87 research outputs found

    Comparison of colour monitor and high resolution greyscale diagnostic monitor using dedicated pacs workstation on computed radiograph of chest

    Get PDF
    Background: Computers and monitors are the most important tools in digital imaging. High resolution greyscale diagnostic monitor is the current gold standard for soft copy display. However, this type of monitor is very expensive and its use in clinical practice may not be cost effective. Hence, for economical reason, a hospital-wide fllmless system based on PACS equipped with workstation for viewing radiographs has not yet been accepted in HUSM. An alternative to the expensive diagnostic workstation monitor that is more cost-effective and can present comparable images must be considered. Colour monitor is considerably cheaper; however there were very few studies on the accuracy and reliability of colour monitor in the interpretation of radiographs in comparison to that of a high resolution greyscale monitor. Objectives: The aim of this study is to determine the diagnostic accuracy and reliability of colour monitor compared to high resolution greyscale diagnostic monitor on CR chest. Methodology: The institutional ethics committee approved the study; informed consent was not required. This study was a comparative cross sectional study and conducted in Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian, Kelantan. All computed chest radiographs from I June 2004 to 31 December 2005 were used as source population. A total of 136 chest images remained after the screenings. Two observers reviewed 136 CR chest images comprising of 48 normal and 88 abnormal images using colour monitor and greyscale monitor at different occasions separated between 3 - 4 weeks. The detections were scored using a scoring form. Analysis of sensitivity, specificity, accuracy and reliability were used. Results: Combination of both observers showed sensitivity of 74.8% and specificity of 94.0% for greyscale monitor and 69.2% sensitivity with 94.1% specificity for colour monitor. There was no statistical significant different for sensitivity and specificity between the two monitors at 95% confidence interval. The calculated accuracy was 91.9% for greyscale monitor and 91.5% for colour monitor. Intraobserver agreements for all the abnormalities were substantial for observer I, observer 2 and both observers combined together (k=0.748-0.767). Moderate agreement were demonstrated between the observers for greyscale (k=0.599) and colour monitor (k=0.515). Conclusion: Colour monitor was comparable to high resolution greyscale diagnostic monitor in sensitivity, specificity, accuracy and reliability for detection of chest abnormalities

    A systematic review of viewing conditions and monitor specifications in mammography

    Get PDF
    Objectives The purpose of this systematic review was to establish the current status of recommended monitor specifications and viewing conditions in mammography for image acquisition and reporting rooms. A literature search was completed between August 2018 and March 2019 using ScienceDirect, PubMed, Web of Science and MEDLINE databases. An additional manual search was performed to identify relevant guidelines to support the review. Only articles and guidelines written in English were included. Key findings Results were selected according to the following criteria; articles detailing (i) monitor specification and, (ii) viewing conditions in mammography acquisition and reporting rooms. Twenty-one studies met the inclusion criteria. Six papers described monitor specifications, five described viewing conditions and ten guideline documents were identified from the UK, Europe and the US. Common outcomes were that monitors with 3 or 5 MP resolution seemed to be preferred and at the same time higher illumination levels (>15 lux) were found to decrease the luminance of the monitors and negatively impact the assessment of image quality. Contrary to this, the majority of guideline documents recommended illumination levels above 20 Lux. Finally, there is a lack of guidance for viewing conditions in acquisition rooms. Conclusion This review did not reveal any strong evidence for the proposed room illumination levels in acquisition rooms. In reference to monitors specifications, there is preference for using higher resolution displays (3 and 5 MP) but again, the evidence is not strong. Moreover, variance exists in the guidelines and that promotes inconsistency in mammography departments. Implications for practice This review highlights the lack of standardised guidelines and the need for further research on the viewing conditions and monitor specifications for the acquisition rooms in mammography

    New technology in radiological diagnosis: An investigation of diagnostic image quality in digital displays of radiographs

    Get PDF
    Digital radiology is undergoing rapid evolution. Its objectives can be summarized as the creation within the modern radiology department - and indeed within the entire hospital - of a harmonious, integrated, electronic network capable of handling all diagnostic radiological images, obviating the need for conventional film-based radiology. One of the limiting factors in the introduction and exploitation of digital technology is the issue of image display quality: if electronic display systems are to be widely used for primary radiological diagnosis, it is essential that the diagnostic quality of the displayed images should not be compromised. From the perspective of the practising radiologist, this study examines the performance of the first two commercially available digital radiological display systems to be purchased and installed in a British hospital. This work incorporates an extensive observer performance investigation of image quality from existing 1024- and 1280-line display systems, and suggests that displayed images digitized at a pixel size of 210?m show a significant reduction in diagnostic performance when compared with original film. Such systems appear to be unsuitable for primary radiological diagnosis of subtle lesions. Some of the physical properties of such systems, some relevant methodological issues, and the relationship between image quality and other factors influencing the development acceptance and implementation of digital technology, have also been investigated; the results are presented. This is a controversial subject, and conflicting views have been expressed in the British literature concerning the issue of whether or not the technology is now ready for total system implementation; the view of this author is that careful testing of display systems, and of every other component of digital networks, should precede their entry into clinical use

    OLEDs AND E-PAPER. Disruptive Potential for the European Display Industry

    Get PDF
    DG ENTR and JRC/IPTS of the European Commission have launched a series of studies to analyse prospects of success for European ICT industries with respect to emerging technologies. This report concerns display technologies (Organic Light Emitting Diodes and Electronic Paper - or OLEDs and e-paper for short). It assesses whether these technologies could be disruptive, and how well placed EU firms would be to take advantage of this disruption In general, displays are an increasingly important segment of the ICT sector. Since the 1990s and following the introduction of flat panel displays (FPDs), the global display industry has grown dramatically. The market is now (2009) worth about ¿ 100 billion. Geo-politically, the industry is dominated by Asian suppliers, with European companies relegated to a few vertical niches and parts of the value chain (e.g. research, supply of material and equipment). However, a number of new technologies are entering the market, e.g. OLEDs and electronic paper. Such emerging technologies may provide an opportunity for European enterprises to (re-)enter or strengthen their competitive position. OLEDs are composed of polymers that emit light when a current is passed through them. E-paper, on the other hand, is a portable, reusable storage and display medium, typically thin and flexible. Both OLEDs and e-paper have the potential to disrupt the existing displays market, but it is still too soon to say with certainty whether this will occur and when. Success for OLEDs depends on two key technical advances: first, the operating lifetime, and second, the production process. E-paper has a highly disruptive potential since it opens the door to new applications, largely text-based, not just in ICTs but also in consumer goods, pictures and advertising that could use its key properties. It could also displace display technologies that offer text-reading functions in ICT terminals such as tablet notebooks. There are three discrete segments in the OLED value chain where any discontinuity could offer EU firms the opportunity to play a more significant part in the displays sector: (1) original R&D and IPR for devices and for the manufacturing process and material supply/verification; (2) bulk materials for manufacture and glass; and (3) process equipment:. For the e-paper value chain, we can see that the entry of EU suppliers is perhaps possible across more value chain segments than for OLEDs. Apart from the ones mentioned for OLEDs, there are opportunities to enter into complete devices and content provision. In terms of vertical segments, the point of entry in OLED FPDs for Europe is most likely to be in the mass production of smaller FPDs for mobile handsets. In conclusion, OLEDs and e-paper have the potential to disrupt current displays market and in so doing they may enable EU companies to enter at selected points in the value chain to compete with the Asian ICT industry.JRC.J.4-Information Societ

    Scenario-based system architecting : a systematic approach to developing future-proof system architectures

    Get PDF
    This thesis summarizes the research results of Mugurel T. Ionita, based on the work conducted in the context of the STW15 - AIMES16 project. The work presented in this thesis was conducted at Philips Research and coordinated by Eindhoven University of Technology. It resulted in six external available publications, and ten internal reports which are company confidential. The research regarded the methodology of developing system architectures, focusing in particular on two aspects of the early architecting phases. These were, first the generation of multiple architectural options, to consider the most likely changes to appear in the business environment, and second the quantitative assessment of these options with respect to how well they contribute to the overall quality attributes of the future system, including cost and risk analysis. The main reasons for looking at these two aspects of the architecting process was because architectures usually have to live for long periods of time, up to 5 years, which requires that they are able to deal successfully with the uncertainty associated with the future business environment. A second reason was because the quality attributes, the costs and the risks of a future system are usually dictated by its architecture, and therefore an early quantitative estimate about these attributes could prevent the system redesign. The research results of this project were two methods, namely a method for designing architecture options that are more future-proof, meaning more resilient to future changes, (SODA method), and within SODA a method for the quantitative assessment of the proposed architectural options (SQUASH method). The validation of the two methods has been performed in the area of professional systems, where they were applied in a concrete case study from the medical domain. The SODA method is an innovative solution to the problem of developing system architectures that are designed to survive the most likely changes to be foreseen in the future business environment of the system. The method enables on one hand the business stakeholders of a system to provide the architects with their knowledge and insight about the future when new systems are created. And on the other hand, the method enables the architects to take a long view and think strategically in terms of different plausible futures and unexpected surprises, when designing the high level structure of their systems. The SQUASH method is a systematic way of assessing in a quantitative manner, the proposed architectural options, with respect to how well they deal with quality aspects, costs and risks, before the architecture is actually implemented. The method enables the architects to reason about the most relevant attributes of the future system, and to make more informed decisions about their design, based on the quantitative data. Both methods, SODA and SQUASH, are descriptive in nature, rooted in the best industrial practices, and hence proposing better ways of developing system architectures

    Ultraäänilaitteiden näyttöjen teknisen suorituskyvyn arviointi sekä laadunvalvonta

    Get PDF
    The purpose of this study was to investigate and evaluate the current technical performance of ultrasound imaging device displays in the Hospital District of South Ostrobothnia and in Pirkanmaa Hospital District. Ultrasound device monitors are used in diagnostics as the interpretation of the image is generally done simultaneously while the doctors perform the examination. There are certain recommendations about the technical performance of these kinds of diagnostic displays, but they are not generally applied to ultrasound devices. The performance of the displays was evaluated with tests and test patterns developed by a task group set by the American Association of Physicist in Medicine (AAPM). Only certain tests were chosen to be conducted as the protocol would otherwise become too heavy while the benefit from additional information would have been minimal. The focus of the study was on luminance measurements and the measurement of illuminance. The results show that the technical performance of most of the displays are not sufficient. The lifetime of the ultrasound machine surpasses the lifetime of the display, but nothing is currently done as there is no proper quality assurance protocol. The lack of proper quality assurance protocol is due to the fact that no legislation or regulations require it as non-ionizing radiation is used. This means that the quality of ultrasound imaging devices depends mainly on the physicists and maintenance engineers working in the hospitals. The singular most important technical performance parameter is the maximum luminance of the display. Although the luminance responses were evaluated against the Grayscale Standard Display Function (GSDF), it is questionable if GSDF compliance should be required from ultrasound device displays. Based on this research the measurement of the maximum luminance should be executed at least annually. The measurement procedure is easy, and it can be taught to any of the staff members and it can tell a lot about the condition of the display. It is also suggested that the hospitals should find out the cost of changing the display and thus probably prolonging the lifetime of the whole machine

    Sixth Annual Users' Conference

    Get PDF
    Conference papers and presentation outlines which address the use of the Transportable Applications Executive (TAE) and its various applications programs are compiled. Emphasis is given to the design of the user interface and image processing workstation in general. Alternate ports of TAE and TAE subsystems are also covered

    MedLAN: Compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec

    The Empirical Foundations of Teleradiology and Related Applications: A Review of the Evidence

    Full text link
    Introduction: Radiology was founded on a technological discovery by Wilhelm Roentgen in 1895. Teleradiology also had its roots in technology dating back to 1947 with the successful transmission of radiographic images through telephone lines. Diagnostic radiology has become the eye of medicine in terms of diagnosing and treating injury and disease. This article documents the empirical foundations of teleradiology. Methods: A selective review of the credible literature during the past decade (2005?2015) was conducted, using robust research design and adequate sample size as criteria for inclusion. Findings: The evidence regarding feasibility of teleradiology and related information technology applications has been well documented for several decades. The majority of studies focused on intermediate outcomes, as indicated by comparability between teleradiology and conventional radiology. A consistent trend of concordance between the two modalities was observed in terms of diagnostic accuracy and reliability. Additional benefits include reductions in patient transfer, rehospitalization, and length of stay.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140295/1/tmj.2016.0149.pd

    Electronic Image Detectability under Varying Illumination Conditions

    Get PDF
    Light in the built environment plays an essential role in the vision and the health of humans through non-visual receptors in the eyes. Unfortunately, image analysts and other Air Force personnel who engage in the detection of objects on softcopy displays are often required to work in very dimly-lit or dark environments as higher illumination reduces the contrast of displayed information. Literature has shown that increases in light exposure improves circadian rhythm entrainment and reduces the negative health consequences of insufficient lighting. This research examines the effects of indoor lighting to determine if increases in ambient illumination or changes to the orientation of light fixtures improves or degrades alertness and visual performance. Positive findings of this study would lead to changes in the environment of image analysts, increasing productivity and long-term health. In a controlled environment, twelve participants were exposed to D65 ambient light at levels of 0, 21, 32, and 43 lux, through overhead lighting, wall-washing, and under-desk illumination orientations. During exposures, participants were asked to visually identify variations in low-contrast Gabor patches on a display. The data was used to calculate the contrast threshold of detectability and response times of participants, thus indicating visual performance. Surveys also measured the subjective alertness and discomfort of participants. Results showed that the orientation of light fixtures significantly affects participant sleepiness, weariness, and discomfort. Additionally, the results indicate that visual detection performance is improved with higher ambient illumination levels employed within this research
    corecore