resources like Seize, Release and Service, controlling their flow through the
process like Queue, Hold and SelectOutput or Network-based objects such as

NetworkMoveTo, NetworkSeize and NetworkSendTo.

The corresponding class used in models is ResourceUnit. ResourceUnit is a base class
for all types of resources. Each resource type belongs to either a ResourcePool object or
NetworkResourcePool object. Like the Entity class, ResourceUnit is a regular Java class with
functionality sufficient for the Enterprise Library objects to handle and animate it. Its
functionality could be extended by creating a costume entity subclass, adding custom fields to
it accessing them from the process model. NetworkResourcePool is a resource pool that is
used in Network-based Modeling. Its resource units are similar to the "regular" ones, those
that are defined with ResourcePool object, but have additional properties that help in
managing them within the network. Each resource unit has its home node in the network
which could be, for instance, a storage yard for equipment or a base camp for labor. The
resource units can be static, moving, or portable. Static resources are bound to a particular
location, i.e. a node, within the network and cannot move or be moved. An example of a static
resource would be tower crane or workshop machinery. Moving resources can move on their
own; they can represent workers or vehicles. Portable resources can be moved by entities or

by moving resources. Portable devices or construction materials would be an example of

35

portable resources. Moving and portable resources have their home locations where they can

optionally return or be returned.

Resource units are utilized by entities during the operation of the process. The resource
management in a network is done centrally. The Network object maintains the queue of
requests from entities that want to seize the network resources and processes them from
front to back. Requests are arranged, by default, according to the rule “First In, First Out”
(FIFO), but optionally it can be a priority queue where requests are arranged based on
priorities of request which depend on the entities. If a request can be satisfied (i.e. all
requested resource units are simultaneously available), the units will be allocated, otherwise
the units that are available will be "reserved" by that request and the request stays in the
gueue. This means that a request from the middle of the queue can be satisfied only if it does

not conflict with any request in front of it.

5.3. Model Development

As mentioned previously, AnyLogic depends on a graphical interface; it allows the user to
build the model using the libraries of active objects by “Drag & Drop”. The interface [figure (5-

1)] consists of a number of views as follows:

e Graphical Editor: Each active object class has a graphical editor associated with it. The
graphical editor is the place where the structure of the active object class is defined. It
plays several roles:

- Defines the interface of the active object class.

- Defines a presentation and icon for the active object using presentation shapes and
controls. Graphical editor links shape properties to active object data and embedded
objects.

- Defines behavior elements, such as events and state charts.

- Defines the embedded objects and their interconnection.

e Project View provides access to projects currently opened in the workspace. The
workspace tree provides easy navigation throughout the models. As models are
organized hierarchically, they are displayed in a tree structure.

o Palette View lists the model elements grouped in palettes. An element is added to the
model by dragging it from the palette to the graphical editor.

e Properties View is used to view and modify the properties of the selected model item(s).

36

s Project) Main =] FY ™
) Detesmanistic Models e
o tutcelal 1
& EarthMoving @ Parameter
@ Pipeline 3 Event
&
3 Main & Dynamic Event
"
o m:; @ Plsin Variable
O Maind 35 Collection Varisble
O Mand @ Function
. Mkt @, Table Function
O Muin§ .
® Port
O Manbl
‘g, Connector
Projects te
a Tt pre=
View : i oD o—ss
[(= 3 T B T P g i, System Dynamics
e @ =
st - F3 L Swtechart
e il "L Actionchart
- — T R e AT s Saesaon e i =
[, Problems I1 | 4 Search] ST Wl Analysis
[m] Presentaticn
[Properties 11 | B Consale B Presentatics
Descripticn Locat Bt Controls
€ Main - Active Obiset Class ¥ Comrols
% Connectivity
Ea——— Name: Main Ignere =3 Pictures
Advanced A
Agent Agent Generic ties)| % Enterprise Libeary
Preview @ Pedestrian Libeary
Dsciigtion Sonyrate & Rail Yard Libeary
7 Pal »
2 Destroy code: - i
astia R

Figure 5-1: Typical Interface in AnyLogic

Building the model will go through five main stages as follows:

1

Creating the model animation by drawing the network that represents the actual space of
the project including all the nodes and the paths linking them. In addition, the shapes, that
represent the entities and resources used in the model, are created.

Creating the costume classes for entities and resources as needed i.e. adding additional

characteristics to entities’ and resources’ classes

Creating the diagram of the model by adding the needed objects from the libraries in the
graphical editor, modifying the objects’ properties and defining the relationships between

them to fit the logic of the actual process.

Creating the “Simulation” experiment which runs model simulation with animation
displayed and model debugging enabled. The first experiment in each model is

automatically created.
Creating the “Optimization” experiment which is used to find the optimal combination of

conditions resulting in the best possible solution by making decisions about system
parameters and/or structure.

37

5.3.1. Stage (1): Creating of Model Animation

The first stage is to draw the elements required for the animation of the model components.

These components include 1) the network i.e. the nodes and paths between them and 2) the

resources. The library used is the presentation library (palette) (Fig.5-2). The tools with <
icons support the “drawing” mode in addition to “Drag & Drop” mode. Nodes are usually

represented by rectangles while paths between them are represented by lines or polylines.

ik Palette i3 =0
% General

&, System Dynamics

'3 Statechart

"% Actionchart

s Analysis

@ Presentation 82 &3
~ Line Pl
J¥ Polyline

 Curve
O
()
@]

m

&
rd
Rectangle &
Rounded Rectangle &

&

Oval
) Arc
Pixel
Aa Text
Image
ﬁ’ Group .-
& Controls
G2 Connectivity
EW Pictures

¥ Enterprise Library

Figure 5-2: Palette View Window

Pipeline construction projects rely on a number of camps set along the pipeline path; these
camps are well-equipped for housing of the workers e.g. welders and storage of construction
equipment such as trucks and bulldozers and material such as pipes. Each camp is located
properly to serve a segment of the pipeline. The model would represent only one construction
camp and the segment it covers. The segment would be divided it into ten stations which are
equal in length. The construction camp consists of a base camp for the residence of workers
and storage of equipment in addition to a pipe yard for storage of pipes. A temporary road is

constructed alongside the pipeline path. The length of this road on the model represents 90

38

km in reality. The speed of each equipment is set to match this path’s line on the model. The

steps of the first stage are as follows:

0 1 2 3 S S 6 7 3 9

Plinel | Pline2 | Pline3| Plined | PlineS Pline6 | Pline7| Pline8 | Pline9 | Plinel0
PlineLodgtion

tempRoad

ConnectingRoad

entitySource

PipeYard ResidenceCamp

Figure 5-3: Layout of Pipeline Project in AnyLogic

1.1) A rectangle is drawn using the tool Rectangle either in “Drag & Drop” mode by
dragging the tool from the Presentation palette to the graphical editor and modifying its size
using the handles on the shape’s border or in Drawing mode by clicking on tool next to the
Rectangle and drawing the shape with the required size in the graphical editor.

1.2) Modify the name of the rectangle from the properties view after selecting it from the
graphical editor into ResidenceCamp and modify its colors as needed.

1.3) Repeat steps (1.1) & (1.2) to draw the rectangles with the names PipeYard,
entitySource, Plinel through P1linel0. Rectangles ResidenceCamp and
PipeYard would be used as home nodes for the resources as explained later. Rectangles
Plinel through P1linel0 represent the ten stations that compose the stretch of the
pipeline served by this camp. The point of entry of the entities to the network would be the
entitySource rectangle. The arrangement of rectangles is shown in figure (5-3).

1.4) Three lines are drawn using the tool Line either in “Drag & Drop” or Drawing modes
as illustrated in step (1.1). One line is to connect entitySource and Plinel
rectangles. The second connects ResidenceCamp and PipeYard rectangles. The
third line, called ConnectingRoad, is used to connect ResidenceCamp with
Plineé6.

1.5) Two polylines are drawn using the tool Polyline in drawing mode as illustrated in
step (1.1). The two polylines are used to connect rectangles P1inel through PlinelO
by placing one point of the polyline in each rectangle. One polyline would be named

PlineLocation. It would be set as a home path for a type of resource as explained later.

39

The other polyline would be named tempRoad. It represents the temporary road constructed
along the path of the pipeline. This road would be utilized for the transportation of resources
and material between the pipeline’s stations. The arrangement of lines and polylines is shown
in figure (5-3).

1.6) A new group is created using the tool Group by grabbing it from the Presentation
palette to the graphical editor and named networkGroup. All shapes, created in steps (1.1)

to (1.5), would be put together in the group.

Now that the network is created, the animation shapes used for the resources are drawn.
Shapes are grabbed from the Presentation palette to the graphical editor and added together
in groups as illustrated in steps (1.1) to (1.6) to form the shapes of the different resources as
shown in table (5-1). Using these shapes in the animation of the model would be illustrated in

the second stage.

Table 5-1: Names and Animation Shapes of Model Components

Description Name (in the model) Animation shape
Pipes Truck TruckShape h
Side boom SideboomShape E
Pipe bending machine | PipebenderShape g

P ¥ P P a—
Excavator ExcavShape @
Bulldozer BulldozerShape D&
Hydro testing Crew HydTestShape G
Pipes PipeShape
Welder WelderShape '
Coating Crew CoatShape C}
Inspection Team InspectorShape (;}

5.3.2. Stage (2): Creating of Costume Classes

The second stage is creating costume classes for entities and resources. Some models
require adding additional characteristics to entities’ and resources’ classes in order to have a
better model of the problem. This process results in a subclass of class Entity or

ResourceUnit. A subclass inherits the properties of its super class in addition to the

40

properties added by the user. In this model, entities represent stations of the pipeline. These
stations have various properties that affect the productivity of resources for each activity. As a
result, these properties should be added to a subclass named Station of the class
Entity. On the other hand, all units of each resource type would be assumed to have
similar characteristics e.g. productivity, speed...etc. in order to simplify the model. The steps

to create the subclass station are as follows:

2.1) In the Project view, right-click the model item Main which is the main object where the
model is built, and choose New | Java Class from the popup menu

2.2) The New Java Class wizard is displayed. On the first page of the wizard, the name of
the new Java class Station is specified in the Name field and the superclass name Entity is

chosen in the Superclass edit box as in figure (5-4)

s 5
ﬁ New Java Class = g_&‘,@_

Java Class

@ Nameis already in use

Name: Station

Superclass: com.xj.anylogic.libraries.enterprise.Entity -

V| Enable saving this class in model snapshots - implement java.io.Serializable

|

< Back Next > Bl Cancel |

Figure 5-4: First Window in “New Java Class” wizard

2.3) Click Next to go to the next page of the wizard. On the second page of the wizard,
Java class Fields are specified in the table, each class field is defined in the separate row
(figure 5-5). The type of the field is entered in the Type cell, name of the field in the Name cell
and optionally name the access modifier in the Access cell and the initial value is specified in

the Initial value cell. The data entered in this table are presented in table (5-2).

41

-

ﬂ New Java Class i)

Name

Class Fields
Add Java class fields

[¥] Create constructor
|| Create toString() method

Type Access Initial Value

Next > Finish] [Cancel]

Figure 5-5: Second Window in “New Java Class” wizard

Table 5-2: New Fields of Entity Class

Name Type | Access | Initial Value Description
PipeNo double | Public | 0 Counter of the number of pipes
sent to a station
The station’ s priority in
StrngPriority | double | Public | O entering “Pipe Stringing”
activity
TruckNo | double | Public | 0 Number of trucks assignedto a
Station
The station’ s priority in
BendPriority | double | Public | O entering “Pipe Bending”
activity
Factor to represent the number
, of bends needed for the pipes of
BendNo double | Public |0 astation. It depends on the
station’ s topology.
I , The station’ s priority in
WeldPriority | double | Public | O entering “Welding” activity
WelderNo | double | Public | 0 Number of welder teams

assigned to a station

42

Counter of the number of

WeldPipeNo | double | Public |0 welded pipesin a station

The station’ s priority in

CoatPriority | double | Public |0 entering * Coating” activity

Factor that represents the type
Excvdiff double | Public | O of soil of astation and the
difficulty of excavationinit.

The station’s priority in

ExcvPriority | double | Public | O entering * Excavation” activity

Number of excavators assigned

ExcvNo double | Public | O t0 a station
The station’ s priority in
LwrPriority | double | Public | O entering “Pipe Lowering”

activity

The station’ s priority in

BcekflPriority | double | Public | O entering * Backfilling” activity

Number of bulldozers assigned

BldzrNo double | Public |0 t0 astation

The station’ s priority in

HdrtstPriority | double | Public | O entering * Hydrotesting” activity

2.4) Using Create constructor and Create toString() method check boxes, default class
constructor and toString() method are created automatically.
2.5) Click Finish to complete the process. The code editor for the created class would be

opened. The code for subclass Station is presented in appendix-A

5.3.3. Stage (3): Creating of Model Diagram

The third stage is constructing the diagram of the model in a proper way to represent the
actual events occurring in the actual process. The technique used to complete this stage
mainly depends on adding the needed objects from the libraries into the graphical editor,
modifying the objects’ properties and defining the relationships between them to fit the logic of
the actual process. This stage contains a large number of steps, thus it will divided into

several sub-stages.

Sub-stage (1): Definition of Resource Pools

3.1) Add Network object by dragging it from the Enterprise palette into the graphical
editor. The object’s properties are set by selecting it and modifying the needed fields in the

properties view. The properties are as follows:

43

Name: network (The default name)

Group of network networkGroup (It links the Network object to the
shapes: graphical network created in the
first stage. Refer to step (1.6))

Enable priorities: checked (This allows entities to be arranged
according to their priorities)

Request priority: 0 (The default value)
3.2) Add NetworkResourcePool by dragging it from the Enterprise palette into the
graphical editor. The object’'s properties are set by selecting it and modifying the needed

fields in the properties view (see figure 5-6). The properties are as follows:

Name: Pline (The name for the resource pool of
pipeline stations’ location)

Resource type: Static

Capacity By home shape (The home shape is the

defined: PlineLocation polyline. It has ten
nodes, thus, the capacity of this resource
pool would be also ten). Refer to step
(1.5)

Home defined Path across nodes (It defines the home of resources as a

by: number of nodes on a path specified in
the next field)

Home path: PlineLocation

| Properties 3| B Consale

% Pline - NetworkResourcePool

Ganzol Mame Pline 4| Shaw name Ignore Public] Show st runtime | Create presentation

Paramaters

Statuticy Type: NetwarkResourcePool<T extends Reso Resource und clas

Deseription Package omuanylogic ibraties. enterprise =

Resource type Static

Capacity defined Directly @ By home shape By table over time
New resource unit new Resourcelinit ()

On new unit

On see

On release”

Idle unitt animaticn shape

Busy unit animation shape

Unigue shape for each uni

Enable rotation £l

Home defined by Path seross nedes =
Home path Flinelocation
Enable statistics

Replication:

Figure 5-6: Properties View for “Pline” Resource Pool

3.3) Repeat step (3.2) to create resource pools for the resources: Pipes, Trucks, Side
booms, Pipe benders, Welders, Excavators, Inspection teams, Coating teams, Bulldozers and

Hydro-testing teams. The properties of each resource pool are shown in appendix-B.

44

3.4) To add the defined resources into the network, the ports of NetworkResourcePool
objects are connected with the port of the Network object as shown in figure (5-7).

network

re le

g L-—-—J
Pipebender | Excavator HydTestTeam Truck Pipe Pline
e) = ft L] @t Ll f i L]
—_ —_ —_ —_ —_
Bulldozer CoatingTeam Inspector Welder Sideboom

Figure 5-7: Sub-stage (1): Definition of Resource Pools

After finishing the definition of resource pools, the next steps will demonstrate constructing
the flowchart describing the process. The final complete flowchart is shown in figure (5-8).
The following steps will show the modifications done in each element of the flowchart and the
group of objects that represent each activity will be shown later in separate figures.

ReleaseTric

SeizePline Trk tringin selectOutput.
source networkEnter MoveToPline hoid | STuPipes | SETK o iTobipetard SendToSite | P o jpey L o
@—E—E—*-—-—E—EEI]E—E—E— e M—]]IEB—EM—-EHIE—E—E—QEE—H e

e

Senu‘ropupe\‘ud‘.l SendToSitel
SeizeBindr PipeBend SeizeWldr SeizeSdbooml PipeWeld
‘ ReleaseSdboomd | t hold1 PN Retessedinge hold2 i s, TPEUEENY Retsssewiar
o 5 5 5 o e

queusl " " queue? Cad o~ ~

| Sea:ecmng Coating
Seizelnspctr W, [} L
ReleaseSdboom pe eldinspecting sdeﬂlOulsu!Z iedeaselnspetr " . . : . '8 o4
Wid L] Seizelnspetrl W, tin
At '«b“ i pe feldinspectingl selectQuiput3
’-'ﬂ““ 4 Excavation
' E! E ReleaseExcvir

SeizeSdboom Pipelowering SeizeWldrSdbooml PipeWeldingl
g hold5 ReleaseSdboom3 ReleaseWidr2 Rdeauf.nsp:!d
npe—e-D-e 2 3 ©-= T —— =3 O &

a
queues =" s

SeizeBulldzr Backfilliny SeizeHydtest HydroTestin
3 hold6 ; k) ReleaseSulidzr 3 held? Y 2 9 ReleaseHydtest ReleasePline networkExit sink
uﬁg—g_o.@-—ﬂ_ ¥ o ‘:!.]E_H :}—B-—--g—o-—g-—-—g—o—g-—-—ﬂ-' Q;—ﬂil--ﬁ—@

queued S . queve? -~ " “

Figure 5-8: Complete Flowchart of Model

Sub-stage (2): Creating Entities

This sub-stage contains the steps of creating the entities that represent the stations, as
discussed before, and placing these entities in the network.

45

4.1) The flowchart starts with Source object drawn from the Enterprise palette. This object
generates entities. It is usually a starting point of a process model. Entities generated will be
of the subclass Station. The subclass created in the second stage was modified from the
super class Entity by adding various attributes in order to utilize them in the model. After

dragging the object into the graphical editor, the following properties are assigned to it.

Name: source (The default name)

Entity class: Station (The name of the subclass
created in second stage)

Arrivals defined by: Rate

Arrival rate: 1

Entities per arrival: 10

Limited number of Checked

arrivals:

Max. number of 1

arrivals:

New entity: new Station/()

4.2) The next object NetworkEnter is drawn next to Source object and a connector is
drawn between Source object’s only port and the left port of NetworkEnter object. In this
object, each generated entity’s attributes would be assigned with a value. These values are
stored in a number of arrays that would be listed in the next step. This process is done
through a Java code written in the On enter field of the object. As each entity enters the
object, it is assigned with one value from each array that corresponds to its order of entry i.e.
the first entity takes the first value of each array and the second entity takes the second value

and so on. The following properties are assigned to NetworkEnter:

Name: networkEnter (The default name)
Entity class: Entity (The name of the subclass created in second stage)
Network: network (The network defined in step (3.1))
Entry node: entitySource (Part of the graphical network. Refer to step (1.3))
On enter: (The following code is executed as every entity enters the object)
int i=3;
strngPropl=stationPropsl [i];
if (entity instanceof Station) ((Station)entity).StrngPriority =
strngPropl;
strngProp2=stationProps2[i];
if(entity instanceof Station) ((Station)entity) .TruckNo =
strngProp2;
//
bendPropl=stationProps3[i];
if (entity instanceof Station) ((Station)entity) .BendPriority =
bendPropl;
bendProp2=stationProps4 [i] ;
if (entity instanceof Station) ((Station)entity) .BendNo =
bendProp2;

46

4.3)

//

weldPropl=stationProps5[i];

if(entity instanceof Station)
weldPropl;
weldProp2=stationPropsé6 [i] ;

if(entity instanceof Station)
weldProp2;

//

coatPropl=stationProps7[i] ;

if (entity instanceof Station)
coatPropl;

//

excvPropl=stationProps8[i];

if (entity instanceof Station)
excvPropl;
excvProp2=stationProps9[i];

if (entity instanceof Station)
excvProp2;
excvProp3=stationPropsl0[i];
if (entity instanceof Station)
excvProp3;

//

lwrPropl=stationPropsll [i] ;

if (entity instanceof Station)
lwrPropl;

//
bckflPropl=stationPropsl2[i] ;
if (entity instanceof Station)
bckflPropl;
bckflProp2=stationPropsl3[i];
if (entity instanceof Station)
bckflProp2;

//
hdrtstPropl=stationPropsl4 [i] ;
if(entity instanceof Station)
hdrtstPropl;

J++;

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

((Station)entity)

.WeldPriority

.CoatPriority

.WeldexrNo =

.Excvdiff =

.ExcvPriority =

.ExcvNo =

.LwrPriority =

.BckflPriority =

.BldzrNo =

.HdrtstPriority =

The arrays used in the previous step are plain variables where ten values are stored

in each one. The Plain Variable object is drawn from the General palette into the graphical

editor. Fourteen objects (stationPropsl to stationPropsi14) will be created and

modified as shown in the following table:

Table 5-3: Arrays Properties

Name: stationProps1
Plain Type: Other: int[] Array for
Variable 1 StrngPriority
Initial Value: Hew
" |int[1{1,2,3,4,5,6,7,8,9,10}
Name: stationProps2
Plain Type: Other: int[] Array for
Variable 2 TruckNo
Initial Value: Hew
" |int[1{2,2,1,2,1,1,1,2,2,1}
Plain Name: stationProps3 Array for

47

Variable 3 Type: Other: int[] BendPriority
. . new
Initial Value: | 11(1,2,3,4,5,6,7,8,9,10)
Name: stationProps4
Plain Type: Other: int[] Array for
Variable 4 p— BendNo
Initial Value: int[]{1,2,1,2,2,3,2,0,1,2}
Name: stationProps5
Plain Type: Other: int[] Array for
Variable 5 p— WeldPriority
Initial Value: | o 1111,2,3,4,5,6,7,8,9,10)
Name: stationProps6
Plain Type: Other: int[] Array for
Variable 6 new WelderNo
Initial Value: int[1{2,2,1,2,1,1,1,2,2,1}
Name: stationProps7
Plain Type: Other: int[] Array for
Variable 7 new CoatPriority
Initial Value: | o 11(1,2,3,4,5,6,7,8,9,10)
Name: stationProps8
Plain Type: Other: int[] Array for
Variable 8 new Excvdiff
Initial Value: int[]{1,2,1,2,2,3,2,1,1,2}
Name: stationProps9
Plain Type: Other: int[] Array for
Variable 9 pp— ExcvPriority
Initial Value: | 11(1,2,3,4,5,6,7,8,9,10)
Name: stationProps10
Plain Type: Other: int[] Array for
Variable 10 p— ExcvNo
Initial Value: int(1{2,2,1,2,1,1,1,2,2,1)
Name: stationProps11
Plain Type: Other: int[] Array for
Variable 11 Hew LwrPriority
Initial Value: | ;¢ 1111,2,3,4,5,6,7,8,9,10)
Name: stationProps12
Plain Type: Other: int[] Array for
Variable 12 p— BckflPriority
Initial Value: int[1{2,2,1,2,1,1,1,2,2,1}
Name: stationProps13
Plain Type: Other: int[] Array for
Variable 13 pp— BldzrNo
Initial Value: | 0 11(2,2,1,2,1,1,1,2,2,1)
Plain Name: stationProps14 Array for
Variable 14 | ype: Other: int[] HdrtstPriority

48

new

Initial Value: | 11(1,2,3,4,5,6,7,8,9,10)

4.4) The next object NetworkSeize is drawn from the Enterprise palette next to
NetworkEnter object and a connector is drawn between its right port and the left port of
NetworkSeize object. NetworkSeize object is used to seize a given set of network resources
and optionally attaches them to the entity. It is considered as a queue for the entities waiting
for the required resources. As explained earlier, assigning resources to the entities follows
either the “First In, First Out” (FIFO) rule or based on priorities of request which depend on
the entities. This object would be used many times in the model to seize different sets of
resources depending on the activity performed. The first usage of NetworkSeize object would
be to seize a station for each entity. The following properties are assigned to it:

Name: SeizePline

Entity class: Entity

List of Resources: _ (The name for the resource pool of pipeline
{Pline} stations’ location)

4.5) The next object is NetworkMoveTo drawn from the Enterprise palette next to
NetworkSeize object and a connector is drawn between NetworkSeize object’s right port
and the left port of NetworkMoveTo object. This object is used to move the entity from its
current location in the network to a new location. The new location is identified either directly
as a node in the network or as the location of a certain seized resource. The first
NetworkMoveTo object in the model will move the entities from their home node
entitySource to the seized resource Pline which is the stations’ location on the network
i.e. each entity would move to its station. This step is not a real activity but rather a dummy
step to distribute the entities, which are the stations, on the pipeline path. The properties of

the object would be modified as follows:

Name: MoveToPline

Entity class: Entity

Destination is: Seized resource unit

Resource: Pline (The name for the resource pool of
pipeline stations’ location)

On exit: countl++; (a code that counts the number of
entities that pass through the current
object)

4.6) The next object to be implemented in the model is Queue. It is drawn from the
Enterprise palette next to NetworkMoveTo object and a connector is drawn between the
latter’s right port and the left port of Queue object. A Queue is a buffer for entities waiting to
be accepted by the next object in the process flow, or a general-purpose storage for the
entities. As in the NetworkSeize object, entities inside the Queue are either arranged

according to (FIFO) rule or based on their priority. The priority may be explicitly stored in the

49

entity or calculated based on the entity properties and external conditions. One of three exit
ports set in the Queue object is used by entities to exit. The default port is out port which
would be used if the next object allows for it. The second port outPreempted would be used
in a priority-based queue. In a priority queue any incoming entity is always accepted, its
priority evaluated and the entity is placed at the corresponding position in the queue. If the
queue is full, the new entity may then cause the last entity to be thrown out of the queue via
outPreempted port. If an entity is associated with a maximum waiting time, it will exit via the
third port outTimeout will be used if the maximum waiting time is reached.

The current queue is used to stop all the entities that exit from NetworkMoveTo object when
they reach their station from proceeding to the next phase of the model until the last entity
reaches its station. The objective of this step is to give all the entities the same arrival time in
the next object. This way they all have the same chance in seizing the resources needed for
the first activity depending only on their priority. In order for the queue to hold the entities until
they all arrive, the Queue is followed by another object which is Hold. The Hold object acts
as a gate that can block the flow along a particular path. It will be closed until the number of
entities inside the queue that precedes it reaches 10. Then, it will be opened through a java

code written in the Queue object properties window as follows:
Name: queue (the default name)

Entity class: Entity
Capacity: 100 (any value above 10)

On enter: if (countl==10) (a code that opens Hold object
hold.setBlocked (false) when number of entities
reaches 10)

The properties of the Hold object are to be as follows:

Name: hold (the default name)
Entity class: Entity
Initially blocked: checked

The above steps would sum up the first stage of the model. In this stage, entities which
represent the pipeline stations are created and assigned to their physical location on the
network, which represents the layout of the pipeline construction site. The layout of objects in

graphical editor will be as shown in Figure (5-8).

SeizePline queue
source networkEnter i MoveToPline hold
55> B 00— @3-+ = 300

Figure 5-9: Sub-stage (2) — Creating Entities

50

Sub-stage (3): Modeling of “Pipe Stringing” Activity

This sub-stage of the model will represent the first activity of pipeline construction, Pipe
Stringing, starting from seizing the pipe trucks to pick up the pipes from the pipe yard and
sending them to the corresponding station until the side booms unload them from the trucks
along the pipeline path.

5.1) The first object to be drawn from the Enterprise palette next to Hold object is
NetworkSeize and is named “SeizePipes”. This object allows each entity to seize number of
resource units, e.g. 10, from resource pool “Pipe” along with a “Side boom” resource. All the
NetworkSeize objects from now on will be priority based. The entity’s priority was assigned to
it in step (3.6) as a number from 1 to 10. As each entity enters “SeizePipes” object, it shall
wait for its turn to acquire all the resources, whenever they are available, based on its priority
e.g. if the entity with priority equal to 8 arrives first to the “SeizePipes” object, it shall remain in
the queue waiting for the entities with priority equal to 10 and 9 to arrive and seize the needed
resources before it is allowed to seize its resources, if they are still available. “SeizePipes”

object’s properties are modified as follows:

Name: SeizePipes

Entity class: Entity

List of {sideboom, Pipe, Pipe, Pipe,Pipe, (The name for the

Resources: Pipe, Pipe, Pipe, Pipe,Pipe, Pipe} ro5qrce pool of pipes and
side booms)

Enable Checked (An option that specifies

Preemption: L
the queue as priority
based)

Entity ((Station)entity) .StrngPriority (The entity’s property on

priority:

which the priority of
gueue is based)

5.2) The next object is also a NetworkSeize object. It is called “SeizeTrk”. This object
allows entities to seize trucks to use them in transporting pipes from the pipe yard to the
pipeline construction site. The queue of entities is arranged based on their priority
StrngPriority. In addition, the object allows each entity to seize either 1 or 2 trucks
based on a property called TruckNo. Each entity is assigned with a number, either 1 or 2,
in step (3.6). Therefore, as each entity enters the “SeizeTrk” object, it takes its place in the
gueue based on its priority and when its turn comes, the entity seizes either 1 or 2 trucks
based on the number assigned to its property TruckNo. In addition, the variable timel
stores the time at which the entity with the highest priority i.e. (10) enters the “SeizeTrk”
object. This variable will be used to calculate the total time of the construction process.
Another action done by this object is to distribute the seized pipes on the trucks according to

number of the latter. “SeizeTrk” object’s properties are modified as follows:

51

Entity class: Entity
List of Resources: (The following code is used to decide whether to seize one or

two trucks for the entity)

((Station)entity) .TruckNo == 1 ? new NetworkResourcePool[] ({
Truck } : new NetworkResourcePool[] { Truck, Truck }
On enter (The following code is executed as every entity enters the

object. It is used to store the time at which the entity with

priority equal to 10 enters the “SeizeTrk” object)

if (((Station)entity) .StrngPriority == 10)
timel=time () ;
On exit (The following code is executed as every entity exits the

object. it is used to distribute the number of seized pipes on
the number of trucks used)

if (((Station)entity) .TruckNo == 1)
((Station)entity) .PipeNo = 1;
else
((Station)entity) .PipeNo = 2

(An option that specifies the

ion: Checked
Enable Preemption: gueue as priority based)

(The entity’s property on
((Station)entity) .Strng

>-at which the priority of queue is
Priority

based)
5.3) The next object NetworkSendTo is drawn from the Enterprise palette next to

Entity priority:

“SeizeTrk” object. This object is used to send network resources from their current location(s)
to a new location in the network. It can only move moving resources such as trucks or
portable resources such as pipes but they have to be escorted by moving resources. The
resource units sent by this object may be at different locations. The entity will exit this object
once the last unit arrives at the destination location, therefore the time spent by the entity in
this object equals the longest travel time of the unit being sent. The speed of each group of
units sent together equals the speed of the slowest moving resource in that group. The
resource units will be animated moving along the shortest path from their origin to the
destination. The current object, called “SendToPipeYard”, is used to send the trucks from the
base camp to the pipe yard where the pipes would be loaded on it. “SendToPipeYard”
object’s properties are modified as follows:

Name: SendToPipeYard
Entity class: Entity
Resources to send: (The following code is used to send the seized trucks

whether they are one or two trucks)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool [] { Truck } : new

52

NetworkResourcePool[] { Truck, Truck }

Destination is: Seized resource unit (The option selected to identify the
destination as the current location of
a certain seized resource)

Resource: Pipe (The seized resource whose location
is specified to send the resources to)

5.4) The next object is also a NetworkSendTo object. It is called “SendToSite”. It is used
to send all the seized resources to their entity i.e. one or two trucks, one or two pipes and a

side boom. “SendToSite” object’s properties are modified as follows:

Entity class: Entity
Resources to send: (The following code is used to send the seized trucks

whether they are one or two trucks)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool [] { Truck,Pipe,Sideboom } : new
NetworkResourcePool [] { Truck, Truck, Pipe, Pipe, Sideboom

}

Destination is Entity (The option selected to identify the destination as the
current location of the entity that seizes the

resources)

5.5) The next object in the model is Delay. It is drawn from the Enterprise palette next to
“SendToSite” object. This object delays entities for a given amount of time. The delay time is
may be stochastic and may depend on the entity as well as on any other conditions. Multiple
entities, depending on the Delay’s capacity, can be delayed simultaneously and
independently. Delay objects are used in this model to represent the actual time spent in
executing the activity after all the resources are gathered together in the pipeline station. The
current object, called “PipeStringing”, would represent the time of execution of pipes stringing

activity. “PipeStringing” object’s properties are modified as follows:
Name: PipeStringing
Entity class: Entity

Delay time is Specified explicitly

(The duration of the activity in
hours takes a triangular
distribution function)

triangular(10, 12.5,

Delay time: 15)

5.6) The next object to be added to the model from the Enterprise palette next to
“PipeStringing” object is NetworkRelease. This object is used to Releases all or some

network resources previously seized by the entity. If a moving resource is released, there are

53

two options; it either returns to its home location or to stays where it is. However, after the
resource is released, the network checks if the released resources have been requested by
other entities and, if yes, the moving resource will be seized and not go to its home location
regardless of the chosen option. A portable resource after its release will stay at its current
location. If it needs to be returned to its home location, it should be moved either with the
entity or with a seized moving resource. The current object “ReleasePipes” is used to release
the seized one or two pipes, depending on number of trucks used for the entity, in the

station’s location in the network. “ReleasePipes” object’s properties are modified as follows:

Name: ReleasePipes
Entity Entity
class:
B (The option selected to specify that only the
Release Specified resources
selected resources would be released)
List of Resources: (The following code is used to release the seized pipes

whether they are one or two)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool[] { Pipe } : new
NetworkResourcePool [] { Pipe,Pipe }

Moving Stay where they are (The option selected to specify where the
resources:

released moving resources, if any, should go)
5.7) The next object in the model is SelectOutput.This object helps in routing the
incoming entities to one of two output ports depending on probabilistic or deterministic
condition. The condition may depend on the entity as well as on any external factors. The two
output ports are OutTrue and OutFalse and as each entity enters the object, according to its
compliance to the condition, exits from one output port in zero time. The current object is used
to decide whether the trucks should go back to the pipe yard to transport another batch of
pipes to the station or not. The condition put in the object depends on each entity’s property
PipeNo which was setto 1 or 2 in step (3.12). A java code is executed when the entity exits
through the OutFalse port to accumulate the number of delivered pipes in the entity’s

property PipeNo. The properties of the object are modified as follows:

Name: SelectOutput (The default name)

Select o (The option selected to specify

True If the condition is true .

. the condition used)

output:

Condition: ((Station)entity) .PipeNo>=10

On exit (false): (The following code is used to count the number of pipes
delivered to the entity and adds them to the entity’s
PipeNo)

((Station)entity) .PipeNo=((Station)entity) .PipeNo+ (((
Station)entity) .TruckNo*1)

54

5.8) As for the OutFalse port of the SelectOutput added previously, the next object is a
NetworkSendTo object called “SendToPipeYardl”. Similar to the object “SendToPipeYard”
added in step (3.13), this object is used to return the trucks to the pipe yard to get another
batch of pipes and transport them to site. Its properties are as follows:

Name: SendToPipeYardl

Resources to send: (The following code is used to send the seized trucks
whether they are one or two trucks)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool [] { Truck } : new
NetworkResourcePool[] { Truck, Truck }

Destination is: Seized resource unit (The option selected to identify the
destination as the current location of a
certain seized resource)

Resource: Pipe (The seized resource whose location is
specified to send the resources to)

5.9) Following “SendToPipeYardl” object, another NetworkSendTo object is added and
named “SendToSitel”. Its properties and function are similar to those of “SendToSite” object
added in step (3.14). This object is used to send both the trucks and pipes from the pipe yard
to the construction site. The output port of the object is connected with the input port of the
Delay object “PipeStringing” added instep (3.15) in order to repeat the Pipe Stringing activity

once more. its properties are as follows:

Resources to send: (The following code is used to send the seized trucks
whether they are one or two trucks)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool[] { Truck,Pipe } : new
NetworkResourcePool [] { Truck, Truck, Pipe, Pipe }

Destination is: Entity (The option selected to identify the destination as

the current location of the entity that seizes the

resources)

5.10) The entity shall pass through the objects “PipeStringing”, “ReleasePipes”, then the
OutFalse port of SelectOutput, then “SendToPipeYardl” and finally “SendToSitel” for as
many cycles as needed to fulfill the condition in SelectOutput object i.e. the number of pipes
delivered to a certain station (entity) reaches ten pipes. In that case, the entity shall pass
through OutTrue port. The next object, that the entity enters is a NetworkRelease object
called “ReleaseTrk”. This object is connected to the OutTrue port; it is used to release the
seized trucks to be sent to the base camp or seized by the entity next in the queue at
“SeizeTrk” object in step (3.12). “ReleaseTrk” object’s properties are modified as follows:

Name: ReleaseTrk

55

N (The option selected to specify that
Release: Specified resources only the selected resources would be
released)
List of Resources: (The following code is used to release the seized trucks
whether they are one or two)

((Station)entity) .TruckNo == 1 ? new
NetworkResourcePool[] { Truck } : new
NetworkResourcePool[] { Truck, Truck }

Moving Return to home location (The option selected to specify where the

resources: released moving resources, if any, should go)
5.11) The last object in the “Pipe Stringing” activity is another NetworkRelease object. It is
called “ReleaseSdboom1”. It releases the seized side booms and let them stay where they

are waiting for the next entity to seize them. The object’s properties are modified as follows:

Name: ReleaseSdboom1

Release: Specified resources (The option selected to specify that only the
selected resources would be released)

List of {sideboom} (The name for the resource pool of side

Resources: booms)

Moving Stay where they are (The option selected to specify where the

resources: released moving resources, if any, should
go)

The objects that constitute the “Pipe Stringing” activity are shown in figure (5-9).

-t s ’ =4 |, ReleaseTrk ReleaseSdbooml
SeizePipes SeizeTrk J . PipeStringing L selectOutput
SendToPipeYard SendToSite ReleasePipes
00 00 . .
O-Io—E—16a-1I—F—s A «-F—f- 1 +
r ~ L o

A\, .. » ..
B A o E—fE- 1 .
SendToPipeYardl SendToSitel

Figure 5-10: Sub-stage (3) - Pipe Stringing
Sub-stage (4): Modeling of “Pipe Bending” and “Welding” Activities

This sub-stage of the model represents the second and third activities of the project; they are
Pipe Bending and Pipe Welding. Both activities follow the same sequence of objects to

simulate them.

6.1) The first object in this stage is Queue object “queuel”. This object is used to store the
entities with lower priority in “Pipe Bending” activity i.e. have
((Station)entity) .BendPriority less than 10 ,if they passed through previous
objects, before they enter the next NetworkSeize object in order to let the entity with
BendPriority = 10 have the priority to seize the needed resources first. Entities entering
“queuel” object are arranged based on their priority. A Hold object will be placed after
“queuel” to block the flow until the entity with highest priority arrives. The condition to open

Hold Object is placed in “queuel”. As each entity enters “queuel” object, its priority is

56

compared with a plain variable named “hold1Limit” which has an initial value of 10. If this
entity has any priority less than 10, it exits from outTimeout port and return to input port of
the Queue. Otherwise, the Hold object opens to pass this entity then closes again and
“hold1Limit” value decreases by one. Then, the entity with priority equal to 9 takes its turn in
this process and so on. This process is executed via a Java code put in “queuel”. Its

properties are modified as follows:

Name: queuel

100 (any value above 10)

Capacity:

(a code that opens hold1
object when the entity with
priority equals hold1Limit)

On at exit: f
((Station)entity) .BendPriorit

== holdlLimit)

holdl.setBlocked(false)

i
(
Yy

On exit: holdl.setBlocked (true) (a code that closes hold1 after the
entity exits)

Enable exit on Checked

timeout: (It allows the entity to exit through
OutTimeout port)

Timeout: 1 (The maximum waiting time
before the entity exits from
OutTimeout port)

Enable Checked (An option that specifiesthe

Preemption: queue as priority based)

Entity Priority: ((Station)entity) .Be

ndPriority

(The entity’ s property on which
the priority of queue is based)

The properties of the Hold object are to be as follows:

Name: Hold1
On enter: holdlLimit--; (Thevalueof “hold1Limit"is decreased
) ! by 1 as an entity enters)
checked

Initially blocked:

57

6.2) The next object added to the model is a NetworkSeize object named “SeizeBndr”. It

is used to seize a side boom and a pipe bending machine. Its properties are as follows:
Name: SeizeBndr
List of {Pipebender, Sideboom} (The name for the resource pools
Resources: of side booms and pipe bending

machines)

Enable Checked (An option that specifies the queue
Preemption: as priority based)
Entity ((Station)entity) .Bend (The entity’s property on which the
priority: Priority priority of queue is based)
Send seized Checked (An option that sends the seized
resources: resources to a given destination)
Destination Entity
is:

6.3) After “SeizeBndr” object, a Delay object named “PipeBending” is added to the model.

This object represents the time of execution of Pipe bending. The time depends on the

topography of the pipeline station which is reflected in the number of pipe bends needed in

each station. Therefore, the delay time is a function of entity’s property called BendNo.

“PipeBending” object’s properties are as follows:

Name:

Delay time is:

Delay time:

PipeBending
Specified explicitly

triangular(115, 125,
140) =*
((Station)entity) .BendNo
/3

(The duration of the activity
in hours takes a triangular
distribution function)

6.4) The last object of “Pipe Bending” activity is “ReleaseBndr” NetworkRelease object. It

releases both the side boom and the pipe bending machine. Its properties are modified as

follows:

Name: ReleaseBndr

Release: Specified resources (The option selected to specify that
only the selected resources would be
released)

List of {Pipebender, Sideboom} (The name for the resource pools of

Resources: side booms and pipe bending
machines)

Moving Stay where they are (The option selected to specify where

resources the released moving resources, if any,

should go)

6.5) Pipe Welding activity are modeled in the same sequence of objects used for Pipe

Bending activity (steps (3.22) to (3.25)). The entities shall pass through Queue object

“queue?2”, followed by Hold object “hold2” and two NetworkSeize objects “SeizeWldr” and

“SeizeSdboom1”, then, a Delay object “PipeWelding” and finally two NetworkRelease

objects “ReleaseWIdr” and “ReleaseSdboom?2”. “queue2” object’s properties are as follows:

Name:
Capacity:

On at exit: 1if

queue?
100 any value above 10
y

(a code that opens

(((Station)entity) .WeldPriorit “hold2” object when the

y == hold2Limit) entity with priority equals
hold2.setBlocked (false) “hold2Limit”)

On exit: hold2.setBlocked (true) (a code that closes “hold1” after
the entity exits)

Enable exit on Checked (It allows the entity to exit through

timeout: OutTimeout port)

Timeout: 1 (The maximum waiting time before
the entity exits from OutTimeout
port)

Enable Checked (An option that specifies the queue

Preemption: as priority based)

58

Entity Priority: ((Station)entity) .We (The entity’s property on which the
ldPriority priority of queue is based)

The properties of the Hold object are to be as follows:

Name: hold2

(The value of “hold2Limit” is decreased
by 1 as an entity enters)

On enter: Hold2Limit--;
Initially blocked: ~ checked

The properties of “SeizeWIdr” object are to be as follows:
Name: SeizeWIdr

List of Resources: (The following code is used to decide whether to seize one or
two welders for the entity)

((Station)entity) .WelderNo == 1 ? new NetworkResourcePool []

{ welder } : new NetworkResourcePool[] { Welder, Welder }

Enable Checked (An option that specifies the queue as
Preemption: priority based)

Entity ((Station)entity) . (The entity’s property on which the
priority: WeldPriority priority of queue is based)

Send seized Checked (An option that sends the seized
resources: resources to a given destination)
Destination is: Entity

The properties of “SeizeSdboom1”object are to be as follows:

Name: SeizeSdboom1

List of Resources: (The following code is used to decide whether to seize
one or two side booms for the entity)

((Station)entity) .WelderNo == 1 ? new NetworkResourcePool[] {

Sideboom } : new NetworkResourcePool [] { Sideboom, Sideboom }

On exit: (The following code is executed as every entity exits the object. it is used
to count the number of welded pipes depending on number of welders)

if (((Station)entity) .WelderNo == 1)
((Station)entity) .WeldPipeNo = 1;
else
((Station)entity) .WeldPipeNo = 2

Enable Checked (An option that specifies the queue as
Preemption: priority based)

Entity ((Station)entity) . (The entity’s property on which the priority
priority: WeldPriority of queue is based)

Send seized Checked (An option that sends the seized resources
resources: to a given destination)

Destination is: Entity
As for the Delay object “PipeWelding”, the delay time is a function of number of welders i.e.
the number of welded pipes. The properties of “PipeWelding” object are as follows:

59

Name:

Delay time is

Delay time:

PipeWelding
Specified explicitly

triangular (42,

50,

60) (The duration of the activity in

/ ((Station)entity) .WeldPip hours takes a triangular

eNo

distribution function)

For the NetworkRelease object “ReleaseWIdr”, the properties are modified as follows:

Name: ReleaseWldr

Release: Specified resources (The option selected to specify that only
the selected resources would be
released)

List of (The following code is used to decide whether to release one or two

Resources: welders)

((Station)entity) .WelderNo == 1 ? new

NetworkResourcePool []
NetworkResourcePool []

{ welder } new
{ welder, Welder }

Moving
resources:

Return to home location

(The option selected to specify where
the released moving resources, if any,
should go)

And the last object in the sequence, NetworkRelease object “ReleaseSdboom2”, has the

same properties as “ReleaseSdboom1” in step (3.21) as follows:

Name: ReleaseSdboom2
Release: Specified resources
List of {sideboom}
Resources:

Moving Stay where they are
resources

(The option selected to specify that only the selected
resources would be released)

(The name for the resource pool of side booms)

(The option selected to specify where the released
moving resources, if any, should go)

By adding this last object, this sub-stage of the model is finished and would appear in the

graphical editor as shown in figure (5-10)

SeizeBndr PipeBendin
ReleaseSdboom1 hold1 it 4 ReleaseBndr
O 00
0 — -o-B—- o
b queuel e o
SeizeWldr SeizeSdbooml PipeWelding

hold2 ReleaseWldr ReleaseSdboom?2
H| FIxh] o0
H ¥ o A v v
queue2) >

Figure 5-11: Sub-stage (4

) - Pipe Bending and Welding Activities

60

Sub-stage (5): Modeling of “Weld Inspection” and “Weld Repair” Activities

This sub-stage of the model contains the sequence of objects that simulate the fourth and fifth
activities of the project. These are Weld Inspection and Weld Repair. As weld inspection for
the pipes of a certain station relies on finishing the welding activity for this station, any station,
where welding activity is finished and regardless of its WeldPriority, shall seize
“Inspector” resource first i.e. it will be “First In, First Out” (FIFO) based. However, if two
entities requested the “Inspector” resource in the same time, WeldPriority of both

entities will decides which gets it. This method will also be applied for “Weld Repair” activity.

7.1) The first object in this stage is a NetworkSeize object called “Seizelnspctr”. It is used

to seize an inspector and sends him to the entity (station). Its properties are modified as

follows:
Name: Seizelnspctr
List of {Inspector} (The name for the resource
Resources: pool of inspectors)
Enable Checked (An option that specifies the
Preemption: queue as priority based)
Entity ((Station)entity) .Weld (The entity’s property on which
priority: Priority the priority of queue is based)
Send seized Checked (An option that sends the
resources: seized resources to a given

destination)
Destination Entity
is:
7.2) The following object is “WeldInspecting” Delay object. It simulates the time taken to
inspect the welded joints within one station. Its properties are as follows:

Name: WeldInspecting

)) Specified explicitly
Delay time is

(The duration of the activity in
hours takes a triangular
distribution function)

triangular (75, 83.3,

Delay time: 90)

7.3) The Delay object is followed by SelectOutput object. Object is used to route the
entities to one of two paths. The condition for this object is a probability condition. This
means that passing entities shall exit through OutTrue or OutFalse output ports relies on a
certain probability. In the current object, the probability condition equals 90% which is the

average percent for welded joints passing the inspection successfully. Its properties are set

as follows:
Name: SelectOutputl
Select True With specified probability (The option selected to specify the
output: condition used)

61

o 0.9
Condition

7.4) The OutTrue port of “SelectOutputl” object is connected to a NetworkRelease
object named “Releaselnspctr”. Entities exiting through OutTrue port are the entities that
passed the inspection; hence, the inspectors shall be released. “Releaselnspctr’ have the
following properties:

Name: Releaselnspctr

Release: Specified resources (The option selected to specify that only the selected
resources would be released)

List of { Inspector } (The name for the resource pool of inspectors)

Resources:

Moving Return to home location (The option selected to specify where the released

resources moving resources, if any, should go)

7.5) The stations, that do not pass the inspection, require welders to repair the welded
joints and an inspector to re-inspect the repaired welds. Thus, the OutFalse output port of
“SelectOutputl” object is connected to a NetworkRelease object named “Releaselnspctrl”
Its properties are similar to “Releaselnspctr’ object created in the previous step. After that, a
NetworkSeize object is placed. It is used to seize a side boom and a welder to work on “Weld

Repairing”. Its properties is modified as follows:

Name: SeizeWldrSdboom

List of {sideboom,Welder} (The name for the resource pool of
Resources: side booms and welders)

Enable Checked (An option that specifies the queue as
Preemption: priority based)

Entity ((Station)entity) . (The entity’s property on which the
priority: WeldPriority priority of queue is based)

Send seized Checked (An option that sends the seized
resources: resources to a given destination)

Destination Entity
is:

7.6) After seizing the required resources, the entities shall pass through a Delay object
named “WeldingRpr’. The delay time of this object takes a triangular distribution. Its
properties are:

Name: WeldRpr

)) Specified explicitly
Delay time is

triangular(42, 50, (The duration of the activity in hours
60) takes a triangular distribution function)
7.7) After finishing the weld repair, the entity releases both the side boom and the welder.

Delay time:

This shall be done through two NetworkRelease objects “ReleaseWldrl” and

“ReleaseSdboom3”. “ReleaseWIdr1” object has the following properties:

62

Name: ReleaseWldrl

Release: Specified resources (The option selected to specify that only the
selected resources would be released)
List of {Wwelder} (The name for the resource pool of welders)
Resources:
Moving Return to home (The option selected to specify where the
resources . released moving resources, if any, should
location 90)

While “ReleaseSdboom3” has the following properties:

Name: ReleaseSdboom3

Release: Specified resources (The option selected to specify that only the
selected resources would be released)

List of {sideboom} (The name for the resource pool of side

Resources: booms)

Moving Stay where they are (The option selected to specify where the

resources released moving resources, if any, should
go)

7.8) Each entity need to seize the inspector once more to repeat the inspection for
repaired welded joints. This needs adding “Seizelnspctrl” and “WeldInspectingl” objects to
the sequence similar to those in steps (3.27) and (3.28). however, for “WeldInspectingl”
object, the delay time would be as follows:

Name: Weldlnspectingl

)) Specified explicitly
Delay time is

Delay time: triangular(7.5, 8.33, (The duration of the activity in

9) hours takes a triangular
distribution function)
7.9) The last object in this stage is “SelectOutput2” object. This object represents the
probability of passing the inspection for the repaired joints. The OutFalse port shall be
connected back with input port of “Releaselnspctrl” (see step (3.31)) to repeat the process of
weld repair. On the other hand, the OutTrue port is connected to “Releaselnspctr” added in
step (3.30) i.e. entities exiting through it shall proceed to the next stage. The probability used
in “SelectOutput2” is as follows:

Name: SelectOutput2

Select True With specified probability (The_qptlon selected to specify the
output: condition used)

Condition 0.9

The sequence of objects in this sub-stage is shown in figure (5.11).

63

Seizelnspctr WeldInspecting selectOutputl Releaselnspctr

(m | —o—0]
- o—w—a—(D—s——= v
;\ ~*

SeizeWldrSdboom Seizelnspctrl selectOutput?
WeldingRpr ReleaseWldrl

o Fimo E—EJ—@—EJ—EI—O—E—E—O—EI—EI o m—a(D)-

" s WeldInspectingl
Releaselnspctrl Re]easeSdb00m3

Figure 5-12: Sub-stage (5) - Weld Inspection and Repair Activities

Sub-stage (6): Modeling of “Joints Coating”, “Excavation” and “Pipe
Lowering” Activities

This sub-stage contains the sequence of objects that simulate three activities. These activities
are Coating of Welded Joints, Pipeline Trench Excavation and Lowering of Pipes into the
Trench. The sequence of objects for each of the three activities is the same. The entities shall
pass through a Queue object, followed by a Hold object and a NetworkSeize object, then, a

Delay object and finally a NetworkRelease object.

8.1) For the first activity, Joints Coating, the entities (stations) will be held in a priority
based Queue “queue3” based on their CoatPriority value. The Hold object “hold3”
remains closed until the entity with CoatPriority value equal to 10 arrives to the queue.
Only then, the Hold object will open for this entity to pass and closes again waiting for the
entity with CoatPriority value equal to 9 to arrive to the queue and so on (see step
(3.22)). The entity, which passes through the “hold3”, enters “SeizeCoating” NetworkSeize
object and seizes a “CoatingTeam” Resource, if available, and sends the resource to the
station’s location. Once the resource arrives to its station, the entity exits “SeizeCoating”
object and enters the Delay object “Coating” to spend the time of execution of the activity.
Finally, the entity releases the “CoatingTeam” Resource at “ReleaseCoating”
NetworkRelease object and sends it to its home location or a new station. The properties of

these objects are as follows:

Name: queue3d
Capacity: 100 (any value above
10)
On atexit: if (((Station)entity) .CoatPriority (acode thatopens
== hold3Limit) “hold3” objegt
hold3.setBlocked (false) when the entity
with priority equals
“hold3Limit")
On exit: hold3.setBlocked (true) (a code that closes “hold3”
after the entity exits)
Enable exit on Checked (It allows the entity to exit through
timeout: OutTimeout port)
Timeout: 1 (The maximum waiting time before

the entity exits from OutTimeout port)

64

Enable Checked (An option that specifies the queue as

Preemption: priority based)

Entity Priority: ((Station)entity) . (The entity’s property on which the
CoatPriority priority of queue is based)

Name: hold3

(The value of “hold3Limit” is

On enter: hold3Limit--; decreased by 1 as an entity enters)
Initially blocked: checked

Name: SeizeCoating

List of {CoatingTeam} (The name for the resource pool
Resources: of coating teams)

Enable Checked (An option that specifies the
Preemption: queue as priority based)

Entity ((Station)entity) .Coat (The entity’s property on which
priority: Priority the priority of queue is based)
Send seized Checked (An option that sends the seized
resources: resources to a given destination)

Destination Entity
is:

Name: Coating

)) Specified explicitly
Delay time is

Delay time: triangular(22, 25, 28) (The duration of the activity
in hours takes a triangular
distribution function)

Name: ReleaseCoating
Release: Specified resources (The option selected to specify that only the
selected resources would be released)
List of {CoatingTeam} (The following code is used to release the
Resources: seized pipes whether they are one or two)
Moving Return to home (The option selected to specify where the
resources | . released moving resources, if any, should
ocation
go)
8.2) In the second activity, Pipeline Trench Excavation, the same sequence of objects is

followed. The entities (stations) are held in a priority based Queue “queue4” based on their
ExcvPriority value. The Hold object “hold4” remains closed until the entity with
ExcvPriority value equal to 10 arrives to the queue. Only then, the Hold object will
open for this entity to pass and closes again waiting for the entity with ExcvPriority
value equal to 9 to arrive to the queue and so on (see step (3.22)). The entity, which passes
through the “hold4”, enters “SeizeExcvtr” NetworkSeize object and seizes one or two units of
“Excavator” Resource based on the entity’s property ExcvNo and sends the resource to the

station’s location. Once the resource arrives to its station, the entity exits “SeizeExcvtr” object

65

and enters the Delay object “Excavation” to spend the time of execution of the activity. The
delay time has a triangular distribution and is a function in the number of seized excavators
along with another property of the entity which is Excvdi £ £. This property stands for the soil
type of each station which may vary from loose sand to hard clay. Therefore, Excvdiff
value will increase as the hardness of soil increases to affect the excavation duration. Finally,
the entity releases the “Excavator” Resource at “ReleaseExcvtr” NetworkRelease object and

sends it to its home location or a new station. The properties of these objects are as follows:

Name: queued
Capacity: 100 (any value above 10)

(a code that opens

On at exit: 1
(((Station)entity) .ExcvPriority “hold4” object when

I —~ Frh

hold4Limit) the entity with priority
hold4.setBlocked (false) equals “hold4Limit”)
On exit: hold4 .setBlocked (true) (a code that closes “hold4”
after the entity exits)
Enable exit on Checked (It allows the entity to exit
timeout: through OutTimeout port)
Timeout: 1 (The maximum waiting time before
the entity exits from OutTimeout
port)
Enable Checked (An option that specifies the queue
Preemption: as priority based)
Entity Priority: ((Station)entity) . (The entity’s property on which the
ExcvPriority priority of queue is based)
Name: hold4

On enter: Hold4Limit - : (The value of “hold4Limit” is
’ ! decreased by 1 as an entity enters)

checked
Initially blocked:

Name: SeizeExcvtr

List of Resources: (The following code is used to decide whether to seize one
or two excavators)

((Station)entity) .ExcvNo == 1 ? new NetworkResourcePool []
{ Excavator } : new NetworkResourcePool[] { Excavator,
Excavator }

Enable Checked (An option that specifies the
Preemption: gueue as priority based)

Entity ((Station)entity) .Excv (The entity’s property on which
priority: Priority the priority of queue is based)
Send seized Checked (An option that sends the seized
resources: resources to a given destination)

66

Destination Entity
is:

Name: Excavation

)) Specified explicitly
Delay time is

Delay time: ((Station)entity) .Excvdiff/2 (The duration of the
*triangular (250, 300, 330 actiyity in hoqrs Fakgs
) / ((Station)entity) .ExcvNo a tr@ngular distribution

function)
Name: ReleaseExcvtr
Release: Specified resources (The option selected to specify that only the
selected resources would be released)
List of Resources: (The following code is used to decide whether to release one
or two excavators)
((Station)entity) .ExcvNo == 1 ? new NetworkResourcePool []
{ Excavator } : new NetworkResourcePool[] { Excavator,

Excavator }

Moving Stay where they are (The option selected to specify where the

resources released moving resources, if any, should go)
8.3) The third activity that follows the same sequence of objects is Lowering of Pipes. The
entities (stations) are held in a priority based Queue “queue5” based on their LwrPriority
value. The Hold object “hold5” remains closed until the entity with LwrPriority value
equal to 10 arrives to the queue. Only then, the Hold object will open for this entity to pass
and closes again waiting for the entity with LwrPriority value equal to 9 to arrive to the
gueue and so on (see step (3.22)). The entity, which passes through the “hold5”, enters
“SeizeSdboom” NetworkSeize object and seizes five units of “Sideboom” Resource and
sends the resource to the station’s location. Once the resource arrives to its station, the entity
exits “SeizeSdboom” object and enters the Delay object “PipeLowering” to spend the time of
execution of the activity. Finally, the entity releases the “Sideboom” Resource at
“ReleaseSdboom4” NetworkRelease object and sends it to its home location or a new

station. The properties of these objects are as follows:

Name: queue5

Capacity: 100 (any value above 10)

On at exit: if (a code that opens
(((Station)entity) .LwrPriority “hold5” object when the
== hold5Limit) entity with priority equals

holds.setBlocked (false) “hold5Limit)
On exit: hold5.setBlocked (true) (acode that closes “hold5” after the
entity exits)

Enable exit on Checked (It allows the entity to exit through

timeout: OutTimeout port)

Timeout: 1 (The maximum waiting time before

the entity exits from OutTimeout port)

67

Enable Checked

Preemption:

(An option that specifies the queue as
priority based)

Entity Priority: ((Station)entity) . (The entity’s property on which the

LwrPriority priority of queue is based)
Name: hold5
On enter: holdSLimit-- (The value of “hold5Limit” is
decreased by 1 as an entity enters)
checked

Initially blocked:

Name: SeizeSdboom

List of {sideboom, Sideboom, Side (The name for the resource
Resources: boom, Sideboom, Sideboom} pool of side booms)

Enable Checked (An option that specifies the
Preemption: gueue as priority based)
Entity ((Station)entity) .LwrPr (The entity’s property on which
priority: iority the priority of queue is based)
Send seized Checked (An option that sends the seized
resources: resources to a given destination)
Destination Entity

is:

Name: PipeLowering

Delay time is

Specified explicitly

Delay time: triangular(13, 15, 18 (The duration of the activity in
hours takes a triangular
distribution function)

Name: ReleaseSdboom4

Release: Specified resources (The option selected to specify

that only the selected resources
would be released)

List of {sideboom, Sideboom, Side (The name for the resource pool

Resources: boom, Sideboom, Sideboom} of side booms)

Moving Stay where they are (The option selected to specify

resources where the released moving

68

resources, if any, should go)

The sequence of objects in this sub-stage is shown in figure (5.12).

SeizeCoating Coating ReleaseCoating SeizeExcvtr
hold3 hold4
O C1 0] O 0
- E—E—O—H—mg—m—@—@—m—@—o— B—al-o-F—@- 1o
queue3 L v queued g
Excavation SeizeSdboom PipeLowering
ReleaseExcvtr 5 hold5 da ReleaseSdboom4
] —O—{=—=]- o [—fu—0—{]
* queues

Figure 5-13: Sub-stage (6) - Joints Coating, Trench Excavation and Pipe Lowering
Activities

Sub-stage (7): Modeling of “Joint Welding” and “Weld Inspection” Activities

This sub-stage contains the sequence of objects that simulate two activities. These activities
are Joints welding and Weld inspection. Both activities have the same sequence of objects.
Entities seize the needed resources through a NetworkSeize object, then, they spend the
duration of the activity in a Delay object. Finally, they release the seized resources via a
NetworkRelease object.

For “Joints Welding” activity, entities seize a welder and a side boom in “SeizeWIdrSdboom1”
object. Similar to “Joint Inspecting” activity in step (3.27), any station, where lowering activity
is finished and regardless of its WeldPriority, shall seize “Welder” resource first i.e. it
will be “First In, First Out” (FIFO) based. However, if two entities requested the “Welder”
resource in the same time, WeldPriority of both entities will decide which one gets it.
This method will also be applied for “Weld Inspection” activity in the next step. Next, entities
enter Delay object “PipeWeldingl” for the duration of the activity which takes a triangular
distribution. Finally, entities release the seized resource “Welder’” and send it to its home
location by “ReleaseWlIdr” object while “ReleaseSdboom5” object is used to release
“Sideboom” resource and keeps it where it is waiting for the next seize. The properties of
these objects are as follows:

Name: SeizeWldrSdboom1

List of {sideboom, Welder} (The name for the resource pool of
Resources: side booms and welders)

Enable Checked (An option that specifies the queue as
Preemption: priority based)

Entity ((Station)entity) . (The entity’s property on which the
priority: WeldPriority priority of queue is based)

Send seized Checked (An option that sends the seized
resources: resources to a given destination)

Destination Entity
is:

Name: PipeWeldingl

69

)) Specified explicitly
Delay time is

Delay time: triangular(8, 10, (The duration of the activity in hours
12) takes a triangular distribution function)

Name: ReleaseWldr2

Release: Specified resources (The option selected to specify that only
the selected resources would be
released)

List of {welder} (The name for the resource pool of

Resources: welders)

Moving Return to home location (The option selected to specify where the

resources released moving resources, if any, should
go)

Name: ReleaseSdboom5

Release: Specified resources (The option selected to specify that only
the selected resources would be
released)

List of {sideboom} (The name for the resource pool of side

Resources: booms)

Moving Stay where they are (The option selected to specify where the

resources released moving resources, if any, should
go)

The second activity, Weld Inspection, follows the same sequence of objects. Each entity shall
enter a NetworkSeize object “Seizelnspctr2” to seize an “Inspector” resource. When he
arrives to the station location, the entity enters the Delay object “WeldIinspecting2” as its
delay time represents the duration of inspection activity. Finally, the entity releases the seized
resource and sends it to its home location via NetworkRelease object “Releaselnspctr2”.

Figure (5-13) shows the sequence of objects of this stage. The properties of these objects are

as follows:
Name: Seizelnspctr2
List of {Inspector} (The name for the resource pool of
Resources: inspectors)
Enable Checked (An option that specifies the queue as
Preemption: priority based)
Entity ((Station)entity) . (The entity’s property on which the
priority: WeldPriority priority of queue is based)
Send seized Checked (An option that sends the seized
resources: resources to a given destination)

Destination Entity
is:

Name: Weldlnspecting2

70

Delay time is Specified explicitly

Delay time: triangular(1l.5, (The duration of the activity in hours
1.67, 1.9) takes a triangular distribution function)
Name: Releaselnspctr2
Release: Specified resources (The option selected to specify that
only the selected resources would be
released)
List of {Inspector} (The name for the resource pool of
Resources: welders)
Moving Return to home location (The option selected to specify where
resources the released moving resources, if any,
should go)
SeizeWldrSdboom1 Seizelnspctr2
ReleaseWldr2 e Releaselnspctr2
IEI—EI—O—E—EI—IDO—E—@ —o—0
1'3
PipeWeldingl WeldI ting2
Lsabtsaial ReleaseSdboomS iz biiigaa’

Figure 5-14: Sub-stage (7) — Joint Welding and Weld Inspection Activities

Sub-stage (8): Modeling of “Trench Backfilling” and “Hydro-testing” Activities

This is the last sub-stage of the stage of creating the model diagram. It contains the sequence
of objects that simulate the last two activities in the pipeline construction project; they are
Pipeline Trench Backfilling and Hydro testing of Pipeline. Both activities have a sequence of
objects similar to that of sub-stage (6) activities. The entities shall pass through a Queue
object, followed by a Hold object and a NetworkSeize object, then, a Delay object and finally

a NetworkRelease object.

For the first activity, Trench Backfilling, the entities (stations) will be held in a priority based
Queue “queueb” based on their Bckf1lPriority value. The Hold object “hold6” remains
closed until the entity with Bckf1lPriority value equal to 10 arrives to the queue. Only
then, the Hold object will open for this entity to pass and closes again waiting for the entity
with BckflPriority value equal to 9 to arrive to the queue and so on (see step (3.22)).
The entity, which passes through “hold6”, enters “SeizeBulldzr” NetworkSeize object and
seizes one or two units of “Bulldozer” resource based on the entity’s property B1dzrNo and
sends the resource to the station’s location. Once the resource arrives to its station, the entity
exits “SeizeBulldzr” object and enters the Delay object “Backfilling” to spend the time of
execution of the activity. Finally, the entity releases the “Bulldozer’ Resource at
“ReleaseBulldzr’ NetworkRelease object and sends it to its home location or a new station.
The properties of these objects are as follows:

71

Name:

Capacity:

On at exit:

On exit:

Enable exit on

timeout:

Timeout:

Enable
Preemption:

Entity Priority:

gueueb
100

if

(((Station)entity) .BckflPrior

ity == holdéLimit)

holdé.setBlocked (false)

holdé.setBlocked (true)

Checked

Checked

((Station)entity) .Bc

(any value above 10)

(a code that opens
“hold6” object when the
entity with priority equals
“hold6Limit”)

(a code that closes “hold6”
after the entity exits)

(It allows the entity to exit through
OutTimeout port)

(The maximum waiting time
before the entity exits from
OutTimeout port)

(An option that specifies the
gueue as priority based)

(The entity’s property on which

kflPriority the priority of queue is based)
Name: hold6
On enter: hold6Limit-- (The value of “hold6Limit” is
decreased by 1 as an entity enters)
Initially blocked: checked
Name: SeizeBulldzr

List of Resources:

or two bulldozers)

(The following code is used to decide whether to seize one

((Station)entity) .BldzrNo == 1 ? new
NetworkResourcePool [] { Bulldozer } new
NetworkResourcePool [] { Bulldozer, Bulldozer }

Enable Checked (An option that specifies the queue as
Preemption: priority based)

Entity ((Station)entity) . (The entity’s property on which the
priority: BckflPriority priority of queue is based)

Send seized Checked (An option that sends the seized
resources: resources to a given destination)
Destination Entity

is:

Name: Backfilling

Delay time is

Specified explicitly

Delay time: triangular (160, 180, 200 (The duration of the activity
)/ ((Station)entity) .B1ldz in hours takes a triangular
rNo distribution function)

Name: ReleaseBulldzr

72

Release: Specified resources (The option selected to specify that only the
selected resources would be released)

List of Resources: (The following code is used to decide whether to release
one or two bulldozers)

((Station)entity) .BldzrNo == 1 ? new
NetworkResourcePool[] { Bulldozer } : new
NetworkResourcePool [] { Bulldozer, Bulldozer }

Moving Stay where they are (The option selected to specify where the
resources: released moving resources, if any, should
go)

In the second activity, Hydro testing of Pipeline, the same sequence of objects is followed.
The entities (stations) are held in a priority based Queue “queue7” based on their
HdrtstPriority value. The Hold object “hold7” remains closed until the entity with
HdrtstPriority value equal to 10 arrives to the queue. Only then, the Hold object will
open for this entity to pass and closes again waiting for the entity with HdrtstPriority
value equal to 9 to arrive to the queue and so on (see step (3.22)). The entity, which passes
through “hold7”, enters “SeizeHydtest” NetworkSeize object and seizes a “Hydro-testing
team” Resource, if available, and sends the resource to the station’s location. Once the
resource arrives to its station, the entity exits “SeizeHydtest” object and enters the Delay
object “HydroTesting” to spend the time of execution of the activity. Finally, the entity releases
the “ Hydro-testing team” Resource at “ReleaseHydtest” NetworkRelease object and sends
it to its home location or a new station. In addition, the variable time2 stores the time at
which the entity with the lowest priority i.e. (1) enters the “ReleaseHydtest” object. This
variable along with time1 variable in step (3.12) will be used to calculate the total time of the

construction process. The properties of these objects are as follows:

Name: queue?

Capacity: 100 (any value above 10)

On at exit: if (a code that opens hold7
(((Station)entity) .HdrtstPri object when the entity with
ority == hold7Limit) priority equals hold7Limit)

hold7.setBlocked (false)

On exit: hold7.setBlocked (true) (acode that closes hold7 after the
entity exits)

Enable exit on Checked (It allows the entity to exit through

timeout: OutTimeout port)

Timeout: 1 (The maximum waiting time before the
entity exits from OutTimeout port)

Enable Checked (An option that specifies the queue as

Preemption: priority based)

Entity Priority: ((Station)entity) . (The entity’s property on which the

HdrtstPriority priority of queue is based)

73

Name: hold7

On enter: hold7Limit - - : (The value of “hold7Limit” is
' ! decreased by 1 as an entity enters)

checked
Initially blocked:

Name: SeizeHydtest

List of {HydTestTeam} (The name for the resource pool of
Resources: hydro-testing teams)

Enable Checked (An option that specifies the queue
Preemption: as priority based)

Entity ((Station)entity) .Hdrt (The entity’s property on which the
priority: stPriority priority of queue is based)

Send seized Checked (An option that sends the seized
resources: resources to a given destination)

Destination Entity
is:

Name: HydroTesting

)) Specified explicitly
Delay time is

Delay time: triangular(45, 50, 55) (The duration of the activity in
hours takes a triangular
distribution function)

Name: ReleaseHydtest

Release: Specified resources (The option selected to specify that only the
selected resources would be released)

List of {HydTestTeam} (The following code is used to release the

Resources: seized pipes whether they are one or two)

Moving Return to home (The option selected to specify where the

resources location released moving resources, if any, should go)

On enter (The following code is executed as every entity enters the object. It

is used to store the time at which the entity with priority equal to 1
enters the object)

if (((Station)entity) .HdrtstPriority == 1)
time2=time () ;
time=time2-timel;
As all the activities are finished in all stations, each entity must release any resources seized
by it. At this point, the only remaining seized resource is “Pline” resource, which was seized in
step (3.8). However, another option in the NetworkRelease object, called “ReleasePline”, is
used; this option is to release all seized resources whatever they are. As a result, the object’s

properties is modified as follows:

74

Name: ReleasePline

Release: All seized

resources (The option selected to release all resources)
Moving Stay where they (The option selected to specify where the
resources are released moving resources, if any, should go)

In order to finalize the simulation process, two objects must be added after the last object.
The first object is NetworkExit. This object unregisters the entity from the network. The entity
will also no longer be animated by the network. The second object is Sink. This object is
considered the end point of the model. It is used to dispose entities. Both objects’ default

properties would be used. Figure (5-14) shows the sequence of objects of the last stage.

queueb SeizeBulldzr Backfilling

0 hold6 5.A ReleaseBulldzr . hold7

D—]IDE{E—EI—O—E—E—EE—H—@—H—O—H—]]DEE—E}—O—

' b queue?
SeizeHydtest ~ HydroTesting :) -
5 A ReleaseHydtest ReleasePline networkExit sink
Io—E—=& o o S E—a—X%)
e ' "

Figure 5-15: Sub-stage (8) - Trench Backfilling and Hydro-testing Activities

The final step to finish the model is to connect all stages together to get the layout of objects
shown in figure (5-7).

5.3.4. Stage (4): Creating the “Simulation” experiment

The fourth main stage is creating the “Simulation” experiment which runs model simulation
with animation displayed and model debugging enabled. The first experiment in each model is
automatically created. Therefore, no steps would be presented to its development. The fifth
main stage which is creating “Optimization” experiment will be demonstrated in detail in next

chapter.

5.4. Summary and Conclusion

In this chapter, the steps of constructing the simulation model needed for this research were
presented. These steps’ purpose was managing the positions and properties of different
objects constituting the model, defining relationships between them and creating an animated
presentation to the whole process. Dealing with the simulation software “AnyLogic” included
interacting with graphic view as well as Java code lines. The resulting model could be used

75

individually to simulate a typical pipeline project, modify any number of variables and observe

the resulting change in project’s total duration.

76

CHAPTER 6
OPTIMIZATION MODEL

6.1. Introduction

In the previous chapter, the simulation model was created using various objects from the
enterprise library, introducing a number of Java code lines and creating a graphical network
that resembles the project’s landscape. The model employs Discrete Event Simulation to
simulate the activities of pipeline construction starting from pipe stringing all the way to Hydro-
testing of pipeline. It shows the real time sequence of events that the project would run
through to finish all activities for all stations using the needed resources, based on their

availability, and maintaining different relationships between the activities.

In this chapter, the final step of constructing the model is demonstrated. The optimal
schedule for the project and the number of resources utilized in each station for each activity
shall be obtained by an “Optimization Experiment”. An optimization experiment is one of many
experiments, available in AnyLogic, which can be done on the model. As stated previously, an
optimization experiment is the process of finding the best possible solution for a certain

problem by getting the optimal combination of conditions that affect the result.

AnyLogic optimization process is built using an optimization engine called OptQuest. The
OptQuest Engine automatically finds the best parameters of a model, with respect to certain
constraints. The optimization process consists of repetitive simulations of a model with
different parameters. Using sophisticated algorithms, the OptQuest Engine varies
controllable parameters from simulation to simulation to find the optimal parameters for
solving a problem. In addition, AnyLogic provides a convenient graphical user interface to set
up and control the optimization. The optimization experiment in AnyLogic relies on defining
several factors such as the objective function, which needs to be maximized or minimized, the
optimization parameters and the optimization constraints. The steps of defining these factors

will be demonstrated later.

In the final part of this chapter and after finishing the definition of the optimization
problem, a case study will be illustrated to show the applicability of the simulation model and
how much does it resemble the real process. The schedule generated for the construction of
South Valley (Ganoub Elwadi) Gas pipeline would be presented. This case study was used
primarily to assist in planning, testing and validating the model and its functions. This chapter

also presents three stages of model runs and evaluation of their results.

6.2. Optimization Experiment

Constructing an optimization experiment is done using the same user interface used for

the simulation model (see figure (5-1)). However, unlike the simulation model, optimization

77

experiment doesn’t need much effort on defining the different elements it relies on. This is the
result of AnyLogic employing an optimization engine. This engine has within it all the needed
procedures to run the simulation numerous times, while altering the values for a number of
parameters, until it reach the optimal solution for the objective function. Thus, the major part
of creating the optimization experiment is done through modifying its various properties in the
properties view. In the different tabs shown in figure (6-1) all the elements needed to define
the experiment. As for the graphical editor, all the objects inserted in it would be to illustrate
any sort of input used or output resulting from the experiment such as graphs or charts. In
addition, some additions and modifications will be done inside the main active object Main

which contains the model.

ain active object clas (root): | Main - Ignore Create default Ul

Max Step Suggested

Figure 6-1: Properties View of Optimization Model
Creating the experiment shall undergo four main stages:

1- Defining the objective function
2- Defining the optimization parameters
3- Defining the optimization constraints

4- Forming the graphical presentation for the experiment.

The first stage after adding a new optimization experiment, since it is not added to each new
model by default as in the case of simulation experiment, is to define the objective function. It
is defined in the first page of properties view which is General page. The objective function
which is to minimize the total time of construction process shall be defined according to the

following steps:

1.1)A new function is created in the main model. The function object is drawn

from the General palette into the graphical editor. This function is used to get the

78

value of variable time which is calculated in the model in step (3.42) of the previous

chapter. The properties of this object are as follows:

Name: totalTime

Return type: double

Function body return time; (The code is used to get the value of time
(found in “Code” Tab): variable)

1.2) Returning to optimization window, the objective function i.e. minimize totalTime is set
in General page of the experiment’s properties as shown in figure (6-2).

[Properties 52 | B Console

5 Optimizationl - Optimization Experiment

General Name: Optimizationl Main active object class (root): Main -
Advanced

Model Time Random number generation:

Presentation Random seed (unique simulation runs)

Window @ Fixed seed (reproducible simulation runs) Seed value: 1

Constraints

Replications Objective: @ minimize maximize

Description root.totalTime ()

Figure 6-2: Setting the Optimization Objective

The second stage is to define the optimization parameters. The OptQuest Engine

searches through possible values of these parameters to find the optimal parameters.

During the optimization process, the parameter's value is changed within an interval,
which is defined by lower and upper bounds, according to its type. An optimization parameter
type could be one of the following:

e Continuous parameter

e Discrete parameter

e Design parameter

Continuous parameter can take any value from the interval. The parameter precision
determines the minimum value that continuous parameters can change. Discrete parameter is
represented by a finite set of decisions with essential direction i.e. it can take values from the
specified set only. It begins at a lower bound and increments by a specified step size up to an
upper bound. On the other side, Design parameter is also represented by a finite set of
decisions but there is no clear sense of direction. It begins at a lower bound and increments
by a step size up to an upper bound. However, Values order is non-sequential. As each
optimization parameter is defined, its type is chosen according to its nature and influence on
the objective function. for example, any type of rate or ratio should be a continuous

parameter, while, number of a specific resource should be discrete or design.

79

As illustrated in previous chapters, the optimization parameters for the model are the
sequence of work in pipeline stations for each activity and the number of utilized resources in
each station for each activity. The sequence for each activity was defined in step (3.7) in the
previous chapter as an array of ten values. Each entity as it enters the network has a value
assigned from each array to its corresponding entity’s property. Among these properties is the
entity’s priority to seize the resources needed for each activity. The default values for the
arrays of priorities of all activities are {1, 2, 3....... 9, 10} i.e. the first entity takes priority=1
and the second takes priority =2 and so on. In order to incorporate the arrays as optimization
parameters, each element of each array shall be a separate optimization parameter that takes
any value from 1 to 10. Accordingly, each array would be changed to {parameter1,
parameter2, paramater3...... , parameter9, parameter10} where parameter1 # parameter2 #
parameter3 parameter9 # parameter10. The resulting arrays after the optimization
process would be the optimum sequence. The arrays of number of resources used for each
activity such as number of trucks (TruckNo) and number of excavators (ExcvNo) will
also be optimization parameters. Each element of the array shall take a value between one

and the maximum number of units of the resource. The following steps to define the

optimization parameters would be undertaken in the same order for each array:

2.1) The Parameter object is drawn from the General palette into the graphical editor in
the main model. The object would be named strngl and it represents the first element in
“stationProp1” array (see step (3.7) in chapter 5) which is used to assign entities’
StrngPriority. Strngl indicate the priority assigned for first entity or station. the

following properties are assigned to it:

Name: strng1

Type: int (The parameter value shall be integer number)

2.2) The previous step is repeated to create strng2, strng3, strng4.........
strng9 & strnglo.
2.3) All ten parameters strngl to strnglO are placed in “stationProps1” array. lts

properties would be modified as follows:

Table 6-1: Properties of “stationProps1”

Name: | stationProps1

Type: Other: intI[]

new

Initial int [1{strngl, strng2, strng3, strng4, st
Value: rng5, strng6, strng7, strng8, strng9, str
nglo}

Array for
StrngPriority

2.4) Returning to optimization window, in General page of the experiment’s properties go

to the row of the Parameters table containing the parameter strngl. In the Type field, the

80

design type is chosen. The range for the parameter is specified where the parameter’s lower
bound is entered in the Min field and the parameter’'s upper bound in the Max field. The
parameter step value is specified in the Step field. The values entered for the parameter is as

follows:

Table 6-2: Values of Optimization Parameter “ Strng1”

Value
Parameter Type Min Max Step
Strngl design 1 10 !

The same values are entered for strng2 to strnglO to be as shown in figure (6-3).

[Properties &2 | B Console

% Optimizationl - Optimization Experiment

General Name: Optimizationl Main active object class (root): | Main - Ignore
Advanced

Model Time Random number generation:

Presentation Random seed (unique simulation runs)

Window Q) Fixed seed (reproducible simulation runs) Seedvalue: 1

Constraints

Replications Objective: @ minimize maximize

Description root.totalTime ()

Optimization stop conditions
| Iteration count: 500

+| Automatic stop

Parameters:
Value
L i CTLTS Lo [bl 1 ep Suggested
strngl design 1 10 1
strng2 design 1 10)
strng3 design 1 10 1
strngd design 1 10 1
strng5 design 1 10 1
strngb design 1 10 1
strng? design 1 10 1
strng8 design 1 10 i
strng9 design 1 10 L
wn gl0 design 1 10 .'J

Figure 6-3: Defining Optimization Parameters

2.5) Steps (2.1) & (2.2) are repeated to create the remaining optimization parameters in
arrays ‘“stationProp2”, “stationProp3”, “stationProp5”, “stationProp6”, “stationProp7”,
“stationProp9”, “stationProp10”, “stationProp11”, “stationProp12”, “stationProp13” and

“stationProp14”. They would contain the following optimization parameters:

81

Table 6-3: Properties of Arrays “stationProps2” to “stationProps14”

Name: | stationProps2
Type: Other: int[]
new int [] Array for
-, TruckNo
Initial {trucksl, trucks2, trucks3, trucks4, t
Value: ruckss5, trucksé, trucks7, truckss8, tru
cks9, trucksl0}
Name: | stationProps3
Type: Other: intI] Array for
Initial new int[] BendPriority
\?AILae_ {bend1,bend2,bend3, bend4,bends, ben
" | d6,bend7,bend8,bend9, bend10}
Name: | stationProps5
Type: Other: intI] Array for
Initial new int [] WeldPriority
&;Ez_ {weldl,weld2,weld3,weld4,welds,wel
" | d6,weld7,weld8,weld9, weldl0}
Name: | stationProps6
Type: Other: intI]
new int [l weldario
Initial {welderl,welder2,welder3,we1der4,w
Value: | elder5,welder6,welder7,welder8,wel
der9,welderl0}
Name: | stationProps7
Type: Other: int[] Array for
Initial new int[] CoatPriority
\I/qEIII:Jae_ {coatl ,coat2,coat3, coat4, coaths, coa
" | t6,coat7,coat8, coat9, coatlo}
Name: | stationProps9
Type: Other: int[] Array for
- new int[] ExcvPriority
Initial
Value: {excvl, excv2, excv3, excv4d, excv5, exc
" | v6,excv7,excv8, excv9, excvl10}
Name: | stationProps10
Type: Other: intI]
new int[] Array for ExcvNo
Initial {excvtrl, excvtr2, excvtr3, excvtrd, e
Value: xcvtrh5,excvtr6, excvtr7, excvtr8, exc
vtr9, excvtrl}
Name: | stationProps11
Type: Other: intI] Array for
Initial new int [] LwrPriority
&;EZ_ {1wrl,1wr2,1wr3, lwr4, lwrs, lwre, lwr
" | 7,1wr8,1wr9,lwrio}
Name: | stationProps12

82

Type: Other: intI]
5 Array for

. new int[] BckflPriority
Initial {bckfll,bckfl2,bckfl3,bckfl4,bckfl
Value: | 5,bckflé,bckfl7,bckfl8,bckfl9, beckt

110}
Name: | stationProps13
Type: Other: int[]

new intc i
Initial {bldzri,bldzr2,bldzr3,bldzr4,bldzr
Value: | 5,bldzr6,bldzr7,bldzr8,bldzr9,bldz

rl0}
Name: | stationProps14
Type: Other: intI]

new int[] Array for
Initial | {hdrtst1,hdrtst2, hdrtst3, hdrtsts,h | TorcStPriority
Value: | drtst5,hdrtsté6,hdrtst7,hdrtst8, hdr

tst9,hdrtst10}

2.6) Steps (2.3) & (2.4) are repeated to define the parameters’ type, range and step. They
will be as follows:

Table 6-4: Values of Optimization Parameters

Parameter Type : Value
Min Max Step
trucks1 design 1 2 1
trucks2 design 1 2 1
trucks3 design 1 2 1
trucks4 design 1 2 1
trucks5 design 1 2 1
trucks6 design 1 2 1
trucks7 design 1 2 1
trucks8 design 1 2 1
trucks9 design 1 2 1
trucks10 design 1 2 1
bend1 design 1 10 1
bend2 design 1 10 1
bend3 design 1 10 1
bend4 design 1 10 1
bend5 design 1 10 1
bend6 design 1 10 1
bend7 design 1 10 1
bend8 design 1 10 1
bend9 design 1 10 1

0]
w

bend10 design 1 10 1
weld1 design 1 10 1
weld2 design 1 10 1
weld3 design 1 10 1
weld4 design 1 10 1
weld5 design 1 10 1
weld6 design 1 10 1
weld7 design 1 10 1
weld8 design 1 10 1
weld9 design 1 10 1

weld10 design 1 10 1

welder1 design 1 2 1

welder2 design 1 2 1

welder3 design 1 2 1

welder4 design 1 2 1

welder5 design 1 2 1

welder6 design 1 2 1

welder7 design 1 2 1

welder8 design 1 2 1

welder9 design 1 2 1

welder10 design 1 2 1
coat1 design 1 10 1
coat2 design 1 10 1
coat3 design 1 10 1
coat4 design 1 10 1
coatb design 1 10 1
coat6 design 1 10 1
coat7 design 1 10 1
coat8 design 1 10 1
coat9 design 1 10 1

coat10 design 1 10 1
excv1 design 1 10 1
excv2 design 1 10 1
excv3 design 1 10 1
excv4 design 1 10 1
excvd design 1 10 1
excv6 design 1 10 1
excv7 design 1 10 1
excv8 design 1 10 1

84

excv9 design 1 10 1
excv10 design 1 10 1
excvir1 design 1 2 1
excvtr2 design 1 2 1
excvtr3 design 1 2 1
excvtrd design 1 2 1
excvtrd design 1 2 1
excvtré design 1 2 1
excvtr7 design 1 2 1
excvtr8 design 1 2 1
excvtr9 design 1 2 1

excvtr10 design 1 2 1
Iwr1 design 1 10 1
Iwr2 design 1 10 1
Iwr3 design 1 10 1
Iwrd design 1 10 1
Iwrb design 1 10 1
Iwr6 design 1 10 1
Iwr7 design 1 10 1
Iwr8 design 1 10 1
Iwr9 design 1 10 1

Iwr10 design 1 10 1

bckfl1 design 1 10 1

bckfl2 design 1 10 1

bckfl3 design 1 10 1

bckfl4 design 1 10 1

bckfl5 design 1 10 1

bckfle design 1 10 1

bckfl7 design 1 10 1

bckfl8 design 1 10 1

bckfl9 design 1 10 1
bckfl10 design 1 10 1

bldzr1 design 1 2 1

bldzr2 design 1 2 1

bldzr3 design 1 2 1

bldzr4 design 1 2 1

bldzr5 design 1 2 1

bldzr6 design 1 2 1

bldzr7 design 1 2 1

85

bldzr8 design 1 2 1
bldzr9 design 1 2 1
bldzr10 design 1 2 1
hdrtst1 design 1 10 1
hdrtst2 design 1 10 1
hdrtst3 design 1 10 1
hdrtst4 design 1 10 1
hdrtst5 design 1 10 1
hdrtst6 design 1 10 1
hdrtst7 design 1 10 1
hdrtst8 design 1 10 1
hdrtst9 design 1 10 1
hdrtst10 design 1 10 1

The next stage, after defining the optimization parameters, is defining the optimization
constraints. A constraint is a condition defined on the optimization parameters. It defines a
range for an optimization parameter. Each time the optimization engine generates a new set
of values for the optimization parameters, it creates a feasible solution that satisfies this
constraint; thus the space of searching is reduced, and the optimization is performed faster. A
constraint is a well-formed arithmetic expression describing a relationship between the
optimization parameters. It always defines a limitation by specifying a lower or an upper
bound e.g. parameter1 >= 10. The constraints needed for this model shall insure that no two
parameters of the same array have the same value. In that way, every station has a specific
priority for each activity that no other station has. There will be two constraints for the
parameters for each array. The first constraint insures that the total value for all ten
parameters equals 55 which are total of values from one to ten. The second constraint
insures that the value of multiplying all ten parameters equals 3,628,800 which is the factorial
of 10 (10!). The following steps to define the optimization constraints would be undertaken in

the same order for each array:

3.1) In Constraints page of the experiment’'s properties go to the firstrow of the
constraints table. In the Expression field, the first constraint is typed in the form
“strng1+strng2+strng3+strng4+strng5+strng6+strng7+strng8+strng9+strng10”.

3.2) Inthe Type field, the “=” sign is selected from the dropdown menu.

3.3) In the Bound field, the value “55” is entered. The constraint is then enabled by

selecting the checkbox in Enabled field. The table shall be as follows:

86

Table 6-5: Definition of 1%' Constraint for Stringing Optimization Parameters

Enabled Expression Type | Bound
7 strngl+strng2+strng3+strng4+strng5+strng6+strng 7+ - 55
— strng8+ strng9+strngl10

3.4) In a new row of the constraints table, the second constraint would be defined in the

same way described in steps (3.1) to (3.3). it would be as follows:

Table 6-6: Definition of 2" Constraint for Stringing Optimization Parameters

Enabled Expression Type Bound
=7 strngl*strng2*strng3*strng4*strng5*strng6*strng7*
v 9 9 9 g g 9 9 = | 3628800
strng8* strng9*strng10

The constraints table would be as shown in the figure below

] Properties £2 Bl Console

% Optimizationl - Optimization Experiment

General Constraints on simulation parameters (are tested before a simulation run):

Advance.d Enabled Expression Type Bound

Model Time "l strngl +strng2+ strng3+ strngd+ strngS5+strngb+ strng7 + stngB8+ strng9+ strngld. = 55.0

Presentation 7 strngl *strng2*strng3*strngd *strng5*strgb*strng7*strg8*strngd*strngl0 = 3628800

Window

Constraints

Replications

Description

Figure 6-4: Constraints Table in Properties View

3.5) Defining the rest of the constraints by repeating steps (3.1) to (3.4) would result in the
following table:

Table 6-7: Constraints for Optimization Parameters

Enabled Expression Type Bound
7| bendl+bend2+bend3+bend4+bend5+bend6+bend7+bend8 _ 55
; +bend9+bend10
= bend1*bend2*bend3*bend4*bend5*bend6*bend7*bend8* _
L bend9*bend10 B 3628800
7 weld1l+weld2+weld3+weld4+weld5+weld6+weld 7+weld8+ - 55
- weld9+weld10
- weld1*weld2*weld3*weld4*weld5*weld6*weld 7*weld8* _
v weld9*weld10 B 3628800
VI coatl+coat2+coat3+coat4+coats+coatb+coat7+coat8+coat = 55

87

9+coatl10
7] coatl*coat2*coat3*coat4*coat5*coat6*coat7*coat8* _ 3628800
coat9*coatl0
excvl+excv2+excv3+excva+excvs+excvb+excv7+excvs+ _
v = 55
excv9+excv10
1 excvl*excv2*excv3*excv4*excvs*excve*excv7*excv8* _
v excv9*excv10 - 3628800
v Iwr1+lwr2+lwr3+lwr4+lwr5+lwr6+lwr7+lwr8+lwr9+lwr10 = 55
v Iwr1*lwr2*lwr3*lwrd*lwr5*lwr6*lwr7*lwr8* lwr9*lwr10 = 3628800
7 bckfll+bckfl2+bckfl3+bckfl4+bckfl5+bckfl6+bckfl7+bckfl8 _ 55
+ bckfl9+bckfl10 -
bckfl1*bckfl2*bckfl3*bckfl4*bckfl5*bckfl6*bckfl7*bckfl8* _
v bekfl9*bekfl 10 = | 3628800
7 hdrtstl+hdrtst2+hdrtst3+hdrtst4+hdrtst5+hdrtst6+hdrtst7 _ 55
+ hdrtst8+hdrtst9+hdrtst10
hdrtst1*hdrtst2*hdrtst3*hdrtst4*hdrtst5*hdrtst6*hdrtst7* _
v hdrtst8* hdrtst9*hdrtst10 - 3628800

The fourth and last stage is forming the graphical presentation for the experiment. However,
as the outline of the graphical presentation does not affect the optimization experiment. It is
just a way to show the ongoing optimization process and the final results in any convenient
way of the modeler’s choice. Therefore, the graphical presentation used in the current model

would be briefly shown without illustrating the specific steps to put it together.

The graphical presentation consists of three parts. The button used to run the simulation,
a table to show the current and best iteration values for the optimization parameters and the
objective function and a graph to show the different values of objective function and its pattern
of declining with iterations. The figure below shows the three parts for one array of

optimization parameters.

88

Run optimization

Current Best

. 2
Iteration: infeasible infeasible
2

2,600
Objective; ¥

Parameters w5
Stmg1
Strng2
Strng3
Strng4
Strng5
Strng6
Strng7
Strng8
Strng9
Strng10

2,400

2,300 -

2,200 1

2,100 1

D W))) A ad W) W) w) =)

2,000

== Current — Best infeasible — Best feasible

Figure 6-5: Graphical Presentation for Optimization Model

6.3. Case Study Description

The South Valley Gas Pipeline is 930-km pipeline extending from Dahshour in the north to
Aswan in the south with a 30"-32" diameter and total investment cost of about 5.7 billion
Egyptian pounds. The gas pipeline crosses the Nile at three sites using Horizontal Directional
Drilling technology. It is considered the largest gas pipeline in Egypt as its capacity is around

12 billion cubic meters per annum.

The project was a result of the efforts of a number of Egyptian petroleum sector companies
such as The Egyptian Gas Holding Company, Ganoub Holding Company, GASCO,
PETROJET and ENPPI. It consisted of six phases in addition to Dahshour compression
station to keep up with the expected growing demand of gas. The phases were:

Phase 1: Dahshour — El-Koraimat Gas Pipeline (90 km length, 36" diameter)

Phase 2: El-Koraimat — Beni Suef Gas Pipeline (30 km length, 32" diameter)

Phase 3: from Beni Suef to Abu — Qorgas city in Menia (150 km length, 32" diameter)
Phase 4: from Abu — Qorqas to Assiut (147 km length, 32" diameter)

Phase 5: from Assiut to Gerga (121 km length, 32" diameter)

Phase 6: from Gerga to Aswan (390 km length, 30" diameter)

89

Dahshour

Koraimat P.S,

Wady EL Nile & S.Wady Cements
Beni Svef Cement

Beni Suef

Orascom for Brick

EL Minya ASEC Cement
Cement
Abu Qurqus New Minya
City & Sugar Al Minya ALl

M sy
pamot

Al Minya

Assiut Cement

Assuit

Dronba Y elves Room o~ i W-U.'d
St o
Cement Factony for rl!‘(
Conit Materials L}
e O b
oy
o<
R

Arrmand City b Sugar

Esna Ciry

Edfa Cley & Sugar

Kom Ombao City b Sugar

Aswan

West Aswan
Kima

Figure 6-6: Map of South Valley Gas Pipeline

The phases of the South Valley Gas Pipeline were completed in November 2009 as it
reached Aswan and started to feed east and west the city. The average construction rate of
the pipeline was 360 m/ day. The simulation model represents a 100-km segment of the
pipeline. It is divided into 10 stations with a length of 10 km each. The 100-km segment in the
case study took about 260 workdays or 2,600 hours. The construction team that worked in

this segment is as follows:

e 10 pipe trucks

e 1 pipe bending machine
e 30 welding crews

¢ 1 weld inspection team
e 5 Joint coating crews

e 6 Excavators

e 6 Side booms

e 4 Bulldozers

e 1 hydro-testing crew

90

6.4. Application of Model

The resources defined in the model in chapter (5) matches the resources used in the case
study. However, In order to overcome the model limitations, some of the utilized resources’
numbers were represented differently. The ten trucks were represented by two trucks in the
model were each truck represents five trucks. The thirty welding crews were represented as
three welders in the model. Each one represents a group of ten crews. In addition, the five
joint coating crews are represented by one coating team in the model. The six excavators are
condensed in two groups represented by two excavators. Also, the four bulldozers are
represented by two in the model. On the other hand, the model simulates well the other
characteristics of the real project. The layout of the pipeline project as well as the location of
the base camp is represented in the model. In addition, the activities durations are
represented accurately in the model. However, the triangular distribution of the durations is

assumed to show the simulation model capabilities.

The process of evaluating the model and examining its results consists of three stages of
model runs. These stages aim to calibrate the model conditions and monitor its outputs. The
result of these stages would be a well-defined model that simulates the real construction
process, forecasts any problems or obstacles and obtains a better schedule by optimizing the

resource utilization to get less project duration than the actual schedule.

In the first stage, the simulation model was run without any alteration from the original
conditions and schedule of the case study. This is done through the model illustrated in
chapter (5) without introducing the optimization parameters defined in this chapter. The
results of these runs are to be compared to the actual duration of construction in the case
study. In the case study, the construction of 100-km segment took about 2,600 hours. After
running the simulation 50 times, the average resulting duration is 2,408 hours with standard
deviation of 70 hours. The maximum value was 2,579 hours and the minimum was 2,300
hours. The following graph shows the values obtained in the fifty runs. The results show that
the model gets a relatively close value to the real duration of the case study on which the
model was developed. However, the variation of results from the actual duration was due to
the triangular distribution of activities’ durations in the model against the deterministic values

calculated in the real schedule.

91

Duration (hr)

2,600
* V'S *
2,550
’ ® L 2
4
2,500 ®
3 *
2,450 -
* e . MRS *®

¢ Duration (hr)

l Y *
2400 T—o— g g

2,350 42 ¢ Y oo ¢ o
4 * 2
2,300 * *
2,250 T T T T T 1
0 10 20 30 40 50 60

Figure 6-7: Results of 50 Simulation Runs

In the second stage of simulation model runs, a simplified version of the optimization module
developed in previous chapter is used. As opposed to finding a separate sequence of work for
each activity, the objective of this module would be to find an optimal sequence that is fixed
for all activities.

The objective of this stage is to test the optimization module using a smaller number of
optimization parameters in order to locate any bugs and fix them. In addition, the resulting
sequence of activities and the associated minimization of total duration of construction is

observed to verify the model and assure its effectiveness.

The simulation model as well as the optimization module that were defined in the
previous chapters has to be modified in order to match the proposed model. There are two
main steps to achieve that; the first is to assign a single array of priorities from the arrays
previously defined to be the array of priorities for all activities. The second step is to define the

optimization parameters as the elements of that array.

The first step is accomplished by modifying the Java code in NetworkEnter object that
was defined in step (3.6) in chapter (5). This modification shall assign the same value for
each entity’s priority in every activity. The array used would be “stationProps1” array. The

modification in the code entered in On enter field shall be as follows:

Name: networkEnter (The default name)

Entity class: Entity (The name of the subclass created in
second stage)

Network: network (The network defined in step (3.1))

Entry node: entitySource (Part of the graphical network. Refer to step

(1.3))

92

On enter: (The following code is executed as every entity enters the object)
int i=7j;
strngPropl=stationPropsl[i];
if(entity instanceof Station)
((Station)entity) .StrngPriority = strngPropl;
strngProp2=stationProps2 [i] ;
if(entity instanceof Station) ((Station)entity) .TruckNo
= strngProp2;
//
bendPropl=stationPropsl[i];
if(entity instanceof Station)
((Station)entity) .BendPriority = bendPropl;
bendProp2=stationProps4 [i] ;
if(entity instanceof Station) ((Station)entity) .BendNo
= bendProp2;
//
weldPropl=stationPropsl[i];
if(entity instanceof Station)
((Station)entity) .WeldPriority = weldPropl;
weldProp2=stationPropsé [i] ;
if(entity instanceof Station)
((Station)entity) .WelderNo = weldProp2;
//
coatPropl=stationPropsl[i];
if(entity instanceof Station)
((Station)entity) .CoatPriority = coatPropl;
//
excvPropl=stationProps8[i];
if(entity instanceof Station)
((Station)entity) .Excvdiff = excvPropl;
excvProp2=stationPropsl [i];
if(entity instanceof Station)
((Station)entity) .ExcvPriority = excvProp2;
excvProp3=stationPropslO[i];
if(entity instanceof Station) ((Station)entity) .ExcvNo
= excvProp3;
//
lwrPropl=stationPropsl[i];
if(entity instanceof Station)
((Station)entity) .LwrPriority = lwrPropl;
//
bckflPropl=stationPropsl [i] ;
if(entity instanceof Station)
((Station)entity) .BckflPriority = bckflPropl;
bckflProp2=stationPropsl3[i];
if(entity instanceof Station) ((Station)entity) .BldzrNo
= bckflProp2;
//
hdrtstPropl=stationPropsl [i];
if(entity instanceof Station)
((Station)entity) .HdrtstPriority = hdrtstPropl;
J++;

The second step is to change the type of the rest of the parameters shown in the optimization

parameters table to “fixed”. This way the only parameters that would be adjusted in the

93

optimization process shall be strngl to strngl0. As those two modifications to the

model are done, the optimization model is ready for running phase.

Current Best
500

Iteration:

2,600
2,435.526 .l oy -

Objective: ¥ £ Bl L .

Parameters 400 . ey
strng1
Strng2
Stmg3
Strng4
Strng5s
Strng6
Strng7
Strng8
Strng9
Strng10

2,400 4 g fu-ual_n_® - L] "a L

2,300 1

W W &= h O ~ O 3 k) -
o

2,100 4

2,000

== Current — Best infeasible — Best feasible

Figure 6-8: Second Stage Optimization Model

After running the optimization model for ten times, the result shown in the figure above was
reached in all runs. Instead of the original sequence, an alternative sequence was devised

through the model. The resulting sequence is as follows:

Table 6-8: Second Stage’s Resulting Sequence of Work for Pipeline Stations

Sot";‘fj'gr“ First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | Tenth
Station
Saton | s 2 10 7 6 | 3 9 8 1 4

The result of optimization shows a reduction of total duration from 2,408 hours in the original
schedule to 2,247 hours i.e. 161 working hours were saved with a reduction ratio of 6.6%. In

addition, no bugs were encountered running the optimization model.

As the second stage of runs was completed successfully, the optimization model defined
in the previous chapter could be used to complete the objective of the research by defining
the optimum schedule in the third stage of runs. As the model will not need any modifications,
the results of this stage would be presented straight away. However, due to hardware
limitations of the computer used to run the optimization model, the model could not be run as
a whole. Therefore, a number of optimization sub-models were developed to reduce the

number of variables in each sub-model to match the computational abilities of the computer.

94

Current Best
Iteration: AL
Objective: 4 2,339.903
Parameters

77—

Hadrtst! 9 Strng1 4 Bendl
Hdrist2 6 Stng2 1 Bend2
Hdrist3 8 Strng3 9 Bend3
Hdrist4 T Strngd 5 Bendd4
Hdrists 2 Stmg5 10 Bend5
Hdristé 1 Strngh 6 Bendf
Hdrtst7? Strng7? Bend?
Hdristg 10 Strngs 8 Bends
Hdristd Strngd 3 Bendd
Hdrist10 5_, Stmgi0 2 Bend10
Weld1 7 Coatt 7
Weld2 § Coat2 5
Weld3 9 Coatd g
Weldd 6 Coatd 6
Weld5 10 Coats5 10
Weldé 1 Coath 1
Weld7 Coat? 2
Weldg 8 Coat8 8
Weldd 3 Coat9 3
Weld10 4 Coat1td 4

4

== Current — Bes: infeasble Best feasible

Figure 6-9: Example of Used Sub-models

After running each of the sub-models for 5 times at least, the resulting sequence was as

follows where each station has its order in the sequence for each activity:

Table 6-9: Final Sequence of Work for Pipeline Stations

Station
Order First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | Tenth

Activity
Stringing 5 3 8 7 6 4 1 9 10 2
Bending 5 3 8 1 4 2 10 9 7 6
8 | welding 5 3 8 1 4 2 10 9 7 6
% Coating 5 3 8 1 4 2 10 9 7 6
& | Excavation 5 1 3 4 2 | 10 9 8 6 7
& | Lowering 5 | 1 | 3| 4 | 2]10]| o s | 6 | 7
Backfilling 5 1 3 4 2 10 9 8 6 7
Hydro-testing [5 1 3 4 2 10 9 8 6 7

The result of optimization shows a total duration of 2,238 hours. This sequence has reduced

170 working hours in comparison to the original sequence with a reduction ratio of 7.1%. No

bugs were encountered running the optimization model.

95

6.5. Validation of Model

The final step is to validate the results of both the simulation and optimization models and

show how relative they are to actual schedules developed using traditional methods. The

method used for this purpose was presenting the bar charts for the original schedule for the

case study project as well as the optimized schedule, shown in appendix C, to five

professionals in the field of project management and planning for oil and gas construction

projection with years of experience that ranges from two to fifteen years. After illustrating

AnyLogic software to them and summarizing the work done in the simulation and optimization

models, they were required to answer a questionnaire with five questions by giving each a

question a degree from (1) to (5) where (1) stands for strongly disagree and (5) stands for

strongly agree. The five questions that were presented were as follows:

4.

5.

Is the actual schedule reasonable?

Is the optimized schedule reasonable?

Is using the simulation model easy?

Is changing any parameters in the model easy?

Would you use it in scheduling a real project?

The results are presented in below figure and they were summarized to show the following
conclusions:

1.

2.

The actual and optimized schedules were accepted and found reasonable

The model needs to be more user-friendly as it is hard to modify any parameter or
any part of the model to fit another project

The simulation model is highly effective in showing the work progress at any instant
of the project life time

The optimization model may present an effective tool in the future in the field of
planning and scheduling

96

Grade

Question No.

Figure 6-10: Results of Questionnaire
6.6. Conclusion

As the simulation model was finished in the previous chapter, the next stage was to construct
the optimization model. It would be used to find an optimal solution for the scheduling problem
in hand. The stages of construction of this model were shown in this chapter. The first stage
was defining the objective function which is the construction time. The second stage was to
define the optimization parameters which would be used to reach the optimal solution. The
third stage was defining the constraints that control the values assigned for the optimization
parameters. The final stage would result in a graphical representation of the iterations and
final result of the optimization process. In the last part of the chapter, a real case study was
presented to evaluate the results’ accuracy against the real figures and its effectiveness in
reducing the total duration of the project. The validation of the model using a questionnaire
that was presented to five professionals in project management field has shown that although
the model still needs to be easier to use, it significantly improves the scheduling process and

would be a very useful tool in the future.

97

CHAPTER 7
CONCLUSIONS

7.1. Summary of Research

This study presents a simulation model, designed to aid construction personnel in planning
and scheduling pipeline construction projects. The research tried to explore all issues that
arise when scheduling a project with many repetitive activities considering all repetitive project
characteristics. The development of the model was a means to solve any problems that might

arise when conducting repetitive project scheduling and not considering the important aspects

of repetitive project.

The first stage of this research was defining the research problem. A comprehensive
review of the domain literature has been conducted. This stage of the research found that the
current repetitive project scheduling techniques do not provide project planners and
management with the optimal sequence of work among the units of the project; Other
problems and limitations that were addressed can be summarized as follows:

Difficulty of Visualizing the entire project.

Continuity of work for crews is not ensured.

Dealing with resources constraints is very difficult.

Difficulty of incorporating the probabilistic nature of durations
Logical interconnections are extremely difficult to comprehend.
Inability to give justifications for management for their decisions

Difficulty of predicting needed corrective actions.

© N o o s~ wDbdPE

Dealing with space related constraints

Then, a thorough study of pipeline construction process was held to fully comprehend the
different activities, the needed resources for each activity and the various characteristics of
the project’s units; a process which would be well used in defining the different classes and
variables of the model in the next stage. Last, examples of utilizing deterministic models,
developed in the literature, for the present scheduling problem in order to present their

limitation in dealing with repetitive projects.

The second stage of development of the present simulation model, after defining the
problems and limitations, was the design stage. First, the typical form of the actual space of a
pipeline construction project was represented as a network that includes all the nodes and the
paths linking them. The length of the paths on the model represents the actual distances
covered by the equipment during the construction works. Next, different classes were defined
for the project’s units or stations as well as the utilized resources. These classes helped in
defining any needed characteristics to the different stations such as soil properties;

characteristics which would affect the schedule and the needed resources. After that, the

98

logical network connecting the project’s activities, the resource pools, the process variables
and the graphic network is created. In this network, the probabilistic durations, the required
resources and the order of work in stations for each activity is defined. Also, any outputs such
as the total duration are defined in this stage. Finally, a simulation experiment is created to
provide the visual overview of the construction process and the values of outputs.

The third stage is creating the optimization experiment. This experiment would be used to
find the optimal schedule and number of resources utilized in each station for each activity. In
this experiment, arrays of stations’ priority to seize the available resources and the number of
resources are defined as the “Optimization Parameters”. AnyLogic software has an
optimization engine that would automatically find the optimum values for these arrays to
achieve the objective of minimizing the total duration of the project while preserving the
defined constraints. The output of this experiment shall be the required schedule i.e. the main
objective of this research.

7.2. Research Contributions

The primary purpose of this research study is to develop a new model to overcome some of
the most important shortcomings and limitations of the current scheduling methods in
scheduling projects with many repetitive activities. The development of this model

incorporates the following contributions:

1. The primary contribution of this research is the development of a scheduling
simulation model for scheduling repetitive linear construction projects in general, and
pipeline construction projects in particular. Both typical and atypical activities could be

modeled easily in same model.
2. ldentifying the activities required in pipeline construction projects and their
interrelationships by means of studying the literature, reviewing industry references

and performing an in-depth analysis of a solid case study.

3. The development of a method that aids the management in running multiple

scenarios for any needed corrective action plan.

4. The model allows the planners to evaluate the impact of using probabilistic activity

durations on project completion time using any type of statistical distributions.

5. The incorporation of the detailed geometric layout of the project such as the base

camp location, the length of linking roads as well as any physical obstructions.

6. The model allows utilization of multiple crews at different locations simultaneously

99

7. The ability to define any attributes to different stations and resources such as different
guantities of bends in the pipeline, different soil types and different productivity rates

for equipment

8. The model allows the incorporation of non-repetitive activities along with repetitive

ones

9. The development of an optimization model for generating least duration schedules for

all types of repetitive construction projects.

10. The development of visual animation of execution of the project that could aid the
management, planners and construction superintendents in visualizing the project’s

activities. Later versions of AnyLogic software provide a 3D animation model.

7.3. Recommendations for Future Research

The present simulation-based model for repetitive project scheduling is a promising trial that
can be utilized in future research efforts. The model is flexible and can be applied to schedule
and control any type of linear repetitive projects. However, in order to expand the potential

applications of this model, the following recommendations for future research can be made:

1. The model has a number of shortcomings that affect the output. The first is that
AnyLogic software has a fixed rule to utilize all available resources in the resource
pool in a fixed order even if a nearer resource unit is available. Future research can
find a way to avoid this rule. The second is that the triangular distribution for
probabilistic durations was assumed. The literature provides many methods that
could be used to determine the suitable distribution for activity durations. The last is
that the optimization model requires a high-end hardware that has high computational

capabilities in order to get credible results.

2. A GIS sub-module could be combined with the model to get many advantages. Such
module could be used to determine the suitable locations for base camps in relation
to populated areas and infrastructure. It can highlight any potential conflicts with any

existing utilities, such as power lines and roads and incorporate them in the schedule.

3. The model could incorporate the weather effect of activities durations, productivities

and unscheduled stops

4. A sub-module could be added to the model to optimize the number of crews and

equipment needed for the project to get the best result for crew work continuity

100

As project planners cannot be expected to be knowledgeable about simulation
techniques and the programming languages used in simulation, user-friendly software
could be developed to allow input entry from the user, builds a model and presents

the simulation results.

101

Appendix A

Java Code for Costume Class “Station”

102

/**
* gtati
*/
public class Station extends
com.xj.anylogic.libraries.enterprise.Entity implements
java.io.Serializable {
double PipeNo;
double StrngPriority;
double TruckNo;
double BendPriority;
double BendNo;
double WeldPriority;
double WelderNo;
double WeldPipeNo;
double CoatPriority;
double Excvdiff;
double ExcvPriority;
double ExcvNo;
double LwrPriority;
double BckflPriority;
double BldzrNo;
double HdrtstPriority;
/**
* Default constructor
*/
public Station() {

}
/**

* Constructor initializing the fields

103

*/

public Station(double PipeNo,
double BendPriority,
double WelderNo,

double TruckNo,
double WeldPriority,
WeldPipeNo,
double ExcvPriority,

double CoatPriority,
double ExcvNo,

double
double Excvdiff,

double StrngPriority,
double BendNo,

double LwrPriority,

double BckflPriority, double BldzrNo, double
HdrtstPriority)
this.PipeNo = PipeNo;
this.StrngPriority = StrngPriority;
this.TruckNo = TruckNo;
this.BendPriority = BendPriority;
this.TruckNo = BendNo;
this.WeldPriority = WeldPriority;
this.WelderNo = WelderNo;
this.WeldPipeNo = WeldPipeNo;
this.CoatPriority = CoatPriority;
this.Excvdiff = Excvdiff;
this.ExcvPriority = ExcvPriority;
this.ExcvNo = ExcvNo;
this.LwrPriority = LwrPriority;
this.BckflPriority = BckflPriority;
this.BldzrNo = BldzrNo;
this.HdrtstPriority = HdrtstPriority;
}
@Override
public String toString() {
return
"PipeNo = " + PipeNo +" " +
"StrngPriority = " + StrngPriority +" "+
"TruckNo = " + TruckNo +" "+
"BendPriority = " + BendPriority +" "+
"BendNo = " + BendNo +" "+
"WeldPriority = " + WeldPriority +" "+
"WelderNo = " + WelderNo +" "+
"WeldPipeNo = " + WeldPipeNo +" "+
"CoatPriority = " + CoatPriority +" "+
"Excvdiff = " + Excvdiff +" "+
"ExcvPriority = " + ExcvPriority +" "+
"ExcvNo = " + ExcvNo +" "+
"LwrPriority = " + LwrPriority +" "+
"BekflPriority = " + BckflPriority +" "+
"BldzrNo = " + BldzrNo +" "+
"HdrtstPriority = " + HdrtstPriority +"

104

/**
* This number is here for model snapshot storing
purpose<brs>
* Tt needs to be changed when this class gets
changed
*/

private static final long serialVersionUID = 1L;

105

Appendix B

Resource Pools Properties

106

Name: Pipe
Resource type: Portable
Capacity defined: Directly
Capacity: 100

Pipes 'sdr:Zp“er?” animation PipeShape (Refer to table (5-1))
sBrl]JasF))/el:Jnit animation pPipeShape
Home defined by: Single node
Home path: PipeYard
Name: Truck
Resource type: Moving
Capacity defined: Directly
Capacity: 2
Trucks Speed:. | . 150
ehaper ! cmimation TruckShape (Refer to table (5-1))
sBrl]JasF))/el:Jmt animation TruckShape
Home defined by: Single node
Home path: ResidenceCamp
Name: Sideboom
Resource type: Moving
Capacity defined: Directly
Capacity: 4
Side booms Speed: 25

Idle unit animation
shape:

SideboomShape (Refer to table (5-1))

Busy unit animation

shape: SideboomShape
Home defined by: Single node
Home path: ResidenceCamp
Name: Pipebender
Resource type: Moving
Capacity defined: Directly

Pipe benders Capacity: !
Speed: 25

Idle unit animation
shape:

PipebenderShape (Refer to table (5-
1))

Busy unit animation
shape:

PipebenderShape

Home defined by: Single node
Home path: ResidenceCamp
Name: Welder
Resource type: Moving
Capacity defined: Directly
Capacity: 3

Welders Speed:' | ' 150
ldle unit animation WelderShape (Refer to table (5-1))
shape:
Busy L-lnlt animation WelderShape
shape:
Home defined by: Single node
Home path: ResidenceCamp
Name: Excavator
Resource type: Moving
Capacity defined: Directly
Capacity: 2

Excavators Speed:' . . 25
ldle unit animation ExcavShape (Refer to table (5-1))
shape:
Busy L-lnlt animation ExcavGhape
shape:
Home defined by: Single node
Home path: ResidenceCamp
Name: Inspector
Resource type: Moving
Capacity defined: Directly
Capacity: 1

Inspection Speed: 150

teams Idle unit animation InspectorShape (Refer to table (5-
shape: 1))
Busy l'Jnlt animation InspectorShape
shape:
Home defined by: Single node
Home path: ResidenceCamp
Name: CoatingTeam
Resource type: Moving

Coating ; .] .

teams Capacity defined: Directly
Capacity: 1
Speed: 150

108

Idle unit animation
shape:

CoatShape (Refer to table (5-1))

Busy unit animation

Bulldozers

shape: CoatShape
Home defined by: Single node

Home path: ResidenceCamp
Name: Bulldozer
Resource type: Moving

Capacity defined: Directly

Capacity: 2

Speed: 25

Idle unit animation
shape:

BulldozerShape (Refer to table (5-
1))

Busy unit animation

shape: BulldozerShape
Home defined by: Single node
Home path: ResidenceCamp
Name: HydTestTeam
Resource type: Moving
Capacity defined: Directly
Capacity: 1

Hydro-testing | Speed: 150

reams th'gp”erj” animation HydTestShape (Refer to table (5-1))
S#;getzmit animation HydTestShape
Home defined by: Single node
Home path: ResidenceCamp

109

Appendix C

Bar Charts for Actual and Optimized Schedules

110

i st

!!!!!!
ttttt
‘‘‘‘‘
tttttt

o I

I

P WO N R IR A e D AR WD D M R A R D M WD N LD 3 U 1R LA L0 LR LN A WD LMD D M 1A LR LT SR SN R D D RO U DR O UW D JEe JeE e

111

Ui s U

112

REFERNCES

Al Sarraj, Z. M. (1990). Formal Development of Line-of-Balance Technique. Journal of
Construction Engineering and Management. 116(4), 689 — 704.

Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive
Projects. Journal Of Construction Engineering & Management, 139(1), 44-50.

Arditi, D. and Albulak, Z. (1986). Line-of-Balance Scheduling in Pavement Construction.
Journal of Construction Engineering and Management. 112(3), 411-424.

Ashley, D.B. (1980). Simulation of Repetitive Unit Construction. Journal of the Construction
Division. 106(C02), 185-194.

Birrell, G. (1980). Construction Planning - Beyond the Critical Path. Journal of the
Construction Division. 106(C03), 389-407.

Carr, M.I. and Meyer, W.L. (1974). Planning Construction of Repetitive Building Units. Journal
of the Construction Division. 100(3), 403-412.

Chrzanowski, E. and Johnston, D. (1986), Application of Linear Scheduling. Journal of
Construction Engineering and Management. 112(4), 476-491.

Dressler, J. (1980). Construction Management in West Germany. Journal of the Construction
Division. 106(C04), 447-487.

Eldin, N. and Senouci, A. (1994). Scheduling and Control of Linear Projects. Canadian
Journal of Civil Engineering, CSCE. 21, 219-230.

El-Rayes, K. (1997). Optimized scheduling for repetitive construction projects (Order No.
NQ40315). Available from ProQuest Dissertations & Theses Global. (304460117). Retrieved
from http://search.proquest.com/docview/304460117?accountid=8423

El-Rayes, K. and Moselhi, O. (1998). Resource-Driven Scheduling of Repetitive Activities.

Construction Management and Economics. 16, 433-446.

Hajdasz, M (2014). Flexible management of repetitive construction processes by an

intelligent support system. Expert Systems with Applications. 41 (2014), 962-973.

Handa, V. and Barcia, R. (1986). Linear Scheduling Using Optimal Control Theory. Journal of
Construction Engineering and Management. 112(3), 387-393.

113

Hassanein, A. (2003). Planning and scheduling highway construction using GIS and dynamic
programming (Order No. NQ77904). Available from ProQuest Dissertations & Theses Global.
(305303811).

Retrieved from http://search.proquest.com/docview/305303811?accountid=8423

Insa Wrede, S. (2014, August). Europe's approach to Russia's gas power. Deutsche Welle
Website. Retrieved from http://www.dw.de/europes-approach-to-russias-gas-power/a-
17887505

Johnson, S.M. (1954). Optimal Two and Three-Stage Production Schedules with Setup Times
Included. Naval Research Logistics Quarterly. 1, 61-67.

Johnston, D. (1981). Linear Scheduling Method for Highway Construction. Journal of the
Construction Division. 107(C02), 247-261.

Kavanagh, D.P. (1985). SIREN: A Repetitive Construction Simulation Model. Journal of
Construction Engineering and Management. 111(3), 308-323.

Kim, K. and de la Garza, J. M. (2003). Phantom Float. Journal of Construction Engineering
and Management. 129(5), 507 - 517.

Moradi, S., Nasirzadeh, F and Golkhoo, F (2015). A hybrid SD-DES simulation approach to
model construction projects. Construction Innovation. 15 (1), 66 — 83.

Moselhi, O. and El-Rayes, K. (1993 (a)). Scheduling of Repetitive Projects with Cost

Optimization. Journal of Construction Engineering and Management. 118(4), 681-697.

Moselhi, O. and El-Rayes, K.(1993 (b)). Least Cost Scheduling for Repetitive Projects.
Canadian Journal of Civil Engineering, CSCE. 20, 834-843.

Moselhi, O. and Hassanein, A. (2003). Optimized Scheduling of Linear Projects. Journal of
Construction Engineering and Management. 129(6), 664 - 673.

Neale, R. H., and Raju, B. (1988). Line of Balance Planning by Spread Sheet. Building
Technology and Management. (January), 22-27.

O'Brien, J.J. (1975). VPM Scheduling for High-Rise Buildings. Journal of the Construction
Division. 101(4), 895-905.

O'Brien, J.J., Kreitzberg, F.C. and Mikes, W.F. (1985). Network Scheduling Variations for
Repetitive Work. Journal of Construction Engineering and Management. 111(2), 105-116.

Palmer, D.S. (1965). Sequencing Jobs Through a Multi-Stage Process in the Minimum Total
Time - A Quick Method of Obtaining a Near Optimum. Operational Research Quarterly. 16,
101-107.

114

Pefia-Mora, F.,Han, S.,Lee, S., and Park, M. (2008). Strategic-Operational Construction
Management: Hybrid System Dynamics and Discrete Event Approach. Journal of
Construction Engineering and Management. 134(9), 701-710.

Pinedo, M.L. (2011). Scheduling: Theory, algorithms, and systems, Fourth Edition, New York:
Springer.

Reda, R.M. (1990). RPM: Repetitive Project Modeling. Journal of Construction Engineering
and Management. 116(2), 316-330.

Russell, A.D. and Caselton, W.F. (1988). Extensions to linear Scheduling Optimization.

Journal of Construction Engineering and Management. 114(1), 36-52.

Selinger, S. (1980). Construction Planning for Linear Projects. Journal of the Construction
Division. 106(C02),195-205.

Smith, C.E. (2013, Febuary). Worldwide Pipeline Construction: Crude, products plans push
2013 construction sharply higher. Oil & Gas Journal. Retrieved from

http://www.ogj.com/articles/print/volume-111/issue-02/special-report--worldwide-pipeline-

construction/worldwide-pipeline-construction-crude-products.html

Stradal, O. and Cacha, J. (1982). Time Space Scheduling Method. Journal of the
Construction Division. 108(C03), 445-457.

Tavakoli, A.and Riachi, R. (1990). CPM Use in ENR Top 400 Contractors. Journal of
Management in Engineering. 6(3), 282—295.

Thabet, W. Y., and Beliveau, Y. L. (1994). HVLS: Horizontal and Vertical Logic Scheduling for
Multistory Projects. Journal of Construction Engineering and Management. 120(4), 875-892.

Wagner, H.M. (1959). An Integer ProgrammingModel for Machine Scheduling. Naval
Research Logistics Quarterly. 6, 131-140.

Whiteman, W. E., and Irwing, H. G. (1988). Disturbance Scheduling Techniques for Managing

Renovation Work. Journal of Construction Engineering and Management. 114(2), 191-213.

Worldwide Onshore Pipeline Construction Market Appears Strong through 2015 (2010,
December). Pipeline News. Retrieved from http://pipeline-news.com/feature/worldwide-

onshore-pipeline-construction-market-appears-strong-through-2015

115

116

	Scheduling of pipeline construction projects using simulation
	Recommended Citation
	APA Citation
	MLA Citation

	01.Thesis Title Page
	02.Abstract
	03.Acknowledgements
	04.Table of Contents
	05.List of Figures
	06.List of Tables
	07.Chapter 1, Introduction
	08.Chapter 2, Literature Review
	09.Chapter 3, Stages of pipeline construction
	10.Chapter 4, Simple Models
	11.Chapter 5, Simulation Model
	12.Chapter 6, Optimization Model
	13.Chapter 7, Conclusion
	14.Appendix A, Java Code for Costume Class Entity - Copy
	15.Appendix B, Table of Resource Pools
	16.Appendix C, Bar charts
	17.References

